UNIVERSITY OF SOUTHERN CALIFORNIA

Department of Civil Engineering

ON UNIFORM RISK FUNCTIONAILS WHICH DESCRIBE STRONG
EARTHQUAKE GROUND MOTION: DEFINITION, NUMERICAL
ESTIMATION, AND AN APPLICATION TO THE
FOURIER AMPLITUDE OF ACCELERATION

by

John G. Anderson and M, D, Trifunac

Report No, CE 77-02

A report on research conducted under a contract
from the U.S. Nuclear Regulatory Commission

Los Angeles, California

March, 1977






Abstract

Chapter I

Chapter II

ii

TABLE OF CONTENTS

Page

1

Definition and Numerical Estimation of Uniform 3
Risk Functionals

Uniform Risk Fourier Amplitude Spectra of 43

Strong Ground Motion Using Earthquake
Magnitude, Source to Station Distance, and

Recording Site Conditions






ABSTRACT

A uniform risk functional (e.g. Fourier spectrum, response
spectrum, duration etc.) has been defined so that the probability that
it is exceeded during any earthquake is independent of the frequency
of the seismic waves. Such a functional is derived by an independent
calculation, for each frequency, of the probability that the quantity
being considered will be exceeded at the frequency. Different aspects
of the seismicity can control the amplitude of a uniform risk functional
in different frequency ranges, and a uniform risk functional does not
necessarily describe the strong shaking from any single earthquake,
Two methods for calculating uniform risk functionals which represent
a synthesis and generalization of many of the existing procedures are
presented. Thus, much of the existing work on seismic risk could
be regarded as a special case of the method presented here.

The new method for scaling of Fourier amplitude spectra of
acceleration given by Trifunac (1976) has been applied in the analysis
of uniform risk Fourier amplitude spectra. This scaling relationship
leads to improved risk analysis by describing the scatter of amplitudes
about the mean trend, as well as by allowing the amplitudes to be
estimated in several frequency bands to derive uniform risk spectra,

It has been found that the small local events can significantly
affect the level of a uniform risk spectrum, especially at high frequen-
cies and that aftershocks of a large event also affect the level of a
uniform risk spectrum (URS) slightly, The shape of a URS changes

with location of the site with respect to seismic zone, thus emphasizing



the problems involved in scaling a fixed shape spectrum to an appro-
priate level.

This paper discusses in some detail the problem of whether to
use an extended rupture zone in the model of the earthquake. For
earthquakes where the epicenter is constrained to occur at a single
point, we contour the difference of the spectral amplitudes associated
with an extended rupture and a point process, This indicates that
when there is no constraint on the direction of rupture, there is up
to a factor of two which remains to be resolved by future improve-
ments in risk models and scaling relationships.

In an application to finding thev uniform risk Fourier amplitude
spectrum at a realistic site, we find that this method is highly sensi-
tive to the description of seismicity, and that distinct models of
seismicity (all consistent with our current level of knowledge of an

area) can give significantly different risk estimates,



CHAPTER 1

DEFINITION AND NUMERICAL ESTIMATION
OF UNIFORM RISK FUNCTIONALS

INTRODUCTION

The vulnerability of modern society to earthquake hazards calls
for the development of rational methods in earthquake risk evaluation.
With continued population growth and with increasing technological
complexity of engineering structures in seismically active zones, it
now appears useful to reexamine some fundamental principles which
form the basis for seismic risk models,

The object of a seismic risk analysis is usually to describe, for
the purposes of earthquake resistant design, the nature of possible
future shaking, With the development of plate tectonics a significant
advancement toward this goal has been achieved. Through plate
tectonics, we now have a basic understanding of where, on a global
scale, most earthquakes are likely to occur. Plate tectonics also
provides a sound basis for identifying, for example, some regions
with a large chance of a major earthquake in the near future (e.g.
Kelleher et al., 1973). However, much work remains to be done
before seismologists will be able to predict, on a time scale of tens
of years, the largest earthquakes which will cause strong shaking at
any one site, and provide a description of what that shaking will be.
On a local scale, considerable judgment is involved in attempts to
identify even the locations of future large events for seismic risk

estimates,



Recognition of these uncertainties in seismic risk analyses on a
local scale, plus the increasing dependence of modern society on com-
plex installations requiring a high degree of seismic safety, has resulted
in frequent upgrading of standards which govern earthquake resistant
design during the past several decades. For that reason it appears
desirable to formulate seismic standards and a corresponding seismic
risk model whose validity may extend over a longer time span.

One purpose of this paper is therefore to construct a risk model
which describes both the nature of strong shaking and the degree of
confidence in the result. To accomplish this the model considered
must incorporate a description of the uncertainties in the assumptions
and empirical results used as inputs. The result then implies only
the appropriate degree of confidence. With this approach only the
probability functions which are input need to be upgraded with increased
understanding of the phenomena involved; the methodology itself, if

sufficiently general may remain in its original form.,

DEFINITION OF A UNIFORM RISK FUNCTIONAL

The probability functions which are supplied to the model must
describe numerous random processes which affect the amplitudes and
duration of the strong earthquake ground motion at a site. These
random processes, in addition to partially understood regional and
physical processes, affect the number and size of earthquakes, their
locations, and the relationship of source 'parameters and distance to
the nature of shaking. Since these random processes affect the ground

motion, they also affect functionals which describe various aspects of this

motion (e. g. peak response of certain instruments, spectral amplitudes,



duration, etc.). Thus, for any site, there exists a relationship between
each value in the range of such a functional of shaking and the proba-
bility that this value will occur, The form that such a probability
function, p[S(w)], say, must take is shown in Fig., 1.1, This function
gives the probability that the functional S(w), for example the spectral
amplitude at frequency w, will be exceeded at least once in Y years,
At very low spectral amplitudes, S(w) is certain to be exceeded by the
background seismic noise., On the other hand, there is no chance that
sufficiently large values of S(w) will be exceeded, because the finite
material strength of the earth sets an upper limit to the amount of
energy which can be released in a single earthquake, Clearly, the
probability of exceeding S(w) must decrease monotonically for the
intermediate values from certainty at small values of S(w) to zero at
large values of S(w). Note that p[S(w)] is a physically defined func-

tion for any point on the earth; the object of a risk analysis is to

-d p[ S(w)]

estimate this function. The derivative
d S(w)

gives the density
function of Y year extremes of S(w).

In this paper, S(w) is used in a very general manner to represent
the amplitude of nearly any functional of strong ground motion at fre-
quency w. Thus, it can represent Fourier amplitude, response spectral
amplitude, peak response of any particular instrument, or even the
duration of strong shaking.

Ideally, one would like to estimate the probability function p[S(w)]
by explicit consideration of the physical processes (e.g. seismicity, the

seismic source, and attenuation) which affect it, These physical

processes all have an inherent physical variability which can only be
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described by probabilistic methods., Furthermore, we do not yet have
a complete model of any of these physical processes. Thus, present
estimates of probébility functions such as that in Fig, 1,1 necessarily
incorporate both the randemness in the physical processes and the
lack of knowledge of the process. However, even though the functions
used to estimate p[S(w)] may change, the manner in which p[S(w)]
enters into a risk model will likely remain unchanged. If p[S(w)]

can be reliably estimated at each of several frequencies, then it is
possible to construct a uniform risk functional using the method shown
in Figs, 1,2 and 1.3, Figure 1,2 shows the probability of exceeding
S(w) at three frequencies: Wiy Wy, and ws. To construct a spectrum
(or any other functional) which at each frequency has a probability

of 0.1 that it will be exceeded, one simply reads from these proba-

bility functions the spectral amplitudes S which have the

1’ SZ’ and 33
probability 0.1. From this, it is easy to construct a uniform risk
spectrum, as shown in Fig. 1.3, Of course, one would use more than
three frequencies to construct a complete uniform risk spectrum.
When defined in this way, it is clear that a uniform risk functional
has the property that the probability that it is exceeded during any
event within the specified time period is independent of frequency.
Most studies of seismic risk can be regarded as a special case
of the method just described above. Often the magnitude, some peak
amplitude of ground shaking, the Modified Mercalli Intensity, or some
other single parameter are used as a measure of some characteristic

of shaking [S(w) in our notation], and the return period is estimated

as a function of that parameter (e.g. Cornell, 1968; Milne and
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Davenport, 1969; Liu and Fagel, 1972; Dalal, 1973; DeCapua and Liu,
1974; Douglas and Ryall, 1975; Algermissen and Perkins, 1976). The
return period is, of course, closely related to the annual probability

of excedance (e.g. Cornell, 1968), In such studies, the detailed spectral
nature of ground motion is often overlooked, or as mentioned, a standard
spectrum shape (i. e. shape which is independent of earthquake magnitude,
epicentral distance, site conditions, etc.) may be scaled to the para-
meters considered. The 'dis'advantage of this approach is that the
probability .that such a spectrum amplitude will be exceeded duriﬁg
future earthquakes may depend on the wave frequency (Trifunac, 1977).
Clearly, if a uniform risk response spectrum is derived using the
procedure outlined above, this problem will be eliminated.

McGuire (1974) was first to treat each frequency separately to
obtain uniform risk response spectra in a manner similar to that
described above., Der-Kiureghian and Ang (1977) determine the level
of risk independently for peak acceleration, peak velocity, and peak
displacement, and discuss how a response spectrum derived from thé
three peak values changes shape with changes in the seismicity dis-
tribution and level of risk. The present paper generalizes these
methods to any functional of shaking, incorporates a more realistic
model of the seismicity, and proposes a second, independent method
to obfain ‘uniform risk functionals, Subsequent papers will apply this
method to evaluate several uniform risk functionals.

Although the function p[ S(w)] must take the form shown in Fig.
1.1, one must also ask what the conditions are for p[S(w)] to be

meaningful. As mentioned, ol S(w)] is defined as the probability that
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S(w) will be exceeded in a time interval of Y years., This implies
that if a sufficiently large number of intervals of this length could be
observed, then S(w) would be exceeded in about the fraction p[ S(w)]
of these intervals. Clearly, using historical data, any estimate for
p[S(w)] cannot, so far, be adequately verified.

Two factors could significantly diminish the usefulness of any
estimate for p[S(w)], if they do not render it meaningless. The first
is a long term change in the seismicity of a region. - Although the
geological record proves such changes occur, the reasonable aﬁd
practical working assumption might be that such changes are so slow
that they can be neglected,

The second factor, which cannot be neglected, is that earthquakes
occur as part of a cfcle of stress buildup and release. Even though
these cycles are complex and certainly do not seem to have a relgular
period, their presence needs to be considered because, for nearly all
engineering structures, the lifetime interval of Y years might be of
the same order as the time required for stresses to accumulate and
be released in a major earthquake sequence. Théi’efore, in many
cases, a modified definition of p[S(w)] may be the most useful, for
exarhple, that p[S(w)] is the probability that S(w) will be exéeéded
considering both the best estimates of the rates of tectonic procééses
which occur in a region and the recent historical seismicity,
Theo.retic’ally, one could verify such an estimate of p[S(w)] by con-
sidering a large number of previous time intervals of length Y for
which the preceeding major earthquake activity was similar to that

observed in the recent past., Any attempt to make such an estimate
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is, at present, clearly dependent on scientific judgment. This judgment
may strongly affect the resulting estimate of the distribution p[S(w)].

Much effort in risk studies has been devoted to finding ways to
describe the probability function such as in Fig. 1.1, or closely
related functions. Cornell (1968) showed how the seismic risk at a
site can be described by a function relating the intensity of shaking
with the return period for that intensity. The method used in this
paper to derive the probability functions p[S(w)] is analogous to
that used by Cornell, but it incorporates several improvements
suggested By more recent research and also introduces some modi-
fications of our own.

In the following sections, we shall show how this probability
function can be derived having first formulated the seismicity model

and its physical characteristics.

MODEL OF THE SEISMICITY

In this paper, seismicity refers to the description of where
earthquakes occur, the frequency of occurrence of earthquakes of
various sizes (e.g. magnitudes), and the determination of the largest
events expected to occur in any particular region or on any particular
fault.

In this section, we suggest that for the purposes of risk analysis
the spatial distribution of earthquakes in any region can be described
as a superposition of five geometries of source zones. Our object is

to realistically model the seismicity with as little complexity as
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necessary., There are, undoubtedly, numerous variations of the zones
suggested here and completely different approaches are possible. If
subsequent applications find that some different descriptions of source
zones are necessary, they could be handled in the risk analysis of
the following section much as the zones we use are handled.

The geometries we use are a point source, a line source (where
the line is, in general, not straight), an areal source zone with
arbitrary boundary, an arbitrary surface, and a volume of arbitrary
shape. Without loss of generality, the boundaries of these zones are
chosen so that the probability of the epicenter of an earthquake
occurring at each point within one source zone is uniform. Cornell
(1968) has described the seismicity with the first three of the source
geometries mentioned above, although his analysis was developed only
for a straight line source.

A point source may describe concentrated seismicity, such a
geothermal area of a volcanic source, when this source is far from
the site., A line source can describe events concentrated near a
shallow, vertical fault, A diffused zone can describe areas where
the faults are too numerous and too small to describe individually,
areas where the faults cannot be mapped because of alluvial or other
cover, or areas where even major earthquakes have not been corre-
lated with faults., These three sources all assume the relative depths
of the earthquakes are not a factor in determining the risk,

In cases where the relative depths of the earthquakes are
important, one can use events on a fault and in a volume source,

These sources might, so far, be less useful in engineering risk
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analysis, because to date effects of hypocentral depth on strong shaking
have not been adequately quantified. Thus, although we have developed
the general formalism for this type of a source, its importance will
not be known until strong motion data for deep earthquakes become
available.

Figure 1.4 presents a map view of the three source types which
do not consider the depth of the events, It shows an irregular shaped
diffused region of seismicity, two line sources, and two point sources.
One of the line sources extends beyond the boundary of the diffused
region. In this case, the line source is not straight, in contrast to
most previous risk studies which build on the model of Cornell
(1968).

For any single source zone, let N(E'j) be the number of earth-
quakes with ''size'" ranging from ij to 2'j+ Ag‘j that are expected to
occur in the time period for which the risk model is to be developed.
This description of the seismicity avoids building into the risk model
any explicit assumptions about the nature of earthquake recurrence
relations, and allows judgment to be more easily included in the
analysis.

For generality, the size of the earthquake is described by the
vector e, Often, e will be a scalar quantity such as magnitude or
maximum intensity, There may be cases where two or more para-
meters will have to be included in g, such as magnitude and rupture
length or moment and stress drop, for example. The analysis
assumes that a reasonable estimate of the number of events with
size gj can be made for each source zone; often this estimate will

be a description of a probability distribution,
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There are several ways in which N(fij) may be estimated. In
one extreme, there could, in the future, be cases where one or more
earthquakes are predicted for a region. In the other extreme, tele-
seismic seismicity data may be the only information available. In
intermediate cases, seismicity data may be supplemented by geological
and geophysical information, insights obtained from plate tectonics,
and intuition,

Because previous seismicity of a region will often heavily
influence estimates of N(i,j)’ it is important to consider briefly how
this could cause a biased result, We previously mentioned long term
changes in the seismicity and cycles of stress buildup and release
in major earthquake sequences. Even in cases where neither of
these factors are operating, estimates of N(gj) could be influenced
by the statistical nature of earthquake occurrence and the short
duration of the historical record. If we assume earthquake occur-
rences are Poissonian (Gardner and Knopoff, 1974), if we treat the
historic seismicity as one time interval for a region, and if there
were n events (of size e~j) in that time interval, then (nt+l) is the
best estimate of the mean rate (of size g'j events) for the region
(Appendix 1.1). On the other hand, if the historic record is long
enough to divide into several time intervals (as it may be for smaller
events in some regions), then it becomes possible to consider explicitly
the distribution of the number of events (of size s'j) occurring in
one time interval. Such a test could verify the Poissonian assumption

or provide grounds for replacing it with a better distribution.
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Allen (1976) points out that in places where the historical record
of earthquakes is longest, the dangers of extrapolating from a short
seismicity history are most clearly illustrated. This is further
supported by his observations that major earthquakes in several parts
of the world have occurred on faults where previous Quaternary,
and particularly Holocene, activity could have been recognized, and
his identification of several active faults which have not ruptured

historically in regions with long records of earthquakes,

MODEL FOR THE RISK

Consider a functional S(w), We shall determine two functions
of S(w) and Y,

1. The expected number of times, NE[S(w)], that S(w) will be

exceeded at the site in Y years, and

2. p[S(w)], the probability that S(w) will be exceeded at least

once in Y years,

From these results, the uniform risk functionals are derived as
described in the introduction,

To derive NE[S(w)] and p[S(w)], one needs a description of the
seismicity, and a function which relates the source parameters of the
earthquake to the shaking at the site. In the previous section, the
seismicity was modeled as a superposition of source zones. To
evaluate the risk, each of these zones is divided into small source
elements, and to each of these source elements, we assign ni(gj),
the expected number of earthquakes with source parameters 3j which

occur in the i-th element in Y years,
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In Appendix 1, 2, ni(ij) is derived from N(E,j) for different
geometries of source zones. The detailed manner in which the
source parameters are related to the shaking at the site (as discussed
in the next paragraphs) can affect the way ni(’%j) is evaluated.

Let the function relating source parameters to shaking at a site
be q[S(w),E, e, g]. Physically, q is the probability that S(w) will be
exceeded in an event with source parameters e, where the path from
the source to the receiver is described by c and R stands for factors
specific to the site. Parameters grouped under ¢ might include the
distance from source to site and attenuation along the path. The type
of soil at the site or the depth of the alluvium might be included
under the parameter b~

Most risk studies to date have assumed that _the amplitude of
shaking is completely determined by the magnitude and distance of
the earthquake so that q jumps discontinuously from the value of 1.0
which it takes at small amplitudes to the value of zero which it takes
at large amplitudes., This approach was followed by Cornell (1968),
Milne & Davenport (1969), Dalal (1973), Douglas and Ryall (1973),
and for the most part, Kiureghian and Ang (1975). Milne &
Davenport (1969) recognized that the uncertainty in the attenuation
equation ought to be considered, and Kiureghian & Ang (1975) did
consider itsv effect, McGuire (1974) explicitly considered the scatter
in the way response spectrum attenuates at sixteen frequencies.

Until recently, except for McGuire (1974), there have been no
systematic studies which can be applied to find the function q. How-

ever, Trifunac (1976) has recently proposed an empirical model for
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the Fourier amplitude spectrum of strong ground acceleration which
can be inverted to find the function we need. In Chapter II, we show
how this is done; we now assume q is known and examine how it is
applied.

Consider one small source element, the i-th region, say, and
assume that ni(g,j) is the expected number of earthquakes of size e.
in the i-th element. For this i-th element, describe the path to the
site by C;r and let qij= q[S(w), ,12,' gj’ '51]

If the i-th region is small, then ni(gj) will also be small, and
is not likely to be an integer. However, clearly, in the time interval
of concern either an event of size E,j occurs in the i-th element or
it does not. Thus, following Cornell (1968) and others, we first
assume that ni(e~j) is the mean of a Poissonian distribution,

-n.(e

)
e ' [n(e)]"
Then the probability of exactly k events is )

k!
If there are k events in the i-th element, the expected number of

times that S(w) will be exceeded is kqij. Thus the expected number
of times that S(w) will be exceeded from an event of size ej in the

i-th element is

ij

|
2
A=
B
e~
{®
u\’

Then, the expected number of times S(w) will be exceeded for all

source elements and all source sizes is the sum of Eij over all
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such regions (i =1,2,...,I) and source sizes (j=1,2,...,J). Thus,
I J
Nels@)] = 25 3 a;nifed . (1.1)

i=1 j=1

To find the probability p[S(w)] that S(w) will be exceeded in the Y
years time interval, we first find the probability pij that at least
one event with size 'evj in element i will cause S(w) to be exceeded,

Again using the Poisson assumption,
1 - qij is the probability of not exceeding for one event
(1 -qij)k is the probability of not exceeding for k events

1 -(1 -qij)k is the probability of exceeding at least once

for k events, and thus

-n.(e .)

i e " Ine )"

o
1]

1]

l1-e
To derive p[S(w)], proceed as follows:
(1 -pij) = probability that no source of size e~j at point i

will cause S(w) to be exceeded

n (1 -pij) = probability that no source of any size at
j=1
point i will cause S(w) to be exceeded.
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I J
1- p[S(w)] = I n (l—pij) = probability that no source
i=1l j=1
will exceed S(w)
Thus
I J
p[S@] = 1- 1 1m (1-p,)
i=1 j=1 1
Using (1. 1), this simplifies to
plSt@)] =1 - exp {-N_[S(w)]} (1.2)

This shows the close relationship between the expected number
of exceedances and the probability of exceedance when a Poisson
assumption is used té describe the seismicity rate. The complete
function p[S(w)], as illustrated in Fig. 1.1, can be easily calculated
using eq. (l.1) and (1.2). As described earlier, when p[S(w)] is
known for several frequencies, a uniform risk functionali can be
defined.

The recurrence time of a given amplitude S(w) is just
T[S(w)] = NE[S((.c))]-l where, from the way the problem is set up,
the time unit is Y years. Thus a functional with a uniform expected
recurrence time can be found from the functions E[S(w)]. For small
E[S(w)], note that p[S(w)] =~ N [S(w)]. |

Note also, as is pointed out by Gumbel (1958, p. 23) and by
Algermissen & Perkins (1976), that the probability that S(w) is
exceeded in one return period {NE[S(w)] = 1} is p[S(w)] =

1 -1/e=0.63, To achieve a small probability that S(w) will be
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exceeded in a structure which is designed to last for a time T,
Gumbel (1958) points out that S(w) should be chosen te correspond
to a return period of approximately T/e€.

In some cases, for example an earthquake prediction, one may
be told that an earthquake and its aftershock sequence will occur
some place within a diffused regicn or along a specific fault. In
this event, one may want to kuow the risk «! various rites in order
to guide decisions such as if preventive actions should be recom-
mended. For this, one would want to know the quantities p*[S(w)]
and NE*[S(w)] derived on the assumption that one knows how many
earthquakes will occur within the source zone, rather than on the
assumption that the input seismicity is an estimate for the mean of
a Poisson process. We refer to this as the "literal'' model because
the seismicity is interpreted literally.

Suppose we have a source region, and we know that N(.e\,j)
events of size E,j will occur some place in that region but we do
not know where. As discussed in Appendix 1.2, we divide the source
zone into I smaller regions. We shall let Y; be the probability that

an event occurs in the i-th region, From Appendix 1.2, it is clear

1
that n.(e . = 7.N(e.) and that Z v. = 1,
1] i '~j PR

Suppose Mi(ij) events occur in the i-th element, where

I
> M.(e,)) =N(gj). There are many different ways in which the N(fe\,j)
i=1

1°'~]
events can be distributed among the I small regions. The probability

of any one particular choice is, by the multinomial theorem,
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N! M. M M

MI!MZ!;..M—TI. i 2.l

where we have abbreviated Mi(zj) = Mi and N(gj) = N. Note

! M, M M
2 ZZ MI!M:I!'...MI! " v 2. !

M1 M2 MI

‘,—/

- combinations
such that 2 M; =N

=(71+YZ+000 +YI)N=1N=1

To determine NE*[S(w)], we proceed as before to find

N Mi events of size e.

E.* = Z Q..M. X prob ~e
ij ij i . .
Mi=0 occur in element i

Since the locations of ‘the events which occur outside element i do

not matter for this analysis,

N! M. N-M,
E.* = Q. .M, — =y, 1 (L-7) i
ij M, =0 ij i Mi’ (N-Mi). i i

Because N'yi is the quantity identified as ni(ij) earlier, it is

clear that,

Np*[s(@)] = nNgls)] . (1.3)
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To find p*[S(w)], consider:

(1 -qij) = probability that S(w) is not exceeded from 1 event

in element i,

M.
(1 -qij) i = probability that S(w) is not exceeded from M,

events in element i.

I M
n (1 -qij) i = probability that S(w) is not exceeded for a
i=1

particular combination of the Mi'

Since the different combinations are mutually exclusive and exactly

one of them will occur, the probability that S(w) is not exceeded by

any one combination of S(w) is

M. M. M exceeded for a parti- particular combi-
1 2 1 \|cular combination nation

h\/d

Z Z Z {probability that S(w) not} {probability of that:

A# combinations
such that EMi =N

I M. M, M M

RS N 1, M, I

PIRTEEDD {.1_11(1 %3 }{M.!M!...M!”l Y Sk
i= i 2 I

_ N! M) My
= Z...-Z M1| MZ""MI' [(l_qi‘]))i] "'[(l'qi‘.))):’[]

I I

1 N N
{z_:l [(1-qijwi]} = {Z Y- 2, ’}’iqij}

i=1l i=l
I N
= 14
i=1
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Since the different magnitudes are independent:

p {S(w) is not exceeded by any rnagnitude}

p {S(w) is not exceeded by magnitude j}

1]
gy

j=1

1 - p*[S(w)]

) J I N(e .)
- p¥*[s(w)] = T <1 - 2va) O,
j=1 i=1 Y
and thus,
J I
p*[S(w)] = 1 - exp 21 N(g,) In <1 - Zl %1, (1. 4)
J: 1:

There is another way to derive the probabilities under the
assumption that the number of earthquakes N(E'j) is to be taken
literally, This is done by considering a very long time interval of
duration MY in which MN(ij) events occur in the source regions.
Then we assume that in the i-th region Mni(g‘j) events will occur,
where Mni(ij) is now an integer. For sufficiently large number of
events, this assumption does not introduce any significant error,
Following the same logic used earlier to find Ng[S(w)] and Np*[s(w)]

and p[S(w)] and ol S(w)], we obtain:
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TM I J
<1-p > - exp{z 2. Mngle ) In (1-q)

If the sources in all of the M time intervals are independent, then:

Nls@] = & 5™ = Nglst] (1.5)

and

1-p[s@)] = {1-p M[s@)]}}™

which implies

J 1
plIs@] = 1-exp{d 3 Nejninll-af . (L6
=1 i=1

It can be shown that

pT[S(w)] > p*[s(w)] = plS(w)] . (1. 7)

Equality occurs between pT and p* only when there is just one source
element (or when qij is the same for all source elements). ‘Equality
between p* and p occurs only in the case where qij= 0 for all source
elements, For large N(.e\,j)’ the differences between pT and p
approach zero, Also, as S(w) increases, and the probabilities of
exceeding S(w) thus decrease, the differences between pT[S(w)] and

pl S(w)] decreases toward zero. The differences may still be quite

significant, however, for a probability of exceedance of around 0. 1.
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These probabilities have been expressed as sums over elements
of source regions, Clearly, for the limit of the size of these elements
approaching zero, each of these formulae could be expressed as an
integral. Because they are generally evaluated numerically, however,

this transformation is not necessary, and we will omit it.

EXTREME VALUE STATISTICS

The previously described method to estimate risk at a site is
referred to by Lomnitz (1974, p. 119-124) as a ""composition method"
because shaking at the site is estimated using a description of the
seismicity and the attenuation. As pointed out by Lomnitz (1974),
for the unusual cases where a long and complete record of past
shaking at the site exists, it is possible to apply extreme value
statistics,

The first step in this application would be to examine the func-
tionals S(w) of all the events recorded at the site, and for each fre-
quency w, find the largest value of S(w) that was recorded in each
year of the records, Then, using the methods of extreme value
statistics described by Gumbel (1958), one could derive a function
giving the return period for each value of S(w). If a set of these
functions were derived, then the method described in the introduction
could be applied to obtain a uniform risk functional,

Because the neceséary data is not likely to exist, this method as
described above has only very limited usefulness, However, Milne

and Davenport (1969) have shown that one may apply extreme value
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statistics where there are no instrumental records of shaking by

(1) using standard attenuation formulae to estimate what the shaking
at a site may have been in all historical events, and then (2) applying
extreme value statistics to these derived amplitudes of shaking.
Probability could be introduced by calculating for each event the
amplitude which, with probability p, was not exceeded.

At present, there is no theoretical reason to prefer either the
extreme value method or the method we develop in this paper; ideally
both would give the same result. On a regional scale, Yegulalp and
Kuo (1974) have found the maximum annual magnitudes of earthquakes
are consistent with extreme value statistics., For practical purposes,
however, the ''composition' method more easily allows judgment by
the seismologist or engineer to be included, for example, in recog-
nizing the existence of a seismic gap, and is not necessarily sensi-

tive to individual large events in short historic records.

DISCUSSION

Uniform risk functionals of strong earthquake ground motion
have the same probability of being exceeded at each frequency, when
all of the seismicity of a region is considered.

The steps in the derivation of a uniform risk functional are as

follows:

(1) Describe the geometry of earthquake zones, by point, line, and
areal sources (after Cornell, 1968), and for completeness a

dipping surface and a diffused volume source. For each of
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these source zones, the expected number of events of each size
[N(fg)] is defined by studying previous seismicity, by insights
obtained from geological studies and plate tectonics, and by

scientific judgment.

(2) Find a frequency-dependent description of the way strong motion
attenuates in the region, including a description of how ampli-
tudes of S(w) scatter about mean trends. From this, define the
function q[S(w), b, e, c] which gives the probability that S(w)

will be exceeded for site conditions b, source e, and path c,

(3) Divide each source zone into small source elements, and,
assuming the epicenter of each event of size e is equally likely
to occur any place in the source zone, distribute the seismicity
in a manner consistent with the definition of the function

a[s(w), b, e, c].

(4) Using the formulae (1.1)-(l.6), [usually (1.1) and (1.2)] find the

functions p[S(w)] for several frequency bands.

(5) Using the method described. in the introduction, derive the uniform

risk functional from the functions p[S(w)].

Steps (1) through (4) can in some cases be replaced by the
methods of extreme value statistics to derive a function equivalent
to p[S(w)] in each frequency band.

The method described synthesizes the method presented by
Cornell (1968) with improvements suggested by Der-Kiureghian and

Ang (1975), Dalal (1973), and McGuire (1974). The result is that it
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uses a realistic description of the seismicity to derive uniform risk
functionals. In deriving these functionals, probabilbity is taken into
account at every step in a uniform way, so that at the end one has

a result with a known degree of confidence. All the assumptions can
be clearly identified, so that the effect of each assumption can easily
be tested.

The method is applied independently in each of several frequency
bands. Thus the factors which are important in each frequency band
control the risk there. This is in contrast, for example, to common
methods which determine one factor, such as a peak of motion, and

extrapolate from there to an entire spectral shape.
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APPENDIX 1,1

Suppose that we have a Poisson process operating, and the mean
rate is not known., Furthermore, assume that we have only one
observation of this process, and in this observation, n events occurred.
We want to know what is the best estimate of the mean of the Poisson

process given this information. The mean need not be integer,

Assume

p {mean is between B and U + du , n events occurred}

P {n events occur l mean is between UL and p + dl.l,}

The expected value of the mean becomes

E(mean)

ofw up{n |n} ap
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APPENDIX 1,2

Derivation of ni('%j)

The way ni(E’j), the number of events in a small element, i, of
a source zone is derived from the total number of events N(E,j) in
that source zone will depend upon the selected parameters in the
analysis., For example, if the path parameters c; represent only
the epicentral distance r, then qij is the probability that an earthquake
located in element i at epicentral distance r with source parameters
2'3' causes shaking at the site to exceed S(w), and ni(g’j) must be the
expected number of earthquakes with epicenters in the i-th element
of the source region. However, if c; represents the distance to the
closest point on the fault (r_, say), then qij must be the probability
that an earthquake with closest point to the fault at distance r. and
with source parameters gj will cause S(w) to be exceeded., In this
case, ni(ij) must represent the expected number of earthquakes which
will have their closest point to the site in the i-th element.

In reality, the amplitudes of ground shaking are determined by
contributions from the entire rupture surface, as in the representation
theorem of Burridge and Knopoff (1964). Thus, for an earthquake with
known fault breakage, the best method to determine q would be to use
a scheme which considers the probable amplitudes of radiation from
each part of the fault. At present, rather than applying such a com-
plicated deterministic analysis, we may consider two simplifications

which should bracket the results of such an analysis.
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We shall derive ni(gj) for the two forms of q described above.
We will set up the problem for the closest point using the extreme
assumptions that the rupture is unilateral and the direction of rupture
is random. For such rupture in a diffuse zone, we allow the end of
the fault to be outside of the source =zone.

This is an extreme assumption which deserves some discussion,
Considering several attenuation curves which have been used so far
(Trifunac & Brady, 1975), there appears to be no systematic dif-
ference between those using epicentral distance and those using the
closest distance to the fault, This, of course, does not mean that
these different descriptions of the distance between the source and
the station should not be considered in a future improved and more
detailed model, but merely indicates that numerous other uncertain-
ties and scatter of the existing data, as well as the availability of
data only for epicentral distances larger than about 10 km, do not,
at this time, suggest large and significant differences,

The consequence of the overall similarity of existing attenua-
tion functions is that derived functions q[S(w),...] would also have
no significant diffefences between those using epicentral distance and
those using hypocentral distance, Therefore, in Chapter II, for lack
of any real alternative, we will use the same functions (formulated
in terms of epicentral distance) for both cases., As shown by
Der-Kiureghian and Ang (1975), this results in larger amplitudes of
spectra when the distance in our analysis is measured to the closest
point, By using the extreme case described above, we suggest that

the result will give an upper bound for the actual spectrum, On the
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other hand, analysis using the epicentral distance, which is logically
consistent for our choice of attenuation function, may lead to a less
accurate estimate of the uniform risk functional for all we know, but
we expect that it will, if anything, tend to underestimate a spectral
amplitude, Ideally, the use of the proper functions should compensate
for the different ways of defining the distance, and thus both methods
should ultimately give similar estimates of the function p[S(w)].

We now derive ni(E-j) defined above for two definitions of source
to station distance,

Method (1). The function q is assumed to depend only on the
distance between the epicenter and the site. Cornell (1968), Dalal

(1973) and McGuire (1974) used this form.

a. Point source, If there are N(gj) events of size E'j’ and the
point source is designated as the i-th element, then ni('evj) = N(gj).

b. Line source. Designate a short element of length Li as the i-th

N(e .)L.

element. Then ni(g‘j) = ——:ﬁ-—l— , where the line source has length L.

c. Areal source, The areal source (source depth is assumed to be

constant) covers a region with area A. Designate a small element

N(e,.) A,
of area Ai as the i-th element. Then ni(e~j) = ——AL-—I- .
d. Dipping surface. Designate a small element of the fault area

N(gj)z.
z

Ei as the i-th element., Then ni(ej) = where the surface

has a total area 2.
e. Volume source, Divide the volume into small elements, and let

N(e;)V;
the i-th element have volume Vi' Then ni(f%j) = __\.,.1___1 , where the

source has a total volume V,
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Method (2). The function q depends only on the distance of the
closest point of rupture to the site. Der-Kiureghian and Ang (1975)
derived a method similar to this treating the sources as straight
line segments; Douglas and Ryall (1975) have applied a similar
method.

In this case, the vector E.j has at least two components, which
we shall call Sj’ which represents magnitude or moment, and lk,
which represents rupture length in most cases, We have given the
rupture length a different subscript from the source ''size' to
emphasize that for any particular size Sj' several possible values of
rupture length are possible. For a rupturing fault surface, we
replace lk by a, , the area of the surface which ruptures. Now
N(gj) becomes N(Sj,lk), and a number of assumptions would be
required about the nature of an earthquake source to describe
N(Sj,lk) explicitly, However, this can be handled approximately by
assuming that lk is determined by Sj’ or that for each S., there is
a distribution of possible values of ‘Qk' For the following, we assume
that N(Sj,ﬂk) describes the number of sources with epicenter in the
source region, and we wish to find, for each nearby element of area

(designated by i), ni(Sj,lk), the expected number of events with source

(Sj,lk) which have their closest point of approach to the site in that

element,

a, Short straight surface source, This is the equivalent of the

point source of the case which depends on the epicentral distance.
There are N events with size Sj and dimension lk’ as described

above, which occur with epicenters at the point source, A source
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zone where all the epicenters occur at a point but where the ruptures
are radial away from the point and a significant fraction of the dis-
tance to the site is not physically realistic., However, we develop
this case in detail because a superposition of such sources is directly
applicable to the areal source and because this case is useful for
studying characteristics of the model.

Consider one event., The geometry of this situation is illustrated
in Fig. Al.2-1, The epicenter is shown at point E, and for rupture
of length £, the entire fault is confined to within a circle of radius
{ centered at E. The site in question is shown as point O on the
figure, and the distance from O to E is r. If the rupture is straight,
then the nearest point of the rupture to point O must be within the
heavily shaded region., Allowing a curved fault would slightly increase
the allowed area by adding the lightly shaded region.

It is possible to build into the risk model a detailed description
of the probability distribution of the closest distance, as a function
of the direction of rupture, the distance of the epicenter from the
end of the rupture and even the deviation of the rupture from a
straight line., Such detail, however, seems to be unjustified, because
the assumption that the shaking is determined entirely by the closest
point on the fault is wrong in general., We will make a simplifying
assumption for this case that the rupture is unilateral and in a
straight line. In addition to the considerations described earlier in
this section, we have chosen this assumption because, from considering
the rupture of large earthquakes, we get a general impression that

the rupture is often predominantly unilateral. With this assumption,
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the closest point to the site always lies on the curve ECDC'E
which bounds the heavily shaded region. |

By assuming that the fault has equal probability of rupturing
in any direction, it is a simple matter to find the probability that
the closest point is along a given portion of the curve, The closest
distance from the fault to the site, d, is a function of the angle ¢,

as shown in Fig, Al,2-2. The distance is

r 0 < |¢l <m/2
d(¢) = {rsin |¢] /2 < || <miz+6
(r + 02 4 2rf cos ¢)% m/2 +0 < |¢l <7

where 0 = 'can-1 --———£—-— , £ is the length of the fault, and r is

1/r2-£2

the distance from the site to the epicenter. Next, assume q is inde-
pendent of the direction of wave approach and any angle ¢ is equally
probable. Then d(¢) can be used to find the probability that d is in

a distance range d1 <d < d2’ This is done by first finding the inverse
function ¢(d), If £ < r, then:

r

0 d=>r
81n-'1 <%> r >d >(r2- 12)%
¢(d) = <
cos™ ! (dz_r2_12> (rz-lz)>d>r-l
2rd
L'n r-4>4d

If £ >r, then
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¢(d)

Here the inverse sine and inverse cosine functions are always taken
in the second quadrant and ¢ is in radians, The probability that
is

d, <d <d

1 2

¢(d 1) - ¢(d2)

m

b. Line source, Let a line source be represented by M

equally spaced points with spacing MI:—'I- , where L is the length of
the fault., This does not require the fault to be a straight line.
Consider an earthquake which ruptures the fault along a length ‘Qk'
Then the center, say, of the rupture zone can occur any place along
a section of the fault with length L - lk, and we assume that each
point in this length occurs with equal probability, Thus for the

m-th allowed epicenter on the fault there is a number dm(Sj,Q
N(S.,lk)
Lo- %y

W =

of events which are allowed to occur with center at that

point. The center of the rupture zone, as used here, is strictly a
geometrical description, and has nothing to do with the epicenter,
which could occur any place on the length of the fault., Thus for
this case, there is no assumption of ''unilateral" or 'bilateral"
rupture.

For this m-th allowed location, let the i-th element of the fault
be the point on the rupture zone clbsest to the point where the risk

is to be calculated. We attribute to that i-th point the number
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dm(Sj,lk) of events with center at the m-th point. Numerically,
this is easily done for an arbitrary shape of the line source. By
considering in order each of the m points on the fault, the function
ni(Sj,lk) is built up. When Rk is larger than L, the fault length, we
assume that the entire fault ruptures, but do not extend the fault or
eliminate events with such a long rupture. This is because any

estimated fault length is approximate at best,

c. Areal source, Having derived a relationship for the short
straight line source, it is a simple matter to proceed to the areal
source. First, one finds the number of events with epicenters in
each small element of area in the source region, and treats that
small element as a short straight line source,

d. Dipping surface. We can in this case account fully for

the way that shallow earthquakes rupture a portion of a fault surface.
As mentioned earlier, in this case we assume that E'j has two com-
ponents, Sj’ which may be magnitude or moment, and ay the area

of the fault surface which is ruptured. To find the distribution of
closest elements of the fault, we proceed in a manner similar to
that for the line source,

First, divide the fault surface into J equal sized elements with
area Zi = %;- . Then an event with area 2y must rupture ak/Z)i
adjacent elements, A reasonable approximation is that the rupture
area is approximately square for small events and rectangular with
a width equal to the width of the fault surface for large events, In

a manner analogous to that for the line source, one can successively

consider each location on the fault where the event can occur (say
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there are K such locations), find the closest element for each of
these locations, and then add N(Sj,ak)/K events to that element.

e. Volume source. At present, there are insufficient empirical

results to motivate selection among possible methods of modifying
the distribution of epicenters to account for the finite dimensions of

rupture for this type of source zone.
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CHAPTER II

UNIFORM RISK FOURIER AMPLITUDE SPECTRA OF
STRONG GROUND MOTION USING EARTHQUAKE
MAGNITUDE, SOURCE TO STATION DISTANCE, AND
RECORDING SITE CONDITIONS

INTRODUCTION

This Chapter is a continuation of the work presented in the
first part of this report. Chapter I discusses the meaning of uniform
risk functionals, and attempts to extend and generalize the methods
and results of previous investigators,

This Chapter applies the methods discussed in Chapter I to
calculation of uniform risk Fourier amplitude spectra of acceleration
and uses these spectra to examine the characteristics of the method
of Chapter I. As defined there, a uniform risk Fourier spectrum
has the property that the probability that it is exceeded by thé Fourier
spectra of any event within a specified time period (any size, at any
distance) is independent of frequency.

This uniform risk Fourier spectrum applies to a specific site
and to a time interval of Y yéa.rs. Suppose this site were observed
for a large number of intervals with duration Y, In some circum-
stances, as mentioned in Chapter I, it may be desirable to choose
all these time intervals in the same portion of the cycles of accu-
mulation and release of seismic stress (to the extent that this is
possible), Then the largest Fourier amplitude in a frequency band
centered at frequency w from the earthquakes that occurred could
be used to define a distribution function of Fourier amplitudes;

there would be one data point for each Y year interval. As data
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accumulated, this empirical distribution function should converge
toward a smooth curve which correctly characterizes the site and
which was called p[S(w)] in Chapter I, There we described how
functions p[S(w)] can be estimated from present knowledge of seis-
micity and attenuation, Once known they can easily be used to
obtain uniform risk spectra,

A problem arises in attempts to numerically estimate the func-
tion p[S(w)], for at present, the seismic history of most regions of
the world is not known adequately., Chapter I summarized and
generaliz‘ed two methods which have been used to estimate these,
or similar, functions, Chapter I developed, in the terminology of
Lomnitz (1974), a "composition method" which generalizes the work
of Cornell (1968), Chapter I also discussed how the extreme value
approach of Milne and Davenport (1969) can be generalized to find
uniform risk functionals, Here, as in Chapter I, the ''composition
method" is emphasized. This '"method'" requires the knowledge of
two functions. The first is a description of the seismicity. In this
paper, seismicity refers to the description of where earthquakes
occur, the frequency of occurrence of earthquakes of various sizes
(e.g., magnitudes), and the determinatior of the largest events
expected to occur in any particular region or on any particular fault,
The second is a function {called a[ S(w), b,e, g] in Chapter I} which
gives the probability that an earthéuake with a given source and
location will cause a given spectral level to be exceeded.

The computations in this paper are made possible because of

recent work by Trifunac (1976) which characterizes the dependence
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of Fourier amplitude spectra of acceleration in several frequency
bands on the parameters of earthquake magnitude, epicentral distance,
site condition, and confidence level. His empirical functions can be
inverted to obtain the function q[S(w), b, e, 'CV] which gives the
probability that S(w) is exceeded by a single earthquake. Thus, we
do not assume that the amplitudes of shaking from a single event are
uniquely determined, but rather that the amplitudes at each frequency
fall on a distribution function which is determined by the earthquake
magnitude, epicentral distance, and site condition.

Because we are using the Fourier amplitude spectrum to
describe the risk, we cannot easily compare our results with those
of previous studies which have used a single peak value such as peak
acceleration to scale response spectra, The method we use is sub-
stantially different, however, because we recompute the Fourier
spectral amplitude independently at each frequency. We can, and do,
contrast the results of the method with those resulting from scaling
a standard spectral shape to an appropriately chosen amplitude.

The organization of this Chapter is as follows: First, we discuss
the details of how the results of Trifunac can be inverted to find the
function q[ S(w), R, e, g]. This section may be skipped without loss
of continuity. Then, after briefly discussing the computer code, we
apply the method to some artificial examples of seismicity to show
several characteristics of thé model, Finally, we apply the method
to find the risk for an actual example, and discuss the effects of

differing descriptions of the seismicity,
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DERIVATION OF THE FUNCTION q[S(w), b, e, c]
FOR NUMERICAL APPLICATION USING FOURIER SPECTRUM

Recent work by Trifunac (1976) makes it possible to apply the
concepts of the previdus sections to Fourier spectra. His work
characterizes the dependence of Fourier amplitude spectra of
acceleration in several frequency bands on the parameters of earth-
quake magnitude, epicentral distance, site condition, and confidence
level. His empirical functions can be inverted to obtain the function
q[S(w), b,e, CN] which gives the probability that S(w) is exceeded bjr
a single earthuake. Thus, we do not assume that the amplitudes of
shaking from a single event are uniquely determined, but rather
that the amplitudes at each frequency fall on a distribution function
which is determined by the earthquake magnitude, epicentral distance,
and site condition,

Because we are using the Fourier amplitude spectrum to
describe the risk, we cannot easily compare our results with those
of previous studies which used a single peak value such as peak
acceleration to scale response spectra, The method we use is sub-
stantially different, however, because we recompute the Fourier
spectral ‘amplitude independently in several frequency bands. We
can, and do, contrast the results of the method with those resulting
from scalingv a standard spectral shape to an appropriately chosen
amplitude.

The function qij = q[S(w), b, E:j’ g’i] gives the probability that
S(w) will be exceeded given the site, source, and path conditions.

For the Fourier amplitude spectrum, it can be derived from the
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results of (Trifunac, 1976);
log g FS(T) = M + log ), A((R) - a(T)P, - b(T)M
- o(T) - dT)s - e(T)v - £(TIMZ - g(T)R .  (2.1)

In this relationship, M is the magnitude, R is the distance,
v =0 for horizontal components and v = 1 for vertical components,
and s =0 for the alluvium sites, s = 2 for a site on sound basement -
rock with s =1 for 'intermediate'' geologic conditions. The terms
a(T), b(T),...,g(T) are regression coefficients found independently
at each period (T) considered. Following Trifunac (1976), for
magnitudes M < Mmin= %%T)- , the terms -b(T)M - f(T)MZ are

replaced by the constant -b(T)Mmin- f(T)Mr?;lin’ and for magnitudes

- 1-b(T)
max 21(T)

the constant M___- b(T)M___ - §(T)M% .
max max max

M=>=M , the terms M--b(T)M-f(T)M'2 are replaced by
The term loglvo(R) is the attenuation function given by Richter
(1958) for the local magnitude scale in Southern California, To
correctly apply this method to another region, the coefficients in
equation (2.1), or a comparable equation, should be derived entirely
from data of that region. However, in the absence of such data, a
reasonable approximation is to replace the term loglvo(R) derived
for Southern California with one applicable to the region considered,
The term a(T)Pl describes the way the data is distributed
about the mean curve, where Pl is approximately the probability
that FS(T) will not be exceeded for a given M, R, s, and v. To
illuminate its meaning, suppose that we designate each of the 546

data points used by Trifunac by an index i, and find the quantity:
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S S S
€ = 3D [1og10 FS(T) - M, - log,gAg(R;) + b(T)M,

+ o(T) + dT)S, + e(TIV, + £(T)M + g(T)Ri]

The number of residuals N(€)d€ for which € - izg < € < €+ ae
2
can easily be found. Let us represent the sum of N(€) over a range
'b ©o
a < € <b by the integral | N(€)de. Clearly J N(€)de =N,
a -0
and N = 546 in our case.
Now consider the relationship:
Y
P, =5 j N(€)de . (2. 2)
- 00

Here Pa(PI) is a distribution function of the residual €; it gives
the probability that any one residual € will have a value less than
Py. The méaning of Py here is the same as in equation (2.1). The
reason for this is that a(T) and c(T) were chosen so that Pa R Pl
over the range 0.1 <P_ < 0,9,

Using equation (2.2), Trifunac (1976) found values of P, as a
function of T for PQ =0,1,0,2,...,0.8, and 0.9. These are plotted
in the top of Figure 2,1,

For the risk analysis in this paper, we shall identify:
alS(w),b,e,c] = o[ FS(T), M, R, s,v] = 1 - P,

Thus the site parameters b are represented by s and v, the source
parameters ¢ are represented only by the magnitude M, and the path

parameters ¢ are represented only by the epicentral distance R.
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Figure 2.1. Derivation of P, from Py, The data in the upper portion

show P, as a function of the period of seismic waves for
the values of Py indicated at the right, The central
portion gives the mean and standard deviation of the
best fitting Gaussian distribution relating P, to Pyg. The
lower portion measures the quality of fit of these
parameters according to the Kilmogorov-Smirnov and

the X2 statistics., The eleven periods used for further
calculations are shown on the base,
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One means by which g(w) could be found for the later application
is to invert equation (2.1) to find Pl for each event in the seismi-
city model, and use this with the data in Figure (2.1) to interpolate
to the appropriate P_. However, this approach would have two
problems., The interpolation would be too slow for a procedure
which must be repeated thousands of times in any risk analysis.
More important, when Pl is outside the range of 0,1 to 0.9, it is
necessary to extrapolate, To handle Vthese problems, we have fit a
probability distribution to the set of points Pa(PR)’ shown that it is
consistent with these points, and then used.it in the later calculations.
Trial calculations showed that for the Fourier spectrum the
relationship of P, and Pl could be approximated by a Gaussian dis-

tribution function at all periods. Specifically, we substitute

2
N(e) . 1 1 _4E-p.(T)> ] . . :
N O-(T). = exp [ 3 < (T in equation (2.2), find the

best values of the mean [L(T) and the standard deviation o(T) (in a
least square sense) from the data in Figure (2.1) as described in
Appendix 2.1, and use these values in the later calculations. In
Figures 2,2, we show this approximation for two frequency bands.
Figure 2,2a shows one of the "best" correlations, and Figure 2.2b
shows one of the '"worst' correlations, Figure 2,1 (center) shows
the mean [4(T)] and the standard deviation [o(T)] of these Gaussian
curves determined at each of the frequency bands used by Trifunac,
As one would expect from the way Pl is determined, the mean is
approximately 0.5; the standard deviation is also approximately con-

stant and equal to about 0. 3,
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0.0 . | |
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Figure 2.2a. Relationship of P, and Pg at a period where the
Gaussian distribution is an excellent fit,



Figure 2.2b.

Relationship of P, and Py at a period where the
Gaussian distribution is a poor fit.
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Two approximate statistical tests demonstrate that the approxi-
mation by a Gaussian distribution is not contradicted by the values
of P, found by Trifunac. The first is Kolmogorov-Smirnov statistic
(Hoel, 1971, p. 324), which applies to a probability distribution func-
tion directly, This statistic gives, for a given number of data points,
the largest deviation that one may expect (at a given confidence level)
between the distribution function derived from the data and the
theoretical distribution function. We were forced to apply this in
an approximate way because we have only 9 points chosen from a
distribution function of 546 data points. Figure 2.1 (bottom) thus
shows the maximum deviation of the data points from the theoretical
curves at each of the periods studied by Trifunac. If the deviation
at any period exceeded the 95% confidence level for the Kolomogorov-
Smirnov test, as indicated on Figure 2. 1, then we would have to
reject the theoretical distribution at that period (at the 95% confidence
level). It is clear that by this approximate test the distribution
curves we have derived are not contradicted by the data.

We also applied a Chi-square test to see if it would agree with
the results of the Kolmogorov-Smirnov test. We found the value of
Chi-square at each period, shown in Figure 2.1, by numerically
differentiating the theoretical and the observed distribution functions,
The 95% confidence level for xZ is also shown in Figure 2,1, At
log (periods) between 0.51 and 0. 65, we might reject the Gaussian
distribution functions on the basis of this test., We decided not to do
this because (1) these distribution functions could not be rejected at

the 99% confidence level, (2) because at other periods the Gaussjan
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functions are not rejected according to the Chi-square test, (3)
because the Gaussian functions passed the approximate K-S test at
all periods, and (4) because the preliminary correlations of Trifunac
involve approximations which probably do not justify finding a more
precise distribution function,

Note that even though use of a Gaussian distribution function
makes it possible to extrapolate to values of P, much outside the
range of 0.1 to 0.9, such extrapolation is not supported by the data,
We use a Gaussian distribution function for later calculations only
because it approximates the distribution of the available data for
Fourier Spéctrum. Clearly, there is no reason to assume that a
Gaussian distribution would be applicable to other types of spectra,
or even to a larger set of Fourier spectra,

The use of a Gaussian distribution carries with it the assump-
tion that extremely large amplitudes are possible from any event,
although they are very unlikely., It is possible that this assumption
may introduce a bias into the amplitude of the uniform risk spectrum,
However, we expect any such bias to be small, except possibly for

2).

As noted by Trifunac (1976), the Fourier amplitude spectra in

very small probabilities of exceedance (e.g., less than 10~

terms of his original parameters a(T),..., and g(T) still contain
some processing noise at long periods, and thus as period increases
they do not fall off as rapidly as may be expected. He suggests a
fall off of T"1 in the near field; other considerations (e.g., Brune,

2 could be more reasonable for periods of 3 to

1970) suggest that T
15 sec., In any case, a 'I‘-1 decay appears to be a reasonable upper

limit for this frequency range. Therefore, to minimize possible
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distortions of spectral amplitudes which would be caused by the
processing noise, we have modified the original parameters of
Trifunac, to obtain a T"1 decay of amplitudes at periods longer than
where the spectral shapes in Trifunac suggest such a decay should
begin, The modified parameters are given in Table 1,

In summary, we have applied the scaling relationship derived
by Trifunac (1976) for Fourier spectra to find the function
q[ FS(T), M, R, s, v] needed in risk calculations. Although Trifunac's
relationship is the best one available at present, we modified it some-
what in order to obtain greater computational convenience and in order
to force the results at long periods to coincide more nearly with
theoretical concepts., The result is acceptable; however, an improved
scaling relationship would be welcome,

Incorporation of the scatter of amplitudes about the mean trend
in the attenuation equation, as we have done, is one of the most sig-
nificant improvements of our risk analysis over much of the previous
work, Der-Kiureghian (1977) suggests that the uncertainty associated
with the attenuation equation far exceeds the uncertainties associated
with other aspects of the modeling, particularly the seismicity, Thus,
by using the scaling relationship based on Trifunac (1976), we have
eliminated a major source of potential errors in the seismic risk

analysis,
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COMPUTER PROGRAM

We have written a Fortran computer program which evaluates
the uniform risk spectra using the formulae in Chapter I and using
the function q[ FS(T), M, R, s, v] as just described. The program
includes point, line and areal sources and a dipping planar source,.
This last source is included in an arbitrary manner by replacing the
epicentral distance with the hypocentral distance in Trifunac's
relationships., This decision cannot be justified by the data which is
now available or by any simple physical arguments, and we have done
it only because we lack a mofe realistic method. For point and areal
sources, options allow either the assumption that the epicentral dis-
tance should be used or the assumption that the closest point to the
fault should be used to calculate the risk. For the line source, the
program automatically uses the closest point. We discuss this
decision in detail in the next section,

The number of events of each magnitude is input in the form of
a table; there is no requirement that this number is an integer, even
though we have used integers for most of the calculations shown here.

The computer code computes the probabilities‘using both the
Poisson and the 'literal'' assumptions described in Chapter I. For
these cases, either the seismicity is treated entirely as the mean of
a Poisson distribution or all the seismicity is treated literally, The
code does not handle the case where some of the seismicity is
treated as Poissonian and some of it is treated literally, but this

refinement could be useful for future addition. For the "literal"
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case, the program calculates pT[S(w)] rather than p*[S(w)] because
it is more convenient computationally and because pT[ S(w)] and

p[ S(w)], from the Poisson case, provide an upper and lower bound

to p*[ S(w) ] .

APPLICATION TO IDEALIZED CASES

To illustrate the properties of the proposed uniform risk
spectra, we calculated the spectral amplitudes at the six sites shown
in Figure 2.3, and for the earthquakes located on the line source
zone. We used two descriptions of the seismicity for this source:
one is a single M = 7.5 earthquake which ruptures the entire length
of the fault; the other has one M = 7,5 earthquake, and also smaller
events on the fault., These smaller events can represent either
aftershocks of the M = 7,5 earthquake or minor seismiéity on the
fault over a longer period of time. The numbers and magnitudes of
the small events on the line source are given in Table II. Uniform
risk spectra for this case are shown in Figure 2.4.

The spectra in Figure 2,4 show that at all six sites, the smaller
events cause a small increase in the level of the uniform risk spec-
trum., The shapes of the spectra are soméwhat affected by the small
events, as thé ’level is increased more at the high frequencies (about
40%) than at fhe long periods (around 10%). This is to be expected,
because the spectra of small events derived by Trifunac show a
considerably greater proportion of high frequency energy relative to

long periods than the spectra of large events.
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o I
o IT

e III

o Y

- .

100 km

Figure 2, 3,

o VI

Geometry used for several calculations. The line in
the center represents a short line source, and the
box is the boundary of a diffuse region of seismicity.
The six points labeled I, II,...,VI are sites where
uniform risk spectra for this geometry have been
calculated. Differing seismicities assigned to the
source regions shown here are given in Table IIL.
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Figure 2.4. Uniform risk spectra for the line source shown in
Fig. 2.3 with two examples of seismicity: first, one
M =17,5 event only, and second a M =7,5 event plus
minor seismicity which could represent either after-
shocks or smaller unrelated events on the fault, The
total seismicity for the model including minor seis-
micity is that listed in Table II for the ''line source,'
These seismicities are treated as the mean of a .
Poisson distribution,
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To study this effect further, we again employed the artificial
geometry of Figure 2.3, and considered several additional seismicity
distributions., The first (A) is the occurrence of the magnitude 7.5
event plus minor seismicity on the fault, as used in Figure 2.4
above. The second seismicity distribution (B) is the occurrence of
events only in the diffuse zone outlined in the figure, with no events
constrained to occur on the fault. The third model (C) is a super-
position of both the previous sources (A) and (B). The fourth model
(D) has the same total seismicity as model (C), but it is all uniformly
distributed in the diffuse zone. The computation used the epicentral
distance for events in the diffuse zone.

Computed uniform risk spectra with probability of exceedance
of 0.1 for these models are shown in Figures 2.5 and 2,6 for two
distinct rates of background seismicity in the diffuse zone (B).

Figure 2.5 has a rather low rate, while Figure 2.6 has a rate about
three times higher, and also has larger events, The number of
events per unit area in Figure 2.6 is comparable, for example, to
that which could occur in the Imperial Valley of California in a time
span of 50 years (Hileman et al., 1973). The number of events per
unit area in the diffuse zone for Figure 2.5 is more nearly com-
parable to the number which could occur in the Santa Barbara Channel
region of Hileman et al. (1973) in a period of 50 years. The assumed
seismicity rates are given in Table IL | |

The results for these cases should be illustrative of what might
be expected in a more complex situation, We first consider Figure

2.5 with the low seismicity rates. Close to the fault, at stations I
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IogIOW'. sec

Uniform risk spectra for a probability p = 0.1 of
exceedance and for horizontal motion on alluvium. The
Roman numeral (upper left) identifies the site for each
set of spectra, and corresponds to the sites shown in
Fig. 2.3. The letters A,B,C,D refer to four combi-
nations of seismicity which are described in the text
and which use the geometry of Fig. 2. 3.
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Figure 2.6. Same as Fig. 2.5 except that the low seismicity in
the diffuse region for seismicity models B, C, and
D is replaced by the high rate given in Table II.
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and II (about 10 and 25 km away), the addition of the local seismicity
does not affect the result, At station III (about 55 km away), the
local seismicity has a small effect on the spectra at long period and
a larger effect at short periods., At station IV, about 110 km away,
this trend continues., At this site, it is interesting to compare the
uniform risk spectra resulting from model C with the spectra resulting
from models A and B. The combination of seismicity in model C
causes larger spectral amplitudes at all frequencies than either model
A or model B alone, At long periods, model C is controlled by the
large events on the relatively distant (~ 110 km) line source of model
A. At high frequencies, however, the more numerous small events

in the diffuse zone (model B) control the amplitudes. At sites V

and VI, the amplitudes of the uniform risk spectra begin to decrease
because the sites are outside the seismic zone. Cases A and C tend
to converge again as the effect of the local seismicity is absent,
Case D, which has the same total seismicity as C but lacks the
information about where the magnitude 7.5 event may occur, gives a
risk level similar to case C at site III, and lea.ds to the largest
amplitudes at greater distances. Close to the fault, it gives much
smaller amplitudes. Cases B and D give a constant spectrum every
place interior to the region, so the amplitudes they predict do not
change between sites I and III,

In Figure 2,6, the effects of the higher seismicity and the larger
events in the diffuse zone nearly mask the effects seen in Figure 2.5.
Already at site II, 25 km from the fault, the activity on the fault
does not have much effect on the level of spectra, and at site III,

the fault has essentially no effect,



-66-

A traditional seismic risk analysis of the cases just described
would lead to a fixed shape spectrum being scaled up or down. The
changing shapes of the spectra, although somewhat subtle in this case,
emphasize the advantage of estimating the spectral amplitudes inde-
pendently for each frequency. For example, the uniform risk spec-
trum for case C shifts between sites I and IV to have higher levels
of high frequency waves relative to the long period amplitudes. On
leaving the seismic zone, however, the high frequency levels decrease
more rapidly than the long period levels,

Although it may not be apparent from these figures, the spectrum
in cases (B) and (D) is the same at stations I, 1I, and III, Its ampli-
tudes begin to decrease as the station'approaches the boundary of
the diffuse zone. Additional calculations demonstrated that the spectral
levels of cases (B) and (D) begin to decrease between 30 and 50 km

from the boundary of the diffuse zone.

ON THE INFLUENCE OF CERTAINTY IN THE
DESCRIPTION OF SEISMICITY

| Chapter I described a variation of the composition method which
might be applied to cases where there is some reason to believe
that the number of events in the source region is known. Such a
situation could result from an accurate earthquake prediction, where
precursory phenomena indicate an approximate magnitude of the
earthquake and a region or, for example, a segment of a fault within
which the earthquake will occur. In this case, for specific sites,

we may want to know the probable range of the amplitudes of seismic
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shaking to determine, for example, if preliminary safety precautions
are advisable. This method is referred to as the "literal" assumption
because the specified seismicity is treated literally, in contrast to

the '"Poisson'' assumption, where the specified seismicity is treated

as the mean of a Poissonian sequence in time.

These assumptions have been studied for four cases:

[e—
L]

A single magnitude 7.5 earthquake on the line source in
Figure 2.3, The rupture length was assﬁmed approxi-
mately equal to the fault length. This case is shown

in Figure 2.7,

2. A single magnitude 7.5 earthquake on a line source like
that in Figure 2,3, but extended to twice the length of
the source shown by adding an equal length onto each
end. The spectra for this case are not shown.

3. A single magnitude 7.5 earthquake on a line source like
that in Figure 2.3, but extended to five times the length
of the source shown by adding an equal length onto each
end., The spectra for this case are shown in Figure 2.8,

4, A single magnitude 7.5 earthquake in the diffuse region

outlined in Figure 2,3, Again, the epicentral distance was

used in the attenuation relationships. The spectra for this

case are shown in Figure 2.9,

In Chapter I we noted that using the ''literal' assumption always
leads to larger amplitude than the '"Poisson' assumption. This can

be seen in Figures 2.7-2.9. In Figure 2.7, where the event is
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Comparison of uniform risk spectra derived using the
Poisson assumption and the literal assumption for a
single earthquake on a short fault, of length comparable
to the length of rupture. The fault and the sites are

as shown in Fig. 2. 3.
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Figure 2.8. Similar to Fig, 2.7, but the fault is extended sym-
metrically so that its length is five times the length

of rupture for the M = 7,5 earthquake,
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Figure 2.9, Uniform risk spectra derived using the Poisson and
the literal assumptions for a single M = 7.5 earth-
quake in the diffuse zone shown in Fig. 2. 3.
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constrained to a relatively small region, the differences are minor
and almost insignificant. In Figure 2.9, however, the stations inside
the diffuse zone display large differences between the 'literal" and
the '"Poisson'' assumptions of about 25 to 40 percent (0.1 to 0,15 on
the logarithmic scale). These differences decrease to under 10
percent outside the source region. Thus it appears that when an
earthquake is predicted to occur within a diffuse region, a treatment
of the risk similar to the 'literal' treatment here is important,

The second and third cases are intermediate between case (1)
and (4). Case (2) gives the same results as case (1), thus the spectra
are not shown. This result occurs because the closest point of
rupture is at the closest point of the fault to the site. If the rupture
had been extended asymmetrically while maintaining a 2:1 ratio of
fault length to rupture length, then the spectral levels would have
been reduced somewhat, as they are in case 3 (Figure 2. 8).

Figures 2.7 and 2.8 show how the relationship of fault length
and rupture length affects amplitudes of uniform risk spectra,
Because the fault length is greater for the third model (Figure 2, 8)
rupture is not forced to occur as close to site I, As a result, the
spectral amplitudes at site I for the third assumption of seismicity
(Figure 2.8) is considerably smaller than the spectral amplitude for
the first seismicity model (Figure 2.7). At site VI, however, the
differences between the two models do not significantly affect spectral
amplitudes,

Comparison of cases 1 and 3 with case 4 (Figure 2.9) shows

the large increase in amplitudes at sites I, II, and III caused by
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constraining the event to occur on the fault. In contrast, at the
distant sites V and VI, the amplitudes resulting from events in the
diffuse zone (case 4) are slightly larger than those resulting from

events constrained to occur on the fault (cases 1 and 3).

EFFECT OF AN EXTENDED SOURCE

Field observations have consistently shown that large, shallow
earthquakes offset the surface of the ground along a distance of at
least several kilometers (Allen, 1976). Intuitively, therefore, it
appears necessary to account for such an extended source zone in
a risk analysis., Der-Kiureghian and Ang (1975) and Douglas and
Ryall (1975) have shown methods by which this can be done.
However, it is not obvious that including an extended rupture
length is always necessary.

To demonstrate this, consider the description of the attenuation
of the amplitude of strong ground shaking with distance. In deriving
these relationships, different authors have not agreed on how to define
the distance between the earthquake and the site. For example,
Figure 1 of Trifunac and Brady (1976) shows some curves that are
related to the epicentral distance, some that are related to the
hypocentral distance, and some that use the distance to the causative
fault, It follows from elementary considerations that ideally, these
relations should not have the same form. For example, the distance
to the causative fault is always less than or equal to the distance
to the hypocenter. Therefore, when a datum is plotted to define

these two curves, the same value of acceleration, say, will occur at
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a closer distance to the origin when the distance to the causative
fault is used. As a result, since these attenuation curves decrease
with increasing distance, then average acceleration for a given
hypocentral distance will have a larger amplitude than the average
acceleration for the same fault distance.

When these attenuation functions are applied to find the risk,
it is helpful to remember that a seismic risk calculation attempts to
estimate the numerical value of a physically well-defined function,
such as p[S(w)]. To do this, the method used to determine p[S(w)]
must be internally consistent. However, there is no reason to assume
that there is only one correct method to obtain the correct result,

As an example, a model which is formulated using the epicentral
distance, such as Cornell (1968), needs an attenuation equation based
on epicentral distance. A model which is formulated using the
closest distance, such as Der-Kiuerghian and Ang (1975), needs an
attenuation equatioﬁ based on the closest distance. Inside a region
of diffuse ‘seismicity, the smaller fault to site distances in the latter
method should be compensated for by somewhat smaller ac:celefations
predicted for each distance by the attenuation equations formulated
using the closest distance. Thus, once the statistical properties of
the attenuation function and of rupture dimensions are known in a
region, the two methods may be expected to give the same results,

The situation described above applies to the interior of a
region of diffuse seismicity, In the presence of a line fault, a
different situation holds. An attenuation equation based on epicentral

distance incorporates, to a first approximation, random directions
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of rupture relative to the site. However, the line fault constrains
the rupture to a certain direction. In ordef to maintain logical
consistency for this case and still avoid introducing unreasonable
complexity When the direction of rupture is prescribed, it appears
necessary to use an attenuation equation based on the shbrtest
distance,

By doing this, new uncertainties are introduced into the risk
analysis, particularly in describing the seismicity, Rather than
N(M), we now need N(M,{), where £ is the rupture length. For
large magnitudes, the data necessary to estimate such a distribution
are not available. Thus, we are nearly forced to assume that £ is
determined by M. Several persons have proposed empirical relation-
ships of the form log £ = a + BM, but it is hard to evaluate whether
these are widely applicable. Conceptually, of course, describing
an earthquake by a rupture length is still an approximation to the
physical situation, in which motion occurs in part of a fault zone.

At present, the above considerations are almost entirely
academic, because among the presently existing relationships for
the attenuation of peak acceleration with distance, there is no sys-
tematic difference between those using the closest point on the fault
and those using epicentral distance (Figure 1, Trifunac and Brady,
1975). This apparently results from the scatter in the data and the
lack of sufficient data for events with rupture dimensions large
enough to have an effect, Therefore, for all we know, the attenua-
tion equation of Trifunac (1976) may be nearly equal to the correct

equation based on the closest distance, even though it was derived
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using the epicentral distance. Because of this similarity and the
consideration described earlier, we have used an extended rupture
zone for all events on the line source.

For a diffuse source region it is not clear whether we should
use the epicentral distance or the closest distance with the attenuation
equations of Trifunac, and either method can be used as an 6i)tion in
our computer program, We made a number of numerical calculations
to determine the discrepancy in amplitudes which is involved, By
using the same attenuation equation for both methods of measuring
the distance from the fault to the site, we first determine when the
two assumptions lead to different results, and then we consider an
idealized but realistic case to learn how great the difference could be.
The calculations treat rupture as unilateral, with .a random direction
of propégation from the epicenter.

The first calculation consisted of studying the uniform risk
spectra from single events., Two computations were done for each
of many combinations of fault lengths and epicentral distances, one
using the epicentral distance (Method 1 of Appendix 1.2) and the
other considering different possible closest distances (Method 2).
Differences in the spectra for these two methods were calculated,
and the results are summarized in Figure 2,10, In that figure,
the axes are rupture length and epicentral distance. The contours
indicate approximately the percentage increase of the level of the
uniform risk spectrum caused by using the extended rupture over
the level which results from a point source. Using Trifunac's (1976)

model of attenuation, this increase for any one combination of
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epicentral distance and rupture length is not a strong function of
wave frequency, and thus the values contoured are averaged over
the entire frequency band for which spectra are studied here,

These results are independent of both the magnitude of the
earthquake and the probability of exceedance. The increase in the
spectral level results entirely from the extent to which the average
distance between the fault and the site is reduced from the epicentral
distance, and the way the attenuation function behaves over that
distance range. Thus, for large epicentral distances, the percentage
of increase diminishes as distance increases because the slope of
the attenuation curve generally decreases with distance. For short
distances, the amplitude of the effect reaches an upper limit when
the fault length surpasses the epicentral distance.

As described in Appendix 1,2 of Chapter I, our method of
including an extended rupture in an areal source zone assumes that
the rupture is unilateral. Other possibilities can be included in the
risk model, such as bilateral or non-linear rupture. The effect of
any of these assumptions on the contours in Figure 2. 10 would be
to decrease the effect of the extended rupture relative to the calcu-
lations based on the epicentral distance. Thus, these contours give
an upper bound on the effect,

The results of Figure 2,10 give a way to evaluate an upper
bound of the effect of the extended rupture on the set of accelero-
grams used by Trifunac (1976) to derive the attenuation relationship,
To this end, in Figure 2.11 we have superimposed a set of data
points to indicate where each of the accelerograms used by Trifunac

were recorded with respect to these contours,
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One or several estimates of the rupture lengths are available
for six earthquakes which lead to most (126) of the accelerograms
used by Trifunac (1976), These earthquakes, with the rupture length
we used, are listed in Table III. The estimate of rupture length for
the San Fernando earthquake is an average of the two dimensions of
the fault given by Trifunac (1974), For the remaining 60 records
(corresponding to 51 earthquakes) we plotted a vertical line in Figure
2. 11 which represents the range of the rupture length to be expected
from the relationships of Thatcher and Hanks (1973), The larger
rupture length for each evlent represents a low stress drop event
(1 bar), while the lower rupture length represents a high stress
drop (100 bars),

From the way the data fall on Figure 2.11, it appears that the
extent of the rupture might be expected to have some effect on the
relationships derived by Trifunac (1976). Since his relationship is
based almost entirely on earthquakes with magnitude less than about
I6—é—, it may be reasonable to suggest that in a diffuse source zone
with no events greater than M =~ 6%, it is reasonable to apply his
relationship using the epicentral distance. The next example inves-
tigates the consequénces of this suggestion,

For the next numerical example, we compare the uniform risk
spectra in a region of diffuse seismicity derived using the two
forms: first using the epicentral distance, and second using the
shortest distance to the fault, The geometry foxt this problem again
is shown in Figure 2,3, We use the diffuse region of activity of
the previous sections, and examine the uniform risk spectra at the

same six sites and for the low activity rate given in Table IL
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TABLE III

Rupture lengths and sources of information for six
earthquakes which lead to 126 of the 186 accelerograms

used by Trifunac (1976).

These rupture lengths and

the epicentral distances for the 126 accelerograms are
plotted in Fig., 2.11,

Event

Long Beach
Calif,

Imperial Valley

Calif,

Kern County
Calif,

Parkfield
Calif.

Borrego Mtn.
Calif,

San Fernando
Calif,

Date

March 10, 1933

May 18, 1940
July 21, ‘1952
June 27, 1966
April 8, 1968

Feb, 9, 1971

Rupture
length
(km)

30

70

60

38

16

15

Reference

Geller (1976)

Geller (1976)

Geller (1976)

Brown & Vedder
(1967)

Burdick & Mellman
(1976)

Trifunac (1974)
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Two of the many proposed relationships between magnitude and
fault length were used in this calculation, They are:
(1) log,, L = 2ZM - 3,41 Thatcher and Hanks (1973)
A0 =100 bars

0.53M - 1,47 Wyss & Brune (1968)

(2) log,, [}

A fixed relationship such as this is not necessary; with little
additional difficulty we could include a range of rupture lengths fo’r
each magnitude.

The uniform risk spectra for these relationships and also for
calculations based on the epicentral distance are shown in Figure
2.12. Figure 2,12 only shows the uniform risk spectra at four of
the six sites in Figure 2. 3; at the two sites left out, sites II and III,
the spectra are nearly identical to those at station I.

As expected, when the shortest distance to the fault is used,
the spectral amplitudes are increased from the level which results
from using the epicentral distance. The increase is greater at the
0.1 probability of exceedance level than at the 0.9 probability of
exceedance level. The amount of the increase cannot be predicted
from Figure 2.10 because in these examples the sources are in a
diffuse zone rather than at a point and the effects in Figure 2.12
are an average from all the possible locations in the zone. However,
the general trends are what would be expected. For example, the
Wyss & Brune (1968) relationship gives the largest event in the
zone (M = 6%) about a 100 km rupture length, while the Thatcher &

Hanks (1973) relationship gives the same event about a 10 km
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log'OFS , cm/sec

Fig. 2.12.

Uniform risk spectra at four of the sites of Fig., 2.3
for low seismicity in the diffuse region and three
assumptions: spectra labeled ''0' use the epicentral
distance in calculating the risk; those labeled '"1' use
the closest point and the magnitude-fault length equation
of Thatcher & Hanks (1973) for a 100 bar stress drop;
those labeled "2'" use the closest point and the equation

of Wyss & Brune (1968). The
each site are for probabilities
and 0.9. The spectra are for
rock sites. The seismicity in
low rate given in Table II,

two sets of spectra at
of exceedance of 0,1
vertical acceleration on
the diffuse zone is the
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rupture length, For a 10 km rupture, Figure 2,10 shows that the
amplitudes of uniform risk spectra are never increased by more

than 10 to 15 percent, and at all the sites in Figure 2, 12, the effect
of this‘ rupture is about 5 to 10 percent, or less., The increase for

a 100 km rupture length in Figure 2,10, on the other hand, is several
tens of percent and can reach a factor of over two, and a large

effect (about 75% at site I) is observed for the diffuse source (Figure
2.12), Also, as expected, the effect of the extended rupture diminishes
as the sites move away from the source zone.

Thus a considerable discrepancy remains to be resolved. As
suggested above, it is possible that the scaling relationships of
Trifunac (1976) may be adequate to use the epicentfal distance in
this case; unfortunately, we cannot be certain. It is also possible
that there was not enough data with extended ruptures for the scaling
relat10nsh1p to be used this way; if that is right, then the epicentral
distance may lead to too low an estimate of the risk even in this
case, and the extended rupture may give a more realistic estimate
of the risk. |

Some of the spectra from Figure 2,12 are shown again in Figure
2,13, this time to compare the rates of attenuation, Here it becomes
apparent that the spectra for the extended rupture zones are more
strongly affected at the long periods than at the higher frequencies,

It is also clear that the spectra within the diffuse zone are con-
siderably less than the spectra for an M = 6,5 event, which is the
largest event in the zone. This results from the large average

distances from the site to the earthquake,



-84-

*(z = s) o201 uo jusuoduiod

18213394 3y} 107 91 vI3dads [[V °231s 9ayj je sapnjuSew pajedIpul 8y} Jo ayenbyjaes
a18u1s ® jo ei3oads ayj aae saulf 3ySir oYy °(8961) sunig R ssd g jo diysuonjerox
y38us] sanjdna-apnjrudew ayj pue jnej ayj uo jutod 35950710 aY3} Y31 PIjeIndIed

a1®e j3yS11 2yj uo 92soyj} pue ‘9oueisIp [eIJUaO1ds SY] Ylim Poaje[nd[ed 31 3J9T ¥Yyj uo
eajoads ay] ‘(I °Iq®1) 2Uo0z 9SNJIJIP Y3 Ul AIIDOTWISISS JO 93BI MO] ® PU® € °Z 514 Ul JTA
pue ‘A ‘AI ‘I S931s 9Y3 103 [ °Q JO 90uepaad%x?a jo Ajifiqeqoad yjim eijoeds }s1I W upn

TATIT

11

ses ¢ | %o ses ¢ 1 %'Bo)

| 0 1= ! 0 -
| I ] I I I

69 g9




-85-

The effect of using an extended rupture depends on the seis-
micity model; for example a larger maximum magnitude would have
a larger rupture length, and thus the spectra for the extended source
model would be increased by a greater percentage over the spectra
of a model using the epicenters., Also, for a larger rupture length,
the effect of the extended rupture would not diminish as rapidly as

it does here for sites outside of the diffuse zone.

AN APPLICATION

To study the properties of the proposed model in a realistic
setting, we apply it to finding the seismic risk for a site on the
north coast of Puerto Rico, This particular site was studied by
Der-Kiureghian and Ang (1975). They used response spectrum
rather than Fourier amplitude spectrum, so that our current results
are not directly comparable, A future study dealing with response
spectra will permit a direct comparison. Here, we concentrate
on the effects of differing descriptions of the same seismicity on
the uniform risk spectra, To ease comparison in the anticipated
work, we described the seismicity using the data available to
Der-Kiureghian & Ang (1975), rather than obtaining a more current
listing of epicenters., That data was, essentially, a list of all events
known to have occurred in the vicinity between 1915 and 1971, The
coverage of small earthquakes improved dramatically in this time

period,
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Two aspects of the seismicity are shown in Figure 2,14, The
top, left seismicity map shows the locations of all known, major
earthquakes since 1900, The locations shown are those listed by
Der-Kiureghian and Ang (1975), rather than the improved locations
given by Kelleher et al, (1973), but the discussion of Kelleher et al.
was considered in the subsequent models. The top, right seismicity
map shows the locations of smaller earthquakes during the period
1964 through 1971,

On the basis of these maps, the complete listing of events,
and some additional information in Kelleher et al,, four models of
- the seismicity of this region were found by four separate individuals,
who were asked to describe the seismicity they expected in the region
in the next 50 years. These four models are shown in Figure 2,14
and are labeled A., B., C., and D.; the uniform risk spectra derived
from these models are shown in Figure 2.15, Although some of
these models are more realistic than others, they demonstrate four
distinct philosophies in describing the seismicity., For each model,
the map is divided into zones and the number of events in each of
the zones is given in Table IV,

Model A assumes that the seismicity in the future will essen-
tially be the same as the seismicity that is known to have occurred
in the past. The map is divided into five zones, and the seismicity
of each zone is scaled slightly to account for the difference in time
periods between the period of data and the period for which risk is
to be estimated., The model does not consider the incomplete

coverage of small earthquakes for much of the historical record.
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Fig, 2, 14,

Seismicity in the vicinity of Puerto Rico, as given by
Der-Kiureghian & Ang (1975), and 4 models to describe
this seismicity., The boundary of all 6 maps is the
same as shown in the upper left., The map at the
upper left shows the epicenters of major earthquakes
since 1915; the map at the upper right shows events
with magnitude greater than 43 which occurred
between 1964 and 1971, The estimated seismicity
rates in each zone of the 4 models (A,B,C,D) are in
Table IV. These zones are the projections of the
dipping planar source region for the risk estimates
in Fig. 2.15 (right) and are diffuse shallow zones for
the risk estimates in Fig. 2.15 (left). Models are for
the site shown by a solid triangle.
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Model B assumes that the major seismic activity in the future
will continue to occur where the major activity of the past was
recorded. The numbers of smaller events are scaled from the rates
recorded in most brecent times,

Model C observes that the entire band of seismic activity
crossing the seismicity map on the top right in Figure 2. 14 is
associated with an active plate margin; it makes no differentiation
between the western portion which has a history of large events and
the eastern portion which does mnot have that history,

Model D, finally, considers the possibility that because, as
Kelleher et al. (1973) point out, the eastern region has not had any
serious historic earthquakes, that this portion of the plate margin
must be considered a more likely candidate for a large earthquake
in the future. The westefn region was given a description of the
seismicity which is lower than the historic rates on the assumption
that some of the strain there was relieved by past events, and would
take some time to accumulate to a dangerous level again,

We have calculated the uniform risk spectra for two variations
of each of these models. The first variation (the left side of Figure
2, 15) assigns each of the zones to be a diffuse region on the surface.
The extent of rupture is not included; clearly, from Figure 2. 10,
including this could have a significant effect on the amplitudes of the
uniform risk spectra,

The second variation (the right side of Figure 2. 15) assigns
each of these zones to be a diffuse region on a plane dipping south
from the northern edge of the region of high activity at an angle of

about 35 degrees. For this variation, which probably is more
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realistic in describing the geometry of the seismic zone, we had to
make an arbitrary extension of the model for attenuation, We did
this by replacing the epicentral distance with the hypocentral distance.
We emphasize that this is an arbitrary decision, and the results we
obtain using it are perhaps not as reliable as one would desire.

Thus, the results of these calculations represent a more realistic
source geometry but a less reliable attenuation function,

Several observations can be made on the spectra in Figure
2,15, First, the differences between the spectral amplitudes resulting
from cases A-D for a given probability level is considerably greater
for the diffuse source than for the dipping plane source., This arises
because the large events, which contribute most to the spectral ampli-
tudes, are in a narrower distance range when they are placed on the
dipping plane. This smaller spread would thus occur for nearly any
model of the attenuation, and is not an artifact of our particular
choice., Because it so badly underestimates the numbers of small
events, for the diffuse source, model A is strongly depleted in high
frequencies relative to the other three models. The differences of
spectral amplitudes between models B, C, and D for the diffuse source
are nearly a facfor of three at long periods, but they diminish at
higher frequencies. These large differences emphasize that the
estimate of uniform risk spectra are, in general, strongly dependent
on the description of seismicity., Although the surface distribution
in this case is not necessarily realistic, differences of this type
could occur in other portions of the world where the activity is all

shallow. Perhaps in situations like this, where the philosophy of
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the seismicity descriptions are not flawed so far as current knowledge
can show, caution would advise the selection of the model which gives
the larger amplitudes of the uniform risk spectra,

Finally, we note that the levels in Fig. 2.15 are considerably
lower than the spectra which correspond to the largest earthquakes
allowed in the regions, This is because of the large area in which
these events might occur, leading to generally large distances
between the source and the site, and thus to low levels of uniform
risk spectra. As mentioned previously, use of the closest distance
to extended rupture zones would have increased the spectral ampli-
tudes somewhat, but the spectral amplitudes would still have been
lower than those resulting from the largest earthquakes allowed
in the region. Notice also that the uniform risk spectra have
shapes which differ considerably from that for a single M = 5%
earthquake at the site, even though the amplitudes are somewhat

comparable.

CONCLUSIONS

We have investigated the empirical model for scaling Fourier
amplitude spectra of strong ground motion given by Trifunac (1976)
to find the probability that an arbitrary earthquake will cause the
spectral amplitude S(w) to be exceeded at the site. This relation-
ship, together with a description of seismicity, is sufficient to
evaluate the uniform risk spectra at any point in California, By

replacing the attenuation function for California with one applying



to another region, we might also use this method to evaluate the
risk in other regions.

To investigate some characteristics of the model, we have
numerically evaluated the risk at several sites using some idealized
models of the seismicity., The conceptual difference between the
risk model used here and methods commonly applied elsewhere is
that the spectral amplitude for a given risk of exceedance is deter-
mined independently in each of several frequency bands; thus the
spectra are referred to as '"uniform risk" spectra, This relaxes
the constraint of a constant shape to the spectrum, and our results
show that the shape and level adjust according to changes in the
seismicity patterns, For example, the possibility of a large event
close to the station leads to a uniform risk spectrum identical to
the spectrum predicted by the Trifunac model for an event of that
size and distance. However, when that large event is at a greater
distance from the site, and when low level activity is possible any
place near the site, the uniform risk spectrum reflects this low
level activity by increasing, sometimes strongly, the amplitudes at
high frequencies compared to the spectrum of the single large event,
while increasing spectral amplitudes at long periods to a lesser
extent, We found that even in the case of aftershocks on a line
source, the uniform risk spectral amplitudes are increased slightly.

Normally, the seismicity which is input to our model is treated
as the mean of a Poisson sequence. However, in the important
case of an earthquake prediction, it may be necessary to find the

risk for a site when the number and magnitude of events is taken
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literally, We considered the differences between this ''literal"
assumption and the Poisson assumption for the two cases of a single
event occurring on a known shallow fault and in a large diffuse
zone. The differences between the two assumptions for the event

on the fault are small but significant, for the event in the diffuse
zone the differences are quite large.

Some of the confusion centered around the problem of how to
measure the distance from the earthquake to the site can be alle-
viated by remembering that the object of a risk analysis is to
estimate a physically well defined function. However, at present
the decision to use either the epicentral distance or the nearest
point on an extended rupture must still depend on mathematical
consistency, a critical assessment of the attenuation function used
in the risk calculations, and judgement, Our attenuation function,
derived from Trifunac (1976) is based almost entirely on magnitudes
less than 6%, and uses the epicentral distance, It is not systema-
tically different from relationships based on the nearest point of
rupture, although elementary considerations suggest the two forms
should differ. Therefore, we have used it with the nearest fault
distance for line sources. For a diffuse source zone with a maxi-
mum magnitude of 6%, it may be mathematically and logically con-
sistent to use the epicentral distance with the Trifunac scaling rela-
tionships rather than nearest distance; the difference between the two
methods is as much as a factor of 2, however., Use of the epicentral
distance in this case may underestimate the amplitude of a uniform

risk spectrum; use of the extended fault, on the other hand, may
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overestimate the amplitudes, For magnitudes 7 and greater in a
diffuse zone, the assessment of the attenuation function and judgement
indicate the extended fault must be used.

We have also examined a number of cases based on the actual
distribution of seismicity found in the vicinity of Puerto Rico.
These cases suggest that the greatest source of uncertainty in any
description of uniform risk spectra is related to the characterization
of seismicity, Four descriptions of the seismicity which are all
more or less consistent with the historic activity lead to differences
of up to a factor of 3 in the amplitudes of uniform risk spectra.
However, as pointed out by Allen (1976), the regions of the world
where the longest seismic history is known give the greatest reason
to doubt that extrapolation from past seismicity is reliable. Thus,
the uncertainty associated with the characterization of seismicity
is probably even greater than what our example suggests,
Unfortunately, this uncertainty is present in any method of arriving
at descriptions of possible ground motion to be used for earthquake
resistant design; the calculations in this report only illustrate the
uncertainty clearly, Thus significant improvements in seismic risk

estimates will have to come from improved seismicity estimates.
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APPENDIX 2.1

We want to find the mean (L) and the standard deviation ()

of a Gaussian distribution such that
1 _a (x-[L)\2
P, = f —— e 2\ 0 dx (1)

We treat Pl as the independent variable, and P, as the
dependent variable (with possible noise) in the following procedure.

Substituting Z = (%‘—1) , results in

=

1,2
p,= J L 227 gz . (2)
- 00 42‘"
For an integral of the form
s 1,2
P, = [ —— 2% az, (3)
FXi

- 00

Abramowitz and Stegun (1964, p. 932) give a polynomial approxi-

mation to s given P,. Given the value of s for each P,, we find by

least squares the line s =aPy+b. By comparing (2) and (3), © =—;—
and I-l = - l:')'o

a
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