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ABSTRACT

This paper investigates the determination of the Fourier
Amplitude Transform of a continuous, piecewise differentiable function
using the computational efficiency of the Fast Fourier Transform.
Interpolation between adjacent and decimated data sample points by
means of splines and polynomials is studied. The linear spline which
has wide application in earthquake engineering and seismological studies
has been shown to provide better Fourier Amplitude estimates than
the FFT through the examination of a numerical example. It is found
that such a spline representation may be used to obtain improved
estimates up to and often beyond the Nyquist frequency characterized
by the spacing, At, of digital data points. To achieve a given level
of accuracy, it is shown that the linear spline needs only about half
the number of sample points per unit time. Some of the limitations

of the technique are discussed and some applications cited,






INTRODUCTION

Before the widespread usage of the Fast Fourier Transform
algorithm, a continuous time function (such as an accelerogram)
encountered in earthquake engineering studies was modeled for digital
computation by a series of polynomials passing through discrete
digitized data points. A commonly used assumption was that the
time function varied linearly between any two adjacent digitized data
points.

The advent of the FFT algorithml’z’

3 (which in essence calculates
the Discrete Fourier Transform) with its large computational economy
has not only made Fourier analysis an important aspect of data
processing, but has led the engineer to adopt the discrete time series
model for representing continuous time signals. Such a representation
has been commonly used to facilitate the direct application of the

FFT algorithm.

This discrete time data approach, which essentially assumes no
knowledge of the time function between the consecutive digital data
points, has been found to be useful in some time series analyses
problems. However, in several earthquake engineering applications,
in particular those dealing with semi-automatically digitized acceleration
traces, additional information on the time function between digitial
data points may be available. In ignoring such information, not only
is there a loss of data but the problem of Fourier analysis becomes
further compounded by difficulties that rise characteristically from

the use of discrete time data. One such problem that would be



eliminated is that of aliasing, which arises purely because the
function is not continuously defined for all time in the domain of
study.

It is the purpose of this paper to use this additional information
on the nature of the time function between consecutive digital data
points3 and to apply the FFT algorithm so that a computationally
efficient method of Fourier analysis of a continuous, piecewise

differentiable time function may be obtained.

THEORY

Consider the continuous function g(t) which one typically meets

with in the analysis of strong ground motion data defined as follows

f(t) O0<t< T
gt) = {

0 otherwise .

The Fourier transform F(w) of this function is defined as

Flw) = [ glt)e

T
f ft)e . (1)
0

Dividing the time axis into N equal intervals, which correspond to the

N+ 1 time coordinates ti’ i=0,1,...,N, such that t. .1 = At for all

i+l

ie (0,N - 1), equation (1) can be expressed as a summation over N

subintervals so that



k=N-1 ‘k+l -
F = 3 [ i e ar (2)
k=0t

where fk(t) is the portion of f(t) lying between points t, and t

k k+1°
If further the function fk(t) is a known polynomial of order n, pl(:l)(t),

between these two points then the integration in equation (2) can be

performed directly. Equation (2) then reduces to
t
k=N-1 k+1
F(w) = f pl({n)(t)e-lwtdt . (3)
k=0 tk

In actual practice, in the digitization process, the values of the function
f(t) are determined only at a discrete set of points tp i=0,1,..., N,
so that obtaining such a polynomial representation for each interval
along the time axis involves some degree of approximation. For a
given order of polynomial, the extent to which the approximation is
a good one will depend on the actual method of digitization used,
which will in turn govern the spacing (which could be unequal) along
the t-axis between various digitized points.

For the optical=mechanical digitization process,4 for example,
the first order (linear polynomial approximation may perhaps be
the best. The reason for this is that in this semiautomatic process
the operator picks out (and digitizes) points at such a spacing that
the value of the function between one digitized point and its
neighbor (on either side) can be approximated, in his judgment, by

a straight line. Though this sort of a digitization process



is largely judgmental, trained operators have been found to perform
very Well.4 This digitization practice in general leads to a non-
uniform spacing of points on the t-axis. For ease of digital com-
putations, several equispaced points are then interpolated between
these non-equispaced digital data points. Such an interpolation would
affect the accuracy of our approximation because the actual function
between any two equispaced points may not be close to a straight
line (linear) even though the function between two of the original
non-equispaced points may have been closely representable by a
straight line. Such inaccuracies would obviously arise when two
consecutive equispaced data points straddle a point belonging to the
original digitized (unequally spaced) data. However, if the spacing of
the equidistant points along the t-axis is small in relation to the
smallest spacing of the unequally spaced digital data, it has been
found that the straight line approximation between the equidistant data
points may be a good one.4 From now on the case of equispaced
points will therefore be considered in this paper.

Though the method considered here is valid for any order
polynomial, the main points of this discussion will be amply esta-

blished by considering the linear and quadratic cases.

Case 1: The Linear Case

When

Ay
pl(:)(t) =yt -Ecl-{-(t-tk) (4)

where

yk = f(tk):
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Ak = Vi1 " Vi

At = tk+1 - tk for all ke(O,N-1)
and Nat = T,
using equation (3) we have
k=N-1
Flo) = D, AL (5)
k=0
where
bt1 Ay
_ k ~iwt
A= [ Lyt -t at (6)
t

Integrating, we get

1 SlwAt 1y iekAt

_ . ()
A = nwlig - {5

~ioAt -iwAt
e -

e 1. -iwkAt
P enl-Tm— F Toar e :
By equation (5) then,
k=N-1 A - k=s_l\i~l [_L_ {e-lwAt-l}]e—ikat
D AT ) wdi WAt
k=0 k=0
k=N HwAt .
1 l-e -ipkAt
oy ondl-ng tTaar e (7
k=1

so that



N-1 .
-iwkAt sin wAt/2 -5
> e ML =CAtz )

1 1- e—-iwAt

toyelig + Tpar

1- e+1wAt

1 -iwNAt
toynl- gt TEar e .

(8)

Adding and subtracting yo[%u-z—]g on the right hand side, we
get
N-1
_ -iwkAt sin wAt/2 -2
Flo) = 3 ye Yy
k=0 ‘
S S T i B
Yo Lo wRAt
At .
Ll Lo -ioNAt
+ YN[ iw WAt ]e ‘ (9
If y, = VN S 0, then
At/2 - kAt
Flo) = arf SReLH/29: Z o (10)

The above expression is valid for all frequencies, w. The summation
in equations (9) and (10) can be done very efficiently if we restrict
ourselves to the frequencies wj = —21\%;; j=0,1,...,,N-1, for then the

summation will be simply the Discrete Fourier Transform of the

digitized function f(t). This transform can be economically computed



using the Fast Fourier Transformz algorithm. It may be noted that
at these specific frequencies wj, j=0,1,...,N-1, the contributions to
F(w) from the second and third terms of equation (9) will cancel out

if yo = YN because of the periodicity of the exponential term. We will

then have

F(w)

H

sin wAt/2 -2 ]k
Al =Rz ) Z yiexp(- )

[%]g{Discrete Fourier Transform of f(t)} . (11)

Had no information on the function been provided between the various
digital points, the transform at the frequeﬁcies w; would have been
computed by first analytically setting up the Discrete Transform and
numerically computing it using the FFT. As seen from equation (11),
the Fourier Transform of a piecewise linear continuous function can

be expressed by the discrete transform at the frequencies w; provided

sin wAt/2

2 .
WAt/ 2 ) is performed.

The economy afforded by the FFT algorithm can therefore still be

a multiplication by the envelope function (

utilized to obtain the transform, at the frequencies wj, of the continuous

function. It may be noted that the condition yg = = 0 mentioned

N
above does not usually lead to a loss of generality, for this condition
can always be guaranteed if f(t) is continuous over the real line t and
is nonzero only over a finite domain. If, however, f(t) is discontinuous

at the end points of the domain (0, T), the expression given by equation

(9) would need to be used, again evaluating the transforms at the



-9-

specific frequencies wj s0 as to make use of the computational
efficiency of the FFT.

It is instructive at this point to study the structure of equation
(9) in more detail. The first term on the right hand side is the
main contribution to the Fourier integral, whereas the second and
third terms represent the effect of the two boundary points. Noting
this, equation (9) can be derived in an alternate and perhaps more
illustrative manner. Let the function f(t) be defined inbetween various
digitized points by a series of spline functions. For example, as
indicated in Figure 1, the piecewise linear function f(t) te(O, tN) can
be approximated by using a series of linear splines. Figure 1l (top) shows

the linear spline denoted by S(l)

and its negative half denoted by S:(Ll). We
2
see then (Figure 1) that the Fourier integral of f(t), as approximated by

p(l)(t), can be expressed as the transform of a series of weighted spline

functions as follows:

| N-1 SRl gy N-1 ‘k+1 ) i
F =3 [ p et =3 [y -kane " at
k=0 t k=0 t,
° (1) N
, -iwt ~iwt
- Yo f s% (t)e dt + yy f s% (t-NAt)e dt (12)
-At tr-At

But the transform of S(l)(t) = S(l)(w) = At[M

.
oAL/2 1° so that

——  N- _ —
P = sWw) 30y L ystie) + st
k=0
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where S_1E :(w) is the transform of Si(l)(t) and is given by
2 Zz

1)y - L , 1
S% (w) = -+~ + wBAt[l_e

1w

iwAt] .
Equations (9) and (13) are identical, as of course they should be. However,
equation (13) can now be used to generalize the concepts to higher
order splines which could represent the curve between two adjacent
points in terms of say a second or third order polynomial. We

note that the resultant curve obtained by using such a series of

splines will be continuous but only piecewise differentiable. In a
manner similar to the above equation (13) may then be generalized

to an nth order spline as follows:

-iwkAt ) -iwNAt

N-
- yoS_j(Ln (w) + yNSE(w)e (14)
2 2

Flw) = S™w)
k

1
yke
0

where S(n)(w) is the Fourier transform of S(n)(t). Further, for the

_ 2mj

frequencies wj = qap @ssuming yo =y we have
n N-1 -iwt
F(o) = S(w) 3~ yye (15)
k=0

Equation (15) is the generalization then of equation (10). In particular,

for example, the parabolic spline leads to

S(Z)(w) - At 1 ~ sin wAt

At/2R L oAt

- cos wAt] . (16)

The normalized functions S(l)(w)/At and S(Z)(w)/At are shown in Figure 2.
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The envelope function S(l)(w)/At is seen to be always positive
except at the frequencies given by wAt = 2nw, n=1,2,... at which
it is zero. Its first zéro occurs at twice the Nyquist frequency of
the sampled data (z-i—g). The function is less than unity for wAt > 0
so that it tends to reduce the Fourier spectral amplitudes all over

the spectrum.

The function S(Z)(w)/At is an oscillating function having a value
of 4/3 at w= 0. The parabolic spline therefore concentrates more
energy in the low frequency zone reaching the same amplitude at the
Nyquist frequency as does the function S(l)(w).

The functions :C}—(;)_(w) may also be thought of as representing
low pass filters, filtering out the periodic spectrum of the Discrete

Fourier Transform.

Case 2: The Quadratic Case

Expressing pf{z)(t) by the collocation polynomial

2) Ay 2y
pk t) = Vi + -—A—t—(t-tk) + m(t—tk)(t—tk'f‘l) (17)

where

2 i = —
By = ALAYD = Vi - 2Vt

and noting that tk+1 = tk + At, F(w) can be expressed as

N-1 k=N-1 28y

k 2 ~-iwt
F(w) = Z Ak + Z m[t - (21:k + At} +tktk+1]e
k=0 k=0
N-1 N-1
= 3 At Y By (18)

k=0 k=0
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where A(k) is defined by equation (6),

~1wt
B = T(w)ffy ek
and
-iwAt
1 1 +e % 1, -iwAt
T(w) = 2(At)E {Aat( 0 ) + E’g(e -1)3 (19)

The second term on the right hand side of equation (18) can be now written as
N-1

N-1 .
B, = T(v) (Y, .r - 2y, +y, ] e tokAL 20
> By Y Wiz = 2V vy . (20)
k=0 k=0

Assuming that YN+07 Y_y £=1,2,... are zero

N-1 . N-1 .

— i At -iwkAt ~iw(N-1)At - iwdt
z : B, = T(wl)e -17% E : Ve + yn© ( ) [elw -27. (21)
k=0 k=0

If further y, = VN T o,
—_— . k=N-1 .
Flo) = [5M () + Tlw) el .1y 3 yke'l“’kAt., (22)
k=0

The value of the summation as before may be obtained at the fre-

quencies wj = T\I% by the FFT algorithm., It may be noted that this
(2)

mode of expressing p' '(t) differs from the second order spline
function discussed earlier, for in this case the values of the three
ordinates, Vier2r Yeal and Vi » 2re all utilized to specify the curve

between tk and tk+1°
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Case 3, Other Representations of £(t)

The results for the linear and higher order spline represen-
tations of f(t) can be used as a basis for further generalizations of
the method and may also lead to a substantial reduction of computer

time. As an example, one such representation of f(t) is shown in

Figure 3. By decimating the original sequence yo, Vi, Va,..., YN-1'YN

into vy, Yareeor Vo2 YN where the samples y,, y; , Yose.. are
connected by straight lines, we obtain the new decimated function
fi(tj), 1=0,2,4,... which can be represented by linear splines
over 4At intervals and with N/2+ 1 data points. The difference
fo(t), i=1,3,5,... between the functions £,(t), 1=0,2,4,...

and the original sequence yg, V3, V5, ¥3,... Can next be represented
by N/2 amplitudes x; »Xg, X5, ... (see Figure 3), which are also

equally spaced at intervals of 2At. These points 0, x,0,0, x,,0,
X5,0,..., etc., can now be connected with straight lines, parabolas,

or, for example, half-sine waves. Since this representation of

£(t;) = £, (ti) +  f5(t) is linear, the Fourier transform of f(t)
i=0,2,4... 1i=1,3,5...

becomes a linear combination of the Fourier transforms of £, (£)
and f;(tj). Assuming, for example, linear splines for both f (t;)

and f, (t;), we get (assuming that y,= y\ = 0)
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sin wAt

Flw) = (222

P{D.F.T. of f(,) 1+

1=0,2,4,40e,N

sin wAt/2

+( WAt/2

P{D.F.T. of £ (t;) } (23)

1=1,3,5,.00,N=1

The advantage in using this representation is that instead of approxi-
mately N log, N operations required to calculate the D.F.T. for the
original data, only N log, (—NZ—) operations are now required. The
disadvantage of this method, however, is that only N/4 D.F.T.
amplitudes are now available instead of N/2, Whether the benefits
of shorter computer time may be more useful than the larger
number of estimates of the Fourier amplitude spectrum will, of
course, have to be determined by the requirements of each particular
application,

The above representation of f(t;) in terms of fl(ti), i=0,2,4,...,
and fa:(ti)’ i=1,3,5,..., suggests that fl(ti) would contain the pre-
‘dominant low-frequency part of f(ti), while fe(ti), which is zero at
tos tg, ty, ..o, would contribute smaller amplitudes but higher frequen-

cies to the final D.F.T. This is clearly the case, as may be seen

sin wAt

from ( AT

)®, which has its first zero at Nyquist frequency w,. =

N
n/At and from (—S%Ai,f}i#-)g, whose first zero is at ZwN.

Other generalizations along these lines are, of course, possible.
Their form and possible advantages, depend on the nature of f(t)
between the digitized points and the number of Fourier amplitude

estimates that are required.
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NUMERICAL EXAMPLE

As an example to illustrate some of the ideas presented
earlier, consider the function, g(t), to be a damped sine wave. Such

a function defined by

e_Q{t sinm 0=<t=<kT,

g(t) =

0 otherwise ,

where o represents the damping, T, the period of the sine wave, and
k the number of cycles, is commonly encountered both in earthquake
engineering and in seismological applications.

The Fourier Transform of g(t) is

_ a_ + ib
FLg(t):' - 'wo[ 002"012"(&)8"25.0 ] (24)
where
w = 2m/ Ty,
a = 1 - exp(-kaTy)cos (kwTy)
and b = exp(-kaTy)sin (kwTy) .

Figures 4 and 5 show the function g(t) for @ = 3, Ty =1, and k = 2,
and the discrete time signal sampled at the time intervals At = T,/8,
To/10, Ty/16, and T,/32. The Fourier amplitude transforms corres-

ponding to these At values are also shown.
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The figures show a comparison between the exact transform
(the solid line), calculated by using equation (24), the discrete Fourier
transform (the open circles), computed by using the FFT algorithm,
and the Fourier transform of the function obtained by a linear inter-
polation between the digital samples (the crosses), computed by using
equation (11). Figure 4(a) also includes the transform (diamonds)
obtained of the parabolic spline function [equations (15) and (16)].

As seen from the figure, the Fourier transform of the parabolic spline
function does not give a close approximation to the exact transform.
On the other hand, the linear spline transform and the exact curve
are in close agreement, especially at the higher frequencies. The
errors caused in the low frequency region of Figure 4(a) are a con-
sequence of the fact that the number of sample points used to repre-
sent the function was 'insufficient.!"" This illustrates the necessity of
using a dense spacing of points to represent the time function.

As the sampling interval At is reduced, the difference between
the exact and the computed values reduces. Tables 1 and 2 show the
errors obtained using the FFT and the linear spline (and for the case
of At = 4, the parabolic spline as well). We observe that the FFT error
oscillates about the exact value being a minimum at 1 cps where most
of the energy of the wave is concentrated. However, the error in
using the FFT increases very rapidly rising to about 140% at the
Nyquist frequency. The errors in using the FFT become significant
beyond about half the Nyquist frequency, thus making the FFT approach
accurate up to frequencies about 3 to 1 of the Nyquist frequency.

The linear spline on the other hand shows a gradually decreasing
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error up to Nyquist frequency. Beyond that, the error rises, reaching
a value of 100% at twice the Nyquist frequency. This corresponds
to the first zero of the envelope function S(l)(w).

Also, as seen from the tables, the linear spline interpolation
requires a smaller number of data points for an accurate definition
of the function. To get the same degree of accuracy, the FFT
requires the sample spacing At to be roughly a third to a half of
that required by the linear spline. Though this result would depend
on the actual character of the function g(t), this is physically under-
standable in view of the fact that in the linear spline case more
information on the nature of function is being injected into the time
function model. Such a linear interpolation will undoubtedly be good
when the points are spaced sufficiently close to one another.

Whereas the Discrete Fourier Transform (which is computed
by the FFT algorithm) prescribes an upper frequency limit beyond
which no further information can be recovered, the linear spline time
function, being continuous, has a nonperiodic frequency spectrum.
The FFT algorithm can, however, still be used to calculate these
higher frequency components, making use of the period nature of the
Discrete Fourier Transform. It is improbable that an upper frequency
limit for the linear spline case can be found independent of the function
g(t). However, at the first zero of the envelope function S(l)(t)
corresponding to twice the Nyquist frequency, the error becomes 100%.

The tables indicate, that at least up to the Nyquist frequency and

perhaps out to frequencies as high as 1.25 to 1.5 times the Nyquist
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frequency, the accuracy of the linear spline approximation is very
high. However, serious distortion sets in beyond about 1.75 times

the Nyquist frequency.

DISCUSSION AND CONCLUSIONS

In this paper an attempt has been made to utilize the FFT
algorithm to calculate the Fourier Transforms of continuous, piece-
wise differentiable functions. Particular attention has been devoted
to linear interpolation between digital data samples. This has been
done for two reasons: firstly, in the optical mechanical digitization
process,3 the operator picks out points such that the function between
them can be well described by a straight line; and secondly, it corres-
ponds to the simplest polynomial whose study leads to a better under-
standing of Fourier Transforms involving higher order polynomial
interpolations. Some of the characteristics of such interpolative
schemes as applicable to the study of seismic signals can be summarized
as follows:

(1) The Fourier transform of a discrete time series has a
limiting frequency wN(= Z—:E) beyond which the transform amplitudes
do not remain independent. The interpolated function is a continuous
one and does not have,in general,a periodic spectrum as does the
discrete time series. Unlike the DFT, therefore, there appears to be
no theoretically determinable limiting frequency, wy» independent of

the nature of the function, g(t).
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(2) The numerical example studied indicates two features.

(1) The transform of the linearly interpolated function agrees well
with the exact transform out to frequencies beyond the Nyquist fre-
quency (about 1.25 to 1.5 times the Nyquist limit), whereas the FFT
shows serious distortion beyond about half the Nyquist frequency.

(2) To achieve a given level of overall amplitude transform accuracy,
the number of samples required to be used by the FFT is about two
or three times that required to be used if the linear interpolation
scheme represented by equation (11) is utilized.

(3) The Fourier transform of the discrete time signal differs
from that of the spline interpolated time signal by only a frequency
dependent multiplicative factor. The algorithm for determining this
transform is therefore simple and essentially employs the FFT.

Since the number of required computer operations grows from Nlogy, N
to only Nlog, N+—1§—, higher accuracy is achieved with only minor increase
of computer time.

The transfer function of a system calculated at the frequencies
u)j = l%IIAJT: by the FFT approach remains unaffected by the nature of the
interpolative scheme used provided that the same scheme is used for
both input and output functions and provided both records are sampled
at equal time intervals At. For example, if the D.F.T. of the input
function x(t) is X(wj) and the D.F.T. of the output function y(t) is
Y(wj) then

A (wj )Y (wj )

Transfer Function (wj )

Y(wj)

- X(wj)

where A(wj) depends on the type of interpolation used.
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Thus, linear interpolation, though it improves the actual accuracy of
the transform estimate, does not improve the estimate of the transfer
function.

(5) The response of an oscillator to strong ground shaking is
nowadays usually computed by using an algorithm which is based on
the direct integration of the Duhamel integra1.5 This algorithm
assumes that the time function can be well represented between the
digital data points by straight line segments. A comparable Fourier
transform approach would then necessitate the use of equation (11)
in the computation of the transform. Often the zero damping response
spectrum computed by the Duhamel integral approach is compared
with results from the FFT. Here again a meaningful comparison
would require the transform of the linearly interpolated time function

[as given by equation (11)] to be used.
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