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Abstract

The three-dimensional scattering and diffraction of plane
waves by a hemispherical canyon in the homogeneous elastic half-
space has been analyzed. Using the series solution for a general
angle of wave incidence, ground motion near the canyon has been
studied. The nature of ground motion has been found to depend on
three key parameters:

(1) vy, the angle of incidence,

(2) n, a dimensionless frequency of wave number proportional
to the ratio of the diameter of the canyon to wavelength
of the incident P-wave, and

(3) K, The ratio of longitudinal to transverse wave speeds.

The displacement amplitudes and phases on nearby ground surface

show significant departure from the uniform half-space motions. The
angle of incidence y determines the overall trends of motion ampli-
tudes. For oblique incidence, for example, considerable amplifica-
tion is observed in front of the canyon, and a prominent shadow zone

is realized behind the canyon.



Introduction

In this analysis, the problemof scattering and diffraction of a
plane wave by a three-dimensional hemispherical canyon has been
studied. The purpose of this study is to add the exact series solution
to the limited collection of exact or approximate solutions describing
the effects of surface topography on wave propagation in an elastic
half-space. It should also be useful for the approximate evaluation
of the amplification effects near topbgraphic features that can be
approximated by a hemispherical canyon. Furthermore, the results pre-
sented here may also be of value for different approximate techniques
based on finite element or integral equation schemes, since the model
studied here can be used for comparison with results obtained by approxi-

mate methods.



The Wave Equation in Spherical Coordinates

The geometry of the model to be presented here is best described
by the spherical co-ordinates (r,0,¢) (Figure 1). Given a function

F(r,t) of space and time, the wave equation in spherical coordinates
2%k - 3%/3t? = 0 (1)

is given by

2
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Since an arbitrary time variation of the function can be represented
by Fourier analysis in terms of harmonic components, there is no es-

sential loss of generality in studying only the harmonic solution of the

form

F(r,0,6,t) = £(r,0,¢)e (3)

where i = v~1,w is the harmonic frequency and f satisfies Helmoltz
equation

v+ K2 f =0, (4)

with k = w/c being the wave number.
Equation (4) is separable into the form

£(r,0,0) = £, (r)£,(8)f5(¢) (s)

with the factors satisfying



Figure 1

Spherical Coordinates



L ? af /dr) + (kzrz-pz)fl =0 (6)
daf 2
1 d ( . 2) ('2 )
L4 (sing —2) + [p%--4—)f =0 %
sinb do dé Sin26 2
and
d2f3 ) o
2+qf3=o, (8)
d¢

with p and q as separation constants.
It is necessary that f3(¢) be a periodic function of period 2w,
SO q=m is an integer. Setting p2 = v(v+1), u = cosf, (7) becomes

, d2f2 af, 2
(1-u ) -T - 2u —E'l-.l— + |v(v+l) - ———2- f2 =0 (9)

du 1-u

which is the associated Legendre equation with solutions Pvm(u), va(u).
For regularity of the function at w = *1 (6=0,7), we must have v=n,

an integer. Qnm(u) is singular at u = *1, and is thus e*cluded from

spherical problems which require finiteness at u=1 and/or p=-1.
Equation (6) then becomes

2
2 d f1 df

dr2

1 2.2 _
+ 2r rra + [k"r" - n(n+1)]f1 =0 (10)

T

which has solutions zﬁl)(kr), i=1,2,3,4, the spherical Bessel and

Hankel functions:

2D =5 (k) - (%1:) T a1, (KT
1/2
D =0 = () e
ZIES) = hn(]») (kr) = Jn(kr) + 1 yn(kr) = (-2—;{-;)2 Hn+1/2(1) (kr)
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zn(4) =n @ - i) - iy (kr) = (5%;) Hn+%(2)(kr) (11)

Jn+%’ Yn+%’ e+l » B dare the cylindrical Bessel and Hankel

functions.

In summary, a general harmonic solution of (1) is then a linear

combination of any two of the four basic solutions of the form

zn(i)(kr)an(u)zgz m$ exp(-iwt) (12)

with i=1,2,3,4, m,n=0,1,2, ... and m<n.

The three-dimensional model studied in this paper is shown in
Figure 2. It represents a half-space (z<0) from which a hemisphere
of radius a is removed to form a canyon. The half-space is assumed
to be elastic, isotropic and homogeneous. Its material properties are

given by the Lamé constants A, u and mass density p, for which we have

longitudinal wave velocity, a = \,A:fu s, and

transverse wave velocity, B = \[%- . (13)

Two coordinate systems are employed. The rectangular coordinate
system has its origin at the center of the hemisphere with the x and y
axis on the surface of the half-space and the z axis perpendicular to
it. The spherical coordinate system (r,0,¢) has a common origin with
the rectangular system.

All the basic equations of linear elasticity are applicable to the

model and will be used in the analysis that follows.
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Excitation: Incident P-Wave

The excitation of the half-space consists of a plane longitudinal
(P) wave whose displacement and propagation vector is situated in the
x-z plane with angle of incidence Y. It has circular frequency w and
can be represented by the potential

o)

= exp[i ka(x siny + z cosy) - iwt] (1.1)

of wavelength Aa = 2ﬂ/ka; where ka = w/a is the longitudinal wave num-
ber. From this point on the time factor exp(-iwt) will be understood
and omitted from all expressions.

The corresponding displacement vector is given by

u(l) = ika(sinY e, + cosy ez)exp ikm(x siny + z cosy) (1.2)
where e €, are unit vectors in the x and z direction, respectively.
The magnitude of the displacement vector, lu(l)l , is k

In the presence of only the free half-space boundary, the incident
wave is reflected from the plane free surface (z=0), generating, in

general, both plane reflected longitudinal (P) and transverse (SV) waves,

with displacement vectors'respectively given by

. (r) _ . . _ . S
(P): Uy = 1K1ka(51ny e, - cosy gz)exp 1ka(x siny - z cosy)
(1.3)
. (r) _ . . . o
(sv): u, = 1K2k6(cosd Sxd-51n6 gz)exp 1kB(x sind - z cos@)
(1.4)
where k8 = w/B is the transverse wave number, § is the angle of reflec-
tion of the transverse wave, and K1 and K2 are reflection coefficients

given by



_ sin2y sin2§ - (a/B)2 c05226

sin2y sin2d + (Ot/B)2 c05226

K, = 2 sin2y cos2§8 (1.5)

sin2y sin2§ + (u/B)2 cosZZG

The resulting displacement vector

W) @, @), @ (1.6)

~ ~ ~1
satisfies the stress-free boundary conditions

Oyp = Oy = Ogy = 0 at z=0 , (1.7)

and each component of it satisfies the corresponding scalar wave equa-
tion.

In terms of displacement spherical potentials, u( )

~

1 , ul(r) correspond

to Q(i) and Q(r), respectively while u (x) corresponds to ?(r) and x(r).

These potentials have the spherical wave expansions of the form

o(1) E Amn(i) 5 (k )P (1) cosm

y@ @

0@ = 37 @ 5 6P ) cosnp

m,n

(r) _ E : () . m .
¥ = s kBan Jn(kBY)pn (1) sinmé
(r) _ (r) . m
X\ = z,ﬁ C Jn(kBy)Pn (1) cosm¢ (1.8)

where the summation is for m,n=0,1,2,... and m<n. The expansion is

carried out in Appendix I.
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Reflected and Scattered Spherical Waves

In the presence of the canyon, two types of outgoing spherical
waves (longitudinal and transverse) are reflected back into the medium.

These waves can be represented by the potentials

o) =37 A (), ) (k Y)P_"(1) cosmg
m,n

y(s) _ mz:,l kBBnm(S) zn(3) (kgV)P "(n) sinmo

3 3
x® = 20 cn® 2 P o) cosme (2.1)
m,n
where the summation is for m,n = 0,1,2, ... and m<n. The spherical

Hankel functiqn zn(S)EEhn(l) is used because the product hn(l)(r)exp(-iwt)
represents an outward propagating wave. Amn(S)’ an(S)(=0) and Cmn(S) are
expansion coefficients corresponding to potentials satisfying the boundary
~ conditions of a spherical cavity in an infinite medium and subjected to
an incident P-wave. The expansion is carried out in Appendix II.

In the presence of both the plane free boundary (z=0) and the hemi-
spherical canyon (r=a, z<0), the reflected plane P- and SV-waves will
be scattered from and diffracted around the canyon, and the scattered
spherical waves from the canyon will be reflected back into the medium
from the plane free surface. These waves can be represented in the

most general form by potentials
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o® = D a2 Dy Py cosns

j,m,n
v® = 3 kg s Dacyp M sinmg
j,m,n
R
x( ) . Z Con (J)(kBY)an(U) cosmp (2.2)
j,m,n
where j=1,2, myn=0,1,2, ... with m=<n, and zn(l), zn(z) are given in

equation (11).
The potentials ¢(R), T(R) and X(R) satisfy their associated scalar

wave equations and the six sets of unknowns

b4

a UG p ) cmn(”l j=1,2; mn=0,1,2, ... with m=n

will be determined from the boundary conditions.
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Boundary Conditions

The resulting potentials at any point are then given by the sum

of the preceding potentials

6= o) 4 oD, 5() , o)

y = p(®) 4 y(s) | y(R)

X = X(r) + X(S) + X(R) (3.1)

Similarly, the displacement vector at any point is

@, @, e, R , (3.2)

u=u
and the stress matrix is given by

(0] = 6P + 0™+ (0] + (B (3.3)

Each term of the resulting potentials satisfies the associated wave
equations. They must togéther satisfy the boundary conditions. At r=a,

O<¢=<2m, m/2=<6<T

o'rr = o're = 0’r¢ =0 R (3.4)
and at z=0, all x,y s.t. x2 + y2 2 a2
o =0 =0 =0 . (3.5)
22 zX zy

In spherical co-ordinateé, (3.5) is equivalent to:

Opp = 0, =0,, =0

66 6r 0¢

at 6=m/2, 0s¢s2m, rza (3.6)

From Appendix II, at r=a there follows:
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1) , 5, )

UI‘I‘ Urr = 0
0re(i) * 0rG(S) =0
cr¢(i) + or¢(s) =0 . (3.7)

Therefore, at r=a, 0<s¢<2m, m/2<O=<T

c,rr(r) . orr(R) =0
(r) (R) _
Opg ~ *Opg =0
Ur¢(r) + 0r¢(R) =0 (3.8)

From equation (1.7), at z=0 there follows:

o W4 ®_,
zZ zz
(1) (r) _
zX T Oux =0
o] (1) + 0 (r) =0 (3.9)
zy zy
Therefore, at z=0, all x,y such that x2 + y2 = a2
s ). B _
zz zz
), o B _,
ZX zZX
o s R _y (3.10)
zy zy

Equations (3.8) and (3.10) will be the boundary conditions to be

applied to calculate the coefficients appearing in Q(R), Y(R) and x(R).



14

Solution of the Problem

Following the analysis in Appendix I1, applying (3.8) to each

""(m,n) component," we get, for each m,n=0,1,2,..., ms=<n,

s : A @y @y, e W3, Op G, G 6

rr mn 11 13

A gy e, @, DL T ) G ) G G).

41 43

Or6’°r¢:
B (r) Z B @) E,,0) =0 (4.1)
mn
with j=1,2 in the summation.

The terms Eik(J) = Eik(J)(m,n) are given in Appendix III.

Equation (4.1) gives a set of three equations for the unknowns

(D (2) (1) (2) (1) (2)
Amn , A.mn s an , an , Cmn and Cmn . To complete the
analysis, equation (3.10) is applied. In spherical co-ordinates,

(3.10) is equivalent to (at 6 = m/2, 0<¢=<2m, r=a):

oee(s+R).= Gee(S) . GQG(R) =0 (4.2)
(s+R) _ (s) (R) _

%r "%y  t Oy =0 (-3
(s*R) _ (s) (R) _ 4.4

%0 "% "% 0 - o

The form of equation (4.2) is first to be analyzed.

Writing
069(5) = 2%.:{: 65(3)(m,r) cosmd
rm
R) _2 1) (2)
066( ) = :%% [62( (m,r) + gz (m,r)] cosm¢ , (4.5)

0
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where for j=1,2,3, m=0,1,2,...

(. b . [y - . 3 .
&, Dim,r) = 2;; Amn(J)éal(J) . kBern(J)gaz(J) . Cmn(J)éas(J)

2

(4 . 6)
zk 2k LRl ] 3 b Rl ] g .

For equation (4.2) to hold for all ¢, one needs for all m, all r>a
&V wmr + 6,Pmn +6,PDamn -0 4.7

These terms involve spherical Bessel functions of order n=0,1,2, ...

and of the form jn(kar)’ yn(kar), jn(kBr)’ yn(kBr). Since ka # k,, they

B’
are not orthogonal to each other. Hence, they are replaced by their
series representations in r, and the orthogonality condition is then
applied to

{z" | n=0,%1,£2, ...} . (4.8)
Using their series expansion in r given in Appendix IV, it is possible

: 2
to expand é"z-j (1), é‘zj (2) in series of r. For all m,n=0,1,2,...,m=<n,

j=1 and 3, we write

é’é. (1) (m,n,r) = Z e,. e (m,n,k) (1‘/2)n+2k
j 2
égjcz)(m,n,r) = }E: ezj(2)(m,m,k)(r/2)'“"1+2k (4.9)

k

and for j =2, we write

n+2k+1

e.. () (m,n,k) (x/2) "2k (4.10)

22

kg &, ) = D e Mamn 0 ar2)
T 6”22(2) (in,n,r) = -

kg
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with k=0,1,2,... in the summation. The ez,(l), ez,(z) terms are given
J J
in Appendix V.

Each ezj(l), ezj(z), j=1,2,3 involves a factor an(cose) and/or

its derivative evaluated at 6 = n/2, and for m,% = 0,1,2, ...

m
Prizger(0) = 0 (4.11)

so that depending on m, either the odd or even terms remain. From (4.6),

65(1)(m,r) then becomes

(1) N (1) (1) (CONEENEN
¢, (‘“’r)‘é [Am,m+22, ®21 " * Boome2e-1 22

),

23(1)](r/2)m+2£+2k (4.12)

Cm,m+22,

with 2,k = 0,1,2, ... in the summation, and

(1) _ (1)
€5 = ey (m,m+24,k)
1 1
622( ) = e22( )(m,m+2£-l,k)
(1) _ (1) -
e,z = e,z (m,m+22,k) k,2=0,1,2, ... (4.13)

Substituting n=%+k in (4.12), k=n-% in (4.13), (4.12) can be

rewritten as

n
1) 1 (1 ., @)
gz( tn, ) =Z [Z Am,m+2£,( )621 " Pnme2g-1 022

n | 2=0
1 (1) m+2n 4.14
*Ch,me2e S5 | (¥/2) (4.14)
with n = 0,1,2, ... in the summation.

Similarly, 63(2)(m,r) can be expanded as
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(2) _ 2, (@ (2), (2
602 (m,x) ‘21; [; Am,m+22. € * Bm,m+22,+l €22

. (z)ezscz)] e R

m,m+2%

with n = -o to © in the summation, and for n< 0, £=0 to » and for n=0,

£=n to «, and

(2 _ (2)
51 = e,y (m,m+2%,%-n)
(2 _ (2)
€55 = e,y (m,m+22+1,%-n)
(2) _ (2)
€53 = €,z (m,m+22,%-n) . (4.15)
Similar expansion can be carried out for 63(3)(m,r), where zn(s)iihn(l)
is expressed as jn + iyn. Again, the series expansion of jn and Y, are
used, thus obtaining a series expansion for 63(3)(m,r).
From the series expansion of 65(1) + gacz) + 65(3) = 0, and the re-
quirement that the coefficients of each power of r be equated to zero,
the following set of equations for m=0,1,2, ..., is obtained
n
m+2n (3, (@O Gy, @)
/2y Z-:; Amome2e %21 * Bpome2n-1 22
j=1,3
Gy, @ _ =
* Conme2g Te23 0 =0 n=0,1,2, .
(2) (2)
oo A ! B
-m-1-2n }E: m,m+2% (2) m,m+2%+1 (2)
(r/2) : + e +|+ e
0= 0,n) ‘A (3)] 21 iB (3)) 22
=max(0,n m,m+ 28 m,m+28+1
c (2)
+ [+ mm+28 e. (2) _ o
23
(3)
1Cm m+24%
? n =20, 1, *2, ... (4.16)

where i = V-1 .
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Similarly, for each m=0,1,2, ..., the boundary conditions
(R) (s) _

°er + oer =0 , (4.17)
(R) (s) _

°°¢ *+ gy =0 (4.18)

and use of (4.17) gives, for n=0,1,2, ...

n
m+2n+1 Gy, (@ Gy,
(x/2) : EE% Am,m+22+1 €41 * Bm,m+22 42
j=1,3
Gy, @ _
m,m+20+1 €43 =0
and
. A (2)
(/)™ N PO
2=max(0,n) iA (3)
m,m+24%-1
B (2) C . (2) @)
m,m+24% (2) m,m+28-1 -
+ -&iB (3) €4 + +iC (3) €,z =0
m,m+2% m,m+2%-1
(4.19)
where
(1) _ (1) -
€11 = e41 (m,m+22+1,n-4)
e42(1) = e42(1)(m,m+2£,n-£)
1) _ (1) -
€43 = ez (m,m+2%+1,n-2)
(2) _ (2) -1.8-
41 = e (m,m+2%-1,2-n)
(2) _ (2) -
€40 = ey, (m,m+22,2-n)
e43(2) = e43(2)(m,m+22-1,2-n) (4.20)



19

An identical set of equations with e4k(3) replaced by e6k(J)

follows on applying (4.18), the last boundary condition:

m+2n+1, 3, @ G)., @@
(x/2) Z Am,me20rl %61 * Bp meon €62
j= 1,3
G), @@ _
+ Cm,m+2£+1 e6 =0 . n=0,1,2,
S An me2g- 1
x/zy™m, Y s Mo
f=max(0,n) iA m,m+20- l
(2) (2)
. Bm,m+22 e m m+28-1 e63(2)=().
2 ) e (3)
1o m+2% m m+2%-1
= +1, 2

s eee (4.21)
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Numerical Calculation

For each m, equations (4.1), (4.16), (4.19) and (4.21) constitute

a system of homogeneous linear equations in the unknowns Amn(l)’ Amn(Z)’
Bun 0> Bon 2, ¢ (), c,. ¥, n=0,1,2, ... Symbolically, the system
of equations can be represented by

P

J}___; J(ijxj =n i=o0,1,2, ..., (5.1)
with

L“&j} the known coefficients of an infinite matrix,

{xj} the unknown infinite sequence, and

{ni} a known infinite sequence.

Both the array ja&j} and the sequence {ni} can be evaluated numeri-
cally. A standard way to solve for the unknown xj's is to truncate the
matrix into a finite size array and then invert the finite matrix. This
procedure gives well convergent results when the matrix is "essentially
banded," with terms close to the diagonal large in magnitude compared
with the off-diagonal terms. This is achieved in the following two
steps.

First, there are two particular types of terms in the matrix. One
type is associated with the series expansion of jn and the other
type with that of Yo They have differences in magnitude of large
order. The first step is to "average out" the two types of terms by

performing elementary operations of scaling and additions of rows of the
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matrix. Let the resulting new matrix equation be denoted by
[#1{x} = {h} (5.2)
The next step is to consider, instead, the matrix equation

(A ) L1 (x) = 1) (5.3)

which is satisfied by the same set of xj's. The new infinite matrix
Lﬂﬂifrkﬁﬁj has the advantagé-of being "essentially banded." By trun-
cating (5.3) to a finite size array, the resulting finite matrix is

ready for inversion. A sufficiently large number of terms are calculated

so that last few terms will contribute less than the rounded-off errors.
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Surface Displacements

From the strong-motion seismological and earthquake engineering
points of view, an important aspect of the above analysis is the de-
scription of the displacement amplitudes and relative phases at various
points along the surface of the half-space close to the hemispherical
canyon. The precise description of the amplitudes and phases of sur-
face ground motion will give the space-dependent transfer function of
the hemispherical canyon and its dependence on incidence angle Y and
the position of observation point. This information then helps to
understand and interpret the effects of topographic features similar
to the model studied here.

The amplitudes and phases of the displacement vector (ur, Ug> u¢)
are readily available from equations (1.2), (1.3), (1.4), (2.1) and
(2.2), using equation (A3.2) given in Appendix III. These components

are related to the rectangular components (ux, u , uz) by the relation

y
u, sinb cos¢ cosf cos¢ -sing u
u, o= sin® sing cos® sing cos¢ ug (6.1)
u cosb -sinb 0 u
z ¢

For each of the complex components of u, we call its modulus along

the plane stress-free surface (Figure 2) the 'displacement amplitude' of

that component, given by

1
7] /2

.
|uxl = _Bez(ux) + Imz(uxl
1
- L2 2. %
lug| = [Re“(u)) + In (u),)_1
- 1%
lu,l = [Re’@u) + mw)| (6.2)
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and the corresponding phases in the x- and z-direction:

¢ = tan"} (Im(u,) /Re(u )

X

i

¢

. tan-l(Im(uz)/Re(uz)) , (6.3)

with Re(+) and Im(*) denoting the real and imaginary parts of a complex
number, respectively. Only the x- and z-components' phases are con-
sidered because the propagation vector E of the incident P-wave is only
in the x-z plane.

Both the amplitude and the phase of each component depend on: (i)
the angle of incidence of the plane P-waves, (ii) their frequency w,
(iii) the radius of the hemispherical canyon, a, and (iv) k = a/B, the
ratio of longitudinal to transverse wave speeds in the half-space.

In the absence of the hemispherical canyon, the surface displacement
amplitude of each component in the uniform half-space is no more than
2, for incident P-wave of unit amplitude. The z-component amplitude is
2 for the case of a vertically incident plane P-wave (y=0). Also, for

Y < 90° the phase angles ¢x, ¢Z are both given by

¢x = ¢z = kasinY X (6.4)

which is a linear function of x. In the presence of the hemispherical
canyon, the incident and plane reflected waves scatter and diffract
around the canyon. The scattered and diffracted waves, B(S), E(R)
interfere with the plane incident and reflected waves, B(i), g(r).
Amplitudes and phases of the resulting motion near the canyon may then
significantly depart from that of the far-field motion.

Following reference 8, the following dimensionless parameter is
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introduced to simplify the description of the problem,

N = 2a/\g = kga/m = wa/mg . (6.5)

n is the ratio of the diameter of the hemispherical canyon to
wavelength of the transverse waves present in the half-space. From
equation (6.5), it can also be considered as a dimensionless wave num-
ber (=kBa/w), or dimensionless frequency (=wa/mB) .

The wave speed a differs from B for all real solids and their ratio,

K = o/B, is a function of Poisson's ratio v,

K =a/f =

L
2-2v) (6.6)

1-2v

The typical value of v = 0.25, or K2 = 3 is chosen for the following
presentation.

Figures 3 to‘21 present typical characteristics of amplitudes and
phases of surface displacements at dimensionless points (x/a, y/a) near
the canyon for angles of incidence Yy=05 30°5 60°, and 85. The value of
dimensionless frequency, n, is 0.5 and Poisson's ratio, v, is 0.25,

(k = VY3 ). Lower values of n have been found to show less departure
from uniform half-space motions. This is because small n corresponds
to waves with wavelengths long compared to the radius of the canyon,
and long waves do not "see'" short topographic irregularities. Higher
values of n than 0.5 in the present model will require more detailed
numerical analysis and use of a higher-order matrix for convergence.

In Figures 3 to 21, the incident P-waves have their propagation

vectors in the x-z plane (y=0), the resulting motions are thus sym-

metric about y=0, and so only the amplitudes on the positive y/a-axis

*Designated by ETA in the figures.
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are plotted.

The point (x/a, y/a) = (-1,0) corresponds to the leftmost rim of
the canyon, and (x/a, y/a) = (1,0) to the rightmost rim. The rim of
the canyon is defined by (x/a)2 + (y/a)2 = 1.

The phase diagrams have been shifted arbitrarily to have a common
zero phase at the point (x/a, y/a) = (0,1). This is in agreement with
the convention used in Reference 8. The phase values presented are in
multiples of m. A phase of +1 in the phase diagrams thus correspond to
a phase value of +m.

The displacement amplitudes shown illustrété several interesting
features of the model. The most prominent one is that there are no
points on the surface of the half-space, including points on the rim of
the canyon, that lead to high amplification.

The case of vertical incidence (y=0° leads to symmetric results
for displacement amplitudes and phases, as the model is symmetric. The
displacement amplitudes only slightly depart from the uniform half-space
amplitude, which equals 2 for the vertical Z-component and 0 for the
horizontal x- and y-components. Likewise, the z-compénent phases are
quite close to the straight lines for uniform half-space.

As Y increases from 0° to 90° a progressively more complicated pat-
tern of ground displacements and phases of all components is observed.
For acute incidence (y>0°), the incident P-waves arrive from the
'left,' i.e., from the direction of negative x-axis. The left side
of the canyon acts as a barrier, reflecting an appreciable amount of

energy back in the direction from which it comes. This causes scattering



45

predominently from the canyon side near (x/a, y/a) = (-1,0), and a
shadow zone is formed behind the canyon near (x/a, y/a) = (1,0). For
large values of (x/a, y/a), i.e., at distances far from the canyon,
the amplitudes of each component approach that of uniform half-space
motions.

The phase diagrams show a similar trend. Abrupt jumps are observed
most prominently at points near the canyon where the displacement am-
plitudes become very small. The points where such jumps occur have
predominently torsional vibrations. Similarly, for large values of
(x/a, y/a), the phases all tend to the linear phase relationship for
uniform half space.

The case of grazing incidence (y=9(°) is not presented, and is re-
placed by nearly grazing incidence (y=85°). This is because in uniform
half-space, the case of grazing incident P-waves will result in zero
motion everywhere.

The above observations are reminiscent of the analysis of SH-waves
scattering from a semi-circular canyon in Reference 8, and a semi-

elliptical canyon in Reference 12.
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Excitation: Incident SV-Wave

The analysis for an incident transverse SV-wave is similar
tb the forgoing analysis. The plane SV-wave has its displacement and
propagation vector again situated in the x-z plane, similar to the case
of incident P-wave. It has angle of incidence 8, circular frequency w
and is represented by the displacement vector B(i), where

1) _

u = ikB(-cosé ex-rsin6 ez)expikB(x sind + z cosé) , (7.1)

of wavelength AB = Zﬂ/ks, where kB = w/B is the transverse wave number.
The magnitude of the displacement vector, Ig(i)l, is kB.
In the presence of only the free half-space boundary, the incident
SV-wave is reflected from the plane free surface (z=0). Two separate
cases are to be considered:
(i) incidence at or below the critical angle (stﬁcr), and

(ii) incidence beyond the critical angle: total reflection

(¢ >Gcr), where the critical angle, acr’ is given by

J sin1 (8/q) (7.2)

Case (i) - Incidence at or below the critical angle (65;6cr):

In general, both reflected longitudinal (P) and transverse (SV)
plane waves will be generated, with displacement vectors respectively
given by

. (r) _; ™ - i iny -
(P): ] -1Klka(51ny e, - cosy gz)explka(x siny - z cosy%7.3)

. (r) _. . . .
(sv): u, = 1K2k8(c056 gx1-51n6 Sz)explks(x siné - z cosd%7‘4)

where ka = w/o is the longitudinal wave number,
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Y is the angle of reflection of the P-wave, and

KI’KZ are reflection coefficients given by

. - - (/8) *sinas
1 sin2y sin2§ + (a/B) 2cosZZcS
sin2y sin2§ - (Ot/B)2 ZD
K, - Sin2y cos (7.5)

sin2y sin2§ + (a/B) 2<:0522(3
Following the analysis in Appendix I and its use in the foregoing
sections, the incident and reflected displacement vectors can be repre-

sented by spherical potentials of the form

o) - g

‘l’(i) = kBan(i)jn(kBr)an(u) sinm¢

@ .3, @)

x) - . 3p(kgE)P " (W) cosmo

() . %" A (r)jn(kar)an(u)cosm¢

y(™) _ kBan(r)jn(ksr)an(u)sinm¢

(r) _ c @

X7 = 2y Cpp 3 (kgr)P (W cosme (7.6)

B
=

where the summation is for m,n=0,1,2, ... and m<n. With spherical angles
(u,v) = (6,0), (7-8,0) for the incident and reflected SV-waves, respec-
tively, the coefficients take the form

B (1) = i§_ (-c
mn mn

®cosé + cmnzosinﬁ)//n (n+1)

mnx
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C (1) =§ (-b ecosGi-bmnzesinG)/Vn(n+l)

mn mn mnx

mn(r) = Sun an(-cosy)K1

an(r) = iK8 (cmnxocosé-r cmnzosiné)/m

Can ) = Ky8 (b Ccoss+ b sind)/VAH) (7.7)

where the terms used in the expressions are given in Appendix I.
Case (ii) - Incidence beyond the critical angle (6>>6cr)

In this case, the reflected waves take the form:

u, (0 ikgS(sind e - iV e )exp(kgva)expi (£ + kyx sind)

~1
lle(r) = -ikB(COSG gxiisin6 Sz)exp(-ZiE)expikB(x sind - z cos§) ,
(7.8)
where

S = -sin4d

(cos426i-4v25in226$in26)1/2

2.2 1/2
v = (k"sin"§ - 1) , and
K
tanf = ZVS1n§6 siné . (7.9)
cos“ 2§

There is no reflected plane P-wave as before. (7.8)1 represents a
dilational disturbance that propagates along the boundary and decreases
exponentially with distance from it. (7.8)2 represents a plane re-
flected SV-wave, which has no change in amplitude, but a change in
its phase relative to the incident wave.

As in case (i), the incident and reflected waves are to be represented
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in terms of spherical wave functions. The incident SV-wave, u(l),

corresponds to T(l), X(l), while the plane reflected SV-wave, u 1)
g™ (@

, X ° exactly as they are in equation (7.6), where

2

corresponds to

K, = -exp(-2if) . | (7.10)
(r)

The reflected 'P'-wave, u; o, corresponds to the potential Q(r), which

can first be expressed in the form

(r) . ik (-
¢ Klexp].ka( cyz-rsyx) s (7.11)
where
sY = (0/B)sin§
sl /2 _ o2 .. 1/2
;Y (1 SY ) 1(sY 1) , and
- (a/B) ®sinds
Kl _ Q. sSin (7.12)

25Y chin26-+(a/B)2c0526

The exponent of (7.11) is similar to that of (7.3), with Sy’ cY in
place of siny, cosy. For 6cr<<6, sY:>1 and cY is imaginary, corresponding
to the sine and cosine of a complex angle. (7.11) is to be expanded in

terms of spherical wave functions. In terms of spherical co-ordinate

(r,0,¢), (7.11) takes the form

(r) _ . _ .
] = Klepr.kar( cYcose-st51n6cos¢) . (7.13)
Let
z; = --cY s
z, = cos® , and

N
I

= -cycose-+sysin6cos¢ s

then
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_ 12 _ .. 2 ..1/2
S,Y = (1 ) ( 1 = 1) >
sing = (1 - cos 6)1/2 - i(zzz-nl/z ,
z =22, - (zlz-l)l/z(zzz-1)1/2c05¢ s (7.14)
and
o) K expik rz (7.15)
. Iz .

Using equation (10.1.47) in reference [14], (7.15) has the following

expansion:
<]
(r) _ .n o,
7 =K :L;:) (2n+1) i7" j (k T)P (2) . (7.16)

Equation (15.7) of reference [15] states the following additional

theorem for Legendre polynomials:

"Let n be a natural number, Zy» z, and ¢ be arbitrary complex
numbers, and z be given by (7.14) above, then

P (2) = Z e, 811+$y P "(z))P "(z,)cosmp . (7.17)

m=0

In our case, (7.17) takes the form

n

P (2) = 3. e, %;"1—3—:- an(-cy)ancose)cosmd) . (7.18)

m=0

Using (7.18), (7.16) becomes

e =37 A )5 (k x)P P(cose)cosmp (7.19)
m,n
with
A ) = ity BB Pec K, (7.20)

where m,n=0,1,2, ..., with m=n in the summation.
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The expression for Amm(r) in (7.20) is in the same form as the
Amn(r) in (7.7), with cosy replaced by the imaginary number cy. This
completes the expansion for case (ii).

In both cases (i) and (ii), the resulting displacement vector

W) L@, @), @) (7.21)

satisfies the stress-free boundary conditions

0,, = O,x = ozy =0 at z=0 , (7.22)

and the reflected waves take the form

(r)

u, = 1K1ka(sy gx-cY gz)expl.ku(x sy-z cY) (7.23)
() _ . . . oo
u, = 1K2k8(c056 Sx-*51n6 gz)expl.kB(x sind - z cos8) . (7.24)
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Solution of the Problem -- Results

In the presence of the canyon, the two types of outgoing spherical
(longitudinal and transverse) waves that are reflected back into the

medium are given by

¢(S) = :E: Amn(s)zn(s)(kar)an(u)cosm¢

m,n

v = 5 kB P2 O amp Mo sinmg

m,n
X(S) = :E: Cmn(s)zn(s)(kBr)an(u)cosm¢ R (8.1)
m,n

which are identical with (2.1). Using the analysis in Appendix II, and
applying the boundary conditions of a spherical cavity in an infinite
medium subjected to incident SV-waves, the expansion coefficients are

given by the equations:

e, ® 5O e e g, @
£y, £, c m B,

and
B, & - (5, /E43(3))anci) , 8.2)

for m,n=0,1,2 ... and m<n.
In the presence of both the plane free boundary and the hemispherical
canyon, the additional waves that are generated are represented by

o® = D 4 (j)zn(j)(kar)an(u)cosmq)

. mn
J,m,n
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y® B kBan(j)zn(j)(kBr)an(u)sinmcb

j ’m,n

X (R)

2 2, P agnr "acoss (.3)
J,m,n

where j=1,2, and m,n=0,1,2, ..., with m<n. (8.3) is again identical
with (2.2). The boundary conditions to be satisfied are that of (3.8)

and (3.10), repeated here

(3.8): orr(r) + orr(R) =0
(r) (R) _
% = * 9% =0
Or¢(r) + or¢(R) =0 , at r=a
and
(3.10) : czz(s) + ozz(R) =0
¢ )4 R _,
ZX zX
Ozy(s) + UZY(R) =0 , at z=0

Applying the boundary conditions, identical sets of equations are
obtained for the unknowns

w G p G) o G
mn mn

mn j=1,2; m,n=0,1,2, ... ms<n ,

namely, equations (4.1), (4.16), (4.19) and (4.21).
The same steps of numerical calculation are carried out as in the
foregoing analysis, and the results are presented in Figures 22 through

49. They represent typical characteristics of amplitudes and phases of
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surface displacements at dimensionless points (x/a, y/a) near the can-
yon for angles of incidence §=0° 302 455 605 75°and 85° The values
of dimensionless frequency, n, andFPoisson's ratio, v, are again 0.5
and 0.25, respectively.

In the absence of the hemisperical canyon, the surface displacement
amplitude of each component in the uniform half-space would be no more
than 2, for incident SV-wave of unit amplitude. The x-component am-
plitude is 2 for the case of a vertically incident plane SV-wave (§=0°).
Also, for §<90° the phase angles ¢x’ ¢z would both be

¢x = ¢z = kBsin§x B (8.4)

again a linear function of x, this time with a steeper slope kBsinG as
compared to kusiny for the case of incident P-waves.
The value v = 0.25 used corresponds to Kk = a/B = V3 , and the cri-

tical angle, § _, is given by

cr

6., = sin"1(1/¥3) = 35°16" . (8.5)

The angles of incidence § = (® and 30° thus correspond to cases of
-incidence below the critical angle (6<<6cr), while the angles of inci-
dence 6 = 45, 60°, 75° and 85°correspond to cases of incidence beyond
critical angle (6>-6cr). For § = 45, the reflected P-wave vanishes, and
the incident SV-wave is reflected as an SV-wave in the free-field.

Thus, § = 0, 30°, and 45° correspond to the case of harmonic incident
and reflected plane waves of uniform amplitude in the free-field. The
case of § = 6(°, 75° and 85° correspond to the presence of inhomogeneous
plane waves with a complex propagation vector and varying amplitudes

even in the free-field. The case of § = 9(° will result in zero motion
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everywhere in the free-field, and thus is excluded in the present
analysis.

The following table gives the amplitudes and phases of the motion
at the surface of the free-field for plane incident SV-waves at angle 6,

and v = 0.25.

' Phase
Angle of Anplitude l¢x| lq)zl

Incidence, § qul luzI ‘(x/a) (x/a)
0° 2.0 0 0. -
30° 1.732 1 L2507 .250m
45° 0. 1.414 - .3547
60° 0.5 1.118 .433m L4337
75° 0.423 0.731 .4847w .484m
85¢° 0.170 0.279 .498T L4987
90° 0. 0 - -

(8.6)

The motion in the y direction is uniformly zero in the free-field
since the displacement vector of the incident waves are in the x-z plane.
The presence of the canyon changes the uniformity and results in
non-zero motion in all three components. The case of vertical incidence

(8§ =09 again leads to symmetric results for displacement amplitudes
and phases. A progressively more complicated pattern of ground dis-
placements and phases of all components is observed as § increases
from (® to 90° in the creation of amplification and shadow zones in the
vicinity of the canyon. The amplitudes of each component again approach
that of free-field motions at comparably large distances from the can-
yon.

The phase diagrams show a similar. trend. The phase angles in the

free-field have a steeper slope kBsinG as compared to kasiny for the
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case of incident P-waves. For § = 60, prominent, abrupt jumps of mag-
nitude as large as T are observed. These jumps are most prominent at
places where displacement amplitudes become very small or close to
zero. The motions of the points on opposite sides of the jump are
180° out of phases. They are points experiencing predominantly tor-
sional vibrations. Similarly, the phases again approach the linear

phase relationship with x at comparably large distances from the canyon.
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Excitation: Incident SH-Wave

The analysis for incident transverse SH-wave is similar to
the forgoing analysis for P- and SV-waves. The plane SH-wave has its
propagation vector again situated in the x-z plane, but the displace-
ment vector is in the y-direction. It has angle of incidence §, cir-
cular frequency w and is represented by the displacement vector E(i),

where

u® <k

~

Bgy,expi.ke(x sind + z cosd) |, (9.1)

with wave number k, and magnitude lg(i)l = kg. ¢, is the unit vector
in the y-direction.

In the presence of only the free half-space boundary, the incident
SH-wave is reflected from the plane free surface (z=0) as SH-wave with
angle of reflection same as the angle of incidence. The reflected dis-

placement vector is given by

(r) _ . . . _
u = 1kB Sy epr.kB(x siné - z cosé) , (9.2)

~

with the same phase and magnitude as u(l) along the boundary. There is
no reflected P- nor SV-wave.

In terms of displacement spherical potentials, u(l) corresponds to

W(i), x(i) and u(r) corresponds to Y(r), x(r). The potentials are given
by
o) - o
(i) _ (1). m
b4 = kBan Jn(kBr)Pn (1) cosm¢

m,n
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in,n
2(¥) = o
(r) _ (r). m
! ) m,n kBan Jn(kBr)Pn (W) cosmé
(r) _ (x). m .
X —g%n%%m“mm¢, 9.3)
where the summation is for m,n=0,1,2,... and m<n. The coefficients

take the form for incident wave, (u,v) = (8,0) and

an(i) = i§ ¢ /@D

mn mny

c. s p °//ame0) (9.4)

mn mn - mny

while for reflected waves, (u,v) = (w-6,0) and

an(r) = idmncmnye//n(n+1)
Cmn(r) = (Smnbmnyo/m ) ‘ (9.5)

where the terms in the expressions are given in Appendix I.

The resulting displacement vector is

u(i+r) -

~

MOINC I ©.6)

~

again satisfying the stress-free boundary conditions

0,, = O, = ozy =0 (9.7)

The resulting potentials from incident SH-waves have one major
difference with those for incident P- or SV-waves. For incident P-

or SV-waves, the ®- and x-potentials are even functions of ¢, with
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factors cosm¢, while the Y-potentials are odd functions of ¢ with fac-
tors sinm¢. It is vice versa for incident SH-waves, which has its
displacement vector in the y-direction. The ®- and X-potentials are
now odd functions of ¢, with factors sinm¢, while the ¥Y-potentials
are even functions of ¢, with factors cosmé.

In the presence of the canyon, outgoing spherical waves are re-
flected back into the medium. They are represented by the potentials

() y(s) (s)

and ¥ given by

o) = 3 a2 O 0p Pysing

m,n

y(s) _ g_';l kBan( )zn(3) (kgr)P_" () cosmo
CO 2 (3) (kgr)P "W sinmp (9.8)
m,

in the same form as those in (8.1), with the sine and cosine terms

. o (3) (3) (3) -
switched. The coefficients Amn , an s Cmn m,n=0,1,2,
with m=n, identically satisfy the equations in (8.2).

In the presence of both the plane free boundary and the hempispheri-

cal canyon, additional spherical waves are generated, being represented
by
o® - Y a0, (J)(k )P " () sinmg

j,m,n

R . .
\1;( ) = J%n kBan(J)zn(J)(kBr)pnm(u)cosm¢

X(R) = }E: C (J)(k r)P (u)51nm¢ (9.9)

j,m,n
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where j=1,2, and m,n=0,1,2,..., with m=<n. (9.9) is in the same form
as (8.3) with the sine and cosine terms switched. The six sets of
unknowns {Am(j),an(j),Cmn(j)‘ ji=1,2, myn=0,1,2,... m<n, again
satisfy the identical set of equations, namely (4.1), (4.16), (4.19)
and (4.21). | '

The same steps in the numerical calculations are carried out as in the
foregoing analysis for P- and SV-waves; and the results are presented
in Figures 50 through 65. They represent typical characteristics of
amplitudes and phases of surface displacements at dimensionless points
(x/a,y/a) near the canyon for angles of incidence § = 0°, 30° 60° and 85
Again, the values n = 0.5 and v = 0.25 are used.

In the absence of the hemispherical canyon, the free-field surface
displacement amplitude for incident SH-wave of unit amplitude is two for
the y-component and 0 for the x- and z-components for all angles of in-
cidence. The y-component phase is given by

d)y = kBsin(Sx , (9.10)

where § is the angle of incidence. The presence of the canyon changes
the above uniformity and results in non-zero motion in all three com-
ponents. Similar results are obtained as in the cases of incident P- and
SV-waves. Scattering and diffraction of waves around the canyon result
in the creation of amplification and shadow zones. Similar results are

obtained for phase changes.
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Conclusions

Some of the principal observations that emerge from the analysis

above may be summarized as follows:

1)

2)

3)

4)

The surface displacement amplitudes at all points around the canyon

is no higher than four, for incident plane P-, SV- and SH-waves.
The resulting amplification of surface displacements is thus no
higher‘than two.

The pattern and amplitudes of surface displacements depend signi-
ficantly on the direction of incident waves. For acute angles of
incidence, amplification and shadow zones are observed around the
canyon.

Similarly, significant phase changes are observed close to the
canyon at points where the motion is small.

The principal role of the ratio of the diameter of the canyon to
the wavelength of the incident plane waves is that it determines

the extent to which the above-mentioned effects are developed.
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APPENDIX I

Plane Wave Expansion

A vector harmonic plane wave propagating in an arbitrary direction
has the displacement vector u given by

u=aexpi (ker-owt) (A1.1)

a is the displacement amplitude vector,

[

is the propagation vector,

is the position vector,

tH

is the harmonic frequency, and

€

t is the time coordinate.

A representation of such vector plane waves in terms of elementary
spherical wave functions is next examined. In spherical co-ordinates,
any given displacement vector can be decomposed into three independent
spherical wave components,

el M (A1.2)
each satisfying the vector Helmholtz equation. E is the longitudinal
component, while M and N are the transverse components with zero diver-
gence. They are related to the scalar spherical potential functions

as follows:

L

L = X grad (%)

- a

M = curl(r¥)

N = iL-curl curl(ry) ’ (A1.3)

B
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w
n

w/a is the longitudinal wave number, and
kB = w/B is the transverse wave number.

(A1.3) has the corresponding set of three basic solutions of the

first kind, finite at r=0,

1 1 . m,. |Ccos
Ll =L grag (J (kTP ") & m¢)
& mn ka na ' n sin
M1 = curl (rJ (k,r)P (u)cos mg
~& mn ( B n sin
N1 = ﬁL- curl M1
~§mn  Xg ~&mn
where
M = cosO . (A1.4)

The label e (even) or o (odd) designates whether the even (real) or
odd (imaginary) part of the azimuth function exp(imd) is to be employed.
The index m appears as the ''upper" index for the spherical harmonics and
also as the index for the azimuth function. The index n appears as the
index for the radial functions. The range of m,n is 0 to «, with m=<n.
The superscript (1) indicates that the radial functions used are those
which are non-singular at the origin (jn). These basic solutions are
given in Morse and Feshbach, reference .

The most general series expansion for a vector plane wave propagating

in the direction k with angles u, v is given by the dyadic
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iker _ . o 1
Fe's > = o:;:n S l-l Pan (@)L (1) +
E Randt ]

—1 o 1 O 1
D) [Smn (M () - ib . (u,v)lllomn (ri]}

where
= ;N - ! | = =
amn Eml (2n+1) (n-m) !/ (n+m) ! , Eo 1, €m 2 form>0
0 =e€e,0; mn-=20,1,2, ..., m<n

F = unit dyadic = e e + eye + e e

x&x (A1.5)

The vector functions P 0, b O are the vector spherical har-

c
~mn ~mn °’

~mn

monics. Their definitions are given in [ 1] and are included below.

(A1l.5) can now be used to expand B(l), Bl(r) and uZ(r). The incident
plane P-wave has displacement given by
() L @) g i @),
4 =1 Ea exp 1 Ba r
=i ka(siny e, * cosy gz)expi.ka(x siny + z cosy) (Al.6)

Since the longitudinal (P) displacement has a non-vanishing diver-
gence, its expansion involves only the L function. Thus, applying the

dyadic

2@ e B s, oW e 1, o (a1.7)

For ka(l), u=y, v=0, so

e m
Pon (V) = e P "(cosy)

fmno(“’v) (A1.8)

]
1O



112

from which we obtain the scalar potential ¢(1) corresponding to u(l),

using (Al.4) and (Al.7)

(i) _ (i), m, ..
® = mzn Amn Pn (u)Jn(kur)cosmb (A1.9)
where
1) _ *tp M =
A =6 Pn (cosy) m,n=0,1,2,...

m<n in the summation.

Similarly, the reflected P-wave has displacement given by

(r) 3 (r) 1 (r) .
U . 1K1§a epr.Ea r

iKlka(51ny e, - cosy gz)expa.ka(x siny - z cosy) (Al.10)

For

kauj,u=ﬂ=n v=0, so

e m
P (@) = ¢ P M(-cosy)

n
o

o
P _°u,v) (A1.11)

from which

(r) _ (r)pm. . ’
¢ = Z;% Amn Pn (u)Jn(Lar)cosm¢

) . e Al.12
Amn = 6mnpn ( cosy)K1 (A1.12)
Finally, the reflected SV-wave has displacement given by

() _ ; i iné - 8 A1.13
u, = 1K2kB(c056 Sx4~31n6 Sz)expl_kB(x siné - z cos§) ( )

where EB = kB(sinG Sx-c056 Sz) has angles

u=m-8, v=20.
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(r)

The divergence of u, is zero and consequently it can be expanded

in terms of the vector function E%IMI’ §8’m‘ only. Before applying

the dyadic, we write

e . o
cC_=¢ +1ic
~mn  <mn ~mn
b =b ®4+ip °
~mn  <mn ~1n
Smn T (cmnx’cmny’cmnz)
Pmn B (bmnx’bmny’bmnz) (Al.14)

The above terms are given in (Al.20) below.

For kB’ u =m-§, v = 0 and we have

~

c ® =p %=09p (Al1.15)
~mn ~mn :

Applying the dyadic, with (u,v) = (%-8,0), (Al.13) can be written as

() _ 1K kg

m,n vn(n+l)

1

u

o o .
c cosS + né)M
~2 [( mnx “95° % Cppz S )~omn

- i(b_ %coss+b__ Ssind)N 1] (A1.16)
mnx mnz ~€mn

From (Al.16), uz(r) corresponds to scalar potentials given by

y(™) | g} kBan(r) iy (kgr)P "(1) sinmg

x*) = ;l Can "3, Uegr)P (1) cosmg (A1.17)

where for my,n=0,1,2, ..., m<n

(r) _ . o o _.
B = 1K26 (c X cos$§ + ¢ z sind) /vn(n+1)
(r) _ e e .
C = K, 8 (b x cos§ + b ; sind)/vn(n+1) . (A1.18)
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To complete the analysis, we include below the terms bnm’ -

given in reference 1. With

let

-0

c =c_ %4+ic =c_ (u,v)

~mn ~mn ~mn ~mn "’
e . 0

b =5b + ib = b

~In  ~mn 1 mn ~mn(u’v)

Xnm(u,v) = ‘an(cosu) exp imv

~mn (cmnx’cmny’cmnz)
Pan = (pnyebyny s by ) (A1.19)

.5 n+l m-1 m+1
bunx = Znel {\IT [(l—aom) (n+m) (n+m-1)Xn_l - (1+60m)xn~1 ]
n m-1 m+1
Vo [0 emen oy, P s o ]]
.5 |n+1 . m-1 . m+]1
mny = Znel {"—n [(.1-60m) (n+m) (n+m-1)1)(n_1 + (1+60m)1xn_1 ]

. -1 . 1
\ ’n—r:—l— [(I-GOm) (n-m+1) (n-m+2)1)(n+1m + (1+6°m) 1Xn+1m+ ]}

+

o
I

+

- 1 n+l m n - m
bmnz T 2n+1 [ o (mX arp (@ m1)X }
c . —> -(1—6 ) (n+m) (n—m+1)i)(nm'1 + (1+60m)ixnm+1]
mxCAGwen b om

¢ =5 '(1-aom) (nem) (n-me1) X 70 - (1es_ ) Xn"”l)]

my  a (n+1) *“

¢, = —=— mix" (A1.20)
mnz v/n(n+1)
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APPENDIX II

Scattering of Spherical Waves From a Spherical Cavity

Consider a spherical cavity subjected to incident plane P-wave

represented by the potential

¢(1) = expi.ka(xsiny-fzcosy) (A2.1)

From Appendix I, ¢(l) can be expanded into spherical waves, given by

equation (Al.9),

o(1) . ;;;‘Amn(i)jn(kar)an(u) cosm (A2.2)

Two types of outgoing spherical waves, longitudinal and transverse,
are reflected back into the medium and they can be represented by the

potentials

o(s) _ }E: A (S)ZH(S)(kar)an(u) cosm¢

£ "
y(8) _ kBan(S)zn(S)(kBr)an(u) sinm¢

m,n
x(s) = P Cmn(S)Zn(S)(kBr)an(U) cosm¢ (A2.3)

where m,n=0,1,2, ..., m<n in the summation. Amn(s)’ Bnm(s)’ Cmn(S)
are expansion coefficients to be determined by the boundary conditions.
The Hankel function zn(s)ifhn(l) is used because hn(l)(kr)exp(-iwt)
represents outgoing spherical waves.

The boundary conditions at r=a are

= - = A2.4
Opr = 9og or¢ 0 all 6,¢ ( )
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Applying (A2.4) to each '""(m,n) component," we have, for m,n=0,1,2 ..

m=<n
Grr: Amn(})Ell(i) * Amn(S)Ell(S) * Cmn(S)EIS(S) =0 (A2.5)
o :fa Wp WL, & &, Gy ] Pa
ro’ mn 41 mn 41 * mn 43 dé
mk ,a
+ EISE'an(S)E42(3)an =0 (A2.6)

. _m @) @ 3 (3 B G)| pm
%r¢°  Sind [%mn Egp 7t Ay E * Coan g3 ] P

41 n

ap ™

(3 (3 "'n
+ kgaB SVE 5 (A2.7)

where Eij(k) = Eij(k)(m,n) is given in Appendix III.

For (A2.5), (A2,6), (A2.7) to hold for all 0,9, 0<6,¢ <2m, one

needs
(3 (3) 3, 3) _ 1), @)
Amn )Ell * Cmn EIS - _Amn ’ E11
(3) (3) 3., ) _ 1), (1)
A Bq1 0+ Cpp Egz 0 = <AL UE,
(3) (3 _
kBaan E42 =0 . (A2.8)

. (3) (3 (3)
which solves for Amn , an (=0) and Cmn .
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APPENDIX III

Displacement Vector and Stress Tensor

The physical components (ur, Ug s u¢) of the displacement vector
and those of the stress tensor (orr, 096’ 0¢¢, 097 Urcb’ °e¢) in
terms of the scalar potentials (9,Y¥,x) are given in Mow and Pao

(reference 2). Set

_ m cos

¢ = Zn(kozr)Pn W) sin ™

¥ =z (kgr)P ") S0 mg

X = 2, (k)P "() 7% mg (A3.1)

where z = zn(l) denotes one of the spherical Bessel functions given
in equation (11), u = cosf, m,n=0,1,2,... and m=<n.

The components of the displacement vector take the form

u =%_d (i)+2,d (i)]Pmcosm¢

T | 11 13 n sin
- m (i)
dp mrd
_1 (1) (i) n 22 m| cos
g = [(dp T * Ay ) ot e Py ]sin e
o sl g @,y Wppn @ LA n
¢ 1 |sin® ‘"21 23 n - T2 de |cos

(A3.2)

where £ is introduced so that all terms have the same dimensions,

m_ _m
p"=P "),

m
dP_ " (W)

— B = e, "0 - (mm)P, "] /sind (A3.3)

(1)

and for z =z
n_ n
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dll(l) = nzn(kar) - kmrzn+1 (kar)
(1) _
a,M =0
dls(i) = n(n+1)zn(kBr)
d2_1(i) =z, (k1)
4, = 2 (kg™
4. D o ez k1) - korz L (ko) A3
23 n (kg BT %a+1 KgT) . (A3.4)

At 6 = /2 (z=0), u = 0 and

ap ™
n

—de -(n+m)Pn_1m(0)

and (A3.2) takes the form

_1 [ @ ()], m cos
=7 HECT ]Pn (0) gip ™

p-

cos

ug = 315 _-(dZI(i) . Zdzs(i))(n+m)Pn_1m(0) x mrdzz(i)an(O)J €% mg
- . . s

Yo =.1{. _m(dzl(l) * jLdzs(l))an(o) ¥ r("‘“"‘)‘122(I)Pn-1m(°) cos M0

(A3.5)

The components of the stress tensor take the form

o__ due to: ‘
. (2 (1) cos . (1) _ (i)p m
®: (r2> €17 sin ™ &0 =B P
. . (i) _
¥Y: none ; 612 =0

. {2uL (1) cos . (1) _ (), m
X'<r2)613 sin ™ 5 &3 7 = Ej7P)
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N

(i) (z 2r* ,
Ell n -n —kB > zn(kar) + 2karzn+1(kar)

B, =0

B, = n@e) [z, egr) = Kegrz, ) (o] (A3.6)
%6 due to

" (%) &, o m e TR M

¥: (%P' &, sin T P

y: (%)623(1) §<1>rsl mé . 6"23(1) =Ezs(i)pnm+g23(i)§nm

By, = (- kg r?/2 K19z (k1) - Kyrz,,q (kT

f:321(1) = z, (k1)

e,V - f—"?— 2, (kgT) [(n—l)uan - (n+m)Pn_1m]

Eys) = -@? + n) nz, (kgr) - kgrz ) (kgo)]

Bpstt = D)z (kg) - KTz, ()

ﬁn’“ Snm(u) - :11:2_ [(m2 - uzn)an + emup "] (A3.7)
0¢¢ due to

' 2u (i) cos . . . n Sy A
: (=5) € . mo ; D_; @pm ()5 m
(Jz) 31 sin 6’31 =Eg P U -Eg P
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Y. (Zu)é., (i) cos me :

E

31

E

31

(1)

(1)

(1)
2

E

33

(i)

g (1)
Ess

~

n

due to:

rd

o

(2]
ol

32 sin

A

sin 33

2ul (i) cos . i) _ (i), m (i)2m
)gss mp 5 €57 =Egz P U-E Pn

o (%

22 2 2
(n-kB T /24-ka T )zn(kar) - karan+1(kar)

zn(kar)

m m m
Ijza-zn(ker)[}(n-l)uPn + (n+m)Pn_l ]

= n(n+1)zn(kBr)
= (n+l)zn(k6r) - kBrzn+1(kBr)
") = -l—lu— [ - (nemup, ;"]

.. dp ™
(i) cos ) (i) _ (i) "n
)€41 sin™ &, =E, T

. 2u (i) cos . (i) _ #m_ (i), m
¥ (‘r’) 2 w5 6y =i E Pa

E

E

41

42

r

(i)

(1)

<@&> &, S uy ;g ) _p () Cn

sin sinb 42

dp

2 sin 43 43 dé

(n- l)z (k r) -k rzn+l(k T)

5 [(n-l)zn(kBr) - kBrzn+1(kBr)]

(A3.8)
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(i) _ .2 ., .22
E43 = (n” -1 kB T /2)zn(k8r) + kBan+1(kBr)
o] 6 due to
. 2y (i) sin . (i) _ m (i), m
o: (r2> €1 cos™ 3 €5 =g Bsr Py
ap ™
. (2 (i) sin . (i) _ (i) _n
¥ '(r ) 2 cos ™ 5 gy =B, —
2uf . . . .
N (i) sin i (1) _ _zm (i), m
X <r2 > Qg’53 cos mé ’ €53 ~ sinB E53 Pn
(1) (1)
Esy En
(i) _ (i)
Es) Eaz
(i) (1)
Es3 Ey3
°6¢ due to
. f2u (i) sin
o: ( 2) 861 cos ¢
T
. (21 (i) sin
¥ ('r ) é“62 cos mé
. 2uf (i) sin
X < 2 ) 623 cos ™
. . ., [ap ™
(i) _ _sm_ (i) n m
%1~ = sing Sel < dg - cot8 Py )
oy @ o,
6%2(1) - 52 [(rlgn sin’g + n-mé)an - (n+m)cosH Pn—lm]

sinze

(A3.9)

(A3.10)
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fdp ™
(1) _ zm (i) n m
€63~ = 5inf Ee3 dp~ - coté P

(i)
E61 = Zn(kar)

(1)
E62 z (kBr)

B, (12, (gr) = kgrz, (ko) (A3.11)
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APPENDIX IV

Series Expansion

For
¢ = Zn(kar)an(“) ggi me
Y = zn(kBr)Pn’"(u) con M9
X = 2, (kgr)P ") 0% mo | (A4.1)

the components of the stresses Sg9° % and 06¢ are given in Appendix
IIT (A3.7), (A3.9), (A3.11). At 6 = w/2, the half-space plane boundary
(z=0), these stress components take the form

1) T

ézl(i) = [(mz-nz-kBZrZ/Z + kazrz)zn(kar) = karzn+1(kar)] an(O)

é;z(i) :m(n+m)zn(kBT)Pn_1m(0)

653(1) - [(mz-nz)(n*l)zn(kgr) + (ni-nz-mz)kBrzn+1(kBr)] an(O)

(A4.2)
2) Uer = cr9:
, 1(1) = -(em) [(-1z_(k x) - Koz, q (ko) ] P (0)
&, - £.5m[(n-1)z, (kgr) - Kgrz  (ker) ] P "(0)

& . _(nem [(nz L. kBZrZ/Z)Zn(kBT) . kg“ml(kBr)] P_"(0)
(A4.3)



124

61 = im(n+m)zn(kar)Pn_1m(O)

]

< = #m(n+m) [(n-!-l)zn(kBr) - kBrzn+l(kBr)] pn_lm(o)

S5*m%+n- 2m2)zn(k8r)an(O)

(A4.4)

All the above terms involve spherical Bessel's functions jn’ Y, or

their derivatives. They can be expanded in power series of r.

3, = [T @

o) k
- (-1) T
gy = E;; DT (2
we have
(=] n+2k
. T
i (x) = a (—)
n 2;; nk\2
where
__ /aenk
%hk T (ke 1)T (n+k+3/2)
Similarly
- ,;1.
yn(r) - zr Yn"’l/z(r)
== ™y m
T N2r -n-%
or
[ r -n-1+2k
Yp(r) = Z—:-) bnk(f)

where

From

(A4.5)

(A4.6)

(A4.7)

(A4.8)

(A4.9)

(A4.10)
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(_1)n+k+1 S

Prk = I DT neke)

(A4.11)

Using (A4.7), (A4.10), we can expand é" —gij (m,n,r) given in

(A4 2), (A4.3), (A4.4) in series of r. For i=2,4,6, j=1 and 3, we

write
n+2k
AR ‘/k:, IPCRRS (%-)
2 -n-1+2k
gij (2) (m,n,r) = ; elJ( )(m’n’k) ('21:')

and for j =2, we write

n+2k+1
kBr d’lz(l)(m,n,r) = 2 612(1)(m,n,r) (32:)

k
kgt é’iz(z) (m,n,r) = }1; e12(2) (m,n,k) (g)-nm( (A4.12)
where k=0,1,2, ..., in the summation, m,n=0,1,2, ..., msn, and
LYY ezl(l) = [(m2 'nz)ank -4(a2/282)an,k-1 _2a n+1 . l]P (O)k n+2k
622(1) = ¥2m(n+m)ankPn_lm(O)an+2k+1
e23(1) = [(n+1) (mz 'nz)ank + 2(n+n2—m2) ke 1] (O)k n+2k
e21(2) = [(mz-nz)bnk - 4(a2/282)bn,k-1 ~ % - k] (0)k -n-1+2k

2 _ _, . m -n+2k
€, = +2m(n+m)bnkPn_1 (O)kB

(2)
23

2 2 2 2 -n-1+2k
e [(n-!-l) (m® -n )bnk+ 2(n+n" -m7)b n+l k]P (0)k

(A4.13)
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0"

(1)
41

1)
42

(1)
43

(2)
41

(2)
42

- (2)
43

61

(1)
62

(1)
63

(2)
61

(2)
62

(2)
63

(1)
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- _ _ _ m n+2k
(n+m) [(n l)ank Zan+1,k-1]Pn-1 (O)ka

+ _ _ m, n+2k+1
m[(n Da_, 23n+1,k-1]Pn (0)kg

2
- (n+m - - n
(n+m) [(n Da 2an’k_1 + 2::1n+1’k_1:|Pn_1

_ _ _ m -n-1+2k
(n+m) [(n Db, 2bn+l’k]Pn_1 (0)k,

» m -n+2k
+m [(n-l)bnk - 2bn+l’k]Pn (0)k,q

n+2k
(O)kB

- Z_ - m -n-1+2k
(n+m) [(n l)bnk 2bn,k-1 + 2bn+1,k] Pn-l (O)kB

*m(n+m) ankPn_lm(O) kan+2k
(n+ n2 - 2m2)ankan(O)an+2k+l
+ _ m n+2k
m(n+m) [(n+1)ank zan+1,k-1]Pn-1 (0)kg
tm(nsm)b_ P "(0)k TN
2 2 m -n+2k
(n"+n-2m )bnkpn-l (O)kB
-n-1+2k

m(n+m) [(nﬂ)bnk - 2bn+1,k‘_-|pn-1m(0)k3

(A4.14)

(A4.15)





