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ABSTRACT

The dependence of the relative time of maximum response of single
degree-of-freedom system, subjected to recorded strong earthquake ground
motion, on magnitude, epicentral distance and the Modified Mercalli
Intensity at the site has been studied. Two empirical regression models
~are presented that enable estimation of the time of maximum response in
terms of (1) earthquake magnitude and epicentral distance, or (2) Modified
Mercalli Intensity at the site. The distribution function of the observed
times of maximum response is also derived. Both models also consider
whether motion is horizontal or vertical, and the effects of the geologic
conditions surrounding the site. The results are useful for the response
spectrum approach in earthquake resistent design, as they provide guide-

lines for superposition of different loads in time.






INTRODUCTION

In response spectrum calculations, the times at which maxima
occur are usually not considered. In a typical response spectrum
approach, when computing an estimate of the maximum response of a
multi-degree-of-freedom system by adding individual mode responses
it is assumed that it is possible, though not very likely, that all
mode responses can experience maximum response at the same time.
Depending on the type of the analysis (a) the square root of the sum
of the squared maximum responses of individual modes, or (b) the
absolute sum of maximum mode responses, is used to represent the
maximum response of the whole system.

For certain applications, however, it is advantageous to consider
the times when maxima of mode responses occur in a multi-degree-of-
freedom systems‘and to use this information to better describe the re-
sponse of the complete system. To illustrate possible uses of such
approach, we present the following two examples.

First, we consider the estimation of the maximum response in a
system which has low frequency of the fundamental mode and relatively
high frequencies of second and higher modes. When the duration of
high-frequency strong shaking is short relative to the period of the
first mode, the maxima of the higher mode responses for such a system
may all be achieved well before the fundamental mode goes through its
maximum response. Under such circumstances, both methods (a) and (b)
above for computing the overall maximum response then lead to overesti-

mates.of the maximum response of the whole system.



In the second example the superposition of earthquake induced loads
to the loads which may result from the increase in containment pressure
following a hypothetical accident in nuclear power plants is considered.
These two loads are usually superimposed in calculations of maximum
member stresses involving conditions assumed for the safe shutdown
earthquake (SSE). If it is realized, however, that maximum accident
containment pressure caused by earthquake shaking can take some time
to develop, it is easy to see that under favorable conditions, by the
time these pressure stresses reach their largest values, the dynamic
stresses induced by earthquake shaking may be already diminished. Hence,
assuming that these two loading conditions contribute concurrently to
the maximum response may lead to higher actual safety factors for
building structures but may not be appropriate for estimating re-
sponse of all equipment mounted to these structures.

The above examples suggest that detailed knowledge of when the maxi-
mum mode responses occur is helpful to understand in more detail the
nature of response of the multi-degree-of-freedom systems subjected to
earthquake excitation. To this end, in this paper we present two em-
pirical models for estimation of this time in terms of (a) earthquake
magnitude and epicentral distance and (b) Modified Mercalli Intensity
at the site. We restrict this analysis to characterization of the time
of maximum response of the viscously damped single-degree-of-freedom
system as excited by recorded strong ground motion. As a result, the
models presented here are limited in their applicability to those in-
tervals of the independent scaling variables for which the data is now

available.



Attempts were made [1] to describe the time of maximum response of a
single-degree-of-freedom system in terms of the probability of the first
passage. However, this difficult problem has not yet been solved and
only some approximate theoretical models are currently available [1].
The analysis of this problem from an empirical viewpoint in this paper,
and based on actual observations, may thus prove useful in further

theoretical studies.



DATA BASE AND REGRESSION

The data base for this analysis consists of 186 records of strong
ground motion in the western United States, each consisting of two
horizontal acceleration traces and one vertical trace. These accel-
erograms were recorded during the period between 1933 and 1971 and
constitute so far the largest uniformly processed group of strong
motion records any place in the world. Though incomplete in many
respects, this data set has already proved to be the invaluable basis
for analyses focusing on the detailed characterization of strong ground
shaking [4,5,6,7,8,9].

In routine computation of relative displacement (SD) response spec-
tra [3], the ordinates of Response Envelope Spectra (RES) [2] consisting
of amplitude and time coordinates of all maxima of the responses of 91
single-degree-of-freedom, viscously damped oscillators have been stored
onto a magnetic tape. By plotting RES amplitudes versus time and fre-
quency, it is possible to derive information on how relative motions
of different oscillators respond in time to recorded strong motion ac-
celeration. 1In Figure 1, an example of such RES for w * SD (where
w=2m/T and T is the undamped period of single-degree-of-freedom system)
is shown for acceleration recorded at 646 S. Olive Avenue in Los Angeles,
recorded during the San Fernando, California, earthquake of 1971. The
RES contours show the changes of response amplitudes in time and fre-
quency.

Heavy irregular line in Figure 1 starting just after 10 seconds at

the high frequency end of RES plot and flucuating first back to about
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6 sec at the frequency of about 10 cps and then migrating towards the
time interval between 15 and 20 seconds for frequencies less than 1 cps
indicates the times of maximum responses for each of oscillators at

91 different periods (between 0.04 sec and 15 sec) and for the fraction
of critical damping ¢ = 0.10. The amplitudes of RES along this line
plotted versus frequency, f, or period T = 1/f, would result in the
Pseudo Relative Velocity Spectrum (PSV = w* SD) which is frequently
used in earthquake resistent design based on the response spectrum
superposition approach [9].

For all 186 records (372 horizontal and 186 vertical accelerograms)
we calculated Response Envelope Spectra at 91 periods ranging from 0.04
sec to 15 seconds and for damping ¢ = 0.00, 0.02, 0.05, 0.10 and 0.20.
This resulted in 2790 RES spectra of which the spectrum in Figure 1 is
an example. From these RES spectra, the times of maximum response ver-
sus 91 frequencies were extracted for subsequent analysis.

The distribution of data among five magnitude intervals is as fol-
lows: 3.0 to 3.9, 1 record; 4.0 to 4.9, 5 records; 5.0 to 5.9, 40 records;
6.0 to 6.9, 120 records; 7.0 to 7.9, 7 records and unknown magnitudes,
4 records. The distribution of data among seven intensity levels is as
follows: MMI = II, 1 record; MMI = IV, 3 records; MMI =V, 34 records;
MMI = VI, 66 records; MMI = VII, 75 records; MMI = VIII, 6 records; and
MMI = X, 1 record. The majority of recordings (117) were registered on
stations located in alluvium and sedimentary deposits (classified as s=0;
see reference 4 for a detailed description of this classification and

for examples of assigning s=0, 1 or 2 to selected sites), 52 records



came from sites located on intermediate type rocks (s=1), and only 13

records from stations on basement rock (s=2).

Scaling in Terms of M, A, s, v and p

For damping values ¢ = 0.02, 0.05, 0.10 and 0.20, we select

TMAX(T), ) = a(T)p + b(T)s + c(T)M+ d(T)A + e(T)v (1)

where TMAX(T),p is the relative time of maximum response of the single-
degree-of-freedom, viscously damped, oscillator (with natural period T),
that will not be exceeded in 100p percent cases. p is not probability,
but through term a(T)p represents a linear approximation to the actual
distribution of TMAX(T) about the regression model (1) when 0.05<p <.95.
s represents the site conditions. M is the magnitude which for most
earthquakes with M £ 6.5 in the data set of 57 earthquakes considered

here [4] represents the local Richter magnitude M A is epicentral

L
distance in kilometers and v represents component direction to which
TMAX(T),p applies (v=0 for horizontal and v=1 for vertical motion).
Functions a(T) through e(T) are the scaling functions of T and are de-
termined from the regression analysis.

The functional form of equation (1) has been motivated by the studies
of duration of strong shaking [6,7] which have argued that duration is
a linear function of R. The term c(T)M represents a linear approximation
to what should be an exponential dependence on M as suggested by simple
models of earthquake sources involving propagating dislocations.

Many recorded strong motion accelerograms contain what could be

identified as clear S-wave arrivals. This is particularly the case for

more recent recordings which come from accelerographs with vertical



triggering devices. These are often triggered by the P-wave or some
of its latter reflections but well before the S-wave arrival. In some
cases, primarily for older recordings of small and more distant earth-
quakes, the S-wave arrivals may be difficult to identify because of
their proximity to the triggering time or because of the late trigger-
ing by means of penduli sensitive predominantly to horizontal motions.
To provide a uniform physical basis for TMAX(T) in (1) it is neces-
sary to select origin for the time coordinate on each recorded accelero-
gram and to measure TMAX(T) relative to this origin. However, unique
choice of such origin is not possible since selection of S-wave arrival

time, for example, is subject to some judgement and the experience of

an analyst. Furthermore, for mode superposition approach in earthquake
resistent design, only the relative times of maximum responses of each
mode are required.

Detailed study of many RES spectra shows that the high frequency
oscillators will reach maximum response immediately or soon after the
S-wave arrival time. In Figure 1, for example, it is seen that the
responses of several oscillators with natural frequency near 10 cps
reach maxima of w* SD within 1 or 2 seconds after the S-wave arrival,
in this example, at about 4.5 seconds after triggering. Therefore, one
simple and reproductible way of measuring the relative time of maximum
response is to compute it with respect to the earliest time of all
maximum responses considered in the frequency band between 0.07 cps
and 25 cps. In Figure 1 the origin for measuring the time of maximum
response would thus be at about 6.5 seconds. This definition of
TMAX(T) has been adopted for this analyéis and 91 time coordinates

in 558 RES have been shifted by min[TMAX(T)] ¥ 0.04 <T<15.



For high natural frequencies of single-degree-of-freedom system
and for band limited excitations, the maximum relative response tends
to —amax(t)/wnz. amax(t) is the peak absolute acceleration and
w = Zﬂ/Tn. Since all uniformly processed strong motion data have been
band-pass filtered between 0.07 cps and 25 cps, the time of maximum
response in RES spectra for 25 cps should correspond to the time of
maximum input acceleration (Figure 1). Thus, in this analysis,
TMAX(0.04) then gives the relative time of the peak absolute ac-
celeration.

To compute the scaling functions a(T) through e(T) all data was
partitioned into groups corresponding to magnitude ranges 4.0 to 4.9,
5.0 to 5.9, 6.0 to 6.9 and 7.0 to 7.9. These groups were further
divided into three sub-groups corresponding to site classification s=0,
1 and 2. Each of these sub-groups was finally subdivided into two parts
corresponding to v=0 and v=1. Within each of these parts, n data points
on TMAX(T) were rearranged to create a monotonically decreasing sequence.
With m-integer part of (pn) and 0.0555p150.95 the mth data point then
represents an estimate of an upper bound on TMAX(T) for which 100p per-
cent of the corresponding data set is less than that value. In regres-
sion calculations, at most 19 values of p=0.05, 0.10, ..., 0.90 and
0.95 were used to eliminate strong dependence of the final regres-
sion model on those earthquakes which contributed most to the present
data set. For example, the San Fernando earthquake of 1971 contributed
98 to the total of 186 records. The above method of data selection
eliminated about 70 percent of the San Fernando records before regres-

sion analysis at each T.
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Figure 2 and Table I present smoothed coefficient functions a(T)
through e(T). Function a(T) shows that the 80 percent confidence
interval for TMAX(T) is about 5 to 6 seconds wide for T<0.5 sec.

For two second period, this interval is extended well over 20 seconds.
Function b(T) shows that maxima occur 1 to 2 seconds earlier for sites
located on basement rock (s=2) than on alluvium sites (s=0) and for
"£25 cps. For long periods near 2 seconds, this difference increases
to as much as 10 seconds. This means that the duration of strong
motion acceleration should be greater for sites located on alluvium
relative to sites on hard rock. This is in agreement with the work
of Trifunac and Westermo (1976).

Function c(T) shows a decrease in TMAX(T) with magnitude, M, by
less than 1 second over the magnitude range from M=4 to M=7. This
apparently minor effect of magnitude on TMAX(T) could be interpreted
to mean that the initial bursts of strong motion pulses created by
larger magnitude earthquakes are more energetic and more abrupt so
that the maximum response is achieved earlier relative to intermediate
and small magnitude events.

Function d(T) indicates that the maximum response is delayed by
1 to 2 seconds for every additional 10 km of epicentral distance, A,
and for periods shorter than about 1 second, and by 3 to 5 seconds for
periods longer than 2 seconds. This is as one could expect from the
dispersion of wave motion with distance.

Function e(T) shows that the maximum vertical response occurs 1 to
5 seconds later than the maximum of horizontal response. In terms of

the natural period and of the single-degree-of-freedom system, this
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corresponds to about 3 to 5 cycles later.

Figures 3, 4 and 5 present examples of TMAX(T) computed from equa-
tion (1) for M=6.5, A=10,50 and 100 km, respectively, for s=0 and
s=2, p=0.5 and for horizohtal and vertical Pseudo Relative Velocity
Spectra (PSV). It is seen that the maximum horizontal response for
periods shorter than about 1 sec and for s=2 all occur within one
second from each other. The times of maxima for s=0 and for vertical
motions in general display gradual increase with increasing oscillator
period; a possible consequence of relatively greater dispersion of waves
leading to vertical components of ground motion and of wave propagating
through alluvium and sedimentary layers.

In general, and for long period motions in particular, the times
of maximum response increase with decreasing damping. The scatter of
observed times also increases with decreasing damping (Figure 2). For
¢=0.0 this scatter is so large that it renders analysis in terms of

equation (1) impractical.

Scaling in Terms of MMI, s, v and p

For scaling of TMAX(T) in terms of Modified Mercalli Intensity at
the recording station, we adopt

TMAX(T) , = a(T)p + b(T)s + ¢ (1) Iy, + d(T)v (2)

In this regression model, all scaling functions have the meaning analo-
gous to that discussed in connection with equation (1). IMM which
here takes the place of M in equation (1) takes on numerical values
1, 2, 3, ..., and 12 and corresponds to discrete levels I, II, ...,

and XII on the MMI scale.
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Figure 6 presents the smoothed coefficient functions a(T) through
d(T) for £=0.02, 0.05, 0.10 and 0.20. Table II gives selected am-
plitudes of these functions at 11 periods.

Function a(T) has a similar shape as a(T) in Figure 2 but its
amplitudes are larger by 3 to 10 seconds. This means that the regres-
sion represented by equation (2) leads to greater scatter of observed
TMAX(T) about the assumed model than in the correlations in terms of
magnitude and epicentral distance. Functions b(T) and d(T) are es-
sentially identical to their analogues b(T) and e(T) in Figure 2.
Function c¢(T), negative for all periods between 0.04 sec¢ and 2 sec,
results in a faster buildup of response for higher levels on MMI scale.
This result is in good agreement with ¢(T) in Figure 2 and for correla-
tions of TMAX(T) with magnitude.

Figures 7, 8 and 9 present examples of TMAX(T) plotted for MMI
levels IV, VI and VIII, for p=0.5, horizontal and vertical motions
and for sites located on hard basement rock (s=2) and alluvium (s=0).

Similar trends to those discussed for Figures 3, 4 and 5 are seen.
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DISTRIBUTION OF TIME OF MAXIMUM RESPONSE

The regression analyses of equations (1) and (2) have been per-
formed by using a correlation function which is linear in an approxi-
mation to the probability of not exceeding TMAX(T) when 0.05=p=0.95.
To emphasize this, from this point on, we refine the notation by
adding a subscript "&" so that p becomes Py-

To describe the actual distribution, we calculate P, the actual
fraction of data points for which the times of maxima are smaller

than the predicted TMAX(T),p for 9 values of the confidence level
%
p2==0.1, 0.2, ..., 0.9 (Figures 10 and 11). P, is then the empirically

determined probability that TMAX(T),p will not be exceeded.
L
As a convenience for future applications, we seek to have a simple

analytical approximation relating P, to Py [9].
The statistical analyses of the time of maximum response of a linear
oscillator suggest [1] an exponential or a sum of exponential distribution

functions for P, in terms of Py

Py
p, = F(p,) J £, (x)dx

~00

with ithe proposed probability function, for some X
-a BleelX BZX

1 + aZBZe X>Xx ; 81,625 0

£(x) = ©

X<X
0 o

normalized to become a distribution function
f(x)/A X>X

£f,(x) =
0 xX<Xx
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where
© o
A= / f(x)dx =/ f(x)dx = —aleslx + aZeBZx
-0 Xo X
_ B,x B,x
= ale 170 - a2e 270
so that
00 oo
ffl(x)dx =/ fl(x)dx =1
—c0 X
o
Then for
) 9
pa = F(pz) = fl(x)dx = fl(x)dx
-00 X
0
P
e B.x B.x
= 1/A./; (—alsle 17+ a282e 27)dx (p£>>xo)
o)
= 1/A(A - aleBpo, * oc2e82p52,
we get
- B B.
p, - Fpy) = 1-ae"1Py + 0"l (3)
where
o = al/A
o, = a2/A

Equation (3) is then the scaling function of P, versus p,.
Figures 12 and 13 present the coefficients 0y5 Oy, Bl and 62 in (3)

which lead to acceptable fit of P, Versus po, for the data in Figures



27

M, A
|2&)“=-'.t====='_" FTTRPITY al
| 1.5k
| | Op====canssse- —————— s 2o

FIGURE 12



28

32.5

320

PERIOD, sec

FIGURE 13



29

10 and 11. The corresponding x2 and Kolmogorov-Smirnov (K-S) tests
and the computed values of XZ and maximum differences for K-S test
(Figures 14 and 15) can be accepted with 95% confidence. Coefficients
al, %y Bl and 82 are also presented in Tables III and IV to enable
numerical evaluation of p, versus Py in (3).

This approximate characterization of P, for models represented
by equations (1) and (2) enablés one to compute Py (i.e., p in equations
(1) and (2)) from equation (3) for a chosen P, and thus also to compute
TMAX(T),pz. The functions 05 Oy Bl and 82 may prove to be useful
for testing future theoretical models and calculations which will be
aimed at better and more precise descriptions of the distribution of

TMAX(T) than the present assumption involving superposition of ex-

ponential functions.
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TABLE III

Coefficients 0y Bl, o, and 62 in P, = l-ale lp£+-azeBZP£
z = 0.02 (M,4 Model) Z = 0.05

T(sec) oy Bl o, 82 T(sec) oy Bl o, 82

0.04 11.97 -3.52 11.02 -3.73 0.04 11.95 -3.60 11.04 -3.83
0.06 11.98 -3.66 11.01 -3.91 0.06 11.97 -.366 11.02 -3.91
0.08 11.99 -3.80 10.99 -4.08 0.08 11.99 -3.71 11.00 -3.98
0.10 11.99 -3.87 10.98 -4.18 0.10 11.99 -3.75 11.00 -4.03
0.20 11.96 -3.78 11.03 -4.08 0.20 11.95 -3.75 11.04 -4.04
0.30 11.93 -3.71 11.06 -4.00 0.30 11.93 -3.78 11.07 -4.09
0.40 11.92 -3.80 11.07 -4.12 0.40 11.92 -3.87 11.08 -4.21
0.60 11.92 -4.03 11.07 -4.42 0.60 11.92 -4.02 11.08 -4.41
0.80 ‘11.93 -4.14 11.07 -4.56 0.80 11.93 -4.07 11.07 -4.48
1.00 11.93 -4.19 11.06 -4.63 1.00 "11.94 -4.08 11.06 -4.49
2.00 11.96 -4.21 11.03 -4.66 2.00 11.97 -4.10 11.02 -4.53

c =0.10 z = 0.20

T(sec) oy Bl o, 62 T(sec) o Bl o, 82

0.04 11.94 -3.69 11.04 -3.93 0.04 11.95 -3.49 11.04 -3.70
0.06 11.96 -3.68 11.03 -3.93 0.06 11.96 -3.56 11.02 -3.78
0.08 11.98 -3.62 11.00 -3.86 0.08 11.98 -3.56 11.00 -3.78
0.10 1.99 -3.61 11.00 -3.85 0.10 11.99 -3.62 10.99 -3.85
0.20 11.96 -3.60 11.03 -3.85 0.20 11.96 -3.73 11.03 -3.99
0.30 11.93 -3.74 11.06 -4.03 0.30 11.93 -3.80 11.06 -4.10
0.40 11.93 -3.84 11.07 -4.17 0.40 11.93 -3.84 11.07 -4.16
0.60 11.93 -3.95 11.07 -4.32 0.60 11.93 -3.89 11.06 -4.25
0.80 11.94 -3.98 11.06 -4.36 0.80 11.94 -3.89 11.05 -4.26
1.00 11.96 -3.98 11.04 -4.36 1.00 11.96 -3.89 11.04 -4.26
2.00 11.98 -3.94 11.01 -4.32 2.00 11.98 -3.78 10.99 -4.13
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. . . _ B.p B.p
Coefficients al, Bl, az and 82 in pa-l-ale 1 K-Fale 2Y%

(MMI Model)
¢ =10.02 z = 0.05

T(sec) o Bl o, BZ T(sec) o Bl o, 82

0.04 32.49 -4.90 31.51 -5.10 0.04 32.52 -4.70 31.48 -4.86
0.06 32.46 -5.10 31.54 -5.33 0.06 32.48 -4.90 31.52 -5.10
0.08 32.41 -5.40 31.60 -5.69 0.08 32.49 -4.90 31.51 -5.10
0.10 32.38 -5.51 31.63 -5.83 0.10 '32.48 -4.90 31.52 -5.11
0.20 32.42 -5.03 31.59 -5.27 0.20 32.44 -4.89 31.56 -5.11
0.30 32.43  -4.75 31.57 -4.96 0.30 32.43 -4.75 31.57 -4.95
0.40 32.42 -4.71 31.58 -4.92 0.40 32.43 -4.69 31.57 -4.89
0.60 32.40 -4.76 31.60 -4.99 0.60 32.41 -4.73 31.59 -4.95
0.80 32.39 -4.88 31.61 -5.12 0.80 32.39 -4.88 31.61 -5.12
1.00 32.39 -4.88 31.61 -5.12 1.00 32.40 -4.88 31.60 -5.12
2.00 32.39 -4.97 31.61 -5.24 2.00 32.38 -5.03 31.62 -5.31

¢ = 0.10 z =0.20

T(sec) oy R o, B T(sec) o 61 a, Bz

0.04 32.53 -4.65 31.47 -4.81 0.04 32.53 -4.60 31.47 -4.75
0.06 32.51 -4.69 31.48 -4.86 0.06 32.52 -4.62 31.47 -4.78
0.08 32.50 -4.74 31.50 -4.92 0.08 32.52 -4.64 31.48 -4.81
0.10 32.47 -4.89 31.53 -5.10 0.10 32.52 -4.66 31.48 -4.83
0.20 32.45  -4.77 31.54 -4.97 0.20 32.48 -4.68 31.52 -4.86
0.30 32.45 -4.67 31.55 -4.86 0.30 32.46 -4.63 31.54 -4.81
0.40 32.44 -4.62 31.56 -4.81 0.40 32.44 -4.61 31.56 -4.81
0.60 32.43 -4.66 31.57 -4.87 0.60 32.42 -4.70 31.58 -4.91
0.80 32.42 -4.77 31.58 -4.99 0.80 32.40 -4.88 31.60 -5.12
1.00 32.41 -4.88 31.59 -5.12 1.00 32.41 -4.88 31.60 -5.12
2.00 32.38 -5.03 31.62 -5.30 2.00 32.38 -5.04 31.62 -5.32
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CONCLUSIONS

In this paper we have attempted to describe the time at which the
single-degree-of-freedom viscously damped oscillator reaches its
maximum response during excitation corresponding to recorded earth-
quake shaking. Two simple regression models have been presented for
scaling in terms of earthquake magnitude or Modified Mercalli Intensity
at the recording station. The effects of epicentral distance, geo-
logic conditions surrounding the station, horizontal or vertical
direction of response and the distribution of times when the maxima
occur have also been considered. The principal findings of this work
an be summarized as follows:

1) Horizontal response amplitudes reach their maxima within several
seconds after the S-wave arrival for periods shorter than about

4 seconds for stations located on hard rock and for epicentral

distance less than 20 to 30 km. For every additional 50 km in

epicentral distance, maximum response is delayed by approximately
one additional second.

2) The times of maximum vertical response typically occur later by
1 (for periods near 0.1 sec) to 5 (for periods near 1 to 2 sec)

seconds after horizontal response had reached its maximum.
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