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ABSTRACT

We present two preliminary models for the frequency dependent
scaling of absolute acceleration spectra (SA) of strong earthquake
ground motion. One of these models describes SA in terms of mag-
nitude, epicentral distance, and site conditions; the other
characterizes the dependence of SA on Modified Mercalli Intensity
and site conditions.

The regression analyses have been carried out independently at
91 periods between 0.04 sec and 15 sec to permit the frequency de-
pendent description of spectral amplitudes; the results are consis-
tent with previous studies on the scaling of peak accelerations
(Trifunac, 1976a) and of Fourier amplitude spectra (Trifunac, 1976b).
One feature of these regressions is a description of the way ampli-
tudes of SA scatter about the mean trend of the regression; this
scatter is not inconsistent with a distribution curve derived from

a Rayleigh distribution of response amplitudes.



INTRODUCTION

The purpose of this report is to explore the possibilities for
improved characterization of absolute acceleration spectra of
strong earthquake ground motion. It is motivated by the availabil-
ity of uniformly processed strong-motion data which was obtained
during the past several years and by the related work (Trifunac,
1976b) which demonstrated that empirical models for scaling the
Fourier amplitudes of strong ground shaking in terms of earthquake
magnitude, source to station distance, recording site conditions,
component direction and the distribution of the observed amplitudes
are now feasible.

The concept of the response spectrum was introduced into earth-
quake engineering by Biot (1941) and Benioff (1934). With the gradual
accumulation of strong motion recordings since 1934, the response
spectrum method for design of earthquake resistant structures (e.g.,
Hudson, et al., 1972) is now a part of or is being introduced into
many modern design codes (Newmark et al., 1977). This popularity of the
response spectrum method results partly from its property that it
does not depend on the detailed characteristics of different struc-
tures, but only on the frequencies and the corresponding fractions of
critical damping -- the two parameters which describe a single-de-
gree-of-freedom, viscously damped, system. Hence, when available,

a response spectrum can be utilized for the design of many different
structural systems. Another important advantage of the response

spectrum approach for the design of earthquake resistant structures



is that detailed real time response analysis, which often may re-
present an expensive undertaking, is not required. Even though the
methodology for combining the contribution to the total response from
several selected modes of vibration is only an approximate one, so
far, it appears to be adequate for many design applications.

There are several difficulties which may result from the oversim-
plified methodology associated with the response spectrum approach.
Some are caused by the lack of information contained in the response
spectrum curve; these come from the definition of the spectrum, which
is the maximum response to the entire time history of ground motion.
Thus, many details on the duration of strong shaking and on the num-
ber and the distribution of peak amplitudes in the response are
essentially eliminated. Other problems occur because the response
analysis is linear; this makes any estimates of more realistic non-
linear response, at best, very difficult. It is clear, for example,
that in a non-linear progressively deteriorating structural system,
strong shaking with constant peak amplitudes may result in no
damage, partial damage or total damage, depending on whether a struc-
ture was strained through one, several or through many cycles of
nonlinear response. In spite of these and other well-known difficulties,
the response spectrum approach in earthquake resistant design has
gained considerable popularity among the engineering profession. If
used judiciously and with the awareness of its limitations, it may
offer convenient and simple means for the design of earthquake resis-

tant structures in the absence of better and more reliable methodology.



It is likely that some form of the response spectrum approach
will remain popular in engineering applications for some time in the
future. It seems worthwhile, then, to explore the optimum methods for
characterization of response spectra in terms of those parameters of
strong ground motion which are most readily available to the engineering
community. The physical phenomena which cause strong shaking are
described by the parameters related to the earthquake source mechanism
(e.g., moment, fault geometry, dislocation amplitudes, stress drop,
radiation pattern, etc.) and the transmission path. For engineering
analyses, however, at this point in time, one still has to utilize
much less sophisticated parameters to describe strong shaking; e.g.,
earthquake magnitude, epicentral distance, site conditions, Modified
Mercalli Intensity, etc. This is because those simple parameters are
readily available and can be processed to yield desired statistical
or deterministic estimates of future earthquake shaking (e.g., Anderson
and Trifunac, 1977). The more detailed and informative parameters such
as stress drop and seismic moment are not yet available for many past
earthquakes and over sufficiently long intervals of time to warrant
routine application of these parameters in a statistical or determinis-
tic fashion.

Different types of response spectra are calculated from strong-
motion accelerograms (Hudson et al., 1972). 1In this report our
attention will be focused only on the absolute acceleration spectra,
SA, which represent the maximum absolute acceleration of a single-
degree-of-freedom system, with prescribed fraction of critical damping,

during the excitation represented by a strong-motion accelerogram.



We shall address the scaling of the absolute acceleration spectra,

SA, in terms of two groups of parameters. The first group will consist
of earthquake magnitude, M, epicentral distance, R, recording site
conditions, s (s = 0 will be assigned to alluvium sites, s = 2 to hard
basement rock sites and s = 1 to intermediate sites; see Trifunac and
Brady, 1975), component direction (v = 0 for horizontal and v = 1 for
vertical) and a parameter, p, which will describe approximately the
distribution of the spectral amplitudes. The second group will have the
Modified Mercalli Intensity (M.M.I.) in place of M, and the epicentral
distance, R, will be purposely omitted to avoid explicit emphasis on
the rate of attenuation of M.M.I. in California. While this omission
may increase the scatter of the observed spectral amplitudes with re-
spect to the assumed empirical model, it permits the use of the derived
correlations outside California, at least formally (e.g., see Trifunac
and Westermo, 1976a, b for further discussion).

We are not suggesting that the above scaling parameters represent
the best physical characterization of strong shaking; rather, they are
based on the instrumental and qualitative information which is avail-
able to the engineering community in different parts of the United
States and the world. While we are working towards better and more
accurate characterization of strong earthquake ground motioﬁ, the
present work accounts for the current limitations imposed by the data
which is available now, and by the present status and completeness of
the instrumental observations of earthquakes world-wide.

Following the first important recordings in 1934 and 1940 and in

the early 1950's and the early systematic calculations of response



spectrum amplitudes (Alford et al., 1951) it became possible to study
the shape of response spectra. This led to the development of
"standard" spectral shapes for use in design. The development of
a ''standard" shape of the response spectrum was initiated in the mid
and late 1950's (Housner, 1970) and extends through the early and mid
1970's (Trifunac, 1977). This work is usually characterized by the
fixed shape of response spectrum whose amplitude depends on a single
scaling parameter. Though spectra were also developed (Veletsos et al.,
1965) which depended on peak acceleration, peak velocity and peak
displacement, the direct availability of peak acceleration amplitudes
from recorded accelerograms and the lack of accurate and uniformly
processed peak velocities and peak displacements meant that most of
these spectra were essentially scaled by the peak acceleration alone.
Figure 1 shows the first '"standard" shape of the absolute acceleration
spectrum. It was intended that the spectrum intensity would be used
as the amplitude scaling factor (Housner, 1970). However, because the
spectral amplitudes tend toward the peak ground acceleration for
T -~ 0 for all fractions of critical damping, in applications, these
and later fixed shape spectrum curvés are often scaled in terms of
peak acceleration. It was recognized that the shape of response spectra
should depend on such parameters as earthquake magnitude, and source
to station distance, but the data available in the mid and late 1950's
did not allow more refined analysis; the curves in Figure 1 were developed by
averaging over the spectra of strong-motion recordings of four represen-
tative earthquakes.

With the additional strong motion recordings obtained in the mid

1960's and early 1970's it has become possible to improve upon these
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early studies. One recent example of a fixed shape absolute accelera-
tion spectrum is shown in Figures 2 and 3 for horizontal and vertical
strong shaking. These spectra are still scaled by peak acceleration
amplitudes, and the effects of magnitude, source to station distance,
attenuation with distance and site conditions are introduced only
through the selected peak acceleration.

It has been recognized for some time that the level of the ob-
served damage depends on the geologic and local soil conditions, and
numerous attempts have been made to relate this observation to the
recorded strong-motion accelerations (e.g., Duke, 1958) and to the
recordings on more sensitive seismological instruments (e.g., Gutenberg,
1957; Borcherdt and Gibbs, 1976). With the exception of the work by
Gutenberg (1957) most studies dealing with these effects attempted to
relate the variations in damage to peak accelerations or peak velocity
only and thus explicitly or implicitly eliminated the frequency dependent
nature of this problem.

The spectra in Figure 4 (from Seed et al., 1974) represent one of
the first attempts to study the frequency dependent variations of
spectrum shape on the recording site conditions. In that analysis, the
dependence of the shape of spectral amplitudes on site conditions was
made possible by carrying out four independent statistical analyses on
the normalized absolute acceleration spactra at many selected frequencies.
The explicit dependence of spectrum shapes on magnitude and source to
station distance were eliminated, however, by normalization of all
spectral amplitudes to peak acceleration.

Since the completion of an important phase of the uniform data
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processing effort (Hudson, 1976), it has become possible to develop
multi-dimensional regression analyses of the shape and amplitudes of
response spectra as those might depend not only on the recording site
conditions but also on the other important parameters describing the
strong ground motion. Preliminary studies of how the Fourier ampli-
tude spectra depend on such scaling parameters (Trifunac, 1976b), have
indicated that similar correlations for absolute acceleration and

other response spectra may produce valuable results.
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AVAILABLE DATA

The absolute acceleration spectra (SA) which are used in this
study have been extracted from the Volume III tape (Trifunac and Lee,
1973) which contains absolute acceleration spectra (SA), relative
displacement spectra (SD), relative velocity spectra (SV), pseudo
relative velocity spectra (PSV) and Fourier amplitude spectra (FS)
for 381 strong-motion accelerograms (Hudson et al., 1972). Of these
381 records, with two horizontal and one vertical component each, 186
accelerograms have been recorded at '"free field" stations or in the
basements of tall buildings. For the purpose of this analysis, it has
been assumed that these recordings represent strong ground motion which
is not seriously affected by the surroundings of the recording station.
Detailed investigations will, no doubt, show that the records obtained
in the basements of tall buildings or adjacent to some other large
man-made or natural structure may be modified by the wave scattering
and diffraction caused by these structures. However, for this analysis,
these effects will not be considered.

These 381 accelerograph records resulted from 57 earthquakes in
the Western United States and were recorded during the period from 1933
to 1971. From the 186 records that could be used as free-field data,
only 182 were actually employed for the correlations with magnitude
because no reliable magnitude estimates were available for four re-
cords (Table Ia). These 182 records were obtained during 46 earthquakes
whose published magnitudes (Volume II reports, Parts A through Y, see
Hudson et al., 1971) range from 3.8 to 7.7. The distribution of this

data among five magnitude intervals is as follows: magnitude 3.0 to
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3.9, 1 record; 4.0 to 4.9, 5 records; 5.0 to 5.9, 40 records; 6.0 to
6.9, 129 records; and 7.0 to 7.9, 7 records. As may be seen from this
distribution, there is a concentration of data between magnitudes 5

and 7 with only 13 records available for magnitudes less than 5.0 and
greater than 7.0. A majority (117) of the 182 records were registered
at stations which were located on alluvium (classified under s = 0;

see Trifunac and Brady, 1975 for more detailed description of this
classification), 52 records were obtained on intermediate type rocks

(s = 1) or close to boundaries between alluvium and basement rocks, and
only 13 records came from stations on basement rocks (s = 2). Of these
182 records, slightiy more than one half were recorded during the

San Fernando, California, earthquake of 1971.

Clearly, the data used in this study are far from adequate to
describe the magnitude range from M = 3 to M = 8 and all recording site
conditions. The most serious shortage of recorded accelerograms is
on basement rock sites (s = 2) and for magnitudes greater than M = 7.
The following analysis is no doubt seriously affected by the non-
uniformity of data and will have to be repeated and improved when more
records become available. Nevertheless, these data do represent the
largest collection of uniformly processed accelerograms so far, and
can be used as an interim basis for the preliminary development of
empirical models for the study of SA spectra.

The distribution of all 186 free-field accelerograms that could be
used for the correlations with Modified Mercalli Intensities is given

in Table Ib. It is clear from this distribution that most recordings
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TABLE Ia

Summary of 186 Accelerograms Recorded at "Free Field"
Stations or in Building Basements

No. of
Accelerograms
Earthquake* Used in
No. This Study Magnitude Caltech Report No.
1 3 6.3 B021, V314, V315
2 1 5.4 B023
3 - - U294
4 1 6.5 B024
5 1 6.0 B025
6 - - U295
8 - - U297
9 - - U298
13 1 5.5 B0 26
14 1 6.7 A001
15 1 6.4 B027
16 1 5.9 U299
17 1 6.4 U300
18 2 5.4 v3le, V317
19 1 6.5 T286
20 1 5.3 U301
21 2 7.1 B028, B029
22 1 5.6 T287
23 1 5.8 A002
24 5 7.7 A003, A004, A005,
A006, A007
26 1 5.5 B030
27 1 6.0 V319
28 1 5.5 T288
29 1 5.9 B031
30 1 5.3 U305
31 1 6.3 T289
32 2 6.5 A008, A009
33 1 5.8 A010
36 1 5.4 T292
37 1 6.8 AO11
39 1 4.7 V329
40 1 3.8 V320
41 5 5.3 A013, A014, AO015,
A016, AO17
42 2 4.4 V322, V323
43 1 4.0 V328
44 1 5.0 U307
45 1 5.7 U308
46 2 5.7 A018, U309
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TABLE Ia (Continued)

No. of
Accelerogram
Earthquake* Used in

No. This Study Magni tude Caltech Report No.

47 1 5.0 V330

48 2 6.5 B032, U310

49 1 4.0 V331

50 6 5.6 B034, B035, B036,
B037, B038, U311

51 1 6.3 T293

52 1 6.3 V332

53 2 5.8 B039, U312

54 1 5.2 U313

55 13 6.4 A019, A020, BO40,
Y370, Y371, Y372,
Y373, Y375, Y376,
Y377, Y378, Y379,
Y380

56 7 5.4 W334, W335, W336,
W338, W339, W342,
W344

57 98 6.4 Cc041, Co48, CO51,

C054, D056, D057,
D058, D059, D062,
D065, D068, E071,
E072, E075, E078,
E081, E083, F086,
F087, F088, F089,
F092, F095, F098,
F101, F102, F103,
F104, F105, G106,
G107, G108, G110,
G112, G114, H115,
H118, H121, H124,
1128, 1131, 1134,
1137, J141, J142,
J143, J144, J145,
J148, K157, L166,
L171, M176, M179,
M180, M183, M184,
N185, N186, N187,
N188, N191, N192,
N195, N196, N197,
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TABLE Ia (Continued)

No. of
Accelerograms
Earthquake* Used in
No. This Study Magnitude Caltech Report No.
57 (Cont'd) 0198, 0199, 0204,

0205, 0206, 0207,
0208, 0210, P214,
P217, P220, P221,
P222, P223, P231,
Q233, Q236, Q239,
Q241, R244, R246,
R246, R248, R249,
R251, R253, S255,
S258, S261, S262,
$265, S266, S267

* For further details on these earthquakes, see Trifunac and Brady
(1975).  Records U296, T274, T275, T276, U302, U303, U204, T290,
T291 and A012 which were recorded during the earthquakes numbered
7, 10, 11, 12, 25, 34, 35 and 38 were not included in this analysis.
Six of these records represent incomplete time histories. For
earthquakes 7 and 25 no reliable magnitude estimates were available.
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TABLE Ib

Distribution of 186 Accelerograms Recorded at "Free Field'" Stations
or in Building Basements with Respect to M.M.I. and s=0, 1 and 2

M. M. 1 s =0 s =1 s = 2 N
ITI 1 1
Iv 1 2 3
\Y 17 15 2 34
VI 43 16 7 66
VII 49 21 5 75
VIII 6 6
IX
X 1 1

n = 117 n = 54 n =15 n = 186

s=0 s=1 s=2 total ~
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correspond to the M.M.I. levels V, VI, and VII with less than 3% of
all data falling outside this range. It is also clear that recordings

on hard rock (s = 2) are, again, not adequately represented.
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ABSOLUTE ACCELERATION SPECTRA OF DIGITIZATION NOISE

Before proceeding with the regression analysis of absolute accel-
eration spectra, SA, it is necessary to examine the extent to which
the computed SA spectra are affected by digitization and processing
noise. Routine data processing techniques (Trifunac and Lee, 1973)
which have been designed for typical accelerograms simply band-pass
filter raw digitized data between 0.07 cps and 25 cps or between 0.125
cps and 25 cps depending on whether the raw data have been digitized
from paper or 70-mm and 35-mm film records. However, since the digi-
tization noise does not have constant spectral amplitudes in the
respective frequency bands and since these amplitudes depend on the
total length of record which has been digitized, for the analysis in
this paper, it is necessary to extend the results presented by Trifunac
et al., (1973) and compute the average SA spectra of digitization noise
for different record durations.

Six operators digitized a straight line twice and one operator
digitized it once, producing a total of thirteen digitizations. The
straight line which they digitized extended diagonally from the lower
left corner of a rectangular Mylar transparancy, 10 in. high and about
23 in. long. The total average number of digitized points has been
selected to be about 700, which corresponds to about 30 pts/inch. This
digitization rate was chosen to correspond to the average digitization
rate for 4X enlargements of 10 to 15 cm long segments of 70-mm film
records from which an average operator would digitize about 40 to 50
points per 4 cm, which corresponds to a time interval of one second.

The reasons for selecting a sloping straight line to analyze digiti-
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zation noise and other pertinent details of this and related procedures
have been discussed by Trifunac et al., (1973) and will not be re-
peated here.

To simulate the effect of the fixed baseline on accelerograms, we
decimated all raw digitizations of the straight line and kept only
16 points from the total sequence of about 700 points. For the 4X
enlargements of 70-mm film records, this corresponds to digitization
of the fixed baseline at equal intervals of about 1 sec long. By
smoothing these decimated data with a %,%,% filter and by subtracting
the result from the raw digitization, the long-period drifts were
eliminated from the raw data by following the same procedures used in
routine processing of recorded accelerograms which contain fixed
mirror traces. An example of a typical acceleration noise for a 15
sec long record is shown in Figure 5 after it has been processed through
the routine Volume II (Trifunac and Lee, 1973) band-pass filtering. Once
and twice integrated acceleration noise data are also shown in this fig-
ure to illustrate what may be the typical appearance of velocity and
displacement curves which results from the digitization noise. Table
ITI presents the average and standard deviations for the peaks of
acceleration, velocity and displacement computed from 13 records for
the duration of noise records equal to 15, 30, 60 and 100 seconds. The
peak displacement amplitudes in this table are smaller by a factor of
2 or 3 than the estimates of the overall accuracy of computed ground
displacements by Trifunac and Lee, 1974. This could be explained as
follows: First the typical 70-mm record, which is longer than about

15 seconds, is digitized in segments which are about 10 to 15 sec long.
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TABLE II
Averages and Standard Deviations of Peak Acceleration, Peak Velocity,

and Peak Displacement That Resulted from Standard Processing
of Digitization of Records containing Noise Alone

Duration of Noise Record

15 sec 30 sec 60 sec 100 sec
acceleration ave. 1.66 1.72 1.75 1.74
(cn/sec?) (13 records)
st. dev. 0.48 0.48 0.46 0.46
ave. 0.46 0.55 0.59 0.58
velocity (13 records)
(cm/sec) st. dev. 0.13 0.15 0.14 0.13
ave. 0.49 0.61 0.68 0.73
displacement (13 records)

(cm) st. dev. 0.19 0.18 0.19 0.19
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Moving the records to digitize successive segments adds a "saw-tooth"
like sequence of straight lines to the digitized amplitudes and, thus,
additional long period errors which are not present in the thirteen
noise digitizations studied in this paper. The long-period noise
contributions resulting from this "saw-tooth" like error are eliminated
from the digitized data off 70-mm film records which have all been
high-pass filtered from 0.125 cps rather than from 0.07 cps (see
Trifunac et al., 1973), but some intermediate frequency errors are
still present in the data. Second, and probably a more important
reason for peak displacements in Table II being two to three times
smaller than our previous estimates of the overall displacement errors
(Trifunac and Lee, 1974), is that this noise study was carried out under
more uniform and controlled conditions than the actual digitizations of
the 381 accelerograph records, which took several years to complete

and involved many more operators and different digitizing equipment

as well.

For the purpose of this and other related investigations we will
assume that the characteristics of the above described '"moise" acceler-
ograms are satisfactory to describe approximately the overall noise
amplitudes in 182 records for short and intermediate periods, T, and
we will use the average SA spectra of these thirteen digitizations to
carry out an approximate scheme of noise subtraction from the computed
SA spectra of 546 accelerograms. The amplitudes of the average and of
the average plus one standard deviation of spectral amplitudes of noise
are shown in many subsequent figures of this report where the ampli-

tudes of SA spectra have been presented.
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EMPIRICAL MODELS FOR SCALING
ABSOLUTE ACCELERATION SPECTRA

In two recent studies, Trifunac (1976b, 1977) presented two
approximate models for estimating the range of possible spectral am-
plitudes of strong ground motion for (a) known earthquake magnitude,
source-to-station distance and recording site conditions, and (b) known
Modified Mercalli Intensity at the site, and recording site conditions.
The same empirical models will be applied in this report to scaling
of absolute acceleration amplitudes at a selected set of discrete
periods, T. For this purpose, the equations from the previous work

can be modified to become

loglo[SA(T),P] M + loglvo(R) - a(Tp ~ b(TIM - c(T)

d(T's - e(Tv - £(TIM> - g(T)R (1)

and

1°glo[SA(T),p] a(T)p + b(T)T, + c(T) + d(Ts +e(T)v (2)
where M is earthquake magnitude, usually ML (Richter, 1958), s re-
presents the type of site conditions (s = 0 for alluvium, s = 1 for
intermediate rocks, and s = 2 for basement rocks), v designates the
horizontal or vertical components (v = 0 for horizontal, v = 1 for
vertical). The term logloAO(R) represents an empirical function
(Richter, 1958) which describes the amplitude attenuation with distance
R from the epicenter (in km); numerical values are listed in Table III.
IMM stands for a given M.M.I. level. The confidence level p, as used
here, is not a probability. However, for values of p between 0.1 and
0.9, it approximates the probability that SA(T),p will not be exceeded,

given the other parameters of the regression. The units of SA are the

fraction of the accelerations of gravity. Functions a(T), b(T),...,
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TABLE III

*
loglvo(R) Versus Epicentral Distance R

R (km) —10g10A0(R) R (km) —logloAOGR) R (km) -loglvo(R)
0 1.400 140 3.230 370 4.336
5 1.500 150 3.279 380 4.376
10 1.605 160 3,328 390 4.414
15 1.716 170 3.378 400 4.451
20 1.833 180 3.429 410 4.485
25 1.955 190 3.480 420 4.518
30 2.078 200 3.530 430 4.549
35 2.199 210 3.581 440 4.579
40 2.314 220 3.631 450 4.607
45 2.421 230 3.680 460 4.634
50 2.517 240 3.729 470 4.660
55 2.603 250 5.779 480 4.685
60 2.679 260 3.828 490 4.709
65 2.746 270 3.877 500 4.732
70 2.805 280 3.926 510 4.755
80 2.920 290 3.975 520 4.776
85 2.958 300 4.024 530 4.797
90 2.989 310 4.072 540 4.817
95 3.020 320 4.119 550 4.835
100 3.044 330 4.164 560 4.853
110 3.089 340 4.209 570 4.869
120 3.135 350 4.253 580 4.885
130 3.182 360 4.295 590 4.900

* Only the first two digits may be assumed to be significant.
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£(T) and g(T) in (1) and (2) are as yet unknown functions of T which
will be determined in the following regression analyses. In this
paper, as in the analysis of peak amplitudes and Fourier spectra
(Trifunac, 1976a, b), the higher order terms in P> s and M and the
terms which include different products of p, s and M will be neglected.
The functions a(T), b(T), ..., in (1) and (2) are different functions
which will be derived in two separate analyses, but their symbols
have been selected to represent the corresponding types of data
dependence in both (1) and (2). Their signs differ in (1) and (2)
only for consistency with previous studies.

Equation (1) introduces a new term g(T)R, the analogue of which
was not present in one of our previous studies (Trifunac, 1976a).
This term now models the period dependent attenuation correction fac-

tor for distance R and its form corresponds to the usual amplitude

TR
QBT

attenuation e » on a linear scale, which is often employed to model
approximately the effect of anelastic attenuation. Here B stands for
the shear wave velocity and Q is the attenuation constant. In (1) g(T)
then might be thought of as corresponding to QgT-logloe.

If the 1og10A0(R) terms were to represent the geometric spreading
only, then g(T)R would model the equivalent anelastic attenuation.
However, logloAO(R), which has been derived empirically from the data
on actual peak amplitudes of small earthquakes in Southern California,
represents an average combination of geometric spreading and anelastic
attenuation for a frequency band centered around 1 cps. Therefore, the

term g(T)R cannot be thought of as modeling 1og10e but rather

T
QBT
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represeﬁts a correction to the average attenuation which is represented
by 1og10AO(R). In the study of peak accelerations, peak velocities,

and peak displacements (Trifunac, 1976a), a term like g(T)R was omitted
on purpose to avoid undue emphasis and dependence in the model on the
digitization noise which is reflected in larger peak amplitudes especial-
ly for peak displacement, at distances which are typically greater than
100 km. 1In this paper, because absolute acceleration spectral ampli-
tudes are being studied, it is possible to subtract approximately the
expected contributions to spectral amplitudes that results from noise;

the g(T)R then reflects corrections to the 1og10Ao(R) term.
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REGRESSION ANALYSES

The computation of the coefficient functions a(T), b(M), ...,
f(T) and g(T) in the equations (1) and (2) was carried out at 91
discrete periods T ranging from 0.04 sec to 15.0 sec. From each of
the 546 SA spectra, for correlations with M, and 558 for correlations
with M.M.I., an average noise spectrum was first subtracted® This
noise spectrum was obtained by linearly interpolating from the spectra
which were computed for 15, 30, 60 and 100 seconds to obtain a noise
spectrum which would apply for a record with the actual duration
(Table IV) of each accelerogram. The data for fitting a(T), b(T),...
in equation (1) were then computed by subtracting from loglo[SA(T)]
the respective magnitude and logloAO(R) for the epicentral distance R
corresponding to each of 182 records. Regression analysis was then
carried out for each of 91 periods by fitting the remaining right hand
side of equation (1) and the original data for equation (2).

To carry out these regression analyses with a(T), b(T), ..., £(T)
and g(T) as coefficients at a fixed value of T, we began by (a) par-
titioning all data into five groups corresponding to magnitude groups
3.0-3.9, 4.0-4.9, 5.0-5.9, 6.0-6.9, and 7.0-7.9, and (b) partitioning
into seven groups corresponding to M.M.I. levels III, IV, V, VI, VII,
VIIT and X. The data in each of these groups were next grouped ac-

cording to the site classifications s=0, s=1 and s=2. The data within

* It is noted that SA(¥1 + ¥2) # SA(Y1) + SA(Y¥2), where y1 and y. are
two sources of ground shaking. Furthermore, if y, is the signal and
¥» is the noise, then the stochastic nature of y, prevents any
exact noise elimination scheme from being carried out. Thus, this
procedure is an approximation which, empirically, decrea§es the.di§—
tortion by noise of the SA svectra when the signal to noise ratio 1s

small.
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TABLE IV

Total Duration and Low Cut-Off Frequency
for Acceleration Records Used in This Study

Low Frequency
Record No.  Caltech Report No. Total Duration*  Cut-Off (cps)

1 A001 54 0.07
2 A002 56 0.07
3 A003 77 0.07
4 A004 54 0.07
5 A005 75 0.07
6 A006 83 0.07
7 A007 79 0.07
8 A008 78 0.07
9 A009 42 0.07

10 A010 51 0.07

11 A011 90 0.07

12 A013 25 0.07

13 A014 26 0.07

14 A015 27 0.07

15 A016 25 0.07

16 AO17 40 0.07

17 A018 40 0.07

18 A019 87 0.07

19 A020 79 0.07

20 B021 99 0.07

21 B023 75 0.07

22 B0 24 90 0.07

23 B0 25 51 0.07

24 B0 26 71 0.07

25 B027 67 0.07

26 B028 67 0.07

27 B029 89 0.07

28 B0 30 58 0.07

29 B0 31 65 0.07

30 B0 32 82 0.07

31 B0 34 44 0.07

32 B0O35 26 0.07

33 B0 36 44 0.07

34 BO37 30 0.07

35 B038 30 0.07

36 B0 39 30 0.07

37 B040 45 0.07

38 Co41 31 0.07

39 C048 59 0.07

40 €051 52 0.07

41 C054 57 0.07

42 D056 62 0.07
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TABLE IV (Continued)

Low Frequency
Record No. Caltech Report No. Total Duration*  Cut-Off (cps)

43 D057 82 0.07
44 D058 79 0.07
45 D059 57 0.07
46 D062 54 0.07
47 D065 41 0.07
48 D068 37 0.07
49 E071 30 0.07
50 E072 54 0.07
51 E075 44 0.07
52 E078 57 0.07
53 E081 50 0.07
54 E083 63 0.07
55 F086 78 0.07
56 F087 81 0.07
57 F088 30 0.07
58 F089 59 0.07
59 F092 - 34 0.07
60 F095 67 0.07
61 F098 56 0.07
62 F101 11 0.07
63 F102 10 0.07
64 F103 27 0.07
65 F104 11 0.07
66 F105 64 0.07
67 G106 31 0.125
68 G107 29 0.125
69 G108 99 0.125
70 G110 98 0.125
71 G112 52 0.125
72 Gl14 58 0.125
73 Hil5 40 0.125
74 H118 86 0.125
75 - Hl121 46 0.125
76 H124 33 0.125
77 1128 27 0.125
78 1131 48 0.125
79 1134 49 0.125
80 1137 57 0.125
81 J141 60 0.07
82 J142 37 0.125
83 J143 35 0.07
84 J144 37 0.07
85 J145 99 0.125
86 J148 19 0.125
87 : K157 32 0.125
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TABLE IV (Continued)

Low Frequency
Record No. Caltech Report No. Total Duration*  Cut-Off (cps)

88 L166 65 0.125
89 L171 53 0.07
90 M176 88 0.125
91 M179 13 0.07
92 M1 80 99 0.125
93 M183 20 0.125
94 M1 84 30 0.125
95 N185 44 0.125
926 N186 59 0.125
97 N187 30 0.125
98 N188 45 0.125
99 N191 70 0.125

100 N192 25 0.125

101 N195 99 0.125

102 N196 53 0.125

103 N197 43 0.125

104 0198 31 0.125

105 0199 35 0.125

106 0204 69 0.07

107 0205 99 0.07

108 0206 53 0.125

109 0207 62 0.07

110 0208 62 0.125

111 0210 54 0.125

112 P214 30 0.07

113 P217 30 0.07

114 P220 61 0.07

115 P221 30 0.07

116 P222 58 0.07

117 , P223 33 0.07

118 P231 48 0.125

119 Q233 37 0.125

120 Q236 42 0.125

121 Q239 45 0.125

122 , Q241 49 0.125

123 R244 42 0.125

124 R246 44 0.125

125 R248 45 0.125

126 R249 41 0.125

127 R251 31 0.125

128 R253 36 0.125

129 $255 30 0.125

130 S258 48 0.125

131 $261 39 0.125

132 S262 36 0.125
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TABLE IV (Continued)

Low Frequency
Record No. Caltech Report No. Total Duration*  Cut-Off (cps)

133 5265 21 0.125
134 5266 35 0.125
135 $267 49 0.125
136 T286 71 0.07
137 T287 60 0.07
138 T288 86 0.07
319 T289 78 0.07
140 T292 43 0.07
141 T293 75 0.07
142 U294 ** 59 0.07
143 U295%* 21 0.07
144 U297%* 9 0.07
145 U298%** 76 0.07
146 U299 62 0.07
147 U300 68 0.07
148 U301 56 0.07
149 U305 57 0.07
150 U307 77 0.07
151 U308 82 0.07
152 U309 88 0.07
153 : U310 74 0.07
154 U311 72 0.07
155 U312 93 0.07
156 U313 61 0.07
157 V314 99 0.07
158 V315 99 0.07
159 V316 67 0.07
160 V317 62 0.07
161 V319 49 0.07
162 V320 36 0.07
163 V322 49 0.07
164 V323 23 0.07
165 V328 26 0.07
166 V329 69 0.07
167 V330 75 0.07
168 V331 7 0.07
169 V332 43 0.07
170 W334 17 0.07
171 W335 38 0.07
172 W336 10 0.07
173 W338 30 0.07
174 W339 42 0.07
175 W342 23 0.07
176 W344 23 0.07
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TABLE IV (Continued)

Low Frequency
Record No. Caltech Report No. Total Duration*  Cut-Off (cps)

177 Y370 85 0.07
178 Y371 82 0.07
179 Y372 52 0.07
180 Y373 42 0.07
181 Y375 54 0.07
182 Y376 60 0.07
183 Y377 44 0.07
184 Y378 21 0.07
185 Y379 62 0.07
186 Y380 51 0.07

*Rounded to nearest second.

**Not included in the analysis because of incomplete information on
earthquake magnitude.
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each of these subgroups were then divided into two parts corresponding
to v=0 and v=1. The n data remaining in each of these final parts

were next rearranged so that the numerical values decrease monotoni-
cally. Then, if p=m/n, the mth data point from a group of n points
represents an estimate of (a) long[SA(T),p] - M - loglvo(R) or (b)
loglo[SA(T),p] which is to be associated with the approximate p-percent
confidence level. If the number of data points, n, in each group was
greater than 19, we used 19 levels for subsequent least squares fitting
with the p levels equal to 0.5, 0.10, 0.15, ..., 0.9 and 0.95. If the
number of data points in each group was less than 19, we used all data
points and computed the estimates of the corresponding confidence levels
p from the fraction of points that were smaller than a given level to
the total number of points in that group of n. This approximate scheme
has the effect of decreasing the "weight'" of data groups for which many
points are available in the subsequent least squares fitting.

For those accelerograms which were high-pass filtered from 0.125
cps rather than from 0.07 cps (Table IV) the data have not been in-
cluded in the regression analysis for periods, T, longer than 8 seconds.
This and the fact that for many intermediate and small earthquakes spec-
tral amplitudes for the long period waves have a small signal-to-noise
ratio led to the decision to terminate the final computation and presen-
tation of a(T), b(T), ..., £f(T) and g(T) for both correlations with M
and M.M.I. at the long period end equal to 12 seconds rather than at

15 seconds.

a. Correlations in Terms of M, R, p, s and v

Figure 6 and Table V present the results of least squares fitting

of equation (1) to the SA data. The 91 discrete estimates of a(T),
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b(T), ..., £(T) and g(T) for ¢ = 0.0, 0.02, 0.05, 0.10 and 0.20 have
been smoothed by low-pass filtering the data with an Ormsby filter
along the logloT axis.

For fixed T, p, s, v and R, 1og10[§A(T],p] - M- 1og10AO(R) re-
presents a parabola when plotted versus M. The particular choice
of a parabola in equation (1) has no physical significance since the
functional growth of spectral amplitudes with M is not known at this
time. Our choice is based on our previous work which dealt with peaks
of strong ground motion (Trifunac, 1976a), with the Fourier amplitude
spectra (Trifunac, 1976b), by the simplicity of its functional form
and by the observation that the local amplitudes of near-field strong
ground motion, for the limited range of periods considered in this
analysis (T<15 sec), seem to cease to grow appreciably with an increase
in M for large earthquakes (Trifunac, 1973). Thus, by employing the
approximate model which is defined by equation (1), and after the
coefficients a(T), b(T), ..., £(T) and g(T) have been determined by
regression, we assume that loglo[éA(T),p]grows linearly with M up to
some magnitude Mmin = -b(T)/2£f(T). Above Mmin’ loglo[SA(T),p] still
grows with M but with a slope which is less than 1 unit until the maxi-
mum is reached at Mmax = [1 - b(T)1/2£(T). For magnitudes greater than
Mmax we assume that the amplitude of 1og10[SA(T),p] remains constant
and equal to its value for M = Mmax' With these arbitrary restrictions,
equation (1) becomes

loglvo(R) - loglo[SA(T),P] =
(M +a(T)p+h (MM +c(T)+d(T)sve (T)v+f(T)M§lax+g(T)R for M > M

X

2
-M +  a(Mp+b(T)M+c(T)+d(T)s+e(T)v+E£(T)M +£(T)R for Mmin.f}kiMmax

2
-M + a(T)p+b(T)Mmin+c(T)+d(T)s+e(T)v+f(T)Mmin+g(T)R for M i-Mmin

(3



-40-

Table VI presents the values and definitions of Moin

and M for

max
eleven selected periods which range from 0.04 to 7.5 seconds. As
may be seen from this table and from Figure 7, this analysis suggests
that 1og10[$A(T),P] may cease to grow linearly with M for earthquakes
between M = 4 and M = 5.5 and that it perhaps reaches its maxima
for magnitudes ranging from about M = 7.5 to about M = 8.5. These
estimates of M . and M are more reliable for periods, T,

min max
which are not close to the left and right limits of the T-inter-
val considered in this study, because M . and M depend on
min max
smoothed amplitudes of b(T) and £(T) which tend to be distorted in the
vicinity of the left and right ends by the process of digital filtering.
The range of estimates for M .  and M can, of course, only be taken
min max

as tentative, since there is not an adequate number of recordings for
M greater than 7 and less than 5. Furthermore, our fitting pro-
cedure treats all events as if they have magnitudes between Mmi and

n
Mmax; thus, if the assumed shape is reasonable, events outside that
region which is quadratic in M will lead to distorted estimates of
the parameters.

The range of values for M . and M in Table VI is in fair
mi max

n
agreement with similar estimates of M . and M in the related

min max
analysis of the dependence of peak acceleration, peak velocity and
peak displacement on magnitude (Trifunac, 1976a), and with the analysis
of Fourier amplitude spectra (Trifunac, 1976b). This agreement, how-
ever, only shows that there is consistency of interpretation between

these two similar models in the study of different characteristics of

the same data, but it does not provide an independent support for the
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TABLE VI
Mmin and Mmax Estimated from the Regression
Based on Equation (1)
Period T, £=0.0) =002 | z=0.05 | £=0.10 | z=0.20
sec
* * %
M . M M. M M . M M . M M . M
min | max | min | max | min | max | min | max | min | max
0.04 3.89 18.1914.14 {7.71 14.15}|7.76 } 4.12 | 7.8314.06] 7.96
0.07 4.27 18.00 14.15 }17.7014.24 }17.65}14.20)7.71|4.21|7.75
0.11 4.5117.85]14.31 }7.59|14.33]|7.5414.2817.58}14.30] 7.59
0.19 4.62 |7.8814.55|7.51|4.46 |7.5114.41]17.54}14.38] 7.61
0.32 4.61 18.11 14.63]|7.68}14.56}17.67]4.51)7.70}4.46] 7.78
0.55 4.66 | 8.40 | 4.65 |8.1514.61 |8.10|4.62]8.08}4.53] 8.15
0.92 5.06 |8.28 14.97 18.3214.92|8.31]4.92|8.25}14.76] 8.39
1.56 5.50§7.97}5.41]18.00}5.35}]7.98]5.28|8.01)5.13] 8.09
2.63 5.7017.78 15.67 }7.72 ] 5.64 }7.69|5.57}7.71}5.45} 7.69
4.45 5.6617.6215.73]17.55}5.73|7.5315.70 | 7.50} 5.59] 7.50
7.50 5.40 } 7.64 }5.51 }7.58 ] 5.54 | 7.58 } 5.57 ]| 7.52 | 5.46 | 7.56
sm . =22
min  2£(T)
oy o LD(D
max 2f(T)
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choice of these models or for the analysis which is based on these
models. We are presenting the estimates of Mmin and Mmax in this re-
port and discussing their possible physical meaning as it may relate
to our present understanding of the earthquake source mechanism to
show that the regression analysis in this report does not lead to
unreasonable inferences when applied outside the range for which the
data are now available. The final test, as well as the improvement

of the model, can only come from numerous recordings of representative
strong-motion records in the future.

The confidence level function a(T) decreases from about -1.0 for
short periods to about -1.6 at periods of about 10.0 sec. This means
that the spread of spectral amplitudes about the mean level is smallest
close to the short periods equal to 0.04 sec and that it grows for
longer periods to reach its maximum for T=10 sec. The numerical values
of a(T) are comparable to the corresponding coefficients in similar
correlations of peak acceleration (a=x-0.9), peak velocity (a=-1.1),
and peak displacement (a= -1.3) (Trifunac, 1976a). This is as one
might expect, since the peak acceleration is approached by the am-
plitudes of SA for T-0.

The amplitudes of the site dependent function d(T) are negative
for periods shorter than about 0.2 sec. This means that the spectral
amplitudes are, on the linear scale, up to about 20% greater at base-
ment rock sites (s = 2) than on alluvium (s = 0). For periods greater
than 0.2 sec d(T) becomes positive and reaches a nearly constant
level equal to about 0.2 for periods greater than 1.0 sec. For these

long periods equation (1) indicates that the spectral amplitudes
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recorded on alluvium (s = 0) are on the average about 2.5 times greater
than the average spectral amplitudes recorded on basement rock sites

(s = 2). It is interesting to observe that the corresponding d co-
efficients for peak displacements (Trifunac, 1976a) and Fourier spectrum
amplitudes (Trifunac, 1976b) are 0.2 as well.

In the high frequency range d(T) is slightly negative (-0.06 < d(T)
< -0.02). This compares favorably with Trifunac (1976a), who found
d to be 0.06 in the regression of peak acceleration. This confirms the
observation that currently available data on peak accelerations when
correlated with M and A is not very sensitive to site conditions.

Function e(T) in Figure 6 shows that for frequencies greater than
about 5 cps, the amplitudes of SA spectra of vertical acceleration and
for small ¢ approach the corresponding SA amplitudes of horizontal
accelerations. The amplitudes of e(T) for periods longer than about
0.2 sec are farily consistent with similar estimates of coefficient e
for peak velocity (e~0.34), and peak displacement (e&x0.24) (Trifunac,
1976a).

The amplitudes of g(T) are small and vary from about -0.0003 to
about -0.0012 throughout the period range from 0.04 sec to 12 sec
(Figure 6). This means that for a typical distance, say R = 100 km,
the correction term g(T)R in equation (1) contributes at most 0.12
on the logarithmic scale, i.e., by a factor of 1.3 on the linear ampli-
tude scale. Considering the spread of spectral amplitudes for a fixed
set of parameters and the values of a(T), it appears that g(T)R re-
presents only a minor correction to the overall average scaling of

amplitudes versus distance in terms of 1og10AO(R) function. Therefore,
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logloAO(R) + R/1000 would represent a good approximation for scaling

SA amplitudes for all periods between 0.04 and 12 seconds.

b. Characteristics of the Model

Figures 8 through 17 show the SA spectra for horizontal and vertical
ground motion at R = 0, for magnitudes M = 4.5, 5.5, 6.5, 7.5 and 8.5,
for the approximate linearized 50 percent confidence level (p = 0.50)
and for ¢z = 0.0, 0.02, 0.05, 0.10 and 0.20. The average and the
average plus one standard deviation of the smoothed spectra that would
result from digitization noise and for the record durations equal to
15, 30, 60 and 100 seconds are also shown. The shape of the digitization
noise spectra depends on damping as well as duration.

Formally, equation (1) implies that the spectra SA(T) computed at
R = 0 represent the maximum spectral amplitudes for all other para-
meters held constant. Since an adequate number of SA spectra computed
from recorded strong-motion accelerograms is available only for a
distance range between about 20 km and 250 km and because the 1og10AO(R)
curve may not be the best representation for the amplitude variation
with distance for R less than about 10 to 20 km for all magnitudes
(e.g., Trifunac, 1976a, b), the spectra in Figures 8 through 17 only
represent extrapolations based on equation (1) and at this time cannot
be tested by the recorded strong-motion data. However, because the
g(T)R term contributes a negligible amount to spectral amplitudes at
distances less than 20 km, the shape of the SA spectra at say R = 20
km and at R = 0 km is very similar. Because in previous discussions

we examined some spectral characteristics at R = 0 km (Trifunac, 1976a,
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b), which are based on the properties of shallow and surface earthquake
sources, to enable comparison and consistency checks we chose to
present the spectra in Figures 8 through 17 for epicentral distance
R = 0.

The expected value of the SA spectrum amplitudes computed from
digitization noise (Figures 8 through 17) had been subtracted from
the SA amplitude spectra of the digitized accelerograms before the
regression analysis was carried out. However, because this noise
subtraction scheme is approximate, it does not eliminate all the long
period errors in the computed absolute acceleration spectra (Trifunac et
al., 1973). Furthermore, to maintain as many spectra as possible for
all periods which were considered in the regression analysis, we did
not eliminate all those spectral amplitudes that were characterized by
low signal-to-noise ratio. The consequence of this has been that the
functions b(T), c(T) and f(T) still reflect considerable noise content
in the raw data for periods longer than 1 to 2 seconds for magnitudes
close to 4.5 and for periods longer than 6 to 8 seconds for magnitudes
close to 7.5. Thus, the spectra that would be obtained from equation
(1) are not accurate for the periods and magnitudes greater than those
just indicated. This limitation is also reflected in some of the
Figures 8 through 17 where we terminated the spectra in this long per-
iod range. The long period cut-off points in those figures have been
selected at periods where spectra computed from equation (1) begin to
deviate appreciably from a constant slope and start to approach a
constant level.

Further corrections and improvements of the functions a(T), c(T)
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and £(T) so that they do not depend on contributions from processing
and digitization noise, are, of course, possible. One possible pro-
cedure would be to apply an optimum band-pass filter for each of the
546 accelerograms used in this study. The filter could be designed
in such a way that only selected frequency bands remain so that all
data have better than some predetermined signal-to-noise ratio.
However, we did not carry out such correction procedures in this work
because many data points would have been eliminated from an analysis
that already has only a marginal number of representative accelero-
grams. Furthermore, such correction procedures would require separate
extensive and costly analysis of each accelerogram and would only
contribute to better accuracy of b(T), c(T) and £(T) in the frequency
range where the overall trends of spectral amplitudes may be inferred
from other theoretical and/or observational analyses (Trifunac, 1976b).
For these reasons, it was decided to postpone this noise elimination
scheme for a later time when more strong-motion accelerograms become
available.

In the short period range for small magnitudes (Figures 8 through
17) the signal-to-noise ratio also becomes small. However, because
the strong-motion data for all recordings employed in this paper are
proportional to acceleration, the noise and the recorded spectra tend
to be roughly parallel in the high-frequency range so that poor signal
accuracy can be expected only for small and/or distant earthquakes and
for very high frequencies. Therefore, the high-frequency noise contri-
butions to digitized accelerograms represent less of a problem than

the long period noise.
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As it can be seen from equation (1), the terms 1og10AO(R) and
g(T)R govern the changes of SA amplitudes with distance. The term
loglvo(R) leads to overall amplitude variations which are frequency
independent, while the term g(T)R is negative for all frequencies
(f = 1/T), and acts to increase SA(T) amplitudes with distance. Be-
cause, on the whole, the absolute value of g(T) is smaller for
intermediate-frequencies and larger for high and low-frequencies, the
net effect of g(T)R is to attenuate the intermediate-frequency waves
somewhat faster than the high and low-frequency waves.

Figures 8 through 17 show SA spectra for M

1]

4.5, 5.5, 6.5, and 7.5
plotted with heavy lines and the spectra for M = 8.5 plotted with
light lines. This was done to emphasize that the spectra for M = 8.5
are well beyond the magnitude range for which the data is currently
available and thus represent extrapolations based on equation (1).
Though all our previous work (e.g., Trifunac, 1976a, b) also suggests
that the spectral amplitudes should cease to grow for M in the range
from 6.5 to 7.5 the check on the validity of this extrapolation must
await the critical tests in terms of actual strong motion data.
Equation (1) can be utilized to study the relationships between
the fixed shape spectra shown in Figures 1, 2, 3 and 4 and the spectra
which depend on M, R, s, v and p. A convenient format for such a
comparison consists of forming [normalized SA(T)] = SA(T)/SA(0.04).
Such normalization is approximately equivalent to normalizing all SA
spectra by the respective peak accelerations prior to carrying out
the regression analysis for a(T), b(T), ..., and g(T). The shape of

the resulting spectra would, of course, still depend on M, R, s, v and p.



-59-

HORIZONTAL

£=0.00
R=0
p=0.50

—
—
—
—
—
—
—
— —
— —

WNY123dS VS d3ZITTVINHON

T-SECONDS

FIGURE 18



NORMALIZED SA SPECTRUM

-60-

VERTICAL
£=0.00
R=0
p=0.50

T-SECONDS

FIGURE 19




NORMALIZED SA SPECTRUM

-61-

HORIZONTAL
£=0.02
R=0
p=0.50

T-SECONDS

FIGURE 20




NORMALIZED SA SPECTRUM

-62-

VERTICAL
£=0.02
R=0
p=0.50

T-SECONDS

FIGURE 21




NORMALIZED SA SPECTRUM

-63-

HORIZONTAL
£=0.05
R=0
p=0.50

T-SECONDS

FIGURE 22




NORMALIZED SA SPECTRUM

-64-

VERTICAL
[ =005
R=0
’/\S=O p=0.50

T-SECONDS

FIGURE 23



NORMALIZED SA SPECTRUM

-65-

HORIZONTAL
£=0.10
R=0
p=0.50

T-SECONDS

FIGURE 24




NORMALIZED SA SPECTRUM

-66-

VERTICAL
£=0.10
R=0
p=0.50

T-SECONDS

FIGURE 25




NORMALIZED SA SPECTRUM

-67-

HORIZONTAL
[ =0.20

R=0
p=0.50

0.1

l
T-SECONDS

FIGURE 26




NORMALIZED SA SPECTRUM

-68-

VERTICAL
£=0.20
R=0
p=0.50

T-SECONDS

FIGURE 27




-69-

Examples of the normalized SA spectra for M = 4.5 and 7.5, for
s =0 and 2, for R =0, p = 0.5 and for ¢ = 0.00, 0.02, 0.05, 0.10
and 0.20 are shown in Figures 18 through 27. To avoid cluttering of
curves each figure shows only four spectral shapes for M = 4.5 and
7.5 and for s = 0 and 2. p = 0.5 was selected to illustrate the
"average' shapes. Additional figures to illustrate the dependence
of spectra on R were omitted because g(T) is small and influences the
spectral amplitudes only for large R. A dependence of spectral shapes
on s is as expected from the behavior of d(T) shown in Figure 6.
However, the periods where the spectra for s = 0 cross the spectra for
s = 2 are affected by the above normalization procedure. The dependence
of spectral shapes on magnitudes is in agreement with the expectations
based on the source mechanism theory which requires larger energy
content in the long period range for larger earthquakes (e.g., Trifunac,
1976b) . Examination of the Figures 18 through 27 shows the limitations
of the fixed shape SA spectra and the degree to which such spectra may
underestimate or overestimate SA amplitudes for given M, R, s, v and
p- In Figures 22 through 27, the appearance of larger amplitudes for
a magnitude 4.5 event than a magnitude 7.5 event is a consequence of
the normalization and the differing frequency content of radiation from
large and small events.

Figures 28, 29 and 30 show examples of how horizontal and vertical
spectra computed from equation (1) compare with the acceleration spectra
for the three components of strong-motion recorded at the Pacoima Dam
site during the San Fernando, California, earthquake of February 9, 1971.

In these figures, SA(T),p spectra were computed for p = 0.1, and 0.9 and
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for ¢ = 0.0, 0.02, 0.05, 0.10 and 0.20 so that the interval between
the spectra for p = 0.1 and p = 0.9 represents an estimate of the 80
percent confidence interval. As may be seen from these figures,
the agreement between the recorded and empirically predicted spectra
in this case is good. The spectra for p = 0.1 and p = 0.9 do not only
envelope the spectra of recorded accelerograms but also follow the
overall amplitude and shape trends well. This type of agreement
between empirically predicted and actually recorded spectra, however,
is probably better than what might be expected in an average case.

An example of worse than average fit is illustrated in Figures 31,
32 and 33 for the spectra of strong-motion accelerograms recorded in
El Centro during the Imperial Valley, California, earthquake of 1940.
This relatively poor agreement represents one good example of why the
function a(T) has such large amplitudes, implying about an order of
magnitude scatter at the 80% confidence interval.

The differences between computed and observed spectra in Figures
31, 32 and 33 clearly show that the scaling of spectral characteristics
of strong earthquake ground motion in terms of earthquake magnitude
alone cannot be expected to yeild satisfactory answers in all cases,
especially for complex earthquake mechanisms. Introduction of
additional parameters into the empirical scaling functions could reduce
the observed differences. The additional parameters could specify the
relative source-to-station geometrical position more precisely than is
now done by epicentral distance alone and could describe such properties
of the earthquake sources as radiation pattern and the direction and
velocity of the propagating dislocation. The compilation of these

additional parameters could be carried out during detailed source
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mechanism studies. Such studies have now been carried out for several
earthquakes that lead to the data base which is used in this paper

(e.g., Trifunac and Brune, 1970; Trifunac, 1972a; Trifunac, 1972b;
Trifunac, 1974; Trifunac and Udwadia, 1974). While such a posteriori
refinements of the empirical models will, no doubt, become possible

when more data becomes available for well documented and carefully studied
earthquakes, the practical question still remains: How detailed charac-
terization of possible future earthquakes will it be feasible to obtain
a priori? Detailed investigations may enable one to estimate the
possible location and probable size (e.g., magnitude and/or fault length)
of a future earthquake; if this earthquake is predicted to occur on the
existing fault, the relative position of the fault to the station may
also be known. However, such details as the stress-drop, the direction
and the velocity with which dislocation will propagate, and the possible
multiplicity of the source appear to be quite difficult to predict at
this time. Therefore, for practical earthquake engineering applications,
it may be desirable to work with empirical scaling functions which

are purposeiy not more detailed than equatioh (1), for example, so

that the empirical models themselves do not imply smaller uncertainties

than those which have to be associated with the input parameters.

c. Correlations in Terms of Iyy, p, s and v

Figure 34 and Table VII present the results of least squares
fitting of equation (2) to the SA data. The estimates of a(T), b(T),
.., and e(T) for ¢ = 0.0, 0.02, 0.05, 0.10 and 0.20 have been smoothed
by low-pass filtering the data with an Ormsby filter along the

loglOT axis.
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For selected values of T, p, s and v equation (2) represents a

straight line with respect to I

Here IM represents numerical

MM® M
values ranging from 1 to 12 and corresponding to the descriptive
Modified Mercalli Intensity (M.M.I.) levels I through XII. This sim-
plistic linear assigmment of numerical values to a qualitative M.M.I.
scale has been discussed elsewhere and need not be repeated here in
detail (e.g., Trifunac, 1976c). It is only useful to note here that
between the levels IV and VIII on the M.M.I. scale the linear form of
equation (2) appears to be adequate for this preliminary scaling of
the absolute acceleration spectra. We will discuss this point again
in connection with the comparison of equations (1) and (2) for the
largest levels of shaking.

The confidence level function a(T), shown in Figure 34, fluctuates
between 1 and 1.5 and has the overall trend of increasing from short
periods towards longer periods. This again implies that there is about
an order of magnitude difference between the 0.1 and 0.9 confidence
levels for a single earthquake. The smallest amplitudes of a(T) are
found in the period range between about 0.2 and 1.0 seconds. In the
corresponding correlations which dealt with peak acceleration (Trifunac,
1976c) we found the coefficient a to be 0.94. Since the absolute
acceleration spectra, SA, tend towards the absolute peak acceleration
for T->0 we would expect essentially all the coefficients found in
our previous study for scaling of peak accelerations to agree approxi-
mately with the amplitudes of a(T), b(T), d(T) and e(T). The coefficient
¢ in the correlation of peak accelerations with M.M.I. (Trifunac,
1976¢) is larger than c(T) for T->0 in this study by a factor approxi-

mately equal to 3.00. This is caused by different normalizations used
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in these two papers (in our previous work we used the units of cnm
and sec while in this paper we are using g = 981 cm/secz).
Function b(T) (Figure 34) fluctuates between 0.3 and 0.35 for
intermediate and short periods and then decreases towards 0.2 for
long periods. This means that for each additional level of IMM the
SA spectral amplitudes approximately double. We found the same rate of
growth with respect to Lym in the correlations with peak acceleration
using linear regression (Trifunac, 1976¢).
The amplitudes of the site dependent function d(T) are positive for

periods shorter than about 1 sec and negative for longer periods.
These amplitudes decrease from about 0.18 near T = 0.04 sec. to zero
near T = 1 sec. and towards 0.0 to -0.05 for T = 10 sec., depending
on the fraction of critical damping . Again, for T = 0.04 sec, the
amplitudes of about 0.17 are in fair agreement with d = 0.14 computed
for the linear regression analysis of peak accelerations with IMM
(Trifunac, 1976c). This trend of d(T) implies that the amplitude of
the absolute acceleration spectra on hard basement rock (s = 2) are
about twice as large as the spectral amplitudes recorded on alluvium
(s = 0) for the same level of shaking as qualitatively described by
Ly

Finally the function e(T) fluctuates between -0.1 and -0.35. Its
largest amplitudes are attained for T~;b.1 sec and for z = 0.00.
This shows that for short periods and small damping vertical ab-
solute acceleration spectra are nearly as large as the horizontal
spectra. This overall trend of e(T) in Figure 34 is in good

agreement with the trend of e(T) in the correlations of the Fourier
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amplitude spectra with M, R, s and v (Trifunac, 1976b) and with IMM’
s and v (in preparation). In this study, however, for periods shorter
than about 0.1 sec. e(T) ceases to grow and converges to the range of
amplitudes between -0.2 and -0.28 depending on the values of f. It is
noted that we found e = -0.27 in our previous work (Trifunac, 1976c).

It is instructive to compare certain characteristics of the two
models portrayed by equations (1) and (2). 1In both of these models,
functions a(T), b(T), ..., and e(T) describe the analogous type of
dependence on the scaling parameters p, M or Iyw? S and v. Function
a(T), for example, describes the scatter of spectra with respect to
the average spectral amplitudes for p=0.5 (see one of the later sec-
tions of this report for a more precise discussion of this distribution).
By comparing the absolute values of these functions in Figures 6 and
34, it is possible to compare approximately the‘expected scatter of
the observed spectral amplitudes with respect to equations (1) and (2).
Detailed analysis of these two figures will show that with the excep-
tion of several isolated periods |a(T)| in Figure 34 is smaller than
|a(T)| in Figure 6. This means that the model (2) appears to predict
SA amplitudes with somewhat smaller uncertainty than the model (1).
This provides a check on our previous findings (Trifunac, 1976c¢) which
lead to the conclusion that the quality of scaling of strong ground
motion by Modified Mercalli Intensity is better than might have been
expected.

Functions d(T) in Figures 6 and 34 are in qualitative agreement
showing that spectral amplitudes tend to be larger on hard basement
rock than on alluvium sites for T~ 0, with the reversed trend for T~10

sec, but differ in the overall level. ]d(T)I in equation (1) is
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larger for long periods and tends toward 0.2 depending on . TIts
absolute values at T ~ 10 sec in Figure 34 are only about 0.05

to 0.10. The consequence of this is that the period where the spectra
for s = 0 cross the spectra for s = 2 is shifted towards longer periods
for correlations based on (2) relative to the corielations based on
(1). These differences may be related to the distribution of the
available data with respect to magnitude, M, epicentral distance, R,
and the Modified Mercalli Intensities at the recording stations as well

as to the nature of the attenuation with distance.

d. Characteristics of the Model

Figures 35 through 44 show the SA spectra for horizontal and ver-
tical ground motion for M.M.I. levels IV, VI and VIII, for 50%
confidence level (p = 0.5) for site conditions s = 0 and 2 and for ¢
= 0.00, 0.02, 0.05, 0.10 and 0.20. The spectral amplitudes for the
range of M.M.I. between IV and VIII are shown in heavy lines to remind
the reader of the range where most strong-motion records are available.
To illustrate the trends implied by equation (2), but outside the
range where equation (2) applies, the SA spectra for M.M.I. levels
equal to X and XITI have also been plotted using light lines. The
average and average plus one standard deviation of the smooth SA
spectra of digitization noise and for record durations equal to 15,

30, 60 and 100 seconds are also shown in these figures.

The expected values of the SA spectral amplitudes computed from
the digitization noise (Figures 35 through 44) have been subtracted
from SA spectral amplitudes prior to the regression analysis. However,

for the reasons already discussed in section b of this report, not all
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contributions of this noise could be eliminated from the data. There-
fore, the functions b(T) and c(T), no doubt, reflect considerable
noise content in the data for periods longer than about 8 seconds for
M.M.I. near IV and greater. Other scaling functions a(T), d(T) and
e(T) are also affected by the digitization noise but probably to a
lesser degree than b(T) and c(T). Consequently, the spectra that can
be computed from equation (2) and for a(T), b(T), ..., e(T) shown in
Figure 34 are not accurate for the periods and intensities other than
those shown in Figures 35 through 44.

Figures 45 through 50 show examples of how horizontal and vertical
SA spectra computed from equation (2) compare with the spectra of
recorded motions at the Pacoima Dam Site and in E1 Centro. These
figures present SA spectra computed for p = 0.1 and 0.9, and for ¢ =
0.0, 0.02, 0.05, 0.10 and 0.20. The agreement between the resulting
80 percent confidence interval and the spectra of recorded accelero-
grams is good at the Pacoima Dam site and worse than average for the
El Centro accelerograms. Possible reasons for such discrepancies

have been discussed by Trifunac (1976b).
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SOME TESTS OF THE PROPOSED EMPIRICAL SCALING FUNCTIONS

Scarcity of the recorded strong-motion accelerograms for epicentral
distances less than about 20 km and for M.M.I. levels larger than VIII
represents major weaknesses of the currently available data, since
it is.for these distances and intensity levels that strong shaking
often becomes seriously damaging and needs to be scaled for earthquake
resistant design purposes. Though equations (1) and (2) can be used
formally to predict strong motion amplitudes in this range, there
appears to be no independent reliable way of testing such estimates
other than by strong motion recording during future earthquakes. In
the meantime, two questions remain: (1) whether the predicted spectral
amplitudes given by equations (1) and (2) are in agreement with other
estimates of strong motion amplitudes based on the same data set, and
(2) whether, with the scaling functions determined from the currently
available data, equations (1) and (2) can be used as an interim basis
for extrapolating the spectral amplitudes of strong shaking before ade-
quate strong motion recordings become available.

It is well known that the amplitudes of absolute acceleration spec-
tra of single-degree-of-freedom oscillators approaches the peak
acceleration as the period approaches zero (e.g., Hudson et al., 1972).
The required limiting conditions are not all achieved for our data
set since all strong motion data used in this study have been low-pass
filtered from 25 cps. However, at T = 0.04 sec, the SA amplitudes
should be close to the corresponding peak accelerations. Therefore, the
amplitudes of SA spectra computed from equations (1) and (2) for T =
0.04 sec should agree with the corresponding estimates of peak accelera-

tion presented in Trifunac (1976a,c). Table IX therefore lists horizontal
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TABLE IX

Comparison of SA Amplitudes for T = 0.04 sec With a
Previous Estimate of Peak Acceleration

logig of hoerizontal peak log;y of horizontal spectral
accelerations in g's from amplitudes for T = 0.04 sec
Trifunac (1976a) (this study)
R=0,p=0.5,s=0 v R=0,p=20.5 s=0
¢ =0.00 z =0.20
0.29 » - 0.25 0.31
0.10 0.07 0.05
-0.46 -0.44 -0.45
-1.37 | -1.16 -1.21
loglo‘of horizontal peak log;, of horizontal sepctral
accelerations in g's from amplitudes for T = 0.04 sec
Trifunac (1976¢) (this study) ‘
s =0, p=20.5 p=20.5 s=0
t=0.0 t=0.20
0.43 0.84 0.47
-0.16 0.16 -0.11
-0.74 -0.53 -0.70
-1.33 -1.21 -1.29
-1.91 -1.91 -1.88
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peak accelerations computed for M = 4.5, 5.5, 6.5 and 7.5, as well as
for M.M.I. levels 1V, VI, VIII, X, and XII, for R = O, p = 0.5 and

s = 0, calculated from Trifunac (1976a,c). It also gives the range of
absolute acceleration spectral amplitudes which is spanned by ¢ = 0.0
to £ = 0.20 at T = 0.04, using the correlations in this paper, for

the same set of conditions. In light of the constraints which limit
this type of comparison, Table IX shows that these estimates are in
fair agreement.

Two facts related to the data processing methods used in this study
differ when compared with the regression analyses in Trifunac (1976a)
and Trifunac (1976c) and should be kept in mind when interpreting the
comparison in Table IX. First the data of Trifunac (1976a) which was
used in the derivation of the regression equation for computing peak
accelerations contains some contributions from the digitization noise.
In the processing of SA spectral amplitudes and in the derivation of
a(T), b(T), ... for equation (1) (Figure 6) and (2) (Figure 34), average
digitization noise was subtracted from spectral amplitudes. Second,
the functions a(T), b(T), ... in Figures 6 and 34 have been smoothed by
means of an Ormsby filter along 1°g10T axis. Although this has resulted
in smoothing of spectral amplitudes, as computed from equations (1) and (2),
this possibly introduced some distortion of the final spectral amplitudes
as a result of the data processing assumption required to carry out
digital filtering at the end of the data set (T = 0.04 sec). More
precise comparison of SA amplitudes and the corresponding peak accelera-
tions based on this and our previous studies are, of course, possible.
One way to do this would be to use the actual distribution function of

SA about the models (1) and (2) and about the corresponding models for
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peak accelerations. We consider this approximate comparison in Table
IX to be acceptable and postpone the discussion of actual probability
distribution of spectral amplitudes for the later section of this
report.

Next we examine the degree to which the models presented by
equations (1) and (2) are mutually compatible in the epicentral dis-
tance range and for M.M.I. levels which lie beyond the range where
the strong-motion data is now available. In particular, we compare the
largest amplitudes of shaking which are predicted by the two models.
Although there is no reason to expect the two models to agree in this
respect, if they do we may be more confident that both are reasonable.

To this end we will assume that the Modified Mercalli Intensity XII
represents the largest possible level of strong shaking. Then we
compare the amplitudes predicted by equation (1) for R = 0 and for the
largest recorded magnitude, say M ~ 8.5, with the amplitudes predicted
by equation (2) and for M.M.I. equal to XII. Such comparison depends
on a number of simplifying assumptions required for the derivation of
equations (1) and (2). One of the most critical and most arbitrary
assumptions in this respect is that it is permissible to assign
numerical values ranging from 1 to 12 to the qualitative and descrip-
tive categories of the M.M.I. scale. While some previous studies have
suggested that this may be permissible for approximate correlations
(Trifunac, 1976c) the limitations resulting from this assumption should
be kept in mind.

Figures 51 and 52 present horizontal and vertical acceleration
spectra for M= 8.5, R=0 and s = 1, for ¢ = 0.00, 0.02, 0.05, 0.10

and 0.20 and for M.M.I. level equal to XII. Spectral amplitudes computed



-106-

100 ] : |
To] ™ _
wn | — ]
"o
|
% p=0.90
0
*._.
O
o
» 0|l 80%CONFIDENCE INTERVAL ]
< HORIZONTAL
% M=8.5 M.M.I=12
R=0 p=0.50
S= |
£=0.00,0.02,0.05,0.10 & 0.20
p=0.10
0.0l }- ]
0.00! ' | l

0.1 l
T - SECONDS

FIGURE 51




1

-g's

SA SPECTRUM

100

0.l

0.0l

0.00I

-107-

p=0.90

MMI. =12 ]
p=0.50

80% CONFIDENCE INTERVAL

VERTICAL

M=85

R=0

S=|

p=0.10
£=0.00, 0.02,0.05, 0.10 & 0.20

| | |
0.1 10

I
T-SECONDS

FIGURE 52



~108-

from equation (1) are shown in light lines and for p = 0.1 and 0.9
while the spectra for M.M.I. of XII are shown with heavy lines for

p = 0.50. The amplitude range between p = 0.1 and 0.9 then approxi-
mates the 80% confidence interval for M = 8.5, R=0 and s = 1.

These figures show that the average spectral amplitudes for M.M.I.
equal to XII are in fair agreement with the model described by equation
(1). Only for frequencies higher than about 10 cps the SA amplitudes
seem to be overestimated by the linear functional form of equation

(2). In our previous work (Trifunac, 1976c) dealing with peak accelera-
tions we found that the parabolic regression does fit this type of
comparison somewhat better than the linear regression (see Table IX

of Trifunac, 1976c). However, the small contribution of the second
order term in IMM did not appear to be significant for the range be-
tween M.M.I. levels IV and VIII where most of the presently available
data are distributed, and thus did not warrant the use of parabolic
regression with respect to IMM in this work.

When inspecting Figures 51 and 52 it should be kept in mind that
the extrapolation range of equation (2) which is displayed there is
equal to four intensity units on the assumed linear scale of M.M.I.
levels. When it is further recognized that the available strong-motion
data hardly covers the range from IV to VIII, also representing only
four intensity levels, it becomes clear that the extrapolations
presented in those figures for M.M.I. equal to XII are highly uncertain
and cannot be accepted on the basis of equation (2) alone. On the
other hand, the estimates of the largest SA amplitudes at R = 0 for a

magnitude 8.5 earthquake might be somewhat more reliable since as is

suggested by the physical nature of the near field shaking (Trifunac,
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1973), and by the regression equation (1), the amplitudes of strong
shaking seem to be only weakly dependent on earthquake magnitude
(source dimension) for sufficiently 1arge'magnitudes and close to the
source. Therefore, if one is willing to assume that the estimates
of largest SA amplitudes in Figures 51 and 52 for M = 8.5 and R = 0
are plausible, then one should also suppose that the regression
equation (2) does have approximately correct rate of growth with re-
spect to the linear IMM axis. Hence, this would also imply that the
SA amplitude extrapolated from equation (2) and for IMM greater than

VIII may yield the estimates of spectral amplitudes which should not

be too different from future, more reliable inferences.
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DISTRIBUTION OF SPECTRAL AMPLITUDES

Relationship of P, to Py

As noted earlier, the regression analyses in terms of equations
(1) and (2) have been performed by using a correlation function
which is linear in the so called confidence level, p, of not exceeding

I

the spectral amplitude. It was pointed out that P is not a probabi-
lity, but that the regression is done so that p will approximate the
probability of not exceeding SA(T),p when 0.1<p<0.9. To test the
extent that this assumption is reasonable and to partially describe the
actual distribution, Figures 53 and 54 present the fraction of data
points which are smaller than the spectral amplitude predicted for 9
values of the confidence level (p). The procedure used to obtain this
information is described in more detail in Trifunac (1976b).

Here we shall change notation and call the confidence level, p,
in equations (1) and (2) by PQ. If equations (1) or (2) are solved
for Pg, then it is clear that for some combinations of SA, M and R
or MMI), s and v, Pz can be less than zero or greater than 1. Next
we will denote by Pa that fraction of data points less than the spectral
amplitude associated with Pz. The parameter Pa’ then, is the empirically
determined probability that SA(T),P% will not be exceeded. Figures 53
and 54 show Pa as a function of period for 9 values of PQ.

For some applications of the correlations (1) and (2), such as to
seismic risk, for example, it is convenient to have a functional
description of the relationship between Pa and Pg. Anderson and Trifunac
(1977) derived a functional relationship of this natrue for the distri-
bution of Fourier spectral amplitudes. The object in this section is

to find such a functional relationship for SA. Because we seek this
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relationship only as a convenience for future applications, the main
criteria to be satisfied will be that it is consistent with the data
points. An additional criteria will be that the function should
physically be meaningful.

Anderson and Trifunac (1977) used a Gaussian distribution to
relate Pa to PQ for the Fourier amplitude spectrum. At the same time,
they noted that a Gaussian distribution may not work for other spectra.
Indeed, preliminary calculations for SA demonstrated that a Gaussian
distribution is not satisfactory.

The statistics of random processes suggest a physical basis for
a distribution of Pa Vs, Pg. The probability distribution of the
maxima of a stationary random time series is a distribution which in the
limit reduces to a Gaussian or to a Rayleigh distribution, depending on
whether the parameter e, which measures the width of the spectrum, is
equal to 1 or to O (see, e.g., Udwadia and Trifunac, 1973). In par-
ticular, for a narrow frequency band process such as a response of a
single-degree-of-freedom system with a small damping, the peak response
amplitudes should be nearly Rayleigh distributed. If r is the peak
amplitude, if a is the root mean square of the peak amplitudes

L
(a = l—{alz + 322 + ... +a 2}2, where a, are the amplitudes of N

N N
consecutive peaks), and if there are N peaks in the response of an
oscillator to the strong shaking, then the probability that all the

peaks have amplitude a;, <r is

P{ai <r}= [1 - e_(g)z]N (3)

For our application, r corresponds to the response spectral am-

plitude at one period, SA(T). Furthermore, as discussed in detail by
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Anderson and Trifunac (1977), Pa = P{all a; < r}. By replacing r
with SA(T) in equation (3), and then substituting for SA(T) from
equations (1) or (2), one obtains an equation of the form

N(T)

P_(T) = [é = exp(-eX(DPy B(T))] (4)

All the terms depending on magnitude and distance (or intensity),
and site conditions have been combined with the term in a to give
G (T) and B(T).

Careful attention to the step used in obtaining (4) yields a re-
sult in which a(T) and B(T) have a functional dependence on M and R
(or IMM)’ s, v, and SA(T). Also, from the oriéin of (3), a and N
will be functions of T, and will depend on the same parameters. Thus,
formally, equation (4) gives the distribution of amplitudes for a
single event or group of events which all have the same magnitude and
distance (or intensiiy) and site conditions. On the other hand, the
data shown in Figures 53 and 54 are derived from the entire set of
response spectra. Although (4) may not formally apply to this entire
set taken as a group, the calculations described subsequently demon-
strate that (4) does have the capability to describe the observed
relationship between Pa and Pz (Figures 53 and 54).

We assumed that Pa and Pg can be related by equation (4), found
values of N(T), o(T), and R(T) which could describe the data in
Figures 53 and 54, and then tested the assumption using two statistical
tests. If N is known, the parameters o and B can be found by first
noting that

1/N

n (-%n (1 - Pa )) = aPQ + B
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Assuming P2 is an independent variable and Pa is a dependent variable
with possible noise, o and B are found by least squares. To avoid a
difficult nonlinear fitting procedure, we evaluated o and B for several
possible values of N ranging from 1 to 1000. Then we quantified the
differences between Pa (derived) and Pa (data) for each of these com-
binations, and found the value of N which led to the best fit. Finally,
this derived function of the best N vs. period was smoothed by eye, and
the smoothed values used in final calculations.

We illustrate this process in Figures 55 through 57. Figures 55
shows the data of Pa Vs, PQ from Figure 53 for £ = 0.02 and logloT = 0.034.
It also shows the function of form (4) for three selected values of N
and with the corresponding optimum values of o and B. Also shown in
Figure 55 are the values of X2 and of the Kolmogoroy—Smirnov Statistic
(K-8) for the distributions shown. These statistical tests are applied
in the manner described by Anderson and Trifunac (1977). Both statistical
- parameters have a distinct minimim at N x5, verifying the wisual impres-
sion that the curve for N = 5 fits the data best. Figure 55 also shows
the values of X2 and K-S which, if exceeded, would lead to rejection
of the resulting distribution. The minimum in x? and in K-S is well
below this threshhold level.

One can compile the information on the quality of fit such as is
illustrated on Figure 55 for 11 periods and all five dampings of SA.

The results are shown in Figures 56 and 57. Figure 56 summarizes the
data for X2 and Figure 57 for the Kolmogorov-Smirnov statistic. For
the 11 periods, the best value of N (of those computed) is shown by a
number which also serves to identify the damping: 1 for ¢ = 0.0; 2 for

¢z =0.02; 3 for gz = 0.05; 4 for ¢ = 0.10; and 5 for ¢ = 0.20. The
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Best fitting functions of the form (4) for relating Py to Py for
three values of N. The data are shown by small circles. The insert
at the right shows the results of two statistical tests for the good-
ness of fit. These statistical tests are shown for the three values
of N illustrated, and also for some values which are not illustrated.
If the Kolmogorov-Smirnov (K-S) statistics exceeds the line marked
K-S (95%), then at the 95% confidence level, the trial distribution
does not fit the data; the X? test is applied in the same way.
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Summary of the results of the statistical X2 test for distribution
of form (4) relating P, and Py for the regression of logjg[SA] as a
function of Py, M, R, s, and v. For each of 11 periods, we have plotted
an integer (1-5) at the value of N which leads to the smallest value of
X2. The vertical line shows the range of N which leads to a value of
the X2 statistic which is small enough that the corresponding distribu-
tion is not rejected at the 95% confidence level. Where the integer (1-5)
is circled, the best value of X“ is rejected. The integers 1-5 refer to
the value of damping: 1 for ¢ = 0.0; 2 for ¢ = 0.02; 3 for ¢ = 0.05; 4
for £ = 0.10; and 5 for ¢ = 0.20.

The values of N which might be expected from the results of Trifunac
and Westermo (1976a) for a magnitude 6.5 earthquake at 0 km and 100 km
are shown. For reasons described in the text, we chose the value of N to
be integers approximately equal to the straight line through the data,

which has the equation N = 6.5/T.
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Results of the Kolmogorov-Smirnov statistical test to determine which
values of N are acceptable to fit the data of P; vs. Py for the re-
gression of SA with magnitude and distance. Other symbols are as in
Figure 56.
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corresponding vertical line shows the permissible range of N according
to X2 (Figure 56) or K-S (Figure 57). Where the best value is not
acceptable at the 95% confidence level, the digit 1-5 is circled.

The best value of N in Figures 56 and 57 is a strong function of
the period T. This leads to values of o and B which are also strong
functions of period, and these parameters jump discontinuously whenever
the value of N changes from one integer to another. This contrasts
with the characteristics of the spectra which must change continuously
with changes in the frequency of shaking.

The problem arises from the way N is quantized. Because the SA
spectra we are considering are for small values of damping, the number
of cycles of shaking at some selected period is approximately the
duration of the shaking divided by that period; there is no reason for
this to be an integer. However, our probabilistic analysis is based
on an integer number of peaks, and there, a fractional number does not
make sense. Thus, the quantization of N is an artifact of the analysis.

Even though the values of o(T), B(T) and N(T) change discontinuously
with changing periods, the parameters characterizing the probability
distribution such as the most probable value or the various moments
are nearly continuous. We will derive these next.

Consider the distribution:

[1 - exp(—eapsl * B)]N

p
L +
th{é%-[l - exp(-e™ B)]N}dy .

P, = F(P))

We investigate the properties of the probability density function

—(%’- [1 ~ exp(—eocy " B)]N
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The n-th moment is
n © X - d N
y =f°o (md—-@ n Ix [1 - exp(—ex)] dx . (5)

If we use Ilgn) =foo <" aéx— [1 - e:xp(—ex)]N dx, then II\(I(D = 1, and the

the first two moments are

y = al? -8y
2 . i(II\(IZJ . I}gl) v 8902 ©
S |
The standard deviation is o =\/y2 - 92 (7

Table X gives Iél)

and Iﬁz) for a large range of N. From this, the

distribution Pa can be described in terms of y and 0. Given y and o,
1

from (6) and (7), one can show that:
_l\/(z) (1)\2'
“=5 IN '(IN)

SR NSO

Using these expressions, it may be possible in the future to

choose ?, 0, and N to represeht a particular earthquake. All these
parameters could be a function of the size and distance of the earth-
quake, and possibly other factors. In this case, o and B could be

found from the above expressions, and then (4) would apply formally. We
are not adopting this approach at this time because we would like to see
its validity demonstrated more directly than is possible with our data.
However, it is instructive to substitute these parameters back into

the probability function. Then:

(2) _ (y@)2} N
1) _ \/IN . (IN ) @, - ;,)> (8)

= ' (
F(Pz) =1 - exp ~exp<&N



-121-

TABLE X
N Iél) 1&2) N Iél) Iéz)
1 -0.5772 1.9781 28 1.3198 1.8366
2 0.1159 0.6975 29 1.3293 1.8603
3 0.4036 0.6114 30 1.3385 1.8831
4 0.5735 0.6729 31 1.3472 1.9052
5 0.6902 0.7612 32 1.3556 1.9266
6 0.7773 0.8508 33 1.3637 1.9472
7 0. 8460 0.9353 34 1.3715 1.9673
8 0.9021 1.0134 35 1.3790 1.9867
9 0.9493 1.0852 36 1.3862 2.0056

10 0.9899 1.1513 37 1.3932 2.0240

11 1.0252 1.2123 38 1.4000 2.0418

12 1.0565 1.2687 39 1.4065 2.0592

13 1.0845 1.3212 40 1.4129 2.0761

14 1.1097 1.3703 a1 1.4190 2.0925

15 1.1327 1.4162 42 1.4249 2.1086

16 1.1537 1.4593 43 1.4307 2.1243

17 1.1731 1.4999 44 1.4363 2.1395

18 1.1910 1.5384 45 1.4418 2.1545

19 1.2076 1.5748 46 1.4471 2.1691

20 1.2232 1.6094 47 1.4523 2.1833

21 1.2378 1.6423 48 1.4573 2.1973

22 1.2515 1.6738 49 1.4622 2.2109

23 1.2644 1.7038 50 1.4670 2.2242

24 1.2767 1.7325 51 1.4716 2.2373

25 1.2883 1.7601 52 1.4762 2.2501

26 1.2993 1.7866 53 1.4806 2.2627

27 1.3098 1.8121 54 1 2.2750

.4850
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TABLE X
(Continued)

N 1) 1(?) N 1D 1)
55 1.4892 2.2870 83 1.5798 2.5544
56 1.4933 2.2989 84 1.5824 2.5621
57 1.4974 2.3105 85 1.5848 2.5697
58 1.5014 2.3219 86 1.5873 2.5772
59 1.5053 2.3331 87 1.5897 2.5846
60 1.5091 2.3441 88 . 1.5921 2.5919
61 1.5128 2.3549 89 1.5944 2.5991
62 1.5165 2.3655 90 1.5967 2.6062
63 1.5200 2.3760 91 1.5990 2.6133
64 1.5236 -2.3862 92 1.6013 2.6202
65 1.5270 2.3963 93 1.6035 2.6271
66 1.5304 2.4063 94 1.6057 2.6339
67 1.5337 2.4161 95 1.6078 2.6407
68 1.5370 2.4257 96 1.6100 2.6473
69 1.5402 2.4352 97 1.6121 2.6539
70 1.5433 2.4445 98 1.6142 2.6604
71 1.5464 2.4537 99 1.6162 2.6669
72 1.5495 2.4628 100 1.6183 2.6733
73 1.5524 2.4717 101 1.6203 2.6796
74 1.5554 2.4805 102 1.6223 2.6858
75 1.5583 2.4891 103 1.6242 2.6920
76 1.5611 2.4977 104 1.6262 2.6981
77 1.5639 2.5061 105 1.6281 2.7042
78 1.5667 2.5144 106 1.6300 2.7101
79 1.5694 2.5226 107 1.6319 2.7161
80 1.5721 2.5307 108 1.6337 2.7219
81 1.5747 2.5387 109 1.6356 2.7278
82 1.5773 2.5466 110 1.6374 2.7335
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TABLE X
(Continued)

N 1S 1) N 1) 1@
111 1.6392 2.7392 139 1.6827 2.8798
112 1.6409 2.7449 140 1.6841 2.8843
113 1.6427 2.7505 141 1.6854 2.8887
114 1.6444 2.7560 142 1.6868 2.8931
115 1.6462 2.7615 143 1.6881 2.8974
116 1.6479 2.7669 144 1.6894 2.9017
117 1.6495 2.7723 145 1.6907 2.9060
118 1.6512 2.7777 146 1.6920 2.9103
119 1.6529 2.7829 147 1.6933 2.9145
120 1.6545 2.7882 148 1.6946 2.9187
121 1.6561 2.7934 149 1.6958 2.9228
122 1.6577 2.7985 150 1.6971 2.9269
12% 1.6593 2.8036 151 1.6983 2.9310
124 1.6609 2.8087 152 1.6995 2.9351
125 1.6624 2.8137 153 1.7008 2.9392
126 1.6640 2.8187 154 1.7020 2.9432
127 1.6655 2.8236 155 1.7032 2.9472
128 1.6670 2.8285 156 1.7044 2.9511
129 1.6685 2.8334 157 1.7055 2.9551
130 1.6700 2.8382 158 1.7067 2.9590
131 1.6715 2.8430 159 1.7079 2.9628
132 1.6729 2.8477 160 1.7090 2.9667
133 1.6744 2.8524 161 1.7102 2.9705
134 1.6758 2.8571 162 1.7113 2.9743
135 1.6772 2.8617 163 1.7125 2.9781
136 1.6787 2.8663 164 1.7136 2.9818
137 1.6800 2.8708 165 1.7147 2.9856
138 1.6814 2.8753 166 1.7158 2.9893
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Application to Correlation of SA with M, R, s, and v

Figures 56 and 57 present the quality of fit of the assumed dis-
tribution (4) to the relationship between Pa and Pz. They show the
range of values of N(T) for which an acceptable fit to the data points
can be made, and also indicate the best values of N(T), among those
computed.

The best value of N(T) decreases as the period of the waves
increases. This trend is particularly apparent for intermediate per-
iods. This could be predicted from a simple argument. Suppose the
duration D is the same in all frequency bands. Then the number of peaks
is N(T) =-%2, where T, again, is the periods of the oscillators. The
factor 2 arises because there are 2 peaks in each complete cycle of

response. On Figures 56 and 57, we have drawn a line to connect the

6.5
T

all but the highest frequencies. The inconsistency may arise because the

points N = This is consistent with the observed distributions for
signal to noise ratio of the original data is smaller at the high fre-
quencies and because the duration depends on the period of the seismic
waves.

The durations predicted by Trifunac and Westermo (1976a) can be
used to estimate the number of peaks of strong shaking. The number of
peaks predicted for a magnitude of 6.5 event at 0 and 100 km is shown
in Figures 56 and 57. This procedure overestimates the 'best'" N, and
does not provide a better estimate than the original line N = é%é—.
This is to be expected, however, because the definition of duration
used by Trifunac and Westermo (1976a) does not exclude a decaying coda

of strongly scattered waves, even though such a coda may not contribute

to the peaks which control the statistics of the oscillator response.
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The differences between the 'best N'" and the N estimated from the
duration of strong shaking is smallest for the intermediate periods
where the signal to noise ratio is largest. Where the signal to noise
ratio is small, the definition of duration used by Trifunac and Westermo
(1976a) may include the duration of some noise; this effect also will
tend to cause the number of peaks estimated from the duration determined
by Trifunac and Westermo (1976a) to be larger than the 'best N" in
Figures 56 and 57. At periods where we expect this effect to be
strongest, the differences between the two methods are greater than
where we expect this effect to be small.

As mentioned previously, the distribution function (4) applies to
a single event; the data, however, is derived from a large number of
events recorded over a large range of distances. Since the duration
of strong shaking is a prominent function of distance, it may be of some
concern how combining the data modifies the resulting distributions (4).
To illustrate this, we have plotted several distributions with the same
values of the mean and standard deviations but differing values of N by
using equation (8). The result (Figure 58) is that for most amplitudes

(most values of Pg) the corresponding probability (Pa) either increased

or decreased monotonically as N increased. Thus, a combination of many
points from the distributions with many values of N would tend to fit a
distribution with some averaged value of N. This average would be weighted
toward smaller values of N because the distribution changes most rapidly
when N is small. This also might help to explain why the value of the
"best N" tends to be smaller than the N derived from the average

duration of the same data set.

6.5 sec

T ,and N=1

Using the value of N = Greatest integer in
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=10

N
N

FIGURE 58

Comparison of the functional relationships of Pa to PQ for fixed yw = 0.5

and 0 = 0.3 and for N = 1, 10, and 100. These results are obtained using

equation (8).
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Parameters for one set of distributions (4) which approximately
give Pa as a function of Pz. The upper curves give o, B, and N (equa-
tion (4)). N is quantized, but the individual integers cannot be illus-
trated on this scale, so N is drawn as a continuous line.

The central section gives the parameters |y and o derived from a, B,
and N using equations (6) through (9). The lower section shows the
statistical quality of fit by the Kolmogorov-Smirnov and the X2 criteria.
The X2 test can be recognized by its smaller amplitudes for periods in the
central portion of the graph. The levels marked K-S (95%) and X2 (95%)
are those which, if exceeded, lead to rejection of the assumed distribution
at that frequency. The five lines are for the five values of damping, as

indicated.
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6.
when —wéTESE <1, we have found the best values of o and B to fit the

observed data relating Pa and Pz as functions of period. The parameters
o, B, and N, the corresponding mean and standard deviation (u and gy,
and the statistical tests for all five dampings are shown in Figure 59.
Strictly, N(T), a(T), and B(T) should not be plotted as a continuous
variable because they are quantized. The actual values of o(T), B(T),
and N(T) are given in Table V for eleven periods. From Figure 59, it

is apparent that the mean and standard deviation are nearly continuous,
in spite of the way that N is quantized. The lower portion of Figure 59
shows the statistical tests for the associated distributions. These
tests are applied as in Anderson and Trifunac (1977). For highest
frequencies, these distributions fail and could be rejected; at all
lower frequencies the assumed distribution is consistent with the data.
Note that although (4), with the parameters in Table V, gives an ade-

quate description of the relationship between Pa and PQ for 0.1 <P, <

L

0.9, extrapolation using (4) to find the probabilities of amplitudes much

larger or smaller than those impled by 0.1 < P, < 0.9 may not be justi-

L

fied on the basis of our data.

Application to Correlation of SA with Iy, s, and v

Again, we assume that a Rayleigh distribution is appropriate to
describe the distribution of peak amplitudes of single-degree-of-free-
dom viscously damped oscillators, and find the range of acceptable N
and the best values of N by the X:2 and the K-S criteria. These are
shown in Figures 60 and 61, respectively. Unlike the correlations
with magnitude and distance, here only values of N equal to 1 or 2

are chosen as best values using the statistical tests.
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Acceptable N by x2 Criteria
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FIGURE 60

Results of the X2 statistical test to determine which values of N are

acceptable to fit the data of Pa vs. Py for the regression of SA with

Modified Mercalli Intensity.

The upper lines show those N which might

be expected on the basis of results of Trifunac and Westermo (1976b)

for intensity V, VI and VII shaking.

chose the N indicated by the 1light line.

Figure 56.

For the later regression, we

Other symbols are as in
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FIGURE 61
Equivalent of Figure 60, except that it shows the results of the

Kolmogorov-Smirnov test.
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2D
T

using average durations of these accelerograms for intensities V, VI,

In Figures 60 and 61, we again have plotted the values of N =

and VII given by Trifunac and Westermo (1976b). These values are
generally over an order of magnitude larger than the '"best N'" found
using our fitting procedure. We have mentioned three reasons why the
results of Trifunac and Westermo (1976a) would tend to overestimate

N for correlations with magnitude and distance: First, their defini-
tion of duration includes the decaying coda, which may not contribute
significantly to the number of peaks in the oscillator response sta-
tistics. Second, their definition of duration can possibly include

the presence of noise, which also would not contribute to the number

of peaks in the oscillator response statistics. Third, our data points
are combined from several distributions which each obey equation (4),
and these several distributions may involve differing values of N;

the best value of N when several distributions are combined in this

way may tend to be smaller than the average of N over all the contri-
buting distributions because for fixed mean and standard durations,
equation (4) (or equation (8)) changes more rapidly for a change in N
when N is small than when N is large. These factors are not adequate
to explain why N is so small in the case of correlation with IMM
(equation (2)) because the correlations involving magnitude and dis-
tance (equation (1)) generally indicated larger values of N.

There is, however, another factor operating here which was not
present in the correlations with magnitude and distance. This arises
because IMM is a function of both the amplitude of shaking and the
duration of shaking among other factors. Because the correlations

neglect duration, this can introducé another bias into the estimates
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of N.

Let us assume that IMM is a function of both duration (D) and

amplitude of shaking:
Lt = L(D> M)

A contour of constant IMM from this function is concave down, as
sketched in Figure 62. For a fixed duration, we expect that as the
amplitude of shaking increases, the IMM will also increase. For a

fixed amplitude, a longer duration will also tend to increase IMM to
a certain extent. However, for a fixed amplitude, a duration greater
than some sufficiently long period of time may never cause the inten-
sity to increase to the next larger value. For example, shaking strong
enough to be felt by nearly everyone might continue indefinitely with-
out being strong enough to move heavy furniture or damage chimneys.
Because of this, a plot of a contour of uniform intensity on axes of
duration (or distance) and amplitude, is concave downward as in
Figure 62.

Now consider the consequences of data for a given intensity being
distributed along one of these contours. We have shown this schema-

tically for the I . = V contour in Figure 62. When these data points

MM
are projected onto the amplitude axis, many tend to be grouped near
small amplitudes, but the relatively fewer large amplitudes skew the
distribution. A mean amplitude, as is found by regression, is then
larger than the amplitude where most of the data occur; thus most of
the amplitudes are smaller than the mean. As a result, when the
distribution of amplitudes relative to the mean is found, it has an

excess of amplitudes smaller than the mean. This may be exactly what

we have found in our correlations of Pa and PZ for IMM because smaller
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FIGURE 62
Schematic sketch showing the behavior of a contour of uniform intensity
on a plot of duration (or distance) against amplitude of shaking. Below,
the consequence of a correlation neglecting duration is illustrated:

there is a tendency for a majority of the data points to be smaller than

the mean (arrow).
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Equivalent of Figure 59 for the regression of SA with intensity.
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N implies a distribution with a relatively greater number of small
amplitudes. It is difficult to estimate the significance of this
effect from this qualitative description; however, it appears from
the Figures 60 and 61 that the effect might be strong.

Considering this effect, it may be possible to understand why the

best values of N are so low in Figures 60 and 61. We choose:

2;-1.398 < log, (T < -0.400
N(T) =

1;-0.400 ﬁ.logloT.i 0.875

From Figure 63, which shows the resulting statistical parameters,
it is clear that the assumed distribution function is not contradicted
by the data. The parameters a(T), B(T), and N(T) are also given in

Table VI for eleven selected periods.
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CONCLUSIONS

We have carried out two independent regressions for the amplitudes
of absolute acéeleration spectra (SA) using two regression equations.
Equation (1) describes the dependence of SA on magnitude, epicentral
distance, and site conditions; Equation (2) describes the dependence
of SA on Modified Mercalli Intensity. Both regression equations are
frequency dependent. The forms of the regressions were chosen to
describe approximately the physical processes of the earth and
in terms of those parameters which are readily available to the engineer-
ing community.

Before carrying out the regression analysis, we have partially
eliminated digitization noise by subtraction of an average noise spec-
trum. Although this has not eliminated all noise, it has increased
the reliability of the regression models.

The regressions show results which are consistent with previous
related analyses and observations. Some of these results are that:
the spectra increase less rapidly with increasing magnitudes at large
magnitudes than at small magnitudes; spectral amplitudes at high fre-
quencies tend to be larger on rock sites than on soil sites; and
the scatter of SA about the scaling law in terms of MMI (equation
(2)) is not worse than the scatter of SA about the scaling law in terms
of magnitude and distance (equation (1)). The regression equations
(1) and (2) give mutually consistent results when extrapolated to
M= 85 and R = 0 and to MMI = XITI.

We have modeled the scatter of amplitudes about the mean trend by

a distribution function derived from a Rayleigh distribution. One
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parameter of this derived distribution function (equation (4)) is
N(T), the number of peaks of the response of a single-degree-of-freedom
system at the period T. The values of N(T) which best fit the ob-
served scatter of amplitudes are smaller than the value of N(T) derived
by independent considerations; however, there are several qualitative
reasons why this might be the case. Nonetheless, the derived distribu-
tion is both physically motivated and is not inconsistent with the
observed scatter in the data.

The results of this study, then, are the empirical scaling laws
for modeling amplitudes of SA in either the case where the magnitude or
the M.M.I. of a possible future earthquake can be estimated. Further
calculation of Pa from equation (4) allows these results to be applied

to seismic risk studies.
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