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ABSTRACT

New frequency dependent attenuation function of Fourier amplitude
spectra of recorded strong earthquake ground acceleration has been
developed. The iterative regression analyses assume simple functional
forms to model the trends of the data and have sufficient flexibility
to detect dependence of attenuation on source dimensions, depth and
frequency of‘wave motion. It has been found that for distances less
than about 100 km there is clear frequency dependent variation of
attenuation functions, with high frequency amplitudes attenuating
faster with distance.

The strong motion data recorded so far is not adequate to describe
attenuation of strong motion amplitudes for distances greater than
about 150 km. To facilitate approximate characterization of attenua-
tion of strong motion amplitudes for these and for larger distances
it has been proposed to use the attenuation function developed by
Richter for the computation of local magnitude scale in Southern

California.






INTRODUCTION

Some fifty years ago (March 10, 1933) the first strong motion
accelerogram was recorded during the Long Beach, California, earthquake
(Hudson, 1983). Following this event the strong motion accelerograph
network in California grew through the 1940's, 1950's and the first part of
the 1960's. Beginning in the late 1960's the number of accelerograph
stations began to increase more rapidly as a result of numerous special-
ized observational projects and the expansion of the strong-motion net-
work from California into the Central and Eastern United States. At
present there are numerous strong motion stations permanently installed
on ground sites, dams, bridges, buildings, nuclear power plants, in
specially designed arrays along major active faults and in large arrays
in metropolitan Los Angeles and San Francisco areas (Hudson 1983).

Following the San Fernando, California, earthquake of 1971, the
digitized and uniformly processed strong motion accelerograph data base
has grown to a point where it became possible to initiate studies of
the dependence of the characteristics of recorded motions on earthquake
size, nature of the wave propagation path and the local recording site condi-
tions. In many of these analyses it has been essential to include a
description of wave amplitude attenuation with distance, either to com-
pare various inferences at a chosen convenient distance or to be able
to interpolate or extrapolate outside the available data range. Analysis
of various published attenuation relations shows that those could be
grouped roughly into 1) Empirical attenuation lTaws and 2) Pseudo analy-
tical attenuation laws. The empirical attenuation laws have aimed to

exploit the available seismological data and experience and to modify



and extend largely "distant" attenuation laws to "smaller" near source
distances. Examples of uses of such attenuation laws are those employed
by Gutenberg and Richter (1942, 1956) and by Trifunac (1976a, b) who
used the Richter's attenuation function developed for the calculation
of local magnitude scale ML’ in Southern California. With few excep-
tions most "analytical" attenuation Taws take a form which tends to a
constant for small source to station distance and decays like a power
of distance for large distances. The majority of published attenuation
studies fall into this latter category (e.g., Trifunac and Brady 1975,
Nuttli and Herrmann 1981).

With the development of extended source representations, through
the studies of finite earthquake source dislocations analytically
(e.g., De Hoop, 1958; Haskell, 1969; Aki and Richards, 1980) and observation
- of recorded accelerograms (e.g., Trifunac 1972, 1974) it became possible
to understand better the physical nature of attenuation near extended
earthquake sources. Thus following Haskell (1969), for example, it is
seen that the strong earthquake ground motion consists of waves which
in elastic medium attenuate 1ike 1/R*, 1/R%, 1/R and 1/R%. The distance
ranges where these attenuation rates dominate will vary and will depend
on the source mechanism, source size and depth, complexity of the surrounding
geological medium and on its inelastic attenuation properties. 1In
Sourthern California at a distance of about 100 km the surface waves
begin to dominate in the recorded motions. At distances less than about
100 km the orientation, the size and the shape of the fault surface,
influence the shape of the overall attenuation law of wave amplitudes.
At small distances the near field effects integrated over the fault

surface will tend to diminish the wave attenuation for larger faults.



At comparable distances the small dislocation surfates will progres-
sively look more Tike point sources and thus will lead to more rapid
attenuation of wave amplitudes with distance. For points vary close
to the causative fault the strong motion amplitudes will primarily
depend on the stress released during faulting and the resulting per-
manent displacement in short and long period motions respectively,
while the overall source size will cease to be significant when it
exceeds certain characteristic source dimension. Consequently, close
to the source the strong motion amplitudes will grow only weakly with
the overall source size and this rate of growth will be noticeable only
for source dimensions smaller than certain characteristic fault size.
For Targer faults this rate of growth should essentially go to zero.
Thus the shapes of the strong motion attenuation curves will change
with source dimensions. For distances, large enough, most sources will
lead to parallel attenuation curves (i.e., no size dependent slopes)
governed mainly by surface wave attenuation. For smaller distances the
smaller earthquakes will lead to steeper attenuation curves so that a
family of different attenuation curves for different magnitudes will
tend to "converge" closer to each other as the observation point moves
closer to the source. The relative separation of different attenuation
curves will tend to be constant and grow with earthquake size at a con-
stant rate for large distances. The same separation and its rate of
growth near a fault will, at first, be small and then will disapear
with increasing source dimensions.

The foregoing qualitative expectations have been known to many resear-

chers. The difficulty Ties in the lack of sufficient data for their



quantitative evaluation. The aim of this work is to address this quan-
titative aspect by trying to work with data available so far.

In this process numerous, physical and geometrical charac-

teristics of earthquake sources will have to be ignored. Otherwise the
effort would not be feasible or the data base would become inadequate.
Such effects as radiation pattern, directivity, fault type, stress drop,
and seismic moment, to name a few, will be ignored. To this end we will
assume that the small perturbations of recorded motions, up or down, by
less than the equivalent of one half magnitude unit will not alter the
"raw data nature" of recorded motions. In the following we outline how
this perturbation to the data has been performed, and present our pro-
posal for describing the frequency dependent attenuation curves of

strong motion amplitudes with distance.



FREQUENCY DEPENDENT ATTENUATION FUNCTION

1. Previous Analysis

During the regression analyses of earthquake strong-motion para-
meters in the 1970's, it was suggested that the peaks of strong ground
motion might be scaled by using the following expression (Trifunac and

Brady, 1975)

3y a, (M)
1099 {Vray 0= M * ]og]OAO(R)--]og]O vo(M) o, (1.1)
d d, (M)

where Anax® Vmax and dmaX represent respectively, the peak acceleration,
peak velocity and peak displacement amplitudes; M is the local earth-
quake.magnitude, ML; ]og]OAO(R) represents the amplitude attenuation
function (Richter, 1958) versus distance (Table 1.1). It is empiri-
cally determined for Southern California and representative of wave
frequencies centered near the middle of the frequency band for the
data used in the regression of strong motion acceleration (0.1 Hz to
25 Hz). aO(M), VO(M) and dO(M) are respectively the magnitude-
dependent empirical scaling functions for acceleration, velocity and
displacement.

Trifunac (1976b) generalized the above regression analysis to the
study of Fourier Amplitude Spectra. The same empirical model was
applied to the scaling of spectral amplitudes at a selected set of

discrete periods, T. For this purpose, (1.1) was generalized to become

(equation (2) in Trifunac (1976b))

1091oLFS(T) 5 1 = M + Togy oA (R) - Tog;({FS (T,M,p,s,v,R)} (1.2)

p



Table 1.1 1og]OA0(R) vs epicentral distance R

R(km) 10910A0(R) R(km) —1og]OAO(R) R(km) —1og]OAO(R)
1 1.400 140 3.230 370 4.336
5 1.500 150 3.279 380 4.376
10 1.605 160 3.328 390 4.414
15 1.716 170 3.378 400 4.45]
20 1.833 180 3.429 410 4.485
25 1.955 190 3.480 420 4.518
30 2.078 200 3.530 430 4.549
35 2.199 210 3.58]1 440 4.579
40 2.314 220 3.631 450 4.607
45 2.421 230 3.680 460 4.634
50 2.517 240 3.729 470 4.660
55 . 2.603 250 3.779 480 4.685
60 2.679 260 3.827 490 4.709
65 2.746 270 3.877 500 4,732
70 2.805 280 3.926 510 4.755
80 2.920 290 3.975 520 4.776
85 2.958 300 4.024 530 4.797
90 2.989 310 4.072 540 4.817
95 3.020 320 4.119 550 4.835
100 3.044 330 4.164 560 4.853
110 3.089 340 4.209 570 4.869
120 3.1356 350 4,253 580 4.885
130 3.182 360 4,295 590 4.900



where M is earthquake magnitude, 1og]OAO(R) is the same attenuation
function that was used in (1.1),p is the confidence level selected for

the approximate bound of spectral amplitudes FS(T) S represents the

»p?
type of site conditions (s=0 for alluvium, s=1 for intermediate rocks,
and s=2 for basement rocks), v designates the horizontal or vertical
components (v=0 for horizontal, v=1 for vertical), and FSO(T,M,p,s,v,R)
represents an empirical scaling function to be determined by regression
analysis. The same empirical model was also used for scaling of abso-
lute acceleration spectra, SA (Trifunac and Anderson, 1977), pseudo
relative velocity spectra PSV (Trifunac and Anderson, 1978a) and rela-
tive velocity spectra, SV (Trifunac and Anderson, 1978b).

Trifunac and Lee (1978) refined the above analyses by introducing

a measure of the depth of sedimentary deposits, h, as a site character-

istic (instead of s used above). The new scaling equation then becomes
1og]O[FS(T)] =M+ 1og]0Ao(R) - b(T)M - ¢(T) - d(T)h - e(T)v

- f(T)MZ - g(T)R (1.3)

with all the other parameters defined as before. The functions b(T),
c(T), ... and g(T) are estimated by reéression analysis at 91 periods
T between 0.04 sec and 15 sec. The form g(T)R in (1.3) models the
period-dependent attenuation "correction factor" for distance R in
addition to the attenuation function 1ogAO(R). Its form corresponds
to the usual amplitude attenuation exp(-mR/QRT), on a linear scale,
employed to model approximately the effects of anelastic attenuation.
Here B is the shear wave velocity and Q the attenuation constant. 1In

(1.3), g(T) may then be thought of as corresponding to (ﬂ/QBT)]og]Oe,



if it is assumed that the 10910A0(R) term represents the geometric
spreading only. The 10910A0(R) has been derived empirically from data
on actual peak amplitudes in Southern California, (Richter, 1958) and
thus represents an average combination of geometric spreading and an
elastic attenuation for a frequency band around 1 Hz. The term g(T)R
can then only represent a correction to the average attenuation,
1og]0A (R).

0

2. Limitations of the 10910AO(R) Function

The physical significance of 1og]OAO(R) 1ies in its sound data base
gathered for numerous earthquake observations in Southern California.
It is characterized well by defining a corresponding new function which

is given by (Trifunac, 1976a) as

f(R) = 1og]OAO(O) - 10910A0(R) . (1.4)

f(R) can be approximated by two straight 1ine segments which are

R/50 R <75 km
f(R) = v (1.5)
1.125 + R/200 75 < R < 350 km .

The change in slope at R = 75 km suggests that at large distances
(R > 75 km), the main contribution to strong shaking comes from surface
waves. |

The advantage 1in using the 1og]0AO(R) function is that it contains
information on the average properties of wave propagation through the

crust in Southern California, where virtually all strong motion data

have been recorded up to and during the 70's. The disadvantages and
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Timitations, however, which result from using 1og]OAO(

regression analyses are that its shape does not depend on magnitude,

R) in previous

i.e., source dimension of an earthquake, on the focal depth of an
earthquake, on the geological environment of the recording station, or
on the actual amplitudes of recorded motions. That 1og]0Ao(R) or its
analog should depend on the geometric size of the fault has been dis-
cussed in some detail previously (Trifunac, 1976b). These magnitude
dependent changes of 1og]0Ao(R) would be such that for small R the slope of
1og]0AO(R) would tend to be steeper for earthquakes with small fault
dimensions, while for large faults and for small R, log]OAo(R) would
tend to flatten out and have a smaller slope than the average function.
Through the 1970's only a few of the 186 records available for analysis
had epicentral distances Tess than 10 km. The empirical derivation of
different shapes of 1og]0Ao(R), or its equivalent, for different magni-

tudes or source dimensions then did not seem feasible.

3. The New Database

Through the years new earthquake acceleration data are added to
the original data base. The Tist of 57 earthquakes which we used through
the 1970's has now grown to a Tist of 104 earthquakes most of which
occurred mainly in the regions of northern and southern California.
Table 3.1 is the 1ist of earthquakes now used in our database. Fach
Tine contains the date and time of the earthquake,magnitude, Tocation
of the epicenter, focal depth and maximum intensity, if available, and

the name of the earthquake.



EQ MON/DAY/YR
#
1 310 1933
2 10 2 1933
3 7 61934
4 12 30 1934
5 10 31 1935
6 10 31 1935
7 11 21 1935
8 11 28 1935
9 2 6 1937
10 4 12 1938
11 6 5 1938
12 6 6 1938
13 9 11 1938
14 5 18 1940
15 2 9 1941
16 6 30 1941
17 10 3 1941
18 11 14 1941
19 10 21 1942
20 3 9 1949
21 4 13 1949
22 1 23 1951
23 10 7 1951
24 7 21 1952
25 7 23 1952
26 9 22 1952
27 11 21 1952
28 6 13 1953
29 112 1954
30 4 25 1954
31 11 12 1954
32 12 21 1954
339 41955
34 12 16 1955
35 12 16 1955
36 12 16 1955
37 2 9 1956
38 2 9 1956
39 3 18 1957
40 3 22 1957
41 3 22 1957
42 3 22 1957
43 3 22 1957
44 1 19 1960
45 6 5 1960
46 4 8 1961
47 9 4 1962
48 4 29 1965
49 7 15 1965
50 6 27 1966
51 8 7 1966
52 9 12 1966
53 12 10 1967

TIME
CODE
1754PST
0110PST
1449pST
0552PST
1138MST
1218MST
2058MST
0742MST
2042PST
0825PST
1842pPST
0435PST
2210PST
2037PST
0145PST
2351PST
0813PST
0042PST
0822PST
0429PST
1156PST
2317PST
2011PST
0453PDT

0441PDT
2346PST
2017PST
1534pPST
1233PST
0427PST
1156PST
1801PST
2117PST
2142PST
2207PST
0633PST
0725PST
1056PST
1048PST
1144PST
1515PST
1627PST
1926PST
1718PST
2323PST
0917PST
0729PST
2346PST
2026PST
0936PST
0841PST
0407PST

11
TABLE 3.1

LATITUDE LONGTITUDE (KM)
DEG, MIN & SEC  DEPTH

33 37 00 -117 58 00 16.0

33 47 00 -118 08 00 16.0

41 42 00 -124 36 00

32 15 00 -115 30 00 16.0

46 37 00 -111 58 00

46 37 00 -111 58 00

46 36 00 -112 00 00

46 37 00 -111 58 00

40 30 00 -125 15 00

32 53 00 -115 35 00 16.

32 54 00 -115 13 00 16.

32 15 00 -115 10 00 16.

40 18 00 -124 48 00

32 44 00 -115 30 00 16.0

40 42 00 -125 24 00

34 22 00 -119 35 00 16.0

40 36 00 -124 36 00

33 47 00 -118 15 00 16.0

32 58 00 -116 00 00 16.0

37 06 00 -121 18 00

47 06 00 -122 42 00

32 59 00 -115 44 00 16.0

40 17 00 -124 48 00

35 00 00 -119 01 00 16.0

35 17 00 -118 39 00

40 12 00 -124 25 00

35 50 00 -121 10 00

32 57 00 -115 43 00 16.

35 00 00 -119 01 00 16.

36 48 00 -121 48 00

31 30 00 -116 00 00 16.0

40 47 00 -123 52 00

37 22 00 -121 47 00

33 00 00 -115 30 00 16.

33 00 00 -115 30 00 16.

33 00 00 -115 30 00 15.

31 42 00 -115 54 00 16.

31 42 00 -115 54 00

34 07 06 -119 13 12 13.

37 40 00 -122 28 00

37 40 00 -122 29 00

37 39 00 -122 27 00

37 39 00 -122 29 00

36 47 00 -121 26 00

40 49 00 -124 53 00

36 30 00 -121 18 00 11.0

40 58 00 -124 12 00

47 24 00 -122 18 00

34 29 06 -118 31 18 15.

35 57 18 -120 29 54 6.

31 48 00 -114 30 00 16.

39 24 00 -120 06 00

40 30 00 -124 36 00
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LONG BEACH, CALIF
SOUTHERN CALIF
EUREKA, CALIF

LOWER CALIF

HELENA, MT

HELENA, MT

HELENA, MT

HELENA, MT

HUMBOLDT BAY, CAL
IMPERIAL VALLEY, CA
IMPERIAL VALLEY, CA
IMPERIAL VALLEY, CA
NW CALIF

IMPERIAL VALLEY, CA
NW CALIF

SANTA BARBARA, CAL
NORTHERN CALIF
TORRANCE-GARDENA CA
BORREGO VALLEY, CAL
NORTHERN CALIF
WESTERN WASH
IMPERIAL VALLEY, CA
NW CALIF

KERN COUNTY, CALIF
KERN CNTY, CAL
NORTHERN CALIF
SOUTHERN CALIF
IMPERIAL VALLEY, CA
WHEELER RIDGE, CALI
CENTRAL CALIF

LOWER CALIF

EUREKA, CALIF

SAN JOSE, CALIF
IMPERIAL COUNTY, CA
IMPERIAL COUNTY, CA
IMPERIAL COUNTY

EL ALAMO, BAJA CAL
EL ALAMO, BAJA CAL
SOUTHERN CALIF

SAN FRANCISCO CA
SAN FRANCISCO, CAL
SAN FRANCISCO CA
SAN FRANCISCO CA
CENTRAL CALIF
NORTHERN CALIF
HOLLISTER, CALIF
NORTHERN CALIF
PUGET SOUND, WASH
SOUTHERN CALIF
PARKFIELD, CALIF
GULF OF CALIF
NORTHERN CALIF
NORTHERN CALIF
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1967
1968
1970
1971
1979
1979
1978
1980
1980
1975
1975
1975
1975
1975
1975
1975
1975
1975
1975
1975
1975
1975
1974
1975
1975
1975
1971
1971
1971
1972
1972
1980
1980
1980
1980
1980
1980
1980
1979
1979
1979
1979
1981
1980
1980
1980
1980
1980
1980
1980
1980

0925PST
1830PST
0630PST
0600PST
1417PST
0805PST
2254GMT
1100PST
1833PST
2022GMT
2059GMT
0103GMT
0247GMT
0228GMT
0350GMT
1641GMT
0700GMT
0611GMT
1559GMT
0548GMT
1223GMT
2234GMT
2301GMT
1737pPST
1835PST
0846GMT
1508PST
0608GMT
1132PST
2145GMT
1804GMT
1857GMT
1450GMT
1901GMT
0516GMT
1516GMT
0441GMT
0058GMT
1616PDT
1445PDT
1114pPDT
2319GMT
1209GMT
1900GMT
0233GMT
0934PDT
0949pPDT
1245PDT
1336PDT
1158PDT
0751PDT

37
33
34
34
32
37
34
37
37
39
39
39
39
39
39

39
39
39
39
39

36
40
40
40
35
51
41
56
36
37
37
37
37
37
37
37
33
33
32
32
33
37
37

37
37
37
37
37

36
24
12
42
59
43
04
37
00
58
00
19
52
18
46
31

29
20
12
52
12

12
48
12

54
12
13
37
49

49
22
24
23
29
44
19

48
24
36
32
41
40
30
35
22

-121
-116
-117
-118
-115
-121
-119
-121
-121
-121
-121
-121
-121
-121
-121
-121
-121
-121
-121
-121
=121
-121
=121
-124
-124
-124
-118
=177
-123
-135
-121
-118
-118
-118
-118
-118
-119
-118
-115
-115
-115
-115
-115
-121
-121
-118
-118
-118
-118
-118
-118

18
42
24
00
59
59
00
13
47
25
31
59
21
43
49

41
59
35
42
16
56

36
12
24
12

24
48
13
41
24
11
09
22
34
45
16
24
22
29

49
37
52
32
17
34
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NORTHERN CALIF
BORREGO MTN, CALIF
LYTLE CREEK, CALIF
SAN FERNANDO, CALIF
IMPERIAL VALLEY, CA
COYOTE LAKE, CALIF
SANTA BARBARA, CAL
MT. DIABLO, LIVERMO
MT. DIABLO, LIVERMO
OROVILLE AFTERSHOCK
OROVILLE AFTERSHOCK
OROVILLE AFTERSHOCK
OROVILLE AFTERSHOCK
OROVILLE AFTERSHOCK
OROVILLE AFTERSHOCK
OROVILLE AFTERSHOCK
OROVILLE AFTERSHOCK
OROVILLE AFTERSHOCK
OROVILLE AFTERSHOCK
OROVILLE AFTERSHOCK
OROVILLE AFTERSHOCK
OROVILLE AFTERSHOCK
HOLLISTER, CAL
NORTHERN CAL
NORTHERN CAL
NORTHERN CAL
CENTRAL CAL
ANDREANOF, ALASKA
NORTHERN CAL
SOUTHEAST ALASKA
CENTRAL CAL

MAMMOTH AFTERSHOCK
MAMMOTH AFTERSHOCK
MAMMOTH AFTERSHOCK
MAMMOTH AFTERSHOCK
MAMMOTH AFTERSHOCK
MAMMOTH AFTERSHOCK
MAMMOTH AFTERSHOCK
IMPERIAL VALLEY AFT
IMPERIAL VALLEY AFT
IMPERIAL VALLEY AFT
IMPERTIAL VALLEY AFT
WESTMORELAND, CAL
LIVERMORE, CAL
LIVERMORE, CAL
MAMMOTH AFTERSHOCK
MAMMOTH AFTERSHOCK
MAMMOTH AFTERSHOCK
MAMMOTH AFTERSHOCK
MAMMOTH AFTERSHOCK
MAMMOTH AFTERSHOCK
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The original Tist of 186 free-field records corresponding to the
57 earthquakes has now grown to 438 free-field records from the total
of 104 earthquakes. With 3 components available for each record, this
amounts to a total of 1314 acceleration components, of which there are

876 horizontal and 438 vertical components.

4. The New Attenuation Function: Models I, II, III and IV

With the new database now available, the attenuation function

which is to replace the Richter's 1og]0A (R) function can next be

0
investigated. Four different models of this function have been studied
and will be presented here. A1l four models assume that the attenuation
function, should depend, on the distance, R, on the focal depth, H, and
on the "size" of the fault, S. A parameter, A, is introduced in each
model to replace the distance, R. Models III and IV will also have

the attenuation function dependent on the coherence "length", So’ at

the fault (Gusev, 1983). Thus

A = A(R, H, S) for models I and II ,
and ' A = A(R,H,S,S,) for models IIT and IV . (4.1)
(a) Model I

Model I defines A as

2

A= (RE + 12 + s2)% (4.2)

A is thus used as a parameter to measure the "representative distance"
from the earthquake source of size S, at depth H and distance R. Since
the "fault size," S, is not available for most of the earthquakes used

in the database, an empirical formula for the size has been introduced
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for this and for all subsequent models (II, III and IV) of the attenua-
tion function. It is defined as a function of the magnitude and period

of the spectral amplitudes considered, so that

size, S = S(M,T) , (4.3)

and at each period T, the size of fault "felt" at that period is assumed

to be a Tinear function of magnitude, M, so that

1]

for M=3 , S =0.2 km

and M=6.5, S=S5 T) km (4.4)

6.5(

where 86 5(T) is an empirically determined function of period T for
each model. The attenuation function, denoted by tt(A,M,T), will then

be defined as

Att(A,M,T) = dﬂB(T)]Og1OA’ (4.5)

where odB(T) will be an empirically determined function of period T for

each model.

(b) Model II

Model I assumes that the "size" of the fault S = S(M,T), as defined
in equation (4.3), is "felt" at the site independent of how close the
site is to the earthquake source. It is reasonable to assume that if
the site is "far enough," relative to the size of the fault, that the

site will "see" the complete fault. It may be questionable, however,
“to assume the same to be true for sites at small and zero distances from
the fault. For this reason we consider a modified definition of the

fault size which approximately models this as follows:
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w
i

SIM,R,T)

it

S(M,T)(1.-exp(en(.1)R/S(M,T)), (4.6)

with the factor, (1.-exp(&n(.1)R/S(M,T)), multiplying the original
definition of the fault size, S(M,T), in (4.3). This factor has been
chosen with the property that at the epicenter where R=0, it is zero,
so that the size of the fault "felt" is zero. Out at the epicentral
distance equal to that of the fault size, that is, when R = S(M,T),
this factor is .9, which means that 90% of the fault size if "felt."
Beyond this distance, the factor asymptotically approaches 1, so that

practically the whole fault size is "felt" for R >> S(M,T).

(c) Model III

Gusev (1983) investigated a descriptive statistical model of earth-
quake source radiation and applied this model to an estimation of short-
period strong earthquake ground motion. He considered a concept of a
subsource, as an element of the main rupture process. The source radia-
tion is then described by overlapping the source functions and radiation
pulses of the subsources of different sizes. The correlation radius,
So’ of the source function can be approximated by one half of the wave-

length X in a frequency band around f, namely
correlation radius, S, 22 = Cs/2f = C.T/2 (4.7)

where CS is the shear wave velocity. Then following Gusev (1983) we
consider a definition of a "representative distance" from the earthquake

source of size S, at depth H and at distance R to the site as

1

2 2 2\ 2
_ R®= + H + S

R™ + H +SO
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This expression has the property that when S2 << R2 + H2, it asympto-

2

1
tically approaches (R“ + H2)2, the distance between the focus and the

site. Using:

2 3 4

£W+M=x-%+%-%+“. (4.9)
in (4.8)
2 2 2 2
RZ + 12 4+ s 5 2
n ~ (1 -(s./5)°) . (4.10)
RZ + 12 + sg RZ + 12 0
When s? << RZ + HZ, (4.8) gives
b~ RHD/ (T ~(5,/5)2) (4.11)

At high frequencies, T ~ 0, and Sy ~ 0 from (4.7), so that the repre-

2 2 2 2

sentative distance A becomes R2 + H* when R™ + H™ >> S-.

(d) Model IV

As in model I, the expression for A in Model III assumed that the
"size" of the fault S = S(M,T) that is "felt" at the site is independent
of how close the site is to the earthquake source. Following the ideas
discussed in the description of Model II, to reduce the size of the
fault "felt" at distances close to the fault, we consider yet another

description of the fault size as follows:

S = mings,(R® + HO)%), (4.12)

so that at distances smaller than the size of the fault, S, the size of
the fault "felt", S, is set to be equal to the hypocentral distance,

1
(R? + HP)2,
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The new definition of the "representative" distance A then takes the

form

o  RE+HE#S
A~SQLn2 s (4.13)
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5. Determination of Attenuation Functions

The following is a description of the procedures we employed to
determine the frequency dependent attenuation function for each of the

four models described above.

Step 1: MWe started with the regression equation of Fourier Spectral
AmpTitudes:

Tog oFS(T) = M + st (a,M.T) +

2

b1(T)M + b2(T)h +b3(T)v +b4(T)A/]OO + b (T) + b (T)M

5( 6

(5.1)

where Ztt(A,M,T) is the new attenuation function to be determined for
each of the four models. In the first iteration Att(A,M,T) was taken
to be 1og]OA0(A) > the Richter's attenuation function, with the para-
meter A equal to R. Using (5.1), a regression analysis is performed on
the new database of 1314 components of Fourier spectrum amplitude data
FS(T), at 91 discrete periods T ranging from 0.04 to 15.0 sec. This
first step is identical to the regression analyses used for the old
database (Trifunac, 1976a,b; Trifunac and Lee, 1978). As before, the
data are screened to minimize possible bias in the model. This could
result from uneven distribution of data among the different magnitude
ranges and from excessive contribution to the database from several
abundantly recorded earthquakes. To carry out the screening the data
are partitioned into six groups corresponding to magnitude ranges:
2.0-2.9, 3.0-3.9, 4.0-4.9, 5.0-5.9, 6.0-6.9 and 7.0-7.9. The data in
each of these magnitude ranges are next subdivided according to the

site classifications s=0,1 and 2. The data within each of these
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subgroups were then divided into 2 sets corresponding to horizontal
(v=0) and vertical (v=1) components. The resulting data in each of

the groups corresponds to the Fourier spectral amplitudes from a speci-
fied earthquake magnitude range for a specified site classification and
with specified component orientation. To study the effect of attenua-
tion at large distances, the data in each of the subgroups are sub-
divided further into 2 sets: one for epicentral distances < 100 km

and the other for distances > 100 km. The data in each of these two
final subsets are then arranged in monotonically increasing order in
terms of their amplitudes. If the number of data points in the first
set (R <100 km) is Tess than 19, all the data points are taken. 1If
there are more than 19 points in this first set, at most 19 points are
selected from among the ordered set 6f data so that they correspond
uniformly, as close as possible, to the 5% , 10%, ... , 90% and 95%
percentiles at distances R < 100 km. Similarly, at most 5 points are
selected from the second set (R > 100 km) of data so that those corre-
spond uniformly to around 16 2/3%, 33 1/3%, 50%, 66 2/3% and 83 1/3%
percentiles at distances R > 100 km. This approximate scheme has the
effect of reducing the bias described above. The resulting fitted
coeffiqients at each period T resulting from linear regression will be

A

denoted by b](T), BZ(T), b3(T), 84(T), b5(T) and b6(T), (equation (5.1).

Step 2: With the regression coefficients available from Step 1,
a modified set of Fourier amplitudes is next prepared from the original
database of 1314 records. The database of modified Fourier Spectral

Amplitudes, MFS(T), is to consist of data for the same sites with the
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same input parameter A, but with the depth of sediments modified to
h = 2 km, the component parameter to v = 0 (horizontal),and is to

correspond to one of the closest magnitudes from among the list:
2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0. 7.5, 8.0 .

The resulting database will then consist of data from sites all
with the same alluvial depth (h = 2 km), the same component orienta-
tion (v = 0) and one of the above discrete magnitude values. For
example, if the original Fourier Spectrum Amplitude, FS(T) is available
at a site from an earthquake of magnitude 6.3, the closest magnitude
from among the 1ist would be 6.5. The modified Fourier Spectrum

Amplitude, MFS(T) would then be calculated from

Tog, JMFS(T) = log o FS(T) + §10g;,FS(T), (5.2)

where 61og]0f§(T) is the estimated "correction" due to a difference in

earthquake magnitude from 6.3 to 6.5, to modification of alluvial depth
at the site from h km to h = 2 km, and due to the modification of com-

ponent direction v (0 for horizontal, or 1 for vertical) to v = 0.

From (5.1), this is estimated to be

1

61og]0E§(T) 6.5 + o tt(n;,6.5,T) + b (T)6.5 + b, (T)2

2
2

-+

b4(T)A]/1OO + b (T)6.5

6

(T)h

i

(6.3 + AtL(A,6.3,T) + b,(T)6.3 + b,

+ by(T)v + by(T)a/100 + b6(T)6.32), (5.3)
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where A is the "representative" distance at the site due to the earth-
quake 6.3, and A] is the modified representative distance at the same
site due to the earthquake of modified magnitude 6.5.

The modified Fourier Spectrum Amplitudes, MFS(T), at 91 periods
from 0.04 sec to 15 sec for 1314 components are estimated in this way

and stored on a disk file ready for the next step.

Step 3: Since there are frequent fluctuations of Fourier Amplitudes
from one period to the next for each of the 1314 components in both the
original and in modified database, the period range from 0.04 sec to
15 sec is first divided into 6 bands of approximately equal widths along

the logarithmic period scale, with the period ranges given by:

Eﬁﬁ?ﬁ Centra}szigiod, ! Raﬁggi?gec)
1 .06 .04 - .70
2 .16 .10 - .24
3 4 .24 - .65
4 .95 .65 - 1.4
5 2.0 1.4 - 3.2
6 5.0 3.2 - 8.0

The modified Fourier Spectrum Amplitudes, MSF(T), are then divided
into 6 groups corresponding to the above 6 period bands. Using the
regression coefficients available from Step 1, the data of each period
in each group are modified to correspond to the central period of the
group. Thus if the amplitude MFS(T) is in the 1th group with central
period Ti’ it is modified to MFSi(T) corresponding to period Ti by the

formula:
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1091 MFS () = Tog; gMFS(T) + 10, MFS. (1), (5.4)

where Glog]OMFSi(T) is the estimated "correction" from period T to the

central perijod Ti' It is given by
Glog]OMFSi(T) = 1og]OMFS(T1) - ]og]OMFS(T) s (5.5)

where 1og]OMES(Ti) and 1og]OMES(T) are respectively the estimated logar-
ithms of Fourier Spectrum Amp]ftudes at periods Ti and T from equation
(5.1) at the site with modified magnitude M, h = 2 km and v = 0

(Step 2). The averages of all the resulting amplitudes, 1og]0MESi(T),
in each period band are then computed. These 6 average modified ampli-
tudes of the 6 bands of each of the 1314 components will be used in the
preliminary estimates of the Attenuation Function, .Ztt(a,M,T), for

each of the four models I, II, III and IV.

For each of the 6 bands, the average Fourier Amplitudes of the 1314

components are least square fitted with the equation:

2

1og]0FS = Colog]OA + C-I + C,M + C,M (5.6)

2 3

where M is the magnitude of the earthquake, A(R,H,S) the "representative"
distance, R the epicentral distance, H the focal depth and S the "size"
of fault, all in km. Note that at each period band, S = S(M) is a

Tinear function of magnitude (4.3) selected as

s-0.2 _ %6577
M-3 3.5 i
s=0.2+ W (s 2 (5.7)
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The parameter 56.5 is still an unknown in each of the 6 period
bands. 56.5 is interpreted as a "size" of the fault of magnitude 6.5
that if being "felt" at the particular band. Allowing it to range from
1 km to 50 km in (5.7) and substituting the resulting values of S from
(5.7) into (5.6), the value of S 5 that gives the best fit of (5.6)
can thus be determined. This is repeated for each of the period bands
and the values of Sg o and C in (5.6) at each band are recorded.

The new frequency dependent attenuation function to be used will

be the term corresponding to C  log, 4 in (5.6):

Att(A,M,T) = cﬂz(T)1og]OA (5.8)

.n%(T) will be a parabola to be fitted to the 6 values of Co of
(5.6) determined for the 6 bands. The fault size S = S(T,M) is given
by (5.7), with Sg 5 = Sg.5(T) a linear function of T that is fitted

to the 6 values of 86 5 determined for the 6 bands.

The selection of the new attenuation function is now completed.
This new attenuation function can be refined by an iteration of the
entire procedure, i.e., by repetition of all previous steps. Steps 2,
3, and 4 above can be repeated using the new attenuation function and
the updated attenuation function can be compared with the previous one
until there is satisfactory "convergence" of the term uﬂb(T) 1og1OA.

During the subsequent iterations,it has been found that the 1inear
term in A in (5.1), namely. b4(T) /100, has the coefficient b4(T) which
is insignificant for most of the periods. Subsequently, this term has
been deleted from the regression analysis and the empirical scaling

equation, (5.1), thus becomes:
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1og]OFS(T) =M+ Ltt(A,M,T) +

2

b](T)M + bZ(T)h + b3(T)v + b5(T) + b6(T)M (5.9)

6. The Attenuation Function at Large Distances

The procedures described in the previous section for the four pro-
posed models will determine the attenuation of strong-motion amplitudes
for the distances within 100 to 150 km from the source of an earthquake.
At distances exceeding this range, we expect the strong-motion data to
consist primarily of surface waves and that the attenuation of recorded
strong-motion amplitudes would then be slower than for the sites closer
to the source. At these and larger distances the recorded strong-motion
amplitudes become small and consist of Tonger periods, so that, especially
for smaller magnitude earthquakes, strong-motion accelerographs may not
trigger. Consequently at these and larger distances the Tack of recorded
strong-motion data at present does not allow reliable estimates of the
attenuation functions. To take this into account at large distances,
(5.8) is combined with (1.5) so that the attenuation function will have
the empirically determined slope of -1/200 (equation (1.5)). The new

attenuation function is thus modified to be of the form

udb(T)log1OA R <R
tht(A,M,T) =

udb(T)1og1vo - (R—RO)/ZOO R > R0 , (6.1)

where A is the representative distance as defined in any of the four
models above, and AO is the corresponding representative distance at

the transition distance Ro' The attenuation function is as that given
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by (5.8) at distances R Tess than Ro’ For distances R > Ro’ it is a
Tinear function with slope -1/200 as in (1.5). The slope of the atten-
uation function for R < Ro depends on the epicentral distance, R, the
focal depth, H, the source dimension, S, and on the period of the wave,
T. Taking the cutoff distance RO to be 75 km as in the case of Richter's
Attenuation Function would be inappropriate, as this would result in
discontinuity of the slope of the function at R = Ro'

Therefore, RO is determined from the requirement that the slope of

the function (5.8) equals -1/200. It is determined for each of the

four attenuation models as follows:

(a) Model I, A = (R2 + H2 + 52)%

The slope of the attenuation function is given by (from (5.8)):

d _d 2 .2 . 2k
aﬁ(aﬂtt(A,M,T)) = IR (udb(T)log10(R + H® + 59)3?)
ado(T)R
R R T ; (6.2)
© (R® + H® + S%)anl0

which when equated to the constant slope of -1/200, gives

ZOOo&B(T) 5 2

2 =
W“R*‘H + S 0, (63)

R™ +

a quadratic equation in R. The solution, Ro’ the transition distance,

is the larger of the 2 roots, is

2200 (T) |4 x 10% x & 2(T)
R = 0 0

1 2 2)
o 2 an10

- 4(H= + S

) (6'4)
(en10)2
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and is a function of H, S (hence a function of M) and “db(T)’ At Tong
periods and larger magnitudes, M, when the source S is large and the
attenuation term udb(T) small, the square-root term (discriminant) in
(6.4) becomes negative and hence Ro becomes complex. In such cases, for
simplicity only, the first term of (6.4) has been taken as an estimate

of the transition distance, i.e. RO = - 100odB(T)/2n10.

(b) Model II, A = (R® + 1% + s2)=
Equating the slope of the function in (5.8) as in Model I would
lead to the equation

ZOOde(T)
2n10

2

22 4 2, 22 _

R+ H™ + =0 (6.5)
Since from (4.6), g = S(1.-exp(en(.1)R/R), g is now also a function of
R, and thus (6.5) becomes a transcendental equation in R. However, the
traﬁsition distance RO is usually at a distance much further out than
the size of the fault S, 1.e; Ré >> S, so that a first approximation of
R0 can be obtained by taking § = S, so that equation (6.5) reduces to
(6.3), and the solution RO is given by (6.4). With this first approxi-

mation, S can be calculated from

S = S(1-exp(sn(.1)R_(S)) (6.6)

subsituting R0 for R. With this value of S, (6.5) can then be solved
as a quadriatic equation to get Ro' By substituting this updated value
of R0 back to S and iterating a few times will converge to the solution

Ro‘ The same comments for R0 in Model I apply here.
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1
2

2 2, 2
(c) Model III, p = Sfgn R FH _+5S

RZ + 2 + g2
0

The slope of the attenuation function (5.8) can again be obtained
by differentiating adb(T)znA, but this will result in a complicated
transcendental equation for R. Again, since the transition distance
Ro is much further out than the fault size, i.e. R0 >> S, an asymptotic
solution is taken. For the case when R2 + H2 >> S, an asymptotic expan-

sion of A (equation (4.11) is given by

2 2)

b~ ((RE+ W2)/(1-s%/s%) (6.7)

Using (6.7), the slope of the attenuation function is then

d _d
aﬁ~(a¢tt(A,M,T)) = T (aﬂb(T)]og]OA)

2,.2
udb(T)(1—SO/S )R

~ ’ (6.8)
(R% + HZ)an10
which when equated to the constant slope of -1/200, gives
200 #_(T)(1-52)
2 0 0 2 _
R™ + 70 R+H" =0 (6.9)
another quadriatic equation in R. The solution, Ro’ is given by
200 (T)(1-52/52)  [2002 (T)(1-52/52)
Ro= L 0 o’” ', 0 o~ - a?¥ (6.10)
o 2 210 an10

similar to the expressions for Models I and II (equation (6.4)).
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-3
o RZ + 42 + 52
Y

2
R™ + H™ + SO

w >

(d) Model IV, A =

Substituting S for S in (6.7) gives the asymptotic expansion as

1
2

b~ ((R® + 1)/ (1-55/5%) (6.11)

4

which will result, as above, in the following quadriatic equation:

2,02
. 2000&5(T)(1—SO/S )

2 _
+ 10 R+ H™ =0. (6.12)
Since from (4.12),
A 2 2\
S = min{S,(R™ + H®)™} (6.13)

(6.12) is again a transcendental equation in R. Again, the assumption,

2 2 2

S” << R™ + H™, can be applied here to give S = S, so that (6.12) can be

solved as in (6.9)

L
7. Results I: Model I, A = (R® + HZ + $2)

The "convergence" of the attenuation function odb(T)]Og]OA was found
to be very satisfactory just after a few iterations of the above proce-
dure. Figures 7.1 through 7.6 show plots of the average Fourier Ampli-
tudes from the modified database for magnitudes in the ranges from 3.5
to 7.5 in each of the six period bands. Band 1 corresponds to the low
period high frequency end, and with increasing periods, Band 6 corre-
sponds to the long period, low frequency end. The top dashed Tine in
each figure, shown with arbitrary amplitude scale and for easy compari-
son of the overall attenuation function shapes, is the Richter's atten-

uation function, while the other dashed lines in each band are the
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corresponding estimated amplitudes using (5.6), with the attenuation
function given by (6.1).

The estimated final values of 56.5 and Co used on (5.6) for the 6
bands are given in Table 7-1. The straight line from least-squares
fit of the values of 56.5 is shown in Figure 7.7 and the parabolic fit
to CO in Figure 7.8. Only the points in the first five bands have been
used in the regression analysis in both cases, as it is found that the
sixth band in the long period end is often contaminated with Tong period
noise.

Note that for the Tow period, high frequency band (Band #1), from
10 km on, the Fourier amplitudes attenuate very rapidly to almost 150 km
before the attenuation levels off to the slope of -1/200. This is true
at all magnitude ranges. The transition distances, R0 for the transition
at this low period, high frequency end are as high as 150 km for most
magnitude ranges. As the period range increases from Band #2 onwards
through Band #6, the above described amplitude attenuation slopes of -1/200
are at decreasing cutoff distances from R0 = 150 km at the low period end
to as Tow as 40 km at the long period end (Band #6). This is why as the
Band number increases, the estimated attenuation of the Fourier ampli-
tudes is seen to agree in slope with the Richter's attenuation curve at
gradually decreasing distances. Figure 7.9 is a plot of these transition
distances, RO, versus periods, T, in (6.4) for magnitudes M = 4,5,6 and 7.
Note that for magnitude M = 7, the cutoff distance, Ro’ levels to a con-
stant at a period not much after 1 sec. This is because the discriminant
in (6.4) is negative at those periods and we choose, arbitrarily, only

the first term of (6.4) to estimate Ro‘



31

TABLE 7-1
Band # Range (Sec.) 86.5 C0
1 .04-.10 18 -1.86708
2 .10-.24 25 -1.52468
3 .24~ .65 25 -1.03379
.65-1.4 30 -.908991
1.4-3.2 32 -.92390

(o) EE S 2

3.2-8.0 34 -.871122
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To test the performance of the above attenuation function, a nor-
malized database of Fourier amplitudes has been prepared from the ori-
ginal 1314 acceleration components. Two groups of data have been first
selected from the database. The first group consisted of data recorded
at epicentral distances R < 30 km and the second group consisted of
data at epicentral distances in the range 100 < R < 200 km. The database
of this new normalized Fourier spectral amplitudes, NFS](T), from the
first group is to consist of data with the original magnitudes, M, but
with alluvial depth h normalized to h = 2 km, component parameter v to
v = 0 (horizontal), and is to correspond to the recordings at zero
distance, R = 0 km. Similarly, the database normalized in the second
group is to correspond to the data recorded at an epicentral distance
of R = 150 km with h = 2 km and v = 0. The 6 bands of noramlized
Fourier amplitudes of the first group (at R = 0) are plotted versus
magnitudes in the range from M = 3 to M = 8 in Figures 7.10 through
7.15. The dashed line in each plot corresponds to the estimated Fourier
amplitudes versus magnitude at R = 0 using equation (5.6) with the esti-
mated attenuation term Co1og]OA calculated as above. The 6 bands of
normalized Fourier amplitudes of the second group (at R = 150 km) are
plotted in Figures 7.16 through 7.21, together with the estimated ampli-

tudes as dashed lines.

2 2
)

8. Results: Model II, A = (RT+H" + S

With the modified definition of the fault size (equation (4.6)) in
Model II, the iteration steps described in Section 5 have been repeated

to estimate the new attenuation function adb(T)]og]OA . Agreement was
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again found to be very satisfactory just after two or more iterations
of the procedure described in Section 5.

Figures 8.1 through 8.6 are plots of the average Fourier Amp1itudes
from the modified database using the new definition of A and for magni-
tudes in the range from 3.5 to 7.5 in each of the period bands. Table 8-1
gives the estimated values of 56.5 and C0 used in (5.6).

Figure 8.7 shows the straight 1ine from the least squares fit of
the first five values of 56.5’ and Figure 8.8 the parabolic fit for CO.
As in the previous section, only five points in the first five bands
are used in both cases. The average value os 36.5 is now about 17.5
as compared to 27.5 in the previous section. The shape of the parabola
is similar to that from the previous section.

Figure 8.9 is a plot of the transition distances RO, versus periods,
T, in (6.4) for magnitudes M = 4,5,6 and 7, using the new definition of
fault size, § and the new estimated values of aﬂb(T). Similar to the pre-
vious case (Fig. 7.7), the transition distances R0 start from as high
as 150 km at short periods and decrease to about 60 km at long
periods. |

As in the previous section, overall performance of the new atten-
uation function is tested as follows. A normalized set of Fourier
amplitudes has been prepared as in the previous section. This resulted
in 2 groups of normalized data, one at epicentral distance of R = 0 km
and the other at R = 150 km. Both groups of data were normalized using
the new attenuation function. The 6 bands of normalized data of the
first group (at R = 0 km) have been plotted versus magnitude in
Figures 8.10 through 8.15. When compared with the corresponding nor-

malized data in the previous section (Fig. 7.10 through 7.15), the
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TABLE 8-1
Band # Range (Sec.) 56.5 Co
1 .04-.10 16 -1.75888
2 .10-.24 21 -1.35071
3 .24-.65 18 -.891877
4 .65-1.4 18 -.719342
5 1.4-3.2 20 -.725126
6 3.2-8.0 23 -.640947
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amplitudes of each point are higher using the new attenuation function

in all period bands. The same holds for the estimated amplitudes

(dashed Tine) using equation (5.6). Similarly, the 6 bands of normal-
ized Fourier amplitudes of the second group (at R = 150 km) are plotted
in Figures 8.16 through 8.21 together with the estimated amplitudes as
dashed Tines. When compared with the previous section (Fig. 7.16 through
7.21), the amplitudes are very similar, meaning that the attenuation
functions are practically identical at large distances.

1
: -’

2 2 2
9. Results: Model III, A = S{an Rz . Hz - S2
R® + H= + S0

With this definition of representative distance A in Model III, the
iteration steps described in Section 5 have been repeated. One difference
between this and the previous two Models, I and II, is the introduction
of the new parameter, SO, in the definition of A. Here S0 corresponds
to the correlation distance of the subsources at the fault plane.

Step 3 of the iteration procedure in Section 5 thus has been modified
to include the estimation of SO. Different sizes of So, expressed as
the ratio SO/S, with values equal to .025, .05, .075, .1, .2, .3, .4
and .5, have been used. The analysis shows that the results are not
sensitive to these different ratios at all. Thus, using (4.7) the fol-

lowing empirical estimate for SO was adopted

So = min()\/2,S/2) (9.1)

with X = CST and assuming Cs = 1 km/sec. Thus the correlation radius
is either half of the wavelength of the corresponding period T or half

of the fault size, whichever is smaller.
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Using this definition of SO, the "convergence" of the attenuation
function ddb(T)]og]OA was again found to be very satisfactory just after
a few iterations.

Figures 9.1 through 9.6 show plots of the average Fourier AmpTlitudes
from the modified database using the definition of A in Model III and for
magnitudes in the range from 3.5 to 7.5 in each of the six period bands.
TabTe 9-1 gives the estimated values of 56.5 and C0 used in (5.6).

Figure 9.7 shows the straight line from the least squares fit of the
first five values of 56.5’ and Figure 9.8 the parabolic fit for CO.
Figure 9.9 is a plot of the transition distance Ro’ versus periods, T,

in (6.10) for Model III, and for magnitudes M = 4,5,6 and 7. As for the
previous models, the transition distances R0 start from as high as 150 km
at short periods and decrease to as low as 50 km at Tong periods.

As in the previous models, the overall performance of the new atten-
uation function is tested. Again a normalized set of Fourier amplitudes
has been prepared, resulting in 2 groups of data, one at epicentral dis-
tance of R = 0 km and the other at R = 150 km. The 6 bands of normalized
data of the first group (at R = 0 km) have been plotted versus magnitude
in Figures 9.710 through 9.15. The estimated amplitudes (dashed line)
are calculated and plotted using equation (5.6). Similarly, the data of
the second group (R = 150 km) are plotted in Figures 9.16 through 9.21.
The two groups of plots show that the Model III attenuation function
behaves Tike that of Model I at short distances, while all three models

considered so far are practically identical at large distances.
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TABLE 9-1
Band # Range (Sec.) 56.5 CO
1 .04-.10 29 -1.86209
2 .10-.24 30 -1.37171
3 .24-.65 30 -.928757
4 .65-1.4 30 -.750504
5 1.4-3.2 30 -.751518
6 3.2-8.0 30 -.654003
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10. Results: Model IV, A = S{an

Repeating the iteration procedures in Section 5 using the repre-
sentative distance A for Model IV, the results are presented in
Table 10-1 and in Figures 10.1 through 10.21 as in all previous models.
Using the modified definition of fault sizes (equation (4.12)), the
estimated amplitudes in 6 bands now attenuate faster than those described
by Model III in Figures 9.1 through 9.6. The normalized data of the
first group (at R = 0 km) as plotted in Figures 10.10 through 10.15 are
now higher in amplitudes than the corresponding data of Model III in
Figures 9.10 through 9.15. However, when comparing the normalized data
of the second group (at R = 150 km) in Figures 10.16 through 10.21 with
those from Model III in Figures 9.16 through 9.21, it is found that those
are practically identical, which shows again that the attenuation func-
tions at large distances all behave in the same way.

The results from all four models have now been presented. One
additional useful comparison of the four models is to calculate the
root-mean-squared values of the residues of the fit at the six bands
from all four models:

1
2

1
- N N 12
o= () Ei) = (% (1og]oFSi - 1og]0FSi) ) (10.1)

where 1ogF51 is the estimated amplitude computed from (5.6). The results
for all 4 models at the six bands are plotted in Figure 10.22, which
shows that for the four models the R.M.S. values of the residues are not

significantly different.
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Figures 10.1-10.6 - Average modified FS amplitudes (full irregular lines)
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bands. Dashed Tines represent the corresponding amplitude trends pre-
dicted by the regression Model IV. Top dotted line illustrates the shape
of ]og]OAO(R) attenuation law.
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TABLE 10-1
Band # Range (Sec.) 86.5 CO
1 .04-.10 12 -1.60186
2 .10-.24 16 -1.18339
3 .24- .65 14 -.794932
4 .65-1.4 11 -.627334
5 1.4-3.2 19 -.655192
6 3.2-8.0 19 -.556734
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11. Conclusions

The above analysis shows that it is now possible to extract directly
from the recorded data, some general frequency and magnitude dependent
trends of amplitude attenuation functions with distance. While the
data which is available so far is barely adequate to suggest what some
of these trends of the attenuation functions might be for distances
between about 10 to about 100 km, it is not possible to characterize
this attenuation for distances much beyond 100 to 150 km.

For epicentral distances between several kilometers and 100 to
150 km we find clear frequency dependence of Fourier spectrum amplitude
attenuation versus distance. Characterizing this dependence by An,
where A is the representative distance parameter we find that n ranges
from about -0.6 to -0.8 at 0.5 Hz to -1.8 to -2.0 at 20 Hz for the four
attenuation models considered. The frequency band No. 6 (periods between
3.2 sec and 8.0 sec), which has been considered throughout this analysis
for completeness in presentation, gives smaller n. However, all infer-
ences developed for this frequency band must be taken with caution
because this band is influenced by some long period digitization noise,
especially for smaller magnitude recordings.

We chose to model the effects of the source size in a crude and
simplified manner by adding a characteristic distance (size) S(M,T) to
the definition of A. We found that the data and our regression analysis
do suggest S(M,T) to be increasing with the magnitude to about 20 to 30 km
for Model I, to 16 and 20 km for Model II, to 30 km for Model III, and to

10 to 20 km for Model IV at magnitude 6.5.
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The magnitudes employed in this work (see Table 3.1) essentially
all correspond to the Tocal Richter magnitude, ML’ in southern California.
While magnitude determinations of some earthquakes in Table 3.1 have
been a subject of more detailed recent investigations (e.g., Imperial
Valley earthquake of 1940 (M = 6.7) or Kern County earthquake of 1952
(m=7.7)) and there is some doubt about what should be the best magni-
tudes to use in a study of this kind, we continue to prefer the choice
of "published" rather than some precisely defined magnitude scales
(e.g., Nuttli and Herrmann, 1982). This preference is based on a prac-
tical consideration of earthquake catalogues which cannot be "corrected"

to represent the data in terms of magnitude scales developed during the

recent 5 or 10 years and on the basis of information gathered, 30 to

50 years ago or earlier, during times when the methods, seismological
knowledge and standards, as well as the available information were at
best very different from those of today. In the future we may reach a
stage when all earthquakes will be described by well defined and
reproducible magnitude scales, but at present the statistical analyses
and the methods used should reflect the quality of the data available
so far. By "published" magnitudes above we mean the magnitudes usually
presented on the basis of ML and/or MS as used in California. Clearly,
any effort to use our results outside California will require among
other required conversions, that one converts from "published" magni-
tudes in California to"pub]iéhed"nwgnitudes as defined and as used

in the region of interest.
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To employ the new attenuation functions at distances greater than
150 to 200 km it was necessary to extend these functions in some
"reasonable" and "physically plausible" way applicable to wave amplitude
attenuation in California. We chose to accomplish this by extending
the attenuation function at all frequencies by 1og]OAO(R) for R > R0
and with R0 ~ 150 km at 20 Hz and Ro ~ 40 km at ~ 0.2 Hz. It must be
emphasized that this represents merely an interim approximation, to
facilitate risk calculations at greater distances. At present there
is no basis to assume that 1og]0A0(R) for R > R0 will continue to be
a good choice when more distant strong motion acceleration data becomes
available.

We tonsider four "near field" modeTé of attenuation function. Two
(Models I and III) in which the source dimension S(M,T) is "felt" at all
epicentral distances including R = 0. The other model (Model II) has
S(M,T) multiplied by an exponential function diminishing to zero at
R =0, so that at R = 0 the source size S(M,T) is not "felt" at the
recording station, while at R ~ S(M,T), 90% is felt. For Model IV at
hypocentral distances smaller than S(M,T), the size of the fault "felt"
at the recording station is set equal to the hypocentral distance. This
results in Model IV properties being similar to those for Model II.

For Models I and III the rate of growth of spectral amplitudes
with magnitude at R = 0 km is small for high frequencies (20 hz) and
changes from about 1 at M = 3 to about 3 at M = 7 on an arbitrary
amplitude scale. For long periods (T ~ 5 sec) the corresponding
change in spectral amplitudes is over two orders of magnitude

e.g., Figs. 7.15, 8.15, 9.15 and 10.15). For Models II and IV the
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rate of growth of spectral amplitudes with magnitude at R = 0 km for
high frequencies (20 Hz) is larger than for Models I and III and is
closer to the rate of growth for intermediate and long period spectral
amplitudes.

Comparison of the residuals of the regression analyses for all
four models (equation 10.1 and Figure 10.22) and for all six frequency
bands shows that essentially all models fit the data equally well.
This means that for modified definitions of S(M,T) for Models II and
IV do not change the shapes of the attenuation functions enough for
this effect to be detected through the regression analysis in the
distance range where most data is available at present,say R > 10 km.
This also means that the simple Model I of the "representative" distance

]/2
A= (RE + HE + 52

is capable of portraying all trends in the available
data equally well as the Models II, IIT and IV. (Figure 10.22). Remem-
bering the considerations of the physical processes at the earthquake
source, as discussed in the previous sections of this paper and else-
where (e.g. Gusev, 1983), for the sake of simplicity, and to fit well,
the Fourier spectrum amplitudes of the strong motion data which is
available so far it would seem that the Model IIL is the most convenient
to use from now on,

In this work we focused onto the analysis of an attenuation function
of spectral amplitudes only, and though we did include other scaling
parameters (site conditions, vertical versus horizontal components, depth

of alluvium) into the regression models used here, we leave detailed

presentation on those parameters for another future paper.
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