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CHAPTER I

Data Processing of Strong Motion Accelerograms

1.1 Introduction

The first strong motion earthquake accelerogram was recorded on
March 10, 1933 during the Long Beach, California earthquake. This
remarkable pioneering accomplishment, recently commemorated during the
50th Anniversary of Strong Motion Seismology in Los Angeles (Hudson
1984) marks the beginning of this young applied science. Through the
1940's and 1950's the network of strong motion accelerogram stations in
California grew slowly producing only a dozen or so significantly strong
accelerograms (Alford et al, 1951). The accelerograph data processing
of that time required Tengthy manual calculations (Housner, 1947) or
analog computer calculations suitable only for a small number of records
(Biot, 1941). With rapid growth of the number of the recording stations
in the mid 1960's and the development and availability of digital compu-
ters the new methods associated with digital data processing slowly
gained in speed, accuracy, access and popularity (Brady 1966). However,
it was not until the Tate 1960's and early 1970's that the large number
of recorded accelerograms and the need of many investigators to compare
their results on a common basis necessitated a systematic development of
routine data processing of strong motion accelerograms.

In general, the principles and requirements governing routine data pro-
cessing of strong motion records have changed 1ittle if any since the
early 1970's (Trifunac and Lee 1973). However, during the last decade
we have witnessed a remarkable progress in digital signal processing

techniques, in their accuracy, efficiency and speed. The aim of this



work is to show what improvements have been incorporated into the
routine data processing of strong motion accelerograms so far and what

principles and constraints should govern future work.

1.2 Previous Work

The early systematic development of routine computer programs for
processing strong-motion earthquake accelerograms was initiated with
funding from the National Science Foundation (NSF) in the late 1960's,
and was completed in the early part of the 1970's (Trifunac and Lee,
1973). Almost all of the earthquake signals then were only available
on analog films. Digital accelerograph data were obtained from the
analog films by digitizing the records manually. For example, all of
the February 9, 1971 San Fernando Earthquake records have been digitized
usihg a Benson-Lehner 099D hand operated digitizer. Each record in its
enlarged form was first placed on the digitizing table with horizontal
axis lined up by eye to an estimated zero axis. Each trace was then
digitized by placing the cross-hair manually on successive x-y coordi-
nates of the trace. The digitizer converted the coordinates by digital
figures, which were subsequently transferred to cards. The traces were
digitized on an unequal time basis to ensure the best definition of the
trace for a given number of data points. The average number of points
per second of a typical trace of the record was about 20 to 30 points
in general and up to about 30 to 50 points in the most oscillating
sections of the trace.

The routine data processing software developed with this digitiza-

tion scheme then (Trifunac and Lee, 1973) consists of the following steps:



(I) Volume I Processing:

The timing marks are first checked for "evenness" of spacing, and
then smoothed by the 1/4, 1/2, 1/4 running average. The x coordinates
of each trace are then scaled to units of time in seconds. Each fixed
trace (baseline) is next smoothed and subtracted from the corresponding
acceleration trace, with the‘y coordinates subsequently scaled to units
of G/10.

(IT) Volume II Processing:

The scaled uncorrected Vol. I acceleration data are next corrected
- for instrument frequency response and baseline adjustment. The data are
first lowpass filtered with an Ormsby filter having a cutoff frequency
fc==25 Hz and a roll-off termination frequency fT= 27 Hz. Instrument
correction is next performed using the instrument constants. These
constants are respectively the natura1‘frequen0y and ratio of critical
damping of the instrument considered as a single-degree-of-freedom
system. Those are determined from calibration tests for each accelero-
graph transducer. The data are then baseline corrected by a highpass
Ormsby filter. The cutoff and ro]]—pff frequencies of the filter are

usually determined from the signal-to-noise ratio of each component
(Trifunac and Lee, 1978). The accelerogram data are then integrated
twice to get the velocity and displacement data. To avoid long period
errors resulting from the uncertainties involved in estimating the
initial values of velocity and displacement, the computed velocity and
displacement data are highpass filtered at each stage of integration,
using the Ormsby filter with the same cutoff and roll-off frequencies

as for the corrected accelerogram.



(III) Volume III Processing:

Using an approach based on the exact analytical solution of the
Duhamel integral for successive linear segments of excitation, this
stage consists of calculating the Response and Fourier Spectra for 91
periods and 5 dampings from the Vol. II corrected accelerogram data,
the times of maximum response for all periods and dampings are also

recorded.

The development of the Automatic Routine Digitization System (ARDS)
at USC has now been completed (Trifunac and Lee, 1979). Accelerogram
data are now digitized automatically at 200 points per second by this
system, using a Photodensitometer Photoscan P-1000 by Optronics Inter-
national. A sampling period of .005 seconds means that data up to a
Nyquist frequency of 100 Hz are now available. The digitized data are
directly stored on disk on the Nova 3 computer after digitization and
“editing. The above routine computer processing programs are also
available on the mini-computer and can be used to process the data

directly (Lee and Trifunac, 1979 II).

1.3 The Updated System

Following the recent upgrading of the digitization hardware systems,
and the advances in the theory of digital signal analysis, the routine
data processing of strong-motion accelerograms has been upgraded to
improve the accuracy and efficiency of the performance of the entire
system.

The work to be presented in the subsequent chapters can be divided

into the following steps:



Step I: Design of Lowpass Digital Filters

Chapter II will study the availability, characteristics, properties
and efficiencies of digital filters for low-, high- and band-pass digi-
tal filters in general. Much of the attention will be paid to lowpass
filters since those provide the essential relations for deriving either
of the other two types. The problem associated with the design of the
digital Towpass filter to simulate an ideal lowpass filter will first
be discussed. The different types of lowpass filters available in
literature will then be examined and compared. A guideline for the
design and improvement of new and/or existing lowpass filters is then
considered, followed by a proposed example of a lowpass filter designed

within the proposed guidelines.

Step II: Design of the Differentiating Filter

Numerical Differentiation is required in the step of Instrument
Correction. Instrument correction represents the step of the transfor-
mation from the digitized relative displacement of transducer x(t) to
the true input ground acceleration a(t). The ideal differentiating
filter is first examined, and the problems associated with its design
are discussed. The different types of differentiating filters avail-
able are examined and their performance evaluated. A guideline for
the design of the filter for instrument correction in earthquake engin-
eering is then considered, and followed by the presentation of a dif-

ferentiation filter designed within the proposed guidelines.

Step 3: Design of Highpass Filters
Since the frequencies where the long period errors dominate in

digitized data represent a small fraction of the whole frequency band of



the data, this becomes the problem of narrow band filtering or of narrow
band rejection. An efficient algorithm for the design of narrow band
filtering involving multi-stage decimation and interpolation is adopted.
The procedure for decimation and interpolation of data involving the

design and use of appropriate lowpass filters is also discussed.

Step 4: Automatic Determination of the Frequency band of the Data
with Acceptable Signal-to-Noise- Ratio

A frequency band from .07 to 25 Hz has been adopted in routine pro-
cessing of accelerogram data some ten years ago. However this frequency
band actually varies from record to record and sometimes even from com-
ponent to component, depending upon the signal-to-noise ratio of the data
in that range. A subroutine in the data processing software has been
developed which, for each input component of the acceleration data,
determines the appropriate frequency limits for bandpass fi]tering in
the above steps, so that the resulting data in the band is as free from
noise as desireable. This procedure is introduced to control uniformly

the signal-to-noise ratio of the data.

Step 5: Design of Integration Filter for the Calculation of
Velocity and Displacement Data

With the acceleration data instrument corrected and bandpass
filtered, digital integration is performed twice to get the velocity
and displacement data. The ideal integration filter is first derived
and the problem involved in its implementation examined. The trape-
zoidal rule of integration originally used together with selected
available algorithms are examined and their performances compared. A
guideline for the design of the appropriate integration filter is next

considered. Criteria for the use of the trapezoidal rule of integration



within the guideline are examined, together with examples of possible

new integration filters.

Step 6: Updating Volume III Data Processing

Efficient algorithm for the calculation of the displacement and
velocity of the response of a sing]e—degree-of;freedom—system oscillator
to earthquake excitation has been used in the calculation of Response
and Fourier Spectra for specified natural periods and dampings (Volume
IIT data). The new algorithm results in a saving of as much as 56% of

computer time at each step of the iteration.

Step 7: Conclusions - Batch Mode Automatic Digitization and Data
Processing

With the automatic determination of the Timit frequencies for
bandpass filtering, followed by the use of appropriate filters for
subsequent bandpass filtering, instrumenf correction and integration as
described above, the batch mode processing for the Volume II stage will
now be possible. The existing Volume I processing stage can also be
upgraded to make Volume I batch mode processing possible. Currently,
Volume III processing is already in batch mode form. This will allow
for one batch mode for all Volume I, II and III processing. Together
with the Automatic Routine Digitization System completed and operating
at USC, this entire package provides an efficient prototype for digi-

tization and data processing of strong motion accelerograms.
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CHAPTER II
DIGITAL LOWPASS FILTERS

2.1 Introduction

The aim of this chapter is to explore the availability, charac-
teristics and efficiency of digital filters for low-, high- and band-
pass filtering of data in Earthquake Engineering. These are filters
whose amplitude response is unity within the passband and zero else-
'whére. The passbands for low-, high- and bandpass filters are as
shown in Fig. 2.1.1. The frequencies W, and w, are called cutoff
frequencies. The response functions in the figure are those of ideal
filters, and will have to be approximated in practice. The three
filters will be considered separately. However, most of the attention
and discussion will focus on lowpass filters, since these provide the

essential relations for deriving either of the other two types.

2.2 Lowpass Filter: Ideal Unit Impulse Response Function
An ideal lowpass filter in the frequency domain passes all Tow
frequencies, |w| < w , without any change and blocks all high frequen-
cies, |w| > w > as given by:
1 jw| < w
H(w) = L (2.2.1)
0 lw| > W,
The unit impulse response, h(t), and H(w) form a Fourier Transform

pair, so that:

w . w
1

h(t) = 55 / L H(w) e Wtyy =

STy
m w, t

—wL L

(2.2.2)

For an arbitrary time function, x(t), acting as the filter input,

the output time function, y(t), is given by the convolution integral of



1 IH (w)]
|
w W
| lH(w)I

]

wy —w
/ IH (w)l
|

Figure 2.1.1. Ideal Tow-pass (top), high-pass (center) and band-pass
(bottom) filters.
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x(t) with h(t),

y(t) = [ h(t)x(t-1)dT . (2.2.3)

-00

For digital data sampled at equally spaced intervals of T seconds,

the Nyquist (folding) frequency of the input data is given by:
Wy = /T . (2.2.4)

Assume that the cutoff frequency is less than the Nyquist Frequency,
wL < wN. In the discrete time domain, the ideal lowpass filter can be

expressed as complex Fourier Series:

Hw) = § nlkle KT

for ‘wNiwin s (2'2'5)

and the corresponding impulse-invariant filter weights h[k], are given

by:
wLT sin K»LT
hlk] = (2.2.6)

m kwLT

for k = ...,-2,-1,0,1,2,... from -® to ©. Given the equally spaced set

of input data, (x[n]), the output data (y[n]) will then be given by

y[n] = g h[k]x[n-k] (2.2.7)

for k = ...,-2,-1,0,1,2,....

An exact realization of an ideal lowpass filter given by (2.2.1)
thus requires an infinitely long sequence (h[k]) which extends to infin-
ity in the direction of both positive and negative time.

Several interesting properties of the filter follow directly from

(2.2.7). Due to the non-zero values with positive and negative time



11

indices, it represents a noncausal system. The impulse response sequence
(2.2.7) consists of both anticipation (k < 0) as well as memory (k > 0)
terms. Consequently, the output values are influenced by past, present
and future input. This requires that the input signal be available in a
stored form. For data processing carried out by a computer, this require-
ment will not create any difficulties.

The impulse response terms (2.2.6) form an even time sequence, with
h[-k]=h[k], so that the memoryand anticipation (past and future) terms
are mirror images of each other. The ideal filter is therefore a sym-

metric one. Consequently,

H(w) = h[0] + 2 ) h[k]cos(kwT) , (2.2.8)
k=1

so that the transfer function is real. The ideal lowpass filter thus
has zero-phase characteristics, and a system described by (2.2.8) will
perform a phase-distortionless transmission, a property which is required

and essential in most Earthquake Engineering Data Processing applications.

2.3 Truncated Unit-Impulse Response Function With Windowing

A Towpass filter with impu]sé response function defined by (2.2.7)
thus performs an ideal separation of the desired frequency components
from the unwanted high frequencies. However, since infinitely long sig-
nals cannot be processed by digital computers, the sequence (h[k]) has
to be truncated. Uhfortunate]y, the convergence of the sequence is slow
and Targe number of terms are needed to Qet to the sufficiently small
coefficients h[k]. At the cutoff frequency, W s the transfer function,

H(w), is discontinuous, changing its value abruptly from 1 to O.
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Taking a finite number of terms in (2.2.8), and substituting the

.
.

values of h[k] from (2.2.6), will give (Fig. 2.3.1)

N
H(w) = h[0] + 2 } h[k] cos(kwT) (2.3.1)
1

Truncation will thus introduce errors in the vicinity of the cutoff
frequency, a phenomenon known as Gibbs effect. This effect may be re-
duced by increasing the length of the impulse response. Further, this
can be improved by a smoothing technique, known as windowing, in the

time domain. Take, for example, Hanning window:

w(t) = —]2- (1 + cos £ . (2.3.2)

Taking w[t] = w(kT), the "windowed" coefficients become

(1 + cos(km/N))sin kw, T

’ L
blk] = h[k]wlk] = T (2.3.3)
and (2.2.7) then becomes
N N v
y[n] = % h[k]w[k]lx[n-k] = %q b[kIx[n-k] (2.3.4)

For example, the transfer function amplitudes for the case of
N = 30, wL = .21/T, or the cutoff frequency being 1/5 that of the
Nyquist frequency, is given in Fig. 2.3.2. Since the filter weights

are symmetric, (2.3.4) can be written as

y[n] = b[0]x[n] + E blkl(x[n-k] + x[n+k]) (2.3.5)

Another procedure for better and smoother approximations of the
discontinuity at the cutoff frequency is to introduce a transition

frequency band within which the passband amplitude will gradually
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N =30
r -; wLT=O.21r

-2 -1 0 I 2
Figure 2.3.1.
|
N =30
wLT =0.2mT
r— 1 Hanning Window
| |
I
l
l L/ | -
-2 ~ 0 | 2
Figure 2.3.2.

Transfer function amplitudes for digital filter with N = 30 and
wLT = 0.2m (top) and for the same filter with Hanning window (bottom)
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decrease or roll off to the stopband amplitude (Fig. 2.4.1). The fine
details will depend upon the particular filter design.

A number of methods available for constructing finite-length lowpass
filters have been proposed and used for Earthquake Engineering Data

Processing. Some of these methods are outlined in the following.

2.4 Ormsby-Type Filter

Anders et al. (1964) proposed the following frequency response

function (Fig. 2-4-1) with a first-order roll-off:

(
] Iw|<w
-
0 lw| > W
H(w) =1 (2.4.1)
(w + ws)/Aw - < w < -0y
L (ws-w)/Aw W, < W< W

where (wc,ws) is the transition band, Mw = wg - W, The corresponding

impulse response h(t) is given by:

cos wct - COS wst
h(t) = > (2.4.2)
2mt° Aw

The impulse response filter weights for discrete data are again
obtained by quantizing h(t) at equal time intervals of kT, for ke(-»,)

giving: cos kaT - CO0S wSkT

h[k] = h(kT) = (2.4.3.)
21T2k2T2 Aw

Since the amplitude response |H(w)| is now continuous (Fig. 2.4.1),
the sequence of weights (h[k]) in (2.4.3) will approximate well the
behavior of H(w) for sufficiently large k. The filter weights are again
symmetric about k = 0, with h(-k) = h(k), so that the filter performs a

perfect phase-distoritonless transmission.
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Figure 2.4.2. Ormsby low-pass filter (top: linear amplitude, scale,

bottom db amplitude scale).
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Fig. 2.4.2 (i) and (ii) show a plot of the truncated Ormsby-type
transfer function on linear and Togarithmic scales. The cutoff frequency

and roll-off frequency interval are 25 and 2 Hz, respectively.

2.5 Chebyshev-(elliptic) Type Filter

Chebyshev (E1Tliptic) digital filters have been studied in consider-
able detail (Oppenheim & Schafer, 1975). The design of an elliptic
filter involves the approximation of the. desired frequency response
amplitude by a rational function of the form:

E blk] exp(-ikwT)

H(w) = (2.5.1)

1+ E alkl exp(-ikwT)

where the summation for b[k]is from k = 0 to K, and that for alk] is from
k =1 to L, for some given K,L. The coefficients of the rational func-
tion are determined by an appropriate set of specificatiohs on the digi-
tal filter. In the case of a Towpass filter, this often takes the form

~ of a tolerence scheme, as shown in Fig. 2.5.1. The dashed line region
represents the magnitude of the frequency response of a filter that

meets the following specifications:

(1) For a given passband cutoff frequency, w_, and a stopband cut-

C

off frequency, wes @ transition band of nonzero width, st— wcl, is

assumed in which the magnitude response drops continuously from the pass-
band to the stopband.

(2) Within the passband, |w| < w.» the magnitude of the response

must approximate unity to within an error of =+ €q°

1 - £y < H(w) <1 + € (2.5.2)
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Figure 2.5.1. Tolerance scheme in pass-, transition-, and stop-bands.
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(3) Within the stopband, |w| > wg» the magnitude of the response

must approximate zero to within an error of = €yt

Hw)| < e, (2.5.3)

For the case of elliptic and other similar filters, 1ike Butterworth
filters, there is usually no constraint on the phase response. O0ften
such a filter is determined only in terms of the above magnitude approx-

imation, and the phase of the resulting filter is usua]Ty disregarded.'

Starting from the equally-spaced input sequence (x[n]), the filter

output sequence (y[n]) is given by:
yln] = E' b[kIx[n-k] - E a[k]y[n-k] (2.5.4)

where the summation for b[k]is from k = 0 to K, and that for a[k]is
from k =1 to L.

Note that, in general, the output values are determined in terms of
the past and present input plus the past output. A digital filter is
completely defined by the sequence (a[kl) and (b[k]), so that designing
such a digital filter means finding the constants a[k] and b[k] which
will satisfy the given specifications. Elliptic filters are character-
ized by a magnitdde response that is equa]iy rippled in both the pass-
band and the stopband. The frequency response of a Towpass elliptic

filter takes the form:

H = . (2.5.5)
(w) 1 + €2U2(N,m)

where U(N,w) is a Jacobian elliptic function. A detailed discussion of
the design of such a filter is given in Gold and Radar (1975). The

phase Ph(w) is given by



Ph(w) = TAN™! @231(2(3))) (2.5.6)

where Imag(.) and Real(.) are respectively the imaginary and real parts

of a complex function. (2.5.1) shows that Ph(w) is nonlinear in w.

This means that in general, the filter cannot attain a zero or linear

phase characteristics, so that the filter will provide a phase-distorted

output. In typical Earthquake Engineering Data Processing, signal

distortions due to phase characteristics are not desireable and should

be eliminated. To eliminate the phase distortion for a filter of this

kind, the original filter may be replaced by the corresponding magnitude-

squared filter using a time reversal transformation (Gold & Radar, 1975).
Fig. 2.5.2 (i) and (ii) give a plot of a typical elliptic filter

in Tinear and logarithmic scales, respectively. . The passband and stop-

band freqeuncies used are 12 to 18 Hz, respectively. Fig. 2.5.3 gives

a plot of the phase of the same elliptic filter to illustrate its non-

linear characteristics.

2.6 Performance of the Ormsby and E1liptic-type Filters

Comparison of Fig. 2.4.2 (Ormsby) and Fié. 2.5.2 (E114iptic) for the
two types of lowpass filters shows similarities in all three bands of
frequencies. Both filters approximate unity within the passband, sloping
down COntinuous1y in the transition band, and within the stopband, the
transfer function magnitudes squared are around -40 to -60 dB.

To further compare the performance of the two filters, samples of
cosine functions are sampled at 200 points/sec, which is the sampling
rate for data currently digitized by the Automatic Digitization Routine
System (ARDS) developed at USC (Trifunac and Lee, 1979). For both

filters, different frequencies of the input cosine functions from the
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passband through the transition band into the stopband are used. For
each frequency, the ratio bf the maximum magnitude of the output fil-
tered data to that of the imput data is calculated. This will corre-
spond to the numerical evaluation of the transfer function magnitude of
the filter at different frequencies.

~ Fig. 2.6.1 shows plots of the input cosine functions versus time
and the corresponding output functions filtered by the Ormsby filter.
The frequencies of input cosine functions in the figure are 8, 16, 24,
28, 32, and 40 Hz. For each plot, the input function is shown by a
solid line while the output function is plotted by a dashed 1ine. Since
the input functions of different frequencies all have the same sampling
rate, the smaller the frequency, the more accurate will the cosine func-
tion be represented. The Ormsby filter used has a cutoff frequency of
25 Hz and a transition width of 2 Hz. Thus the first 3 cosine functions
of the left in Fig. 2.6.1 are within the passband and hence the corre-
sponding output functions (dashed 1ines) resemble the imput functions
closely in magnitudes and phases. The top function on the right is
close to the transition band. The Tlast two functions below are within
the stopband and hence the corresponding output functions are approxi-
mately equal to zero.

Figure 2.6.2 gives a plot of the input cosine function vs. wt and
the output function filtered by the elliptic infinite impulse response
(IIR) filter. Figure 2.6.3 illustrates the use of the IIR filter in the
magnitude square sense as described in section 2.5. This means the cosine
function is filtered through the IIR filter once, then a time reversal
is effected and the result filtered through the IIR filter the second

time. The input cosine functions in Figure 2.6.2 and 3 are respectively
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of frequencies 8, 16, 24, 32 and 40 cps as in the example involving the
Ormsby filter. For each plot, the solid 1ine again represents the input
cosine function and the dashed 1ine the outpet filtered function. The
ITR filter in magnitude squared sense again has a cutoff freguency of
25 cps. The cosine functions on the Teft half of Figure 2.6.3 are
within the passband (respectively 8, 16, and 24 cps). The output func-
tions (dashed Tines) resemble the corresponding input functions well
except at the beginning where the cosine functions start out with magni-
tude 1 while the corresponding output functions start out with small
magnitude close to 0, and take as much as half a cycle before picking
up and being close to the input data. This may be attributed to the
fact that the elliptic filter function used only has memory terms and
no anticipation terms (Egn. 2.5.4).

Each point of the output data is determined completely from past
and present inputs and past outputs only. At the beginning of time,
the outputs are thus determined from and only from 1ittle past and
present input information. Filters with this causal characteristic are

useful when outputs need to be obtained concurrently with inputs.

The Ormsby filter, on the other hand, calculates its outputs from
both past, present and futUre inputs (Section 2.4). 1In other words,
the filter has both-anticﬁpation as well as memory terms. This is the
reason why the filtered outputs from the Ormsby filter in the passband
resemble the inputs almost simultaneously. In earthquake engineering,
the input acceleration data are always available in a stored form.

Dependence on future inputs thus poses no problem in data processing.



28

The use of IIR elliptic filter has been suggested by Sunder (Sunder,
1980) because elliptic filters have the unique characteristic of being
optimal, in the sense that for a given order and given ripple specifi-
cations, no other filter achieves a faster transition between the pass-
band and stopband. HoWever, some optimal filters tend to be robust in
their maintenance of performance standards when the given quantities
assumed for design purposes are not the same as the quantities encoun-
tered in operation. In the case of earthquake engineering, with accel-
erograms as the input data, signal distortions due to phase character-
istics are undesirable and should not be present. Since no phase-
distortionless requirement is specified in the design of the IRR
elliptic fi]tek, the resulting "optimal" elliptic filter does give a
phase-distorted output. To eliminate this, the original filter may be
replaced by the corresponding magnitude-squared filter (Section 2.5).

The optimality of the resulting filter is thus Tost.
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2.7 Comparison of the Performance of Ormsby and ElTiptic-type filters
With all the input data available in a stored form in a computer
before the computation starts, the requirements that the filter be casual
(physically realizable) is not essential. This means that the filter
used does not have to be recursive, i.e. that the outputs depend only
on past and present inputs and past outputs only. (The time reversal
step often used with elliptic filter in the correction of phase distor-
tion would have to eliminate this characteristic anyway). In other
words, with the input data in stored form, the filter used can have
both memory and anticipation terms so that the outputs are dependent
on both past, present and future inputs. This results in two important
characteristics. First, the impulse response terms‘(h[k]) can be chosen

to form an even time sequence with

hik] = h[-K] , (2.7.1)

i.e. with anticipation and memory terms being mirror images of each
other. This will result in a filter which will perform a perfect phase-
distortionless transmission, an important property in earthquake engin-
eering data processing (Section 2.2).

Secondly, a filter having both memory and anticipation terms as
compared to one with just memory terms will mean that it uses more
information available about the inputs to produce the outputs. The
significance of this is best illustrated in the next two sets of figures.
Fig. 2.7.1 shows plots of exponentially decaying input cosine functions
versus time and the corresponding output functions filtered by the
Ormsby filter. The input data has the same frequencies as those in

Fig. 2.6.1, except the amplitudes of the data are now exponentially
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decaying, a case which is not uncommon to earthquake data. The output
data resulting from the Ormsby filter again resemble the corresponding
input data in the passband and have approximately zero amplitudes in
the stopband.

Fig. 2.7.2 shows a plot of the numerical evaluation of the transfer
function magnitude of the Ormsby filter versus frequency for this par-
ticular type of input data. Because of the special transient nature of
the input, this may be used to measure the transient character, if any,
of the Ormsby filter. The magnitude curve is similar to the case of
stationary input already considered (Fig. 2.6.1). _

Fig. 2.7.3 shows the same plot of the exponentially decaying input
cosine function versus time and the corresponding output data filtered
by an elliptic IIR filter. As in the earlier case, the ouptut data all
have a phase shift relative to the input data and a correction procedure
is again necessary (section 2.6). Figure 2.7.4 shows the same plot of
input and output data filtered by the elliptic filter with the time
reversal correction procedure. The phase shift is now corrected, but
as in the earlier case, the output data again start out with magnitudes
close to 0, and take as much as half a cycle before picking up and being
close to the input data. The output data thus do not pick up the early
and 1afge maxima. Fig. 2.7.5 shows a plot of the numerically calculated
transfer function magnitude of the filter versus frequency for this
particular type of input data. The transfer function starts out close
to unity at low frequency, but then it decreases to .8 at about 5 Hz.

It stays at around this magnitude till 20 Hz and then Tevels to zero at

about 30 Hz.
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In summary, two types of filters have been considered: Ormsby and
Elliptic. The first type performs a perfect phase-distortionless trans-
mission, and with the data in stored form, has both memory as well as
anticipation terms. The second type filter gives a phase-distorted
output and hence a time reversal technique is needed to correct this.

In comparison, both filters show similar performance with constant mag-
nitude cosine functions as input data. However, with decreasing magni-
tude input cosine function, the Ormsby filter shows a better performance

than the elliptic filter.

2.8 Recursive Versus Non-recursive Filters
Two types of filters have been discussed: Ormsby and Elliptic.
The first type is a symmetric (h[k] = h[-k]), nonrecursive digitél filter
which operates on equally spaced data (x[n]) with output (y[n]) given by
y[nl =) h{k]x[n-k] (2.8.1)
k

and with a transfer function of the form

H(w) = h[0] + 2 E h{k]cos(kwT) . (2;8.2)

The filter performs a perfect phase-distortionless transmission. It has
both memory as well as anticipation terms.
The second type is a recursive digital filter operating on equally

spaced input data (x(n)) with output (y[n]) given by

L K '
y[nl = Y a[kly[n-k] + ) b[kIx[n-k], (2.8.3)
k=1 k=0

and a transfer function of the form:
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) blklexp(-ikwT)

=~

H(w) =
1 + g a[klexp(-ikwT)

(2.8.4)
a rational function of exp(-iwT). (2.8.4) shows that the filter by itself
gives a phase-distorted output and hence a time reversal technique is
needed to restore the phase of the input data. It has only memory terms
and no anticipation terms.

Comparison of the performance of the two filters is an example of a
more general comparison of two types oflf11ters: recursive versus non-
recursive fiTters. The Ormsby filter is a non-recursive filter that,
for each n, responds only to values of x[m] in the range (x[n-N],x[n+N]).
Non-recursive filters are thus also known as "Finite Impulse Response"
(FIR) filters, and elliptic filter used is an example of a "one-sided"
physically realizable recursive filter. From its ability to produce,
from one single impulse, effects which can extend indefinitely far into
the future, it is also known as II.Im°1'n1'te Impulse Response" (IIR) filter.

Both types of filters have abbut the same flexibility to meet the
various conditions. However, a "slow" transient character of the
elliptic filter wés observed above. At the beginning of time series,
it takes time for an elliptic filter to "settle" down after a sudden
change in input. The non-recursive Ormsby filter, on the other hand,
shows much smaller transient response. Because of such problems, and
because of instabilities and phase éhifts, recursive filters tend to be
used in systems only where there are very Tong runs of data more or less
stationary in character. Non-recursive filters, on the other hand, are
simpler to understand, design and use, and are more likely to be used
in data processing which are comparatively more transient in nature, as

in the case of earthquake engineering data processing, for example.
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It is also noted that the elliptic IIR filter has ripples in the
transfer function in both the passband and the stopband. Ripples are
allowed in its design to achieve its optimality in the order of the fil-
ter. Earthquake engineering data processing requires the cascading
sequence of many filters, i.e. one filter after another. Bandpass fil-
tering is made of the low- and high-pass filters, instrument correction
involves the use of the differentiation filter, twice, to get the first
and second order derivatives (Chapter III), integration involves the use
of integration and high-pass filters twice to get velocity and displace-
ment data. If the data passes through M such filters with ripple ampli-
tudes (1 + €) in the passband, then the resulting ripple peaks will be
(1 + e)M. Ripples in the passband are thus strongly objectionable in
data processing with many cascading filters. Ripples in the stopband
are objectionable for the same reason. The input earthquake signal for
data processing is often masked by. instrument and digitization noise.
After fi]teringvout the noise, any small peaks that are ]eft in the
spectrum of the signal might result from the original signal or from
ripples in the stopband of the transfer functions used in the filtering
process. This problem can, and should be, avoided by'using a class of
filters that vary smoothly throughout their pass-band.

It is with these considerations that the following guidelines are
proposed for the design and improvement of new and/or existing Tow, high
and band-pass filters to be used in earthquake engineering data pro-
cessing:

(1) that the filter be of the form given by (2.8.1), being a
finite-impulse response (FIR) non-recursive filter with symmetric coeffi-

cients (h[k]l=h([-k]), so that the transfer function is in the same form
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as (2.8.2); this will ensure that the filter performs a perfect phase
distortionless transmission;

(2) that the magnitude of the transfer function be free from
ripples in both the pass and stop band. The class of filters that vary
smoothly should be used;

(3) that the Gibbs effects at the cutoff frequencies due to any
form of truncation be minimized; the use of appropriate windowing tech-
nique and sharpening technique for smooth transition from the passband
to the stopband should be investigated.

2.9 A Note on the Speed of Implementing Non-recursive (FIR) and

Recursive (IIR) Filters

For Earthquake Engineering applications, Sunder (1980) suggested
the use of recursive (IIR) lowpass filter in place of non-recursive
(FIR) filter. He noted that one advantage of the recursive elliptic-
type filter over the other filter is in its order, or the number of
filter coefficients used. The IIR filter to be used needs to be of an
order K = 5, and the number of mu]tipTications then equals N + N + 1 =11,
and the number of additions 10. Since the correction for phase distor-
tion needs the time reversal technique with the filter applied a second
time to the data in reverse order, each point of output thus requires
double the number of operations: 22 multiplications and 20 additions.

It was also pointed out by Sunder (1980) that for the realization
of Ormsby (non-recursive FIR) lowpass filter, the filter order will have
to be as much as 200, or even 500 to satisfy the same design specifi-
cations. Each point of the output, according to (2.2.3), would thus
need 200 to as much as 500 multiplications. It is often this fact that
has made recursive IIR filters thought to be more preferable and effi-

cient when compared to FIR non-recursive filter. However, advances in
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signal theory have resulted in the availability of efficient algorithms
for the implementation and use of FIR filters. When compared to the
use of IIR filters, this results in even greater saving in computation
and speed.

The general formula for the application of such a filter is, from

(2.3.2): K

y[n]= ) b[kIx[n-k] , (2.9.1)

forn=1,2,...,N. (2.9.1) is the equation for the discrete Tinear
convolution of (b[k]) and (x[k]). 1In terms of discrete Fourier Trans-

form (DFT), this becomes:

Y(m) = B(m)X(m) , (2.9.2)

where B(m), X(m) and Y(m) are respectively the DFT of (b[k]), (x[k]) and
(y[kl). High speed Fast Fourier Transform (FFT) algorithm can thus be
implemented. Since the input data (x[n]) is often much longer than the
filter weights (b[k]), direct implementation of FFT will still not be
very efficient. Two new techniques are now available, which both section
the long sequence into subsequences and perform partial convolution by
the FFT techniques and recombine the results properly to form the

desired output sequence.

The first technique is called the OVERLAP-AND-SAVE method. The
given shorter sequence (h[k]) is to perform the linear convolution with
a comparatively much longer sequence (x[n]). The longer sequence will
be sectioned into shorter subsequences and the desired convolution will
be achieved through high-speed convolution of the subsequences with the

h[k]'s. The procedure is as follows:
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(1) Select L > K, where K is the number of terms in (h[k]) and
L = 2**2 is a power of 2.

(2) Pad the shorter sequence withL -K zeros at the end to make
up one of Tength L. |

(3) Form the data sequence xi[k] having L samples, the first
K - 1 of which are to overlap with the preceding segment, i.e. they are
simply the Tast K - 1 samples of the preceding segment. Note that this
means that the first segment will be padded with K - 1 zeros at the
start for the case of zero extension. |

(4) Compute the Tinear convolution of h[k] with the segment of

x[k], both of length L, using the FFT algorithm:
y; Ikl = x;[k] @ h[k] (2.9.3)

(5) Discard the first K - 1 samples of yi[k]’

(6) The remafning L - K+ 1 samples are then saved and taken as
part of the output sequence corresponding to that segment of the x[k]
in the Tinear convolution.

(7) Repeat steps 4 to 6 until all the data are exhausted.

(8) The individual output segments are aligned together to form

the overall convolution sequence.

Another method is called the OVERLAP-AND-ADD techniqué. The proce-
dure is as follows:

(1) Select L > K, and L = 2**2, a power of 2, as before.

(2) Pad the shorter h[k] sequence with L - K zeros at the end to

make up one of length L.
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(3) Form the data subsequencesxi[k]each time by taking L - K + 1
samples from the long sequence x[k] and pad K - 1 zeros at the end to
form a segment of Tength L.

(4) Compute the linear convolution of the two segments of length

L, using the FFT algorithm:
Lkl = x, [kl 8 hlk] (2.9.4)

(5) The first L - K + 1 samples of this output segment are then
placed in the respective positions of the overall output sequence.
(6) The remaining K - 1 samples are to overlap the first K - 1
samples of the subsequent output segment and are added accordingly to
the corresponding samples.
(7) Repeat steps (4) to (6) until all data are exhausted.
(8) Combine the segments y.[n] for 0 < n< L -K, as
yin] = y,[n]
yIn+(L-K+1) ]

1]

yIn + (L = K+ 1)1 + y,[n]
yZ[n + (L ‘:K +1)] + Y3[n]
ysln+ (L ="K+ D] +y, . In1 (2.9.5)

yn+2(L-K+1)]

yIn+i(Lok+1)]

Either of the above two tethhiques is very efficient. Regardless
of the method used for combining the partiai results, the problem of
performing the linear convolution of (2.9.1) has been reduced to per-
forming a series of convolutions of two finite sequences to obtain the
partial sequences (yi[n]), that are afterwards suitably combined to
obtain (y[n]). To obtain (yi[n]), an L point DFT is first computed on
the data segment x[n], to get Xi[m], which is then multiplied tekmlby
term with the precalculated (H[m]), the DFT of (h[k]), to get yifm],
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from which (yi[n]) is obtained as inverse DFT. Using the FFT algorithm,
each of the two DFT Steps needs L/2*log (L) complex multiplications, and
the computation of Yi[m] takes an additional L multiplications. The
total number of multiplications becomes L*(1 + Tog (L)) for L samples
or 1 + log (L) per sample! This corresponds to a drastic savings. As
an example, let L = K = 128, then the direct convolution would require
128 multiplications per output sample and the fast convolution needs
only 8, that is, a 16 fold reduction. The name fast convolution is thus
fully justified. For the case of input samples that are real, further
saving of computer time is possible by using FFT algorithms for real

data.

2.10 Smooth Nonrecursive Filters

Based on the design criteria set in the previous section, we con-
sider the design of a class of lTowpass filters that are mondtone (vary
smoothly) over the whole frequency band interval. The following approach
as described in Hamming (1977) has been adopted.

Given a symmetric (h[k] = h[-k]), nonrecursive digital filter that
operates on equally spaced data (x[n]), the output, (y[n]), is computed

by the formula:

y[n] = ) h[klx[n-k] , (2.10.1)
k

with the corresponding transfer function given by:

K
H(w) = h[0] + 2 z] h[klcos(kw) . (2.10.2)
k=

Using the identity:
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n-2k(

n
cos(nw) = ] (-1)X ¢(n,2k)cos" 2K (W) (1-cos?(w))X, (2.10.3)

k=0

(2.10.2) can be transformed into a polynomial in powers of cos(w), which,

for suitable choice of. coefficients, b[k], takes the form:

n K N K
H(w) = )} blkl(cos(w))"= J blkIt" , (2.10.4)
k=0 k=0

where t = cos(w). As w goes from O to m, t goes from 1 to -1. The
original lowpass filter, because of the reversal of the axis in the
transform, now appears as a highpass filter in the t variable (Fig.
2.10.1).

Consider the function,

g(t) = 1+ )P (0 - )9, (2.10.5)

with p and q as parameters (Fig. 2.10.1). It has a zero of order p at
t = -1 and a zero of order q at t = 1. Take

fcosw(1 + )P (1 - )9 dt
H(w) = -1 '
L
f] (1+t)P (1 -1t)94dt

(2.10.6)

so that, after integration, H(w) is a polynomial in t = cosw that has a
(P + 1)th-order zero at w =7(t = -1) and the value 1 at w = 0 (t = 1),
along with q derivatives (w.r.t. t) that are zero at t = 1. From
(2.10.5),

g'(t) =0 when t=B53 (2.10.7)

which gives the inflection point of the function H(t) in the t domain.

Thus, to design a Towpass filter that passes the lower fraction

2,0 < o < 1, of the Nyquist interval (0 <w < m), set
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P-9_. 4.
P ¥ t ~ cosqm
or

p _ 1 + cosam
q T - cosan (2.10.8)

which gives the ratio of p to q to be used. To get back the h[k] coeffi-
cients, the transfer function H(w) is transformed back to its Fourier
series representation. A detailed description of the procedure is

given in Hamming (1962). Fig. 2.10.2 shows the amplitudes, represented
by solid lines of these filters versus frequency, wT, at various cutoff
frequencies in the range 0 < T < w. Fig. 2.10.3 shows the same ampli-
tudes in solid lines at logarithmic scale in units of dB. The order of
the filters used is around 50. Often in the resulting design of the
filter, a big portion of the higher order filter coefficients, h[k],

will be virtually so small that they can be taken to be zero. The order
of the filter is thus reduced accordingly.

It is seen from Fig. 2.10.2 and 2.10.3 that the resulting filters,
as represented by solid Tines, all have a fairly wide transition band
from 1 to 0. This transition band can be greatly reduced by a sharpen-
ing process to obtain a new filter from the old one as given by (Hamming,
1977):

2
Ho(w) = H_i(u)) (3 -2 Hi(w)) (2.10.9)

where
Hi(w) is the original filter, and

Ho(w) is the new output lowpass filter.

The new filter has the property that the small deviations from unity

in the passband and the small deviations from zero in the stopband are
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both squared, thus resulting in great sharpening. Thus starting from a
program or subroutine that designs the smooth Towpass filter, a new
subroutine can be written to:

(a) process the signal once by the lowpass subroutine,

(b) double this output and subtract each output value from 3 times
the corresponding input values, and

(c) finally pass this difference through the lowpass filter twice.

This will give a greatly sharpened filter of approximately three
times the effective length. Fig. 2.10.2 shows plots of these transfer
functions of the smooth Towpass filters. The solid lines are the ori-
ginal filters before they were sharpened by (2.10.9) and the dashed
lines give the corresponding sharpened filters. The dashed lines all
have a much sharper, narrower transition band than the corresponding
solid Tines. Fig. 2.10.3 shows the same functions in logarithmic scale.
Note that the magnitudes of the data in the stop-band are all < -200 dB.

Compared with the transfer function of the Ormsby filter (Fig.
2.4.2) this filter has a much sharper and narrower transition zone
around the cutoff frequency. The Gibbs effect, a result of the trun-
cation of the Fourier series is not present in the smooth filters any

more. Windowing is thus not necessary for the smooth filters.
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Chapter III

Instrument Correction

3.1 Introduction

The transducer of the recording instrument usually records the
relative displacement or relative velocity response of the instrument
mass. Instrument correction is then the step that represents the
transformation from the transducer relative displacement (or velocity)
signal x(t) to the input ground acceleration signal a(t). For example,
the dynamic equation of motion of the transducer as a single degree

system is given by:
3€+2Cw>.(+w2x=-a (3.1.1)
00 0

where W, is the natural frequency of the transfucer, and
Zo is the fraction of critical damping.
With the displacement signal x(t) sampled at equally spaced time
intervals of T sec. apart, the signal can then be represented as a
sequence (x[n]), with

x[n] = x(nT) (3.1.2)

for n = 0,1,2,... in the discrete domain. Instrument correction in the
discrete domain then leads to numerical differentiation of the sequence
(x[n]) once to get (x[n]) and once more to get (X[n]), for use in the

equation (from (3.1.1)),
aln] = - (X[n] + ZCOwOi[n] + ng[n]) (3.1.3)

for n = 0,1,2,... Here (a[n]) represents the sequence of corrected

acceleration data in digital form.
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With most of the signals x(t) available on analog films recorded
by accelerographs, digital data (x[n]) were first obtained by digiti-
zing the record manually. For example, some ten years ago, all of the
1971 San Fernando Earthquake records have been digitized using a Benson-
Lahner 099D data reducer unit at California Institute of Technology.
These records were then digitized on an unequal time basis, since this
would Tead to the best definition of the trace for a given number of
data points. The average number of digitized points/second was about
20 to 30 in general and up to about 30 to 50 in the most rapidly oscil-
lating sections of the record. The computer software developed for data
processing of strong-motion digitized accelerograms (Trifunac ‘and Lee,
1973) interpolated the unequally spaced data to equally spaced data of
100 points/second. The central difference formulae for first and second

derivatives. were used:

x[n] = (x[n+1] = x[n-11)/(2T)

H

1]

X[n] = (x[n+1] - 2x[n]+ x[n-17)/(T*T) . (3.1.4)

With data at equally spaced time intervals of 0.01 sec. (100 pt/sec)
these formulae are accurate up to about 15 Hz, the average sampling fre-
quency of the hand digitized data. No higher order differentiation
formulae were thus required nor .used for the hand digitized data then.
Currently, digital data are available from automatic digitization systems,
where, for example, the data are automatically digitized at 200 points/sec.
using a Photodensitometer Photoscan P-1000 by Optronics International

(Trifunac and Lee, 1979).
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3.2 The Differentiating Formulae

It is convenient to examine the numerical differentiating formulae
in the frequency domain. This then becomes the problem of designing a
filter to estimate the derivative of data given by a discrete sequence.
The differentiating filter is to be designed as a linear time-invariant
system, where the complex exponential functions exp(int) are eigen-
functions. The equation for the derivative:
1wt) . dwt

j%~ (e = jpe (3.2.1)

gives the transfer function of the differentiating filter as (for T = 1):

H(w) = iw (3.2.2)

for -m < w < m. The ideal differentiator with cutoff frequency, Wes has

a transfer function similarly given by:

HD(w)={1w ! “ e

0 7> |ul|>u, (3.2.3)

One general method of filter design is to examine its representation
in terms of Fourier series. Writing
H(w) = § hinle'™ (3.2.4)
Computing coefficients using the inverse Fourier series formula gives

w

b [k] [ iw sin ko dw ,
Cc

1
i

SEN

fﬂ H(w) sin ko dw =
=T

. sin k w w. cos k w
b[k] 31( e C) (3.2.5)

or

m k
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with the cutoff frequency W, = T this gives

b[k] - -21 cos wk — _2__1_ ("])k+]

3 - (3.2.6)

We thus have an infinitely long sequence that we must truncate.
Truncating the Fourier series will Tead to Gibbs effect, and windowing
is again necessary. Fig. 3.2.1 gives a plot of the transfer function
amplitude of (3.2.2) using K = 10 terms of the coefficients given by
(3.2.6), which shows the overshoot near the cutoff frequency, W,
Fig. 3.2.2 gives a plot of the same function using windowing.

In the design of a digital differentiator, it is seen that for the

filter to be purely imaginary, as in (3.2.2) or (3.2.3), the coefficients

of the filter must have odd symmetry, that is

h{-k] = - h{k] , (3.2.7)

for all k, so that

hik] (e ™K@ - o TKOY = 2 higsin ko (3.2.8)

and the filter has a sine series representation. Thus with x[n] denoting
the digital derivative of x[n], the differentiating formula should take

the form:

K
x[n] = % h[k] x[n-k] : (3.2.9)

with h[0] = 0 and h[-k] = - h[k], which will Tlead to the sine series

K
H(w) = 2i }: hik]sin kw . (3.2.10)
1

(3.2.9) can be rewritten as
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—_1

x[n] =7 h[-k] (x[n+kI-x[n-k]) (3.2.11)

which is a Tinear combination of differences of symmetrically placed
values of the function. In other words, (3.2.11) can be considered as
an n-th order central difference formula, one that will give a transfer
function that is purely imaginary as required and can thus be designed

to best approximate the ideal differentiator in (3.2.2) or (3.2.3).

3.3 The Classical Differentiating Formulae: Example
The classical 3-points' and 5-points' central difference formulae

have transfer functions given by:

3 points (K

1]

1): H(w)
3):

1

isinwT/T

=

—
e

~
it

5 points (K i (8sinwT - sin2wT)/6T (3.3.1)

With digitized data now available at 200 points/sec, or at time
spacing of T = .005 sec, Fig. 3.3.1 shows a plot of the normalized trans-
fer function amplitudes of (|H(w)/w|in (3.3.1) versus frequencies in Hz.
The ideal transfer function will have é normalized amplitude of
|H(w)/w| = 1 for all frequencies.

At 25 Hz, the Towpass cutoff frequency currently used in routine
data processing (Trifunac and Lee, 1979), the 3-points' formula has a
normalized magnitude of .8, while the 5-points' formula has magnitude
of .98. Out at 50 Hz, their magnitudes are down to .64 and .98, respec-
tively. Sunder (1980) proposed the use of 9-points' differentiating
formulae obtained from the design of a Finite Impulse Response (FIR)
filter with ripples. With data he proposed to be sampled at 100
points/sec, or a Nyquist frequency of 50 Hz, their normalized transfer

function magnitudes versus frequencies are plotted in Fig. 3.3.2. At
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25 Hz, both formulae have magnitudes close to 1, while at 50 Hz, the

proposed Nyquist frequency, both have magnitudes decreasing rapidly to 0.
The question naturally arises, whether the 9-points or 31-points'’

FIR differentiating formulas proposed by Sunder (1980) should make any

difference, if any, to the instrument correction step performed on the

manual digitized data in the last 10 years in routine processing.

Fig. 3.3.1 shows a plot of the logarithm of the normalized error ampli-

tudes versus frequencies, where
e(w) = [H(w)/iw - 1.] (3.3.2)

for the central difference 3-points' and 5-points' formulae. The mag-
nitude of the errors are significantly less than .01 for frequencies
up to 10 Hz. Fig. 3.3.2 shows the same error amplitudes for the 9-points'
and 31-points' FIR formulae. The magnitudes of the errors are systema-
tically of order around .01 all through the range of frequencies con-
sidered. This is the result of allowing ripples in the design of the
FIR filter, a fact which has already been discussed in section 2.8.
Fig. 3.3.3 gives a plot of the average Fourier spectra versus
period at M.M.I. Tevels of IV, VI, VIII, X and XII. It is obtained by
empirical scaling of 186 strong-motion earthquake records (Trifunac and
Lee, 1978). The data are obtained by manual digitization at Caltech
for analog records obtained for earthquakes in the years from the 1933
through 1971. The plot shows that the Fourier amplitudes at periods
T < .05 sec, or at frequgncies f > 20 Hz, are less than 10% of the
average amplitudes in the whole range of frequencies (.07 to 25 Hz).
The previous three figures thus lead us to the conclusion that the dif-

ferent differentiating formulae will not lead to any significant change
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Figure 3.3.3. Average (p = 0.5) Fourier amplitude spectra versus
period and for MMI levels IV, VI, VIII, X and XII.
h is depth of sediments in km.
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in the acceleration data that are based on manual digitization of
records between 1933 and 1971.

Strong-motion data are now available at 200 points/sec or a Nyquist
frequency of 100 Hz. Advances in the technology of designing strong-
motion instruments may eventually lead to increasing the useable fre-
quency from 25 Hz presently to as high at 50 Hz. Thus we need a dif-
ferentiating formula that is accurate up to that range of frequency,
or more generally, that has a transfer function that is accurate up to
the variable cutoff frequency and decreases to zero beyond the cutoff

frequency.

3.4 Design Criteria for a Differentiation Formula

Based on the previous discussions, we need a differentiation for-
mula that is accurate for data of frequencies up to the variable cutoff
frequency, W discussed in Chapter II.

Let A = wL/wN be the ratio of the cutoff frequency to that of the
Nyquist frequency, with 0< X < 1. We propose the following criterion
for the design of the differentiation filter:

(1) that the filter has the following input-output relationship:

K K
x[n] =} clklx[n-k] = ¥ c[-k](x[n+k]-x[n-k]) (3.4.1)
-k 1

where K = K(X) is the order of the filter, c[k] = c[k,A], k from -K to
K, will be the coefficients of the filter, all of which will depend on

A. The coefficients chosen will be asymmetric, or

clo] =0, and cl-k1 = -clkl, (3.4.2)
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Such a K-th order central difference type formula will give a transfer
function that is purely imaginary:

K
H(w) = 27 ) c[-k] sin(ko) (3.4.3)
1

as in the case of the ideal differentiator. (3.4.3) guarantees that
there will be no phase distortion from the filter.

(2) that the coefficients c[k] be chosen so that the transfer func-
tions vary smoothly and are close to.that of the ideal differentiator in
the passband, 0 W< w. No ripples should be present in the transfer
function amplitudes in the passband, (section 2.8). The ratio of the
normalized filter magnitude, |H(w)/w|, should approach unity tangentially
at zero frequency. This will ensure that the error magnitude (3.3.2) in
the passband will vary smoothly from zero at zero frequency to an allow-
able Timit at the cutoff frequency. A suitable criteria for this limit
may be stated as follows:

(3) that the normalized error magnitude of the differentiator,

within the passband, e(w), satisfies; say

-3

le(w)]| < 10 0< w< w (3.4.3)

where from (3.3,2)

Ho) |
iw

e(w) =
Based on the design criteria set above, we decided to design a
class of differentiation filters that are monotone over the frequency
band.

Let HL(w) be the smooth nonrecursive lowpass filter given in sec-

tion 2.9. It has the form
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K 1 0<wc< W
HL(w) = b[0] + Z b[k] cos k w = (3.4.4)
1
Consider the function

K
H](w) = ) c[k] cos k w (3.4.5)
1

whose coefficients c[k] are defined by

c[0] =0 clk] = b[k]l/(1 - b[O]) , (3.4.6)

so that the function H](w) again approximates the ideal lowpass filter,
with the only difference that it does not have a constant term, c[0].

Consider the differentiator filter, HD(w), given by

N
Hy(w) = 1 -1 SEEL sin i (3.4.7)
1

This is obtained by integrating the "modified" smooth lowpass filter
(3.4.5) term by term and multiplying by i. This is a differentiation

filter because the integral of the ideal lowpass filter w.r.t. w

(ideal)

1 0 <w< w
H) (w) = (3.4.8)
0 w > wL

is the ideal differentiating filter:

(ideal)

iw 0 << W
Hp(w) = (3.4.9)

after multiplication by i.
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The resulting differentiation filter (3.4.7) is a smooth filter
since it is derived from the smooth lowpass filter given in Section 2.9.
Figure 3.4.1 shows a plot of the amplitudes versus frequencies for the
function at various cutoff frequencies along the frequency band. Each
of the functions approximates the ideal differentiator with slope 1 in
its passhand and then slopes linearly to 0 from the cutoff frequency to
the Nyquist frequency. After concantenation with their corresponding
smooth Towpass filter, the amplitudes in the plot slope almost verti-
cally to zero in the stop band. The normalized error rmagnitudes of
the functions are given in Fig. 3.4.2. The functions used are well

within the design criteria specified above.
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CHAPTER IV

BASELINE CORRECTION AND NOISE-FREE CUTOFF PERIOD
FOR ACCELERATION, VELOCITY AND DISPLACEMENT

4.1 Introduction

Acce]erdgrams Towpass filtered and corrected for instrument response
are next baseline corrected by highpass filtering. For all records, an
initial cutoff frequency of 0.07 Hz for the filter is first used. This
corresponds to a cutoff period of approximately 14 sec., a sufficiently
Tong period to cover a wide enough band of information for most strong-
motion accelerograms (Trifunac et al. 1973). The final cutoff period
or frequency band for each accelerogram will be determined separately
from the signal-to-noise ratio of each component (Trifunac and Lee, 1979),
to be discussed in the second half of this chapter.

Prior to the introduction of’the Automatic Record Digitization
System (ARDS) (Trifunac and Lee, 1979), with data available only from
hand digitization, the accelerogram data after instrument correction
were then available at 50 points/sec, equally spaced at 0.02 seconds
apart. The routine computer data processing then consists of the pro-

cedure for baseline correction (Trifunac, 1970) as follows:

(1) Prior to filtering the instrument corrected data, a straight
zero acceleration baseline is least équared fitted to the data to elim-
inate possible distortions caused by placing the photographic enlarge-
ment of the film negatives onto the digitization table.

(2) The data are next lowpass filtered by an equally weighted

running mean filter with a window width of 0.04 sec (f = 2.5 Hz).
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(3) The lowpass filtered data are decimated and only every tenth
point is kept. The decimated data are then at 0.2 sec apart, or at 5
points/sec with a Nyquist frequency of 2.5 Hz. A1l long period compo-
nents of periods over 10 sec. are essentially undisturbed.

(4) The decimated data are then used as input to a Towpass
Ormsby filter with cutoff frequency of 0.07 Hz. The resulting lowpass
filtered data now represent the zero baseline data.

(5) The zero baseline data are interpolated to the original time
spacing of 50 points/sec. Straight Tine interpolation is used.

(6) The baseline corrected data are obtained by subtracting the

zero baseline data from the original data.

For data now available at 200 points/sec, or a Nyquist frequency
of 100 Hz at this stage, a highpass cutoff frequency in the vicinity
of .1 Hz will thus correspond to a ratio of 1 in 1000, or a very small
fraction of the whole frequency band of the data. This is thus the
problem of narrow band filtering or narrow band rejection. The base-

Tine correction procedure will be reexamined in the next section.

4.2 Narrow Band Filtering

The implementation of a norrow-band filter used to be one of the
most difficult problems in digital filtering. This is because such
narrow band filters inherently have sharp transitions in their fre-
quency respohse, thus requiring sophisticated high-order designs to
meet the desired frequency response specifications. Those filters
usually require lengthy computation in their realizations. Rabiner
and Crochiere (1975) showed that efficient implementation of narrow-

band filtering by a digital filter can be realized using a sampling
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rate reduction (decimation) followed by a sampling rate increase
(interpolation). Such decimation and interpolation processes can be
efficiently implemented using finite impulse response (FIR) digital
filters.

Furthermore, the proposed new procedure has been shown to have the
following properties:

(1) The computation (in terms of multiplications per sample)
needed to implement the filter is greatly reduced from that required
for a standard direct form implementation for an equivalent finite
impulse response (FIR) digital filter.

(2) The computation is comparable to that required for optimum
(elliptic) infinite impulse response (IIR) filters in a cascade reali-
zation.

(3) The phase response can be set to be linear or even zero.

(4) The roundoff noise generated in computing the output can be
significantly less than that of a standard direct form FIR implementation.

(5) The coefficient sensitivity problems can be less severe than

those for standard direct form FIR implementations.

4.3 Multi-Stage Decimation and Interpolation

For data sampled at 100 to 200 points/sec, a multi-stage (2 or 3)
decimation-interpolation for narrow-band FIR filtering has been found
to be efficient (Crochiere and Rabiner, 1975). The general procedure

for N such stages is as follows:
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Input Stage 1 N Stage 2 Stage N
(x[n]) Decimation Decimation Decimation
Stage N Stage 2 N Stage 1 Qutput
Interpolation Interpolation Interpolation (Y[n])
Fig. 4.3.1

At the i-th stage of decimation, let the input signal have a sam-
pling interval of T[i] sec., and the output decimated signal have a sam-
pling rate of T[i+1] = MT[i] sec. The input signal is first lowpass
filtered givihg the signal w[n]. This is done to avoid aliasing at
the larger sampling interval MT[i]. The sampling rate reduction is
then achieved by forming a new sequence (y[n]) by extracting every Mth

sample of w[n]. A block diagram of this stage is given in Fig. 4.3.2:

i-th stage| Lowpass . |Decrease Sampling . ith-stage
Input Filter Rate by M output
Fig. 4.3.2

The process of interpolating the input signal at the i-th stage
of interpolation is similar, as shown in Fig. 4.3.3, where the sampling
rate is increased by an integer ratio L, or equivalently, the sampling
interval reduced by a factor 1/L, so that T[i+1] = T[i]/L. This is
done by first inserting (L-1) zero-valued samples between each sample
of y[n]. This will create a signal w[n] having frequency component

periodic with period identical to the original sampling period.
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i-th stage N Increase Sampling , | Lowpass N i-th stage
Input Rate by L Filter Output
Fig. 4.3.3

The next step is to eliminate these periodic components and retain
only the passband frequencies by an appropriate lowpass interpolation
filter. The implementation of such filter will be discussed in more
detail in the next section. The resulting output signal is then the
desired interpolated signal with sampling rate T[i+1] = T[i]/L.

Note that the implementation of such interpolators and decimators
involves the use of digita] filters in which the input and output
sampling ratesaredifferent. One of the important considerations in
the implementation of such sampling rate changing systems is the choice
of the appropriate type of lowpass filters (Rabiner and Good, 1975).
For this type of system, a significant savings in computation can be
obtained by using a FIR non-recursive filter in a direct form implemen-
tation. Such saving in computation is due to the observation that for
FIR decimators 6n1y one out of each M output samples needs to be calcu-
lated, while for FIR interpolators, (L-1) out of every L samples of the
input are zero-valued, and thus do not affect the computation. These

facts cannot be exploited using the corresponding recursive IIR filters.

4.4 The Interpolation Filter

As mentioned in the previous section, the design of interpolation
filters involves the use of lowpass digital filters. Such filters can
be designed in a variety of ways, as described in Chapter II, for
example, usfng»window designs, equiripple designs, smooth designs, etc.

The FIR nonrecursive interpolation filter turns out to be the most
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efficient, as described in the previous section. The filter used here
is one designéd by Oetken et al (1975). It is one in which the mean
square criterion is used.

The computer program applies to the design of an interpolation
filter in which the sampling rate is increased by an integer factor of
L. The resulting filter design allows the original input samples to
pass through the interpolator unchanged and it interpolates (L - 1)
sample va]ues‘in,between each pair of original samples in such a way
that the mean square error between these samples and their ideal values
is minimized. The ideal values are the theoretical values predicted by
the sampling theorem. The input signal is assumed to be bandlimited,
which is always the case for the lowpassed equally spaced accelerogram
data.

The original input sample (x[n]) given at the original sampling
rate is first converted to one of the new sampling rates (wln]) as
follows: x[n], n = kL
wln] = (4.4.1)

0, otherwise

w[n] is obtained from x[n] by inserting (L - 1) zeros between

adjacent samples of the input sample data. Assuming the degree of the

filter to be 2LN, the output of the filter y[n], will be

y[nl =} h[jlw[n-j] (4.4.2)
J

where h[j] is the impulse response of the filter. Since w[n] = 0 for

n # kL according to (4.4.1), for n = kL,

y[kt] = ¥ h[GLIx[(k-3)L] (4.4.3)
J
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and for n = kL + i, with i

It

1,2,3,...,L - 1,

yIkL+i] = T hIGLH X (k=3)L] (4.4.4)

J
which means that for n = kL, y[n] will be calculated using only 2N + 1

samples of x[n] and h[n] and if n # kL, only 2N samples of both sequen-
ces will be used.

Examples of the use of the filter to input samples of sine functions
at various sampling rates are shown 1nvFig. 4.4.1, where the original
“sample points are represented by "0" and the output data are plotted as
solid lines. Note that the characteristics of the interpolation filter
enable the interpolated data to fill in missing peaks predicted by the

sampling theorem that are not present in the original sample.

4.5 The Determination of Cutoff Frequency Band

Having determined and established the use of proper decimation and
interpolation filters for baseline correction, we turn to the problem of
the determination of the "right" or appropriate cutoff frequency band.
As mentioned at the beginning of the chapter, when the routine data
processing scheme was first developed, all digitized data were bandpass
filtered in the frequency band from 0.07 Hz to 25 Hz (Trifunac, 1971)
so that the digitization and processing noise outside the frequency bénd
~can be eliminated. The choice of 0.07 Hz and 25 Hz was then based on a
detailed study of digitization error characteristics of the digitization
system available at the time (Trifunac et al, 1973). These limits then
and now do not necessarily apply to records digitized elsewhere with
different digitization equipment and processing machines. It is also

the case that accelerograms with smaller amplitudes may have a more
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restricted frequency band within which the signal-to-noise ratio is
greater than one.

In the early stage of routine processing, it becomes clear that
the optimum bandpass frequency would have to vary from one record to
another if one were to eliminate all significant noise from the digi-
tized data. With routine processing of all data in the band 0.07 Hz
to 25 Hz, it was known that many records with small amplitudes recorded
during small to intermediate earthquakes and at intermediate to large
distances will still have a considerable content of digitization and
processing noise, especially for periods larger than 1 to 2 seconds.
Trifunac (1977) presented an and]ysis of the first 186 ground motion
records, in which he established the frequency bands beyond which the

data may be affected by digitization and processing noise.

4.6 An Estimate of Digitization and Processing Noise

Trifunac (1977) presented a method for estimating the digitization
and processing noise of a system from which the Response and Fourier
amplitude spectra of noise can be calculated. The noise levels for
both the manual digitization system and the automatic digitization
system (ARDS) have been both analyzed. For the case of the manual
system, a thin straight 1ine was digitized separately by several oper-
ators. For the automatic system, several SMA-1 accelerograms were used
to record straight lines on film and the fixed mirror traces were then
digitized as "zero" acceleration records. The resulting digitized
traces in both cases were processed as the raw data to obtain the
Volume II corrected data at a cutoff fkequency band of 0.07 Hz to 25 Hz.
The corrected noise data were then used to calculate the Volume III

spectral noise data.
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Fig. 4.6.1 shows the average and average-plus-one standard devia-
tion of the Fourier (FS) spectral amplitudes for noise records with
digitized lengths ranging from 15, 30, 60 to 90 secs. for the automatic
digitization system (ARDS). The Fourier Spectrum amplitudes of average
digitization noise range from less than 0.01 in/sec. at period,

T = 0.04 sec. to almost 5 in/sec. for periods in the range T = 10 to
14 sec. (Fig. 4.6.1). Spectral amplitudes corresponding to average-
plus-one standard deviation are almost two times larger.

The above analyses are also carried out for PSV, or pseudo-relative
velocity spectra, in the same way as they are for Fourier spectra.

Fig. 4.6.2 shows the average and average-plus-one standard deviation of
the PSV spectral amplitudes for the same set of noise records calculated
at zero damping. These show the same characteristics as the Fourier
noise spectra.

The properties of PSV spectra can now be utilized to estimate the
noise Tevel of a given component of acceleration. The amplitudes of
PSV specfra can be shown to approach the high- and Tow- frequency asymp-
totes whose amplitudes are determined by and would correspond to respec-
tively the absolute maximum peak acceleration and maximum peak displace-
ment. When the Fourier spectrum of strong motion is limited to a narrow
frequency band, the PSV spectral amplitudes outside this band will tend
smoothly towards the asymptotes. In many cases, especially in the long
period band, careful inspection of the overall Fourier and Response
Spectral shapes and their comparisons with the corresponding amplitudes
and trends of noise spectra will help to identify the region where the

spectra are dominated by noise.
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Since the exact form of Fourier spectra of digitization and pro-
cessing noise for each individual recording is usually not available,
it is not possible to subtract the noise spectra from the processed
spectra to obtain the spectra of recorded accelerations only. However,
it is usually possible to identify a rather well defined range of
periods, which separates those periods T with a large signal-to-noise
ratio from those which have a much lower signal-to-noise ratio.

Trifunac and Lee (1978) considered a batch of 186 records which
correspond to uniformly processes earthquake ground accelerations in
the Western United States of America for the period from 1933 to 1971.
These were refiltered with bandpass frequencies predetermined by visual
inspection to maximize the signal-to-noise ratio within the band. Of
the 186 records or 558 components considered, 69% were originally pro-
cessed with standard 15 sec. (0.07 Hz) cutoff and the remaining 31%
with the 8 sec. (.125 Hz) cutoff. As a result of the above procedure,
as much as 50% of the records routine]y filtered at 15 sec. were refil-
tered with a shorter long period cutoff ranging from 1 to 15 sec.
Similarly, about 12% of the records routinely filtered at 8 sec. were
refiltered with cutoff periods ranging from 1 to 8 sec.

It is also found in many cases,'that the signal-to-noise ratio at
the high frequency (short period) end also becomes small for manyvacce1-
erograms which were recorded during small earthquakes and/or at greater

epicentral distances.

4.7 A Computer Subroutine for the Determination of the Noise-Free Band
It might appear difficult at present, as it was in the late 60's
and early 70's to select an optimum Tong period cutoff for standard

routine data processing scheme. No such one cutoff period for all
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records can be selected to satisfy the requirements of all future analy-
ses which will or need to use the corrected strong-motion accelerograms.
It becomes clear, however, that in the routine data processing scheme,

a step has to be included to have a computer subroutine determine auto-
matically the frequency band that is as free from noise as possible,

and a subsequent step to refilter the data at this new cutoff frequency
band. The resulting strong-motion acceleration data from routine pro-
cessing will now have a variable cutoff frequency band that normally
depends on. the amplitudes of the strong-motion, which in turn depends

on the magnitudes of the earthquake, the local geology and epicenteral
distance of the site from the source.

Fig. 4.7.1 shows an example of the current computer output at the
step where the Fourier amplitudes of the input acceleration are calcu-
lated and compared with that of the digitization noise of the same
length. A simple Tine-printer plot shows the automatic determination
of the cutoff frequency band by the computer subroutine which in this

case is shorter than the usual 15 sec. cutoff period.

4.8 Computation of Velocity and Displacement

With the digital acceleration data bandpass filtered and instrument
corrected, 1ntegratidn is the next step of data processing to complete
the calculation of the velocity and displacement curves. The calcula-
tion of the velocity and displacement data from an accelerogram is not
a trivial matter (Hudson, 1970§‘ Early in the 1960's a number of studies
of the best way of carrying out the integrations have been made (Hudson,

1963; Berg, 1963; Brady, 1966; Amin and Ang, 1966; Schiff and Bogdanoff,

1967). In the 1970's most methods employ digital computations and



80

certain correction techniques for long period errors resulting from inte-
gration (Trifunac and Lee, 1973).

Hudson (1970) 1isted several important reasons for the computation
of velocity and displacement data with resonable accuracy. Edwards and
Northwood (1959) and Neumann (1958) showed that for blast loading the
single best descriptive number related to structural damage is the
maximum ground velocity. Neumann (1959) also showed that the maximum
ground velocity can be correlated approximately with the Modified
Mercalli Intensity Scale, a scale commonly used to give a round measure
of the damage associated with strong earthquakes. 1In a similar fashion,
the ground displacement data also has practical application because of
the direct relationship between ground displacements and the strain to
which large structures such as dams and underground pipelines might be

subjected.

4.9 Digital Integration

The data processing program developed originally for the manually
digitized data (Trifunac and Lee, 1973) used the trapezoidal rule of
integration,

y[n+1] = y[n]+.5T(x[n]+x[n+1]) (4.9.1)

with (x[n]) representing the input and (y[n]) the output digital data,

T is the equally spaced sampling time of the sequence in seconds. Since

y occurs on both sides of this equation, this is a recursive filter.
Again, as in the case of differentiation formulae (Section 3.1),

with data originally interpolated to 100 points/sec., the trapezoidal

rule is good for data up to frequencies of about 15 Hz. We again

examine the numerical integration formulae in the frequency domain, which
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then becomes the problem of designing a filter to estimate the integral
of digital data. The integration filter is to be designed as a Tinear
time-invariant system, where the complex exponential functions, exp(int),

are again eigenfunctions (Section 3.2). The equation for the integral
fexp(imt)dt - -1—]5 exp(int) , (4.9.2)
gives the transfer function of the integration filter as (for T=1)
H(w) = — (4.9.3)

for -m < w < 7. The ideal integrator with curoff frequency, We s has a

transfer function similarly given by

- lw| < W,
HI(w) = (4.9.4)

0 w. < Jo| <
c

Note from equations (4.9.3) and (4.9.4) that the phase of the inte-

gration filter is -m/2. The filter corresponding to the trapezoidal rule

t

(4.9.1), by assuming the input x(t) as e’ and the corresponding output

int

y(t) as H(w)e ™", has a transfer function

(eiw+1)

1
H((}.)) - 7 (eiw_-])

w o
or . _Cos 2 , (4.9.5)

. . w
21 sin 5

which approaches ﬁ%;as w>0, but gradually decreases to zero as w>m, the

Nyquist frequency. This means that, 1ike most common integration
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formulae, the frequency response function of the integrator will not
differ significantly from the ideal response at frequencies much less
than the Nyquist frequency. If the input to an integrator is band 1im-
ited to frequencies less than the Nyquist frequency, theory shows that
it should be able to integrate the function exactly. Exact integration
will, however, require the entire input time history. Integration for-
mulae with a finite number of filter weights should therefore be designed
to have a frequency response within the passband frequency as close to
the ideal one as possible.

Sunder (1980) proposed the use of an integration formula (Schussler-

Iber) of the form:

7
yIn] = yln] + (3) § oL K], (4.9.6)

with b[k] = b[7-k]. The phase of the corresponding filter, however, is
not -m/2, unlike the case of the ideal integrator. Hence the use of the
filter will produce a phase distorted output, which is objectionable for

data processing in earthquake engineering.

4.10 Designing a Digital Integrator

To choose an appropriate integration formula, let y(t) be the inte-

gral of a function x(t):

t
y(t) = [ x(u)du (4.10.1)
0

where x(t) = 0 for t < 0 and t > NT. The function x(t) is sampled at
equally spaced interval of T sec., {x[n]}, with x[n] = x(nT), n=0,1,2,...

Integrating the function in steps of T seconds, we can write
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(n+1)T
yIn+1] = y[n] + jT x(t)dt (4.10.2)
n

The portion of the function x(t) for nT < t < (n+1)T can be reconstructed,

say, from the sequence {x[n+k]}, for k from -K+1 to +K, using some form

of reconstruction formula,

K
x(t) = §  x[n+kIn(t-(n-k)T), (4.10.3)
k=-K+1

where h(t) is the inpulse response of the reconstruction filter. Note
that when K==, the Whittaker reconstruction filter will be one such
filter.

Substituting (4.10.3) into (4.10.2) gives

K
yIn+11 = yInl + §  blkIx[n+k] , (4.10.4)
k=-K+1
where
T
b[k] = f h(t+kT)dt (4.10.5)
0
To ensure that the corresponding filter has a phase shift of -n/2,
we need
blk] = b[-k+1] (4.10.6)
k=1 to K, so that
K
yIn+1] = y[n] + ¥ blkl(x[n+k] + x[n-k+1]) (4.10.7)
k=1

Choosing x(t) as e1wt and y(t) and H(m)e‘wt, the transfer function

of the filter is given by
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fb[k](eikw+ o1k
H(w) - k=1

iw
e -]

g b[k]cos(k-—%ﬁw

4.10.8)
k=1 i sin %- (

which shows that the filter indeed has the right phase of -1/2. Note
that trapezoidal rule is a special case of this with K=1 and b[1]=.5
(T=1).

As in the case of differentiation, we propose the use of the inte-
gration filter that is accurate for data of frequencies up to the pre-
determined variable cutoff frequency,tuL. Again, let A = mL/wN, the
ratio of the cutoff frequency to that of the Nyquist frequency. With
0 <x< 1. We propose the following criteria for the design of the
integration filter:

(1) That the filter be of the form (4.10.4)

K
yIn#11 = y[n]l + Y b[kIx[n+k]
k=-K+1

where K=K(1), the order of the filter, b[k])=b[k,A], k=-K+1 to K, the

coefficients of the filter, will all depend on A. The coefficients will
satisfy b[k]l=b[-k+1], for k=1,2,3,...,K, so that thebphase of the filter
will be -n/2, as in the case of the ideal integrator. This will ensure

no phase distortion.

(2) That the coefficients b[k]=b[k,A] be chosen so that the resul-
ting filter (4.10.8) will be as close to the ideal one as possible within

the passband of the frequency bandwidth.
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(3) That the filter be as smooth as possible, the magnitude of
the transfer function should be free from ripples in both the pass- and

stopband.

(4) That the ratio |design filter/ideal filter| should approach

1 as w»0, so that both have the same tangency at w=0.

With appropriate digital integration performed on the acceleration
data to get the velocity data, the computed velocity data is next high
pass filtered using the same procedure with the same cutoff as in the
case of the acceleration data. This is performed to eliminate any long
period error resulting from the integration and resulting from the uncer-
tainties involved in estimating the initial velocity of ground motion
(Hudson, et al., 1971). The same baseline correction is carried out
for the displacement data obtained from integrating the velocity data.

Thus, the final step of Volume II data processing is now completed.
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CHAPTER V
CONCLUDING NOTES

5.1 Updating Volume III Data Processing

The Volume III data processing consists of calculating the Fourier
and Response spectra of single-degree-of-freedom systems for chosen 9]
natural periods and 5 dampings from the Volume II corrected accelero-
gram data. The existing algorithm uses an approach based on the exact
analytical solution of the Duhamel integral for successive linear seg-
ments of excitation. Such typical Response calculation of a single-
degree-of-freedom system uses a recursive algorithm for calculating
{(x[n+11,x[n+1]} from {x[n];x[n]} and the acceleration {a[nl.,a[n+1]}.
Each time step of the iteration requires 8 multiplications and 6 addi-
tions. For a typical acceleration of 60 seconds at 50 points/sec., or
30 seconds at 100 points/sec., or 15 seconds at 200 points/sec., or

about 3000 points of data, this would imply that:
Total # of iteration steps = 5 x 91 x 3,000 = 1,365,000,
and for using the existing algorithm, this will mean

Total # of multiplications = 1,365,000 x 8 = 10,920,000

Total # of additions = 1,365,000 x 6 = 8,190,000.

A new algorithm using the digital impulse invariant and step invar-
iant simulation of a continuous system has been derived which requires
only 2 multiplications and 3 additions at each step of iteration. This
amounts to a 75% saving in multiplication and 50% saving in addition
of CPU time. For the same given 3000 points of acceleration, this will

mean, using the new algorithm:
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Total # of multiplications = 1,365,000 x 2 = 2,730,000
Total # of additions = 1,365,000 x 3 = 4,095,000,

The accuracy of the new algorithm is guaranteed by the sampling
theorem in digital signal analysis. For a complete description of this
algorithm, the reader is referred to the paper (Lee, 1984): "A New
Fast Algorithm for the Calculation of Response of a Single-Degree-of-

Freedom System to Arbitrary Load in Time."

5.2 Batch Model Data Processing

Batch mode data processing involves efficient execution of the
Volume I, II and III data processing programs with minimal user's iter-
ation and the least possible amount of required input from the user.
The existing Volume I processing stage requires the input of earthquake,
station and accelerogram information for each component of each record,
a step which is often repeated unnesessarily in routine processing of
records from the same earthquake or station. It is thus appropriate to
set up an information file for earthquake, "EQUAKE.INFO," say, and simi-
Tarly one for the existing stations, "STATION.INFO," to be used with all
the necessary information on files. Proqessing the Volume I stage will
then involve only referring to the appropriate earthquake and system
reference numbers each time. This will enable batch mode Volume I
processing.

With the use of appropriate filters for lowpass filtering, instru-
ment and baseline correction, the automatic determination of the cutoff
frequencies for bandpass filtering and the use of appropriate integration

filter, all described in detail in previous sections, the batch mode
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Volume II processing is now possible and completed. Currently, the

Volume IIT processing at USC is also available in batch mode. This will
thus allow one batch job for successive Volume I, II and III processing.
This will provide an efficient prototype for data processing of a large

data Tload.

5.3 Conclusion

The results of this effort, we hope, should be of considerable
value for the engineering community. Our aim has been to provide a set
of guidelines for different steps in data processing, for the design
and efficient use of the necessary filters and an efficient prototype
for data processing of a large data load. The possibility of batch
mode automatic processing will also allow outside users to access the
computer where the programs are to do data processing without any

difficulty.
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APPENDIX A
THE UPDATED AUTOMATIC ROUTINE DIGITIZATION SYSTEM (ARDS) 11

This appendix describes the recent improvements in the automatic
digitization programs since the last reported improvements outlined in
Appendix A of Lee and Trifunac (1982): EQINFOS (The Strong-Motion
Earthquake Data Information System). The Automatic Routine Digitization
System (ARDS) was originally developed at U.S.C. (Trifunac and Lee,
1979). Numerous improvements have been implemented and further devel-
oped through the actual use of the ARDS in digitization of several

recent "difficult" records.

Al The Program "MAKGAP"

The Imperial Valley, California earthquake of October 15, 1979 was
recorded at the Route 8/Me1o1ahd overpass by 26 transducers distributed
among two central-recording (CR-1) stations. FEach of these stations
registered 13 acceleration traces. The unit which recorded traces 1
through 13 malfunctioned, and at about every 2 or 3 seconds the uniform
film motion with nominal speed of 1 cm/sec. was interrupted. Most of
these interruptions each lasted from less than to about 1/4 seconds.
Between the interruptions the film motion was fairly uniform and appar-
ently had uniform velocity. Table I gives the estimated durations of
these interruptions.

To reconstruct the motions recorded on this film it was necessary
to develop a new program (MAKGAP) which was designed to work with other
routine programs for automatic digitization (Trifunac and Lee, 1979).

The details of this digitization process are outlined in the report
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TABLE 1

Time of occurrences, duration and pixel width of interruptions for Rte 8/

Meloland Overpass records, Imperial Valley 15 October 1979.

Interruption No. Time after triggering Duration of stall Width
(seconds) (seconds) (No. of
pixels)
1 2.65 13 26
2 5.60 .04 8
3 8.55 .25 51
4 11.15 .05 10
5 14.30 .04 8
6 17.35 .22 44

7 20.05 19 38
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entitled "Automatic Digitization and Processing of Strong Motion Accel-
erograms" by Trifunac and Lee (1979) and need not be repeated here.

For completeness and clarity of this presentation we mention only
several key characteristics of this package so that the reader of this
appendix can understand the procedures required for processing of
records with interruptions.

Digitization of accelerograms is accomplished in three steps. The
first step, run by the program called FILM (Trifunac and Lee, 1979)
maps the pixels read off the film, with the Tight transmission intensity
greater than a chosen threshold Tevel, onto a disk file. While this is
done, the operator, to speed up later operations, supplies the markers
which identify the onset and the type of different traces (e.g. time
trace, fixed trace, fiducial marks, common edges, etc.) As digitiza-
tion progresses further the operator also inserts the flags (marked by
the left pointing arrows and letter T, to designate the Tocations
where the film motion stopped for a short time interval. The original
recording appears as the trace marked ABCD in Figure Al.1, for example.
After digitization is completed thé program MAKGAP is initiated to
insert the desired blank pixel bands along the y-axis and with the
width which corresponds to the duration of the stall multiplied by 200.
This is because the pixel sizes are 50u by 50u square and the film
speed of 1 cm/sec. i.e. there are 200 digitized points per second.

The Tlocation and the duration of the stalls will be determined by
the careful analysis of the half second time trace and the recorded
accelerations. Typically there will appear a consistent bulge on all
traces at a given X Tocation every time the recording 1ight beams would

become stationary in X, during a stall. This is easily seen on the
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original film. An example of how this stall shows up on a time trace is
shown in Figure Al.2.

If the duration of a stall is longer than 1/2 second it is not
possible to determine its actual duration since a multiple of 1/2
second could always be added without altering the appearance of the
recorded time trace (Figure A1.2).

After the program MAKGAP is executed the data in Figure 2 appears
as ABC'D' with a gap n pixels wide. This is repeated at each X where
the operator marked a gap by the arrow with "T." For the records
described here there were 7 such gaps during the first 22 seconds of
strong motion (Table 1).

During the second stage of data processing the digitized data on
disk file SCANS is automatically analyzed by the program TRACE and a
center of each line is connected by a continuous curve. This process
goes on for all X and for all traces of the original film as long as
there are no gaps or difficult trace intersections (Trifunac and Lee,
1979). When a gap is encountered, TRACE terminates the 1line definition
on the Teft wide of a gap, opens new file for a new Tine which is created
on the right side of the gap and the process continues.

During the third part of the digitization process the program TV
is used by the'operator to fix the difficult places on the film and to
correct any errors. Referring to Figure 1 the operator now cuts the
trace ABCD at B and deletes section BCD. Then he creates reasonable
trace form between B and C' (indicated by + between B and C' in
Figure Al1.1), connects B with C' and creates a continuous trace ABC'D'.
This process is repeated at each of the gap Tocations for all accelera-

tion traces and for all fixed and other traces present on the film).
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When the editing work is completed the data is written onto a disk
file format for volume 1 processing by means of program SCRIBE (Trifunac
and Lee 1979). Subsequent steps involve the volume 1, 2, and 3 pro-
cessing, creation of the cohplete heading data for each trace and
copying of all desired files onto a magnetic tape for distribution.

The principles of this operation as well as the detailed listings of
the programs used for this purpose are contained in the USC report.
CE 79-15 II by Lee and Trifunac (1979).

The above procedure is not unique and different operators would
interpret the acceleration amplitudes within the gaps differently..
However, theArelatively short duration of most admissible gaps and
clearly visible Timits of maximum and minimum excursions of recorded
acceleration during the gaps will not be difficult to interpret so that
the errors in the final digitized data, though certainly present, should

be "very small."

A2 The Program "DFILM"

Due to the poor, nonuniform or worn-out quality of some films,
which are used to record in analog recording instruments, or because of
possible problems that may result during the chemical processing of the
film, the developed film may often result in having non-uniform expdsure,
so that some parts of the record may appear lighter or darker than the
other parts.

The firststep of digitization, currently executed by the program
called FILM (Trifunac and Lee, 1979) allows the user to set the con-
veniant threshold Tevels for up to four different sections of the film,

ranging from bottom to top. This means that in each section, the same
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threshold cutoff level will be used all across the film from left to
right ends. When the background optical density of film is not uniform,
however, this will create problems. This may result, for example, in
having the normal portions of the record well digitized, but areas with
Tighter background digitized with excessive points from noise or
scratches on the film.

A new version of the program, called "DFILM" has now been developed
where the program calculates periodically the average threshold level of
the section just digitized and updates the threshold cutoff level to a
predefined linear function of the average level. "DFILM" can update this
threshold cutoff level at up to four different sections of the film from
top to bottom. This new program has been tested on film records with
non-uniform brightness and has been found to be an efficient way to

digitize such records.



97

REFERENCES

Alford, J. L., G. W. Housner and R. R. Marte] (1951). Spectrum Analysis
of Strong Motion Earthquakes, EERL, Calif. Inst. of Tech., Pasadena.

Amin, M., and A.H.S. Ang (1966). A Non-Stationary Stochastic Model for
Strong-Motion Earthquakes, Structural Research Series No. 306,
University of I11inois, Urbana.

Anders, E. B., J. J. Johnson, A. D. Lasaine, P. W. Spikes and J. T. Taylor
(1964). Digital Filters, NASA Contr. Rep. CR-136.

Berg, G. V. (1963). A Study of Error in Response Spectrum Analysis,
Primeras Jornadas Chilenas de Sismologia & Ingenieria Antisismica,

Vol. I., Asociacion Chilena de Sismologia & Ingenieria Antisismica,
Santiago. :

Biot, M. A. (1941). A Mechanical Analyzer for the Prediction of Earth-
quake Stresses, Bull. Seism. Soc. Amer., 31, 151-171.

Brady, A. G. (1966). Studies of Response to Earthquake Ground Motion,
EERL Calif. Inst. of Tech., Pasadena.

Edwards, A. T. and T. D. Northwood (1959). Experimental Blasting Studies
on Structures, Ottawa: Hydro-Electric Power Commission of Ontario
and National Research Council.

Gold, B. and C. M. Rader (1975). Digital Processing of Signals, McGraw-
Hi1ll, New York.

Hamming, R. W. (1962). Numerical Methods for Scientists and Engineers,
McGraw-Hi11, New York.

Hamming, R. W. (1977). Digital Filters, Prentice Hall, New Jersey.

Housner, G. W. (1947). Ground Displacement Computed from Strong-Motion
Accelerograms, Bull. Seism. Soc. Amer., 37, 299-305.

Hudson, D. E. (1963). The measurement of Ground Motion of Destructive
Earthquakes, Bulletin of the Seismological Society of America,
Vol. 53, No. 2, February.

Hudson, D. E., N. C. Nigam and M. D. Trifunac (1969). Analysis of
Strong Motion Accelerograph Records, Fourth World Conf. on Earth-
quake Engineering, Santiago, Chile.

Hudson, D. E. (1970). Ground Motion Measurements, Earthquake Engineering,
R. L. Wiegel Coordinating Editor, Chapter 6, Prentice-Hall, Inc.,
Englewood Cliffs, N. J. '

Hudson, D. E., M. D. Trifunac, A. G. Brady and A. Vijayaraghavan (1971),
Strong Motion Earthquake Accelerograms, II, Corrected Acceleration
and Integrated Velocity and Displacement Curves, EERL 71-50, Calif.
Inst. of Tech., Pasadena.



98

Hudson, D. E., M. D. Trifunac and A. G. Brady (1972). Analyses of Strong
Motion Earthquake Accelerograms, Response Spectra, Vol. III, Part A,
EERL 72-80, Calif. Inst. of Tech., Pasadena.

Hudson, D. E. (1984). Golden Anniversary Workshop on Strong Motion
Seismology, March 30-31, 1983, Dept. of Civil Eng., University of
Southern California, Los Angeles.

Lee, V. W. and M. D. Trifunac (1982). EQINFOS (The Strong-Motion Earth-
quake Data Information System), Dept. of Civil Engineering,

Report No. CE 82-01, University of Southern California, Los Angeles,
California.

Lee, V. W. (1984). A New Fast Algorithm for the Calculation of Response
of a Single-Degree-of-Freedom System to Arbitrary Load in Time.
Int. J. of Earthquake Engineering and Soil Dynamics.

Neumann, F. (1958). Damaging Earthquake and Blast Vibrations, The Trend
~in Engineering, Seattle: University of Washington.

Neumann, F. (1959). Seismological Aspects of the Earthquake Engineering
Problem, Proceedings of the 3rd Northwest Conference of Structural
Engineering, State College of Washington.

Oetken, G., T. W. Parks and H. W. Schuster (1975). New Results in the
Design of Digital Interpolators, IEEE Trans. on Acoustics, Speech
and Signal Processing, Vol. ASSP-23, No. 3, June.

Oppenheim, A. V. and R. W. Schafer (1975). ngita] Signal Processing,
Prentice Hall, New Jersey.

Rabiner, L. R. and R. E. Chochiere (1975). A Novel Implementation for
Narrow-Band FIR Digital Filters, IEEE Trans. on Acoustics, Speech
and Signal Processing, Vol. ASSP-23, No. 5, Oct.

Rabiner, L. R. and B. Gold (1975). Theory and Application of Digital
Signal Processing, Prentice Hall, New Jersey.

Schiff, A., and J. L. Bogdanoff (1967). Analysis of Current Methods of
Interpreting Strong Motion Accelerograms, Bull. Seism. Soc. Amer.,
Vol. 57, No. 5.

Sunder, S. S. (1980). On the Standard Processing of Strong-Motion
Earthquake Signals, Ph.D. Thesis, Research Report R80-38, School
of Engineering, Mass. Inst. of Technology, Cambridge, Mass.

Trifunac, M. D. (1971). Zero Baseline Correction of Strong-Motion
Accelerograms, Bull. Seism. Soc. Amer., 61, 1201-1211.

Trifunac, M. D. (1972). A Note on Correction of Strong-Motion Accelero-
grams for Instrument Response, Bull. Seism. Soc. Amer., 62, 401-409.



99

Trifunac, M. D. (1973). Analysis of Strong Earthquake Ground Motion for
Prediction of Response Spectra, Int. J. of Earthquake Eng. and
Struct. Dynamics, Vol. 2, No. 1, 59-69.

Trifunac, M. D. and D. E. Hudson (1970). Laboratory Evaluation and
Instrument Corrections of Strong Motion Accelerographs, EERL
70-04, Calif. Inst. of Tech., Pasadena.

Trifunac, M. D., F. E. Udwadia and A. G. Brady (1971). High Frequency
Errors and Instrument Corrections of Strong Motion Accelerograms,
Earthquake Eng. Res. Lab., EERL 71-05, Calif. Inst. of Tech.,
Pasadena.

Trifunac, M. D., F. E. Udwadia and A. G. Brady (1973). Analysis of
Errors in Digitized Strong Motion Accelerograms, Bull. Seism. Soc.
Amer., 63, 157-187.

Trifunac, M. D., and V. W. Lee (1973). Routine Computer Processing of
Strong Motion Accelerograms, Earthquake Eng. Res. Lab., EERL 73-03,
Calif. Inst. of Tech., Pasadena.

Trifunac, M. D., and V. W. Lee (1974). A Note on the Accuracy of Computed
Ground Displacements from Strong Motion Accelerograms, Bull. Seism.
Soc. Amer., 64, 1209-1219. '

Trifunac, M. D. (1977). Uniformly Processed Strong Earthquake Ground
Accelerations in the Western United States of America for the Period
from 1933 to 1971: Pseudo Relative Velocity Spectra and Processing
Noise, Dept. of Civil Engr., Report No. CE 77-04, Univ. of Southern
California, Los Angeles.

Trifunac, M. D. and V. W. Lee (1979). Automatic Digitization and Pro-
cessing of Strong Motion Accelerograms I & II, Dept. of Civil Engr.,
Report No. 79-15, Univ. of Southern California, Los Angeles.

Trifunac, M. D., and V. W. Lee (1978). Uniformly Processed Strong
Earthquake Ground Accelerations in the Western United States of
America for the Period from 1933 to 1971: Corrected Acceleration,
Velocity and Displacement Curves, Dept. of Civil Engr., Report No.
CE 78-01, ‘Univ. of Southern California, Los Angeles.






