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ABSTRACT

Reduction of earthquake hazards calls for the development of de-
sign criteria which ensure the safety of structures subjected to strong
earthquake ground motion. Recent developments in seismic risk analysis
suggest a refinement of such criteria by taking into account the avail-
able knowledge on soil and geologic properties in the area of investiga-
tion. Much work has been undertaken, for instance, in the analysis and
mapping of the amplification effects of the wave motion which results
from Tocal soil and geological configuration. Summaries of such:studies
are sometimes presented in the form.of microzonation maps with some am-
plification factors being evaluated for an entire region, or a site.

Some progedures for evaluation of these amplification factors are
inadequate for a number of reasons. For example:

(1) there is no uniform theoretical basis for many procedures
used in the evaluation of the strong ground motion amplification
factors;

(2) there is lack of thorough analysis or use of recently developed
techniques which provide the results needed for engineering pur-
poses; and

(3) the validity of the desired risk maps or amplification maps has
not been tested systematically by repeated earthquake recordings.
The purpose of this paper is to develop a method for studying strong

ground motion amplification by near surface inhomogeneities. In par-

ticular, diffraction of elastic waves by an alluvial valley of an ar-

bitrary shape will be considered.



Much has been developed in various scientific and engineering
disciplines, in the way of solution techniques to analyze complex wave
propagation phenomena. However, little has been done to introduce these
techniques into engineering applications and to further develop solution
methods to a point where a typical applied engineering problem can be
routinely analyzed. The aim of this paper is to attempt to bridge this
gap. This can be done first by detailed consideration of the complete
physical nature of the wave propagation through a homogeneous medium
and second by development of physical models which consider the most im-
portant governing phenomena and do not violate or eliminate some of them

by a brute-force oversimplification.



I. INTRODUCTION

The study of diffraction of elastic waves arose as a result of
research into the nature of light. The expression diffraction is at-
tributed to Francisco Maria Grimaldi (1665). He used the word dif-
fraction to describe the phenomenon of the bending of the 1ight beam
when it passes the edge of an aperture. Presently, the same term is
used to denote the phenomenon of wave propagation when the rays of the
waves do not follow rectilinear paths.

The British scientists, James Clark Maxwell, in his memoir, "A
Dynamic Theory of Electromagnetic Field" (1865), showed that "...light
itself is an electromagnetic disturbance in the form of waves propaga-
ted through the electromagetic field according to electromagnetic
Taws." Subsequently, the elastic theory of light was replaced by the
electromagnetic theory. As a consequence, interest in diffraction of
elastic waves (excluding sound waves) diminished for some time.

It is believed that the earliest mathematical treatment of the
diffraction of elastic waves by a bounded obstacle is due to Alfred
Clebsch (1863). Using the equations of elasticity, Clebsch studied
the reflection and transmission of Tight by lenses. He also studied
the diffraction of elastic waves by a rigid sphere. Although he could
not obtain any conclusions from his complex solution, Clebsch's con-
tribution is important because he was the first to publish a complete
formulation of a boundary value problem for the diffraction of elastic
waves by an obstacle.

As an extension of Clebsch's work, Sezawa (1927) considered



diffraction of elastic waves by a rigid, circular (and elliptic) cylin-
der embedded in an elastic full-space. The contribution of Sezawa is
considered to be the first formulation of the scattering of elastic
waves by an inclusion applicable to seismology.

Following Sezawa's paper, numerous attempts have been made to
study the diffraction of elastic waves by an obstacle and the corres-
ponding stress concentrations (see the review by Miklowitz, 1966).

For the design of earthquake resistant structures, it is essential
to understand in detail the nature of amplification of the strong ground
motion during large earthquakes. Observations from some recent earth-
quakes (e.g., szen, et. al., 1968; Jennings, 1971) indicate that the
areas of intense damage can be highly localized. The intensity of ground
shaking can change significantly within a short distance (Gutenberg,
1957; Hudson, 1972; Esteva, 1977). It is believed that the inhomogeneity
of the soil and the surface topographies are the cause of localized
amplification effects (e.g., Kanai, et. al., 1953; Duke, 1958; Kanai, 1957;
Kanai and Tanaka, 1961; Boore, 1973; Griffiths, et. al., 1979). As
pointed out by Trifunac (1971) and Wong and Trifunac (1974b), the irregular
distribution of strong ground motion may result from constructive and
destructive interferences between the incident and diffracted waves at
the site.

The amplification of strong ground motion due to the diffraction of
waves by subsurface irregularities has not yet been fully resolved
because the problem is characterized by some complexity. Therefore,
it is not only necessary to understand the basic phenomena that

occur in soil amplification, but it is also necessary to develop



methods capable of predicting surface amplitudes at certain sites for
a given wave input.

The purpose of this paper is to study the amplification effects
caused by scattering, refraction and diffraction of elastic waves by
inhomogeneities of arbitrary shape in an elastic soi]vmedium. Basic
aspects of ground motion amplification and the literature review are

given in Section II. The proposed method and its application are des-

cribed in Section III.



II. LITERATURE REVIEW

In this section, the literature pertaining to diffraction of elas-
tic waves by obstacles and strong ground motion seismology is presented
for two and three dimensional models. Two methods emerge for analyz-
ing soil amplification problems: (1) numerical methods (such as finite
element and finite difference methods), and (2) analytical methods
(which rely upon the solution of the equations of elastodynamics by
analytical means). Each of these methods has limitations. The analy-
tical methods are applied mainly to linear, isotropic and homogeneous
materials and simple geometries. The numerical methods, on the other
hand, are often inapplicable to geophysical problems which involve
large dimensions.

Numerical Methods

Two-Dimensional Models:

For the finite difference method, Alterman and Karal (1968), and
Boore (1969; 1972; 1973) formulated the scheme for general wave pro-
pagation problems. Cherry (1973) applied the method to fault rupture
problems. Cole, et. al. (1978) formulated the boundary initial value
problems of elastodynamics in terms of boundary integral equations.
They can be solved by time-stepping numerical methods for the unknown
boundary values. Using the finite difference schemes, Ilan, et. al.
(1979) studied the diffraction of a compressional pulse by a slot in a
half-space.

Both the finite difference and finite element methods are ideal

for analyzing finite bodies with inhomogeneous material properties.



However, there is one serious restriction caused by the limited core
size of present day computers; i.e., the total number of nodal points
in the discrete network is 1imited. This problem reduces the effec-
tiveness of these methods for geotechnical problems because of the
large dimensions of the earth as compared to most other models. In-
troduction of a model with limited dimensions reduces the time for which
the analysis is valid, i.e., before the arrival of reflected fields
from introduced model boundaries. An attempt was made (Lysmer and
Waas, 1972) to absorb the wave energy at, and to introduce, transparent
boundaries, but these energy absorption models are not applicable for
all circumstances. Superimposing the difference boundary conditions,
Smith (1974) devised transparent boundaries which can extend the analy-
sis for longer durations, but the solution for a model with N unwanted
reflective boundaries requires as much as ZN times more computer time
than the standard analysis.

Three-Dimensional Models:

The restriction caused by limited core size of computers is even
more pronounced in three dimensions. Consequently, the spatial dimensions
of the model must be reduced even further compared to the two-dimensional
models. Therefore, most three-dimensional analyses have been done for
special cases only, e.g., models with an axis of symmetry where the reduc-
tion of spatial coordinates is possible. A model by Reimer, et. al.
(1974) is an attempt to model the topographic effects of the Pacoima
Canyon. Although the top surface of the model resembles the canyon,
the sides and bottom of the model trap the energy inside to create

the resonance behavior that should be absent. Thus, the amplification



predictions made by these "box-like" models are generally not valid.
A similar "box" model was used by Schlue (1979) to study the Love waves
when material properties vary in two dimensions.

Analytical Methods

Two-Dimensional Models:

For a two-dimensional elastodynamic boundary value problem, there
is only a Timited number of coordinate systems which allow exact series
solutions to be developed. In particular, the anti-plane strain pro-
blems (SH waves) is considered simple, compared to the plane strain
models. This follows because no mode conversions between SH, P or SV
waves take place and the mathematical formulation is very similar to
that of acoustic wave problems.

Anti-Plane Strain Model:

Trifunac (1973) presented an exact solution for scattering of plane
SH waves by a canyon of semi-cylindrical shape. His results indicate
that the wave amplification patterns are influenced by the angle of
incidence as well as the frequency excitation. For a semi-elliptical
canyon and an anti-plane strain model, an exact solution is presented
by Wong and Trifunac (1974a). They showed that the depth of the canyon
can play an important role in diffraction. An exact, short-time solu-
tion for diffraction of a plane SH-wave by a rigid rectangular obstacle
embedded in an elastic half-space studied by Thau and Umek (1975) and
Dravinski and Thau (1976a), showed that the embedded depth of the ob-
stacle is important for the resultant diffracted field. Wong and

Jennings (1975) generalized the geometry of the topography to include



arbitrary shaped canyons, and concluded that topographic effects are
important for very steep slopes and for wavelengths shorter than or
comparable to the dimensions of the canyon. Sabina and Willis (1975)
also presented an approximate method for calculating topographic ef-
fects caused by canyons with constant slopes. This method can be
extended to the plane strain model as well. Singh and Sabina

(1977) studied ground motion amplification by topographic depressions
for incident P waves but under acoustic approximation. Wong, et. al.
(1977) compared the analytical results for the effects of surface

and subsurface irregularities upon ground amplification with experi-
mental results: they found the effects of the dipping layer to play a
more important role compared to the canyon. Sills (1978) studied
scattering of SH waves by general topographies such as hills and/or
depressions. A singular Fredholm integral equation is developed and
solved numerically. The results indicate strong amplification due to
topographic irregularities. Sanchez-Sesma and Rosenblueth (1979) con-
sidered ground motions at canyons of arbitrary shapes by using essen-
tially the method developed by Wong (Wong and Jennings, 1975; Wong,
et. al., 1977).

A limited amount of work has been done for diffraction of elastic
waves involving the contrasting material properties. Aki and Larner
(1970) considered the problem of a horizontal layer bonded to a half-
space and having small interface irregularities (comparable to the
incident wavelength). Focusing effects were observed at the layer

surface. These focusing phenomena, often observed in strong earthquakes,
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also appeared in exact solutions for diffraction of plane SH waves by
semi-cylindrical and semi-elliptical alluvial valleys bonded to an
elastic half-space (Trifunac, 1971; Wong and Trifunac, 1974b). Recently,
Sanchez-Sesma and Esquivel (1979) studied diffraction of plane elastic

SH waves by an alluvial valley of arbitrary shape. Their results de-
monstrate significant ground motion amplification to be present in the
problem.

Dravinski and Udwadia (1980) considered the influence of the so
called Rayleigh assumption in solving the ground amplification due to
surface topography. Comparison with the exact solutions indicate sig-
nificant difference in amplification factors for periodically corrugated
surface.

Plane Strain Model:

In this model, the longitudinal and shear waves are coupled at the
stress-free surface and the boundary conditions are much more complex
compared to the anti-plane strain model.

Mal and Knopoff (1965) examined the case of Rayleigh waves propaga-
ting past the vertical change in elevation. Asano (1966) and McIvor
(1969) studied effects of shallow topography by perturbation methods.
However, these methods are not practical for engineering purposes due
to the complexity of the mathematical analysis involved. Bouchon (1973)
studied the effect of topography on surface motion for incident P, SV
and SH waves. Several types of topography ranging from a ridge to a
valley are used. The computation is made by using the method due to
Aki and Larner (1970) in order to get results in the time domain. The

results show that the surface displacement is very much influenced by
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surface irregularities. Thau and Umek (1974) and Dravinski and Thau
(1976b) studied diffraction of waves by a rigid rectangular obstacle
using the so-called "relaxed" boundary conditions in which the longi-
tudinal and shear waves are separable along the boundaries. Bouchon
and Aki (1977) considered the near-field of a seismic source for layered
medium with irregular interfaces. By adopting the Rayleigh's approach,
they evaluated the scattered wave field and presented numerical ex-
amples of the results and studied the error due to Rayleigh's assump-
tion on the scattered wave field. Their results show that large am-
plification of horizontal motions can occur for wavelengths of the
order of the dimension of the imperfection.

Wong (1979) studied diffraction of P, SV and Rayleigh waves by
the surface topography of arbitrary shape. A diffraction by an ellip-
tical canyon is presented in detail for illustration. His results can
be summarized as follows: (1) the amplitude of waves near an elliptical
canyon are less than two times the free-field amplitude; (2) for P and
SV incidence, Targer amplification does not always occur in front of
the canyon; (3) standing wave phenomena caused by interference of waves
occur only in front of the canyon. Large amplitudes at the rear of the
canyon are caused by mode conversion; and (4) Rayleigh waves with wave-
lengths at most the width of the canyon can be blocked effectively by
the canyon.

Three-Dimensional Models:

There are very few solutions for scattering of elastic waves by
three-dimensional irregularities. Wong (1975) and Wong and Luco (1976)

studied wave scattering problems involving surface objects.
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Lee (1978) presented a solution for the problem of diffraction of
elastic plane waves (P, SV, and SH) by a hemispherical canyon. He used
the method of series expansion in devising the total wave field and
the corresponding amplification factors. He found that the displacement
amplitudes and phases of the surface ground motions near the canyon are
significantly different from the uniform half-space motions. Further-
more, the angle of incidence determines the overall trends of motion
amplitudes. For oblique incidence, considerable amplification is ob-
served in front of the canyon, with a shadow zone behind the canyon.
Although not many solutions of three-dimensional problems are avail-
able, it is not difficult to extend some of the approximate methods from
two-dimensional to three-dimensional models. For example, the study
by Lee (1978) suggests another method for scattering of elastic waves
by a three-dimensional elastic obstacle, i.e., alluvial valley, bonded
to an elastic half-space. The technical background required for the

source method is reviewed next.
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IIT. TECHNICAL BACKGROUND AND THE SOURCE METHOD

There are two approaches which lead to the source method. Oshaki
(1973) used one approach in the study of static loading of a rigid
foundation embedded in an elastic half-space. Wong, et. al. (1977)
applied the same idea to study the diffraction of monochromatic waves
by surface irregularities. Recently, Wong (1979) used this method in
the analysis of diffraction of P, SV and Rayleigh waves by ground sur-
face topographies. The second approach originated by Copley (1967).

In plane elastostatics, this approach has been used by Heise (1978).
Applications to the wave propagation problems are due to Sanchez-Sesma
and Rosenblueth (1979) and Sanchez-Sesma and Esquivel (1979).

First, the scattering of an elastic plane SH wave by an alluvial
valley is presented in detail. The geometry of the problem is depicted
by Figure 1; the valley is assumed to be perfectly bonded to the elastic
half-space. The equation of motion for steady-state wave propagation

is given by

K2, Ba.lay) X
D,

o]

f"]vﬁlv(al) 9'

Figure 1
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2 2
(s?+k§>wj(x,y>=o 2 vts L8 (1)
X y

where the subscripts 1 and 2 denote the half-space and the inclusion,
respectively, k represents the wave number, and w represents the only
non-zero component of the displacement field acting along the z-axis.
Throughout the analysis, the factor e+iwt is understood. The velocity
of the shear wave is denoted by g.

Boundary conditions are specified by

W,

—J - = D . i=
% 0 , at y=0 and re 503 1,2, (2)

where r represents a position vector, @ and EZZ denote the region of
elastic half-space and inclusion, respectively (Figure 1). Perfect

bonding along the interface C requires

Wy o= Wy (3.1)
oW Y
1 _ 2

]-1] n “2 an E eC L] (3-2)

with u and n denoting the shear modulus and unit normal to the C, respec-
tively. The total wave field in the half-space, Wis and the elastic
inclusion, W,, are given by
i ,.s
Wy S W (4.1)

wg , (4.2)

W, =
where wg, j=1,2, denotes the scattered wave field and w' is the incident

wave motion. It is assumed that the scattered wave field can be expressed

in terms of single layer potentials (Ursell, 1973),
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S (r) fc g (r, )6, (rr, s (5.1)
1

w3(r) =fC2 9y(r)6y(rr Jds, . (5.2)

The C] and C2 are the curves defined in the half-space inside and out-

side of the interface C, respectively (see Figures 2a, b) and the density

X

//P//
//

(a) (b)

Figure 2

functions_g] and g, are yet to be determined. The Green's functions

G] and G2 are the solutions of the equations
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2, .2 _ o
(V "'%‘)Gj(f’fo) = oororl) s genes (6.1)
an
an ly=0 0 (6.2)

with 8( « ) being the Dirac delta function.

The Green's functions in this problem are

65(0ro) =%[”c(>2)(kj“1)+Hc(>2)(k302)’ o= ) (g

)2

oy = (x-x )2+ (y+y

i=1,2, (7)

where Héz)(~) denotes the Hankel function of the second kind and order zero.

0

Assuming that the density functions 9, and 9, represent systems of

discrete line sources along the C] and C2, respectively, i.e.,

M

gq(ry) = = a . 8(|ro-rol) (8.1)
4 =1 1)
L
92(ro) - QEO b25(|fo"fz|)’ (8.2)

equations (5) imply the scattereqd field to be

M

S -

nlrh = Eoabnn) . el (9.1)
m=1

s L

Wp(r) = I Bylplrary) - rpely - (9.2)

The continuity conditions (3) then imply

M L

- ]
I apfylrarg) - L byGp(rary) = -wi(rn) (10.1)

~

M 3G, (r,r ) u, L 3G, (r,r,) awi(r)
g — 2y oy 2o el (10.2)
m on M1 g=1 2 on on

m=1
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Choosing the N observation points r= ris i=1,2,...,N along the interface

C, the continuity conditions (10) are written in the following form

Aa = f s (11)

~

where the matrix A of order 2N x (M+L) 1is defined through

G -G
A= (11.1)
u
2
hg]n - ﬂ;'gzn_
where
[Gij]] = Gy (ryry) 21,2, N (11.2)
BG-](I:_' ’rj) J=] ,2,...,M
[6;301, = — 8=1,2,...,L (11.3)
(65,15 = 6,(riury) (11.4)
3G, (r.,r,)
= _ 2~
[Gi2]2n - n (11.5)

The forcing vector f in (11) is of order 2Nx1 and is defined by

- w.i
f=1 74 s (11.6)
~ Y
where
i_ i
[%] = W(fj) (11.7)
i( ) J=1,2,...,N
. ow (r.
1 ~J
[MS]n = — (11.8)

The unknown intensities of the discrete sources are incorporated in

vector a through

[aj] =a; 3=1,2,... M (11.9)

[a;] - bs > JEMET M2, L ML (11.10)
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Equation (11) 1is solved for the unknown coefficient vector a so that
the mean square error of (11) is minimized (Noble, 1969)

a= ({\*ﬁ)']A*f : (12)

~ o~

Here, 5* denotes the transpose complex conjugate of 5.

To test the accuracy of the method, the source method results for
diffraction of a plane SH wave by a semi-circular cylindrical alluvial
valley are compared with the exact solution. Therefore, one considers
an incident wave

-i(k]x—wt)
w o=e (13)

which propagates in an elastic half-space, strikes a semi-cylindrical
elastic inclusion, partly scatters back into the half-space and partly
transmits into the inclusion. The radius of the semi-cylindrical inclu-
sion R, the shear modulus Hy and the shear wave velocity B] of the half-
space are all taken to be equal to one so that the results are in dimen-
sionless form.

The exact solution for the total wave field is given by (Pao and
Mow, 1973)

Wy = wi-Fw? (14.7)

Wy = wg , (14.2)

where the scattered wave field is defined through

[ee]

W= 5 A H(Z)(k r)cosne s, re@ (14.3)
1 A nn 1 1
n=0
s oo
W, = nEO Ban(kzr)cosne s red, (14.4)

and & is measured positive, clockwise from the positive x axis (Figure 1).
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As defined earlier, 221 and 2@2 represent the domain of the half-space

and the inclusion, respectively. The expansion coefficients are given

by
o
A =4 (14.5)
A
B, = & (14.6)
By = e, (=1)"[upk,d, (kqR)I! (K R) - upkqd) (kqR)I (k,R)] (14.7)
by = = (=1)"uykg [0 (kg R) 1 (2 (k) - 3, (kR H! (k R)] (14.8)
A = uzszr(lz)(k]R)-Jr'](sz)-u]k]Hr(lz)'(k]R)-Jn(kZR) , (14.9)

where prime denotes differentiation with respect to the argument and
1 , n=0
€, = (14.710)
2 » N=1,2,... .
For the source method, the curves C] and C2 introduced by equation (5)
are chosen to be semicircles r= RI and r= Ro, respectively, with
0<:RI< R< R0<<w. Five sources are equally spaced along each C1 and C2
(M=5, L=5; see eq. (3)). The number of 'observation points,' equally
spaced along the C, is chosen to be, say, eleven (N = 11; see eqn. (11)).
Distribution of the sources and the observation points is depicted
by Figure 3. The total wave fields in the half-space and in the alluvial
valley are evaluated at the N observation points by the exact method and

the source method. To present the results in a more compact form, an

error is defined to be
N - 2
.Z] [Zexact(Bi)"z(Bi)]

e(z) = 12 0 , (15)

2
151 [Zexact(gi)]

where Z represents Rew], Imw], ReWZ’ or ImW2°
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(a) (b)

Figure 3
The Ri’ i=1,2,...,N denotes the observation points along the C.
For the frequency of the incident field, w=0.1m, and the material
properties of the alluvial valley, u2==2, 82==2, the results of error
for different values of R; and R/ (see Fig. 3) are given in Table I.

TABLE I -- Error Analysis Results at w=0.17

AR =1 M=T=5
-8 =2  w=0lr N=T1]

2 2

RI RO e(Rew}) e(Imwl) E(RewZ) e(Ime)
0.05 1.95 0.011082 0.000916 0.000012  0.000533
0.10 1.90 0.015151 0.0071622 0.000017 0.000712
0.20 1.80 0.008088 0.005513 0.000008 0.001156
0.30 1.70 0.027094 0.007015 0.000029 0.001837
0.40 1.60 0.070120 0.009837 0.000078 0.002972
0.50 1.50 0.191873 0.012619 0.000220 0.004791
0.60 1.40 0.550269 0.014484 0.000666 0.007775
0.70 1.30 1.92053 0.016684 0.002471 0.013705
0.80 1.20 11.8644 0.040384 0.016188 0.0316807
0.90 1.10 98.1315 0.259476 0.135341 0.105225
0.95 1.05 191.972 0.541028 0.260099 0.183345
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To illustrate the physical meaning of the error results, the total wave

fields W and W, are plotted at N observation points and are shown by

Figures 4 through 9.

with straight lines.

responding symbols not connected.

Exact results are presented by symbols connected

The source method results are presented by cor-

Results of Table I and Figures 4 through 9 indicate a wide range

of RI and Ro for which the source method provides excellent results.

As frequency w is increased to w=m, the errors are presented in Table

II.
TABLE II -- Error Analysis Results at w=m
]J1= B1= 1 R=1 M=L=5
u =g =2 W= N=11
2 2
R Ro e(Rywy) e(1 wy) e(Rew?) e(I w)
0.05 1.95 0.019946 0.022991 0.007377 0.011392
0.10 1.90 0.020403 0.007298 0.005334 0.007089
0.20 1.80 0.004546 0.019804 0.006898 0.011043
0.30 1.70 0.005934 0.02652 0.009666 0.015969
0.40 1.60 0.0078465 0.031017 0.014208 0.025274
0.50 1.50 0.013328 0.034968 0.024262 0.041885
0.60 1.40 0.025810 0.049931 0.050910 0.075462
0.70 1.30 0.075697 0.178820 0.140602 0.227945
0.80 1.20 0.154763 0.219877 0.269653 0.299975
0.90 1.10 0.156622 0.316306 0.484507 0.404402
0.95 1.05 0.259892 0.496948 0.505733 0.725041
The results of Table II are graphically presented by Figure 10. It is

seen again that there is a wide range of parameters RO and RI for which

the source method provides excellent results.

Analysis of the results

of Tables I and II implies that for the fixed number of sources, the

accuracy of the source method is better at lower frequencies which is

in agreement with the physical interpretation of the method.
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b) Approximate Solution: Symbols not Connected
(=8 =R=1 3 wy=8=2, M=L=5N=11)
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Scattering of a plane SH-wave by a Semicylindrical Elastic
Inclusion. Error as a Function of Position of Sources.

a) Exact Solution: Connected Symbols

b) Approsimate Solution: Symbols not Connected

(u]= B] =R=1 3 Uy = By = 2, M=L=5,N=11)
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Fig. 10 Error as a Function of Position of Sources (u =B =R
=By=2,M=1L=5N=11)
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At this point a question arises about the influence of the number

of sources upon the accuracy of the method. Therefore, the error analy-

sis is repeated for eleven sources (M= L = 11) and twenty-three obser-

vation points (N = 23), both equally spaced in the manner indicated by

Figure 3. The results are presented by Tables III and IV. Comparison

of Tables I-IV implies that as the number of sources increase, the accu-
racy of the source method improves.

TABLE III -- Error Analysis results at w=0.1nw

Ll1=81=] R=1 M=L=11

U2 = B2 =2 w=0.1m N=23

R| R, e(Rewl) e(I w) e(ReWZ) e(I wy)
0.05 1.95 0.000013 0.000014 0.000000 0.000000
0.10 1.90 0.000003 0.000000 0.020000 0.000000
0.20 1.80 0.000010 0.000000 0.000000 0.000000
0.30 1.70 0.000096 0.000011 0.000000 0.000002
0.40 1.60 0.000186 0.000042 0.000000 0.000006
0.50 1.50 0.000723 0.000284 0.000000 0.000029
0.60 1.40 0.001709 0.000788 0.000002 0.000082
0.70 1.30 0.013000 0.002137 0.000013 0.000312
0.80 1.20 0.110289 0.003886 0.000126 0.001004
0.90 1.10 5.20772 0.014701 0.006913 0.007279
0.95 1.05 78.9799 0.190455 0.106095 0.060798

TABLE IV -- Error Analysis Results at w=m

U1=Bl=] R=1 M=L=11
Uy =B2=2 W= N=23

RI RO e(Rewl) e(Imwl) e(ReWZ) e(Im\Vz)
0.05 1.95 0.084933 2.26812 0.192501 0.295296
0.10 1.90 0.004632 0.06638 0.000360 0.001183
0.20 1.80 0.013472 0.004160 0.001739 0.000651
0.30 1.70 0.000182 0.000557 0.000052 0.000134
0.40 1.60 0.000031 0.000251 0.000011 0.000057
0.50 1.50 0.000061 0.000163 0.000025 0.000051
0.60 1.40 0.000119 0.000678 0.000063 0.000232
0.70 1.30 0.000215 0.003445 0.000345 0.001477
0.80 1.20 0.001967 0.006242 0.002414 0.004235
0.90 1.10 0.013704 0.012274 0.047018 0.040577
0.95 1.05 0.083886 0.129421 0.265477 0.372792
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Analysis of the results for scattering of plane SH-waves by a
semicylindrical alluvial valley in terms of the source method indicate
that the accuracy of the displacement field along the interface increases
as the sources along the inner source surface C1 (see Fig.3) converge
to the origin,while the sources along the outer source surface C2 are
placed away from the interface.It follows that the distribution of the
sources and the accuracy of approximation are related to the assumption
about the nature of the scattered wave field (see Eqn.9). The scattered
field is represented by superposition of Green's functions which
become singular as the "observation" points approach the “"source" points.
Consequently,the best results are achived with the' "observation" points

away from the "source" points.

SEMI-CYLINDRICAL ALLUVIAL VALLEY:SURFACE DISPLACEMENT FIELD

The exact surface displacement field is compared with the source
method results by using the relative error functional (15).The relative
error is evaluated for different inner and outer surfaces Ci and C0
which are assumed to be of semi-cylindrical form (see Fig. 3) with
Ri < Rs< Ro. Using the same number of sources (eleven) along the
source surfaces Ci and Co, with twenty-three observation points along
the interface r=R,the surface displacement field is evaluated along
y=0,-2R=x 2R, at forty-six equally spaced points. The relative
error is determined for real and imaginary parts of the surface displacement

field W for different placement of the source surfaces. Those results
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are depicted by Fig. 11. It can be seen from the graphic error display
that the average relative error remains unchanged for a wide range of
positions of the source surfaces C] and C2. However, the significant
increase in the error is found if the sources approach the interface C

(not shown since it is out of scale of Fig. 11). The contribution to

the error arises due to singularities of the Green's functions in
continuity condition (10) as the "source" points approach the "observation"
points.

So far the analysis has been concerned with the circular shape of the
alluvial valley. To explore the source method in more detail, it is
necessary to investigate the noncircular type of the interface. Therefore,
scattering of a plane SH-wave by a semi-elliptical alluvial valley is

considered next.

SCATTERING OF PLANE SH-WAVES BY SEMI-ELLIPTICAL ALLUVIAL VALLEY

The alluvial valley is specified by
C: x = Ricos6; y = Rysing; Osoesm, (16.1)
where the principal axis R] and R2 are known. The inner and outer sources

are placed along the surfaces C] and CZ’ respectively defined by

C]: X = R]icose; y = RZisine (16.2)
O0s@=m,

R

o
no
x
i

1060505 ¥ = Ry sin6; (16.3)

with the principal axis R]i o and Réi o defined through
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RI,Zi = g R],Z; R]’20 =7 R],Z; 0< €<1; 1< n. (16.4)
An 1incident wave is given by

wi(x,y,t) =172 e-i[k(xsineo - ycosd, - wt] ) (16.5)

where 8 is the angle of incidence and k is the wave number. The free

fild associated with the incident wave (16.5) follows to be

W (x,y,t,) = etlkxsing, - wt] cos (kycose, ), (16.6)
~thus, the vector f in Eq. (11) should be replaced by
ff

o
f =
” ff

“*h

,1ff - ff,
[w, 177 = w (r;j)
ff
ff _ 3w (r.) .

[w‘j]n = g s Iy € C, j=1,2,...,N. (16.7)

where fj represents the "observation" points along the interface C. The
N "observation" points are chosen to be at values of 6= NET n, n=1,2,...,
N=23. The Source points along C] and C2 are taken to be at angles

9 = ﬁgT'm’ m=1,2,...,M=11 (=L). For angle of incidence 60=30°, fre-

quency w = 0.79 s"] and for various choices of the C],2 interfaces (i.e.

for different values of the parameters & and n in 16.4) the absolute value
of surface displacement field is presented by Fig. 12. Comparison with

the exact solution (represented by solid circles) of the problem under
consideration given by Wong and Trifunac, (1974b) indicates excellent agree-
ment between the two solutions for a wide range of the parameters £ and

n. Case of vertical incidence is depicted by Fig. 13. Again, agreement

between the approximate and the exact solution is excellent. To test

the accuracy of the source method solution at higher frequencies, the
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surface displacement amplitude is evaluated for circular frequency 1.57 s']

and angle of incidence 30° and 0° (Fig. 14 and 15, respectively). The

case of vertical incidence and ciruclar frequency 2.36 s~

1 is depicted

by Fig. 16. Figures 12-16 demonstrate high accuracy with which the

source method predicts the amplitude of the surface displacement field

for a wide range of frequencies of the incident wave field.

Similarly to the results derived for semi-cylindrical alluvial valley,

the surface displacement field in present model is accurate for a wide

range of source locations, provided the sources are not placed in immediate

vicinity of the interface.

It should be pointed out that the accuracy of the surface displacement

field is excellent not only inside the alluvial valley but along the

surface of the half-space as well.

To summarize, the analysis of the anti-plane strain model leads to

the following conclusions:

1.

The source method appears to provide very good results for a wide
range of frequencies.

Approximate results are more accurate at lower frequencies for a
given number of sources.

As the number of sources increases, the error decreases.
Singularities in the Green's functions of the scattered wave field

prohibit the placing the source surfaces very close to the interface.
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Relative Error of Surface Displacement Field: Horizontal

Incidence of a Plane SH-Wave Upon a Semi-Cylindrical Alluvial
Valley Embedded in a Half-Space.

(y=0, -2R=x= 2R at 46 equallly spaced points; w=0.795_] s R=1,
6]=u1=1, H,=0.167, B,=0.5, M=L=11, N=23).
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o

Fig. 12 Surface Displacement Amplitude for Antiplane Strain Model
of Semi-Elliptical Alluvial Valley Embedded into a Half-Space.

Exact Solution-Nonconnected Solid Circles; Source Method
Solution - Different Types of Lines.

(w=0.79 57!, 8,=30% Ry=2, R,=1.4, 1y=8; =1, 11,=0.167, 8,=0.5,
N=23, M=11, L=11)
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Fig. 13 Surface Displacement Amplitude for Antiplane Strain Mode]
of Semi-Elliptical Alluvial Valley Embedded into a Half-Space.
Exact Solution-Nonconnected Solid Circles; Source Method
Solution - Different Types of Lines.
- -] "0 = = — - = =
(w=0.79 s, 60—0 , R]-Z, R2—1.4, u]-s]—l, Ho 0.167, 8,=0.5,

N=23, M=11, L=11)
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Surface Displacement Amplitude for Antiplane Strain Model

of Semi-Elliptical Alluvial Valley Embedded Into a Half-Space.
Exact Solution-Nonconnected Solid Circles; Source Method
Solution - Different Types of Lines.

_ -1 _~n0 _ _ o _ -
(w=1.57 5", 80—30 , R]-Z, R2-1.4, u]-s]—l,u2—0.167,32 0.5,
N=23, M=11, L=11)
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Surface Displacement Amplitude for Antiplane Strain Model of
Semi-ElTliptical Alluvial Valley Embedded Into a Half-Space.
Exact Solution-Nonconnected Solid Circles; Source Method
Solution - Different Types of Lines.

(w=1.57 s",eo=o°, Ry=2, Ry=1.4, 1=8,=1,u,=0.167, §,=0.5,
N=23, M=11, L=11)
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Fig. 16 Surface Displacement Amplitude for Antiplane Strain Model of

Semi-Elliptical Alluvial Valley Embedded Into a Half-Space.

Exact Solution-Nonconnected Solid Circles; Source Method
Solution - Different Types of Lines.

(w=2.36 s'],eo=00, Ry=2, Ry=1.4,uy=8,=1,1,=0.167,8,=0.5,
N=23, M=11, L=11).
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This concludes the analysis of scattering of the plane SH-waves
by an alluvial valley using the source method. Next model to be con-
sidered is the plane-strain one. First, the theoretical basis of the
source method for the plane stain model is presented in detail. Then,
the accuracy of the method is investigated by using the exact solution
for a full-space problem. Finally, diffraction of plane P, SV and Ray-

leigh waves by a semi-elliptical alluvial valley is presented.

Plane Strain Model:

An outline of the source method formulation of the plane strain
model is presented next. The equation of motion for a steady-state

wave propagation is given by

2

v2l £, I =0 5 j=1,2, (17.1)
Vil kb

where ¢ and Y represent the pressure and shear wave potentials, respect-
ively, with corresponding wave numbers h and k. The velocity of P waves
is denoted by aj, j=1, 2, and of the S waves by Bj’ j=1, 2. The

components of the displacement vector u = ui + vj are related to the

u
potentials ¢ and ¢ by (Achenbach, 1973)

AT
UJ=-——8;(—+—-W ,J—],Z
(17.2)
. .
< R |
J oy ax
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For a given incident wave, the total displacement field is specified through

.i

S
Up = U +uy (18.1)
viyo= w4y (18.2)
1 1
S

uy = Uy (18.3)

= v (18.4
27 V2 -4)

where the superscript s denotes the scattered wave field. The boundary

conditions are specified by (see Figure 1)

o, =0 (19.1)
Y5 y=0andred, =12,

oyyj= o ., (19.2)

Perfect bonding along the C gives

i, s _ s
u -Fu] = U, (20.1)
v1+-v? = vg (20.2)
forre C
i s _ s
nn-konn = % (20.3)
1 2
ol +o =g (20.4)
nt :

with %n and Ot denoting the normal and shear stress, respectively. It

is assumed that the scattered field is expressed in terms of single Tayer

potentials
05 = f g2(rg)o5(r | r,)ds

SR SAL . (21.1)
j
j=1.2,
‘P§=j g?(ro)w.(rw)dso (21.2)

Cs
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The curves C] and 02 are defined in the half-space, inside and outside of
the interface C, respectively (Figure 2). The density functions g? and
g?, j=1,2, are yet to be determined. The Green's functions ¢j(r| ro) and

wj(r,ro) must satisfy the equation

2

) 95(r Ir,) hj¢j(f [ r,)

v + ) = =8(|r-r_|) (22)
wj(r Ir.) kjwj(r| r.)

and should satisfy the boundary conditions

0 (23.1)
y=0 and rj eg% , j=1,2,

Oxyj(f Ir,)

Oyyj(f| ro)

i
(@]

(23.2)

The explicit solution for the Green's functions is given in Appendix A. If

it is assumed that the density functions are of the form

¢ = -

g7(r,) z a s(lrj-rol) 5 roeC (24.1)
" M

gﬁ & =mg bs”fo-rl) : nel (24.2)
) L

9p(rg) = QE] cdllrg=rgl) » reely (24.3)
" L

95(rg) = g] dpslirg-ryl) » rpely, (24.4)

the scattered wave field then becomes

M
¢§(E) N mzl am¢1(r| rm) i rme:C] (25.1)
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M
S(ny =
w]‘f) - m§1 bm¢1(f rm) ’ rmE:C1 (25.2)
. L
¢5(r) = 251 Codp(r|r)) s reet, (25.3)
. L
Uo(r) = 151 dow,(r|r)) s reeCy. (25.4)

Substituting the scattered wave field (25) into the continuity condition

(2) at N observation points along C, the following result is derived

Gz = f s recC. (26.1)

~

The f and Z are vectors of order [4N x 1] and [2(N+L) x 1], while G is

known 4N x 2(M+L) matrix, defined by

[ o7 TR T Y
oot ez e
6=~ ~ - - (26.2)
h ¢1 ¥l _y02 _sb2
Znn Znn Zan Znn
o1 b1 _y2 2
gnt Ent §nt §nt
with
T _ X ) )
z = [a],az,...,aM, bysbyset by €q5Chsenie s diadysetsd, ]
(26.3)
T _ inc _inc _inc _inc
= [‘Q Y 7% 2%t (26.4)
ut" = U ] i=1,...,N (26.5)

r

ri)] (26.6)

V1nc = [V1HC(



o e =
nonu
— — ot

v v
. . .

Hi i i Hi Hi Hi 1l i ti H1

1

(26.7)

(26.8)

(26.9)
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07 [ 4 ]
Znt = Lone(ry I ry) ]
o[ ]
Ent - Lcnt(r1| fJ)_
s s ] (26.9)

%2 |

Ing = Jjnt(fil r )_
v [ v ]
ot = _Ont(fil r )J

In other words, the matrix g incorporates displacement and stress field
information, due to Green's functions ¢j’ and wj, j=1,2,; vector f repre-
sents the displacement and stress field due to incident waves, and vector
z consists of the unknown coefficients (source intensities). Solving

(26.1) in the least square sense, it follows that

2= (@6) 6 (27)
Once the expansion coefficients are known, the scattered wave field is
determined at any point of the media through the use of (25).

At this point, a systematic error analysis is done to deter-
mine the accuracy of the method for this model, based on few exact
solutions which are available for simple geometries (e.g., Pao and Mow,

1973). The choice of sources and their distribution is studied to

determine in what way they influence the accuracy of the method.
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Scattering and Diffraction of the Plane P-Wave by an Elastic Cylindrical

Inclusion

The geometry of the problem is depicted by Figure 17. An elastic
cylinder embedded in an elastic full space is subjected to an incident

plane P-wave:
. -ihyx
b =e s
i 1 (28)
+iwt

where the factor e is being understood.

A1l the equations stated for the half-space model remain formally the
same , except for the stress free boundary conditions (19) and (23) which
are missing in the full space problem. Therefore, the Green's functions

(22) are specified by (Pao and Mow, 1973) , as

”

Figure 17
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¢5(r I rg) = ”éz)(hjlf"fsl) (29.1)

2)

vilr|r.) Hé (kylr-r )

Assuming the scattered wave field to be of the form (25) the corresponding
displacement and stress fields can be correlated explicitly according
to Appendix A. In other words the elements of the equation (26) are known

and one can proceed with the numerical evaluation of the results.

Exact Solution

The exact solution for the total wave field is given by (Pao and

Mow, 1973) for an incident plane P-wave

b1 =0 + 0] (30.1)

Y1 =9 (30.2)
_ .S

6y = 65 (30.3)

by = Uy s (30.4)

where the scattered wave field is defined by

[ee]

s _ (2) )
¢7 = nEO Aan (h]r)cos ne (31.1)
re Qﬁ
o= 5 BHD (ko r)sinne (31.2)
17 2 Satn ’ :
s _ o .
¢y = nEO Can(hzr)cos ne 5 (31.3)
re QD]
s _ o .
Py = I Dan(kzr)s1n ne . (31.4)

n=0
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The continuity of the stress and displacement fields implies the expan-

sion coefficients through

T -1 _
[An,sn,cn,on] =B"'b n=0,1,2,..., (32.1)

where the elements of the matrix § and the vector b are defined to be

_ (2)| . _n (2)
Byy = hyH " (hR) s Bia = R Hp " (kqR)
- . . - _n
Byg = -hyd, '(hR) Big = = RIp(koR)
- _n ,(2) - (2),
Byy = - jHy T(hR) Byp = -kqHp " (k4R)
_n . - -
Bag = R In(koR) ’ Byy = kdp ' (kR)
_ o 2,(2) 2.\ (2) 2 2.(2) .
B3y = -k H S (hR) = £hiJH S/ (hiR) + R2n HaS/ (RR)
- _ 2 (2) 2 (2).
By, = - R2 an (k]R) RN len (k1R)
_ 2 2 : 2 2
833 = -uz/u] {—k2 Jn(hZR) - R hZJn (hZR) + R2 n Jn(th)}
By = -to/us (= 5 nd (K,R) + 2 nkod ' (koR)}
34 - TH/W R2nt2 R "o¥n %2
-2 .(2) 2 (2),
Byq = 2 nH.“’ (hyR) - & nhyH </ (hR)
42 T 'n 1 R ™1'n 1 RZ n 1

_ 2 2 .
Bys = ~Hp/My {Rz nd, (hoR) - 5 nhyd ' (hoR)}

k
_ 2. 1 2 . n
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by = -hye (-1)"0_ " (h,R) hneo
- - E - ; 8 -
1 1°n n 1 n 2, n=1, 2,
_ .\n 2 2 . 2 2
B, = ’n (-1)" {h,RJ_"(h,R) - J_(h,R)} 3
4 RZ €n 1% Y1 T YpYYy : (32.3)

For the source method, the surfaces C] and C2 (5) are chosen to be

the semi-cylinders r = RI and r = RO’ respectively, with 0< R, < R< R.<w .

I 0
The sources and the observation points are equally spaced along the C

1° 2
and C, respectively. Initially, the number of sources along each sur-
face is chosen to be six (M=L=6) and the number of observation points
along the interface to be twelve (N=12). The scattered wave field is
evaluated at N observation points along the interface by the exact and
the source method. The results are then compared and the relative error

evaluated through the error functional (15). To further simplify the

error analysis an average error is introduced

E = [e (R, 7) +e (I 2)]/ 2, (33)

where each of the terms e(Z) have been defined by (15).

For the circular frequency of the incident P-wave w = 1.575']

the
relative error for the scattered field ¢?, w?, ¢Z, and w; is shown by
Figs. 18 and 19. These results indicate that the relative error is

fairly constant for different locations of the sources. The exception

is the wave potential w; with the corresponding relative error being high-

er with respect to the.error associated with the rest of the potentials.

Indeed, throughout the numerical evaluation of the error results, it
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was established that for the same number of inner and outer sources,
the relative error for the scattered field inside the inclusion is
higher in comparison with the error for the half-space field. In par-
ticular higher error has been associated with the shear wave potential
wz . This suggests that it might be necessary to take a larger number
of the shear sources to model the Wg field more accurately.

Error results for the two fold increase of sources and observation
points to twelve (M=L=12) and twenty-four (N=24) points, respectively
are presented by Figs. 20 and 21. Granting that the frequency of the in-
cident waves is substantially higher than that presented in the previous
two figures, the accuracy of the source method result is better for
larger number of sources. Although no claim of the uniformity of this
process can be made at this point, the error analysis for the plane strain
model appears to provide analogous results to the ones found in the study
of the anti-plane strain model: approximate results are more accurate
at the lower frequencies for a fixed number of sources. As the number

of sources increases, the relative error becomes smaller.
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Fig. 18. Relative Error for Scattered Field Along the Interface: Hori-
zontal Incidence of a Plane P-Wave Upon a Circular Inclusion
in_a Full-Space. (u=1.575"1, Re,=g,=1, 01=1.45, 11,=6,=0.6,
0,=0.9, M=L=6, N=12)
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Fig. 19. Relative Error for Scattered Field Along the Interface: Hori-
zontal Incidence of a P1an? P-Wave Upon a Circular Inclusion
in a Full-Space. (w=1.57s"', R= =}y = B]~1, = =1.45, o= B,- -0.6,
a2=0.9, M=L=6, N= ]2)
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Fig. 21. Relative Error for Scattered Field Along the Interface: Hori-
zontal Incidence of a Plane_P-Wave Upon a Circular Inclusion
in a Full-Space. ~(w=3.14s71, R=u =g =1, a;=1.45, 1,=8,=0.6,
a2=0.9, M=L=12, N=24).
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PLAIN STRAIN MODEL: HALF-SPACE PROBLEM

For the half-space problems the unknown scattered wave field (25)
is evaluated through z = (gfg)'] G*f (Eq. (27))with a slight modification
in the forcing term f. Initially, the forcing term f defined by (26.4)
incorporated the incident wave field only. For the half-space problems

it is convenient to express the forcing term f by

=[0I P (34.1)
AL LAI TS SR S T (34.2)
e i) (34.3)
oo = [op(ey)] (34.4)
g:: = [o,fi(ri)] (34.5)

where the superscript ff denotes the so called free-field. The free-
field represents the sum of the incident and the reflected wave fields
in the absence of the alluvial valley. The remaining elements of equation
(27) remain formally the same as defined earlier.
The most difficult part in the plane strain problem is to evaluate
the Green's functions (22) with corresponding boundary conditions (23)
for the line source in the half-space. Following the papers by Lamb (1904)

and Lapwood (1948), this problem is addressed in the Appendix A.

The resulting Green's functions are presented in a form which is con-



venient for numerical evaluation. Once the Green's functions are known
it is possible to study the problems of diffraction of the plane P and
SV waves as well as the surface Rayleigh waves by an elastic alluvial

valley of arbitrary shape embedded into an elastic half-space.

DIFFRACTION OF PLANE P-WAVE BY A SEMI-ELLEPTICAL ALLUVIAL VALLEY

Alluvial valley is specified by
C: x = R] cost; y = R, siné ; 0< 6<m, (35)
where the principal axis R] and R2 are known. The sources are placed

along the curves (surfaces)

o
—
x
1]

R]i cosg6  ; y

1
=
nN
-
(72}
—e
>
(e}
-

Rlo cosé ;¥ =Ry, sing , (36)
with R]i < R]0 ; RZi < R20 ; and R] > R2.

An incident plane longitudinal (P) wave strikes the valley and
causes various waves to be scattered into elastic space. The inci-

dent wave is specified through

¢1 (x.y) =ﬁ/ﬁ$2[h(XSine° -y coseo) - wt] , (37)

where eo represents the angle of incidence and h is the wave number. The
free field associated with incident plane P-wave is given in Appendix B.

The "observation" points along C are chosen to be at values of

0 = %§-n; n=20,1,2, ..., 23. The source points are taken to be
Ul .
along C] and C2 at 6 = qyn;n = 0, 1, 2,...,11. For angle of in-

1

cidence 6 = 30%and the frequency w= 0.31s™'. The absolute value of dis-
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placement field along the interface is presented by Fig.22.It can be seen

from the figure that along the major part of the interface fhe predominant

motion takes place in vertical direction.Significant displacement amplification
effects occur at the surface of the half-space at both ends of the a]]uviai
valley.Since no exact solution of the problem is available the question arises
about the accuracy of the results derived by the source method.One way of

checking the numerical results is to increase the number of sources and compare
the difference between the two results.If the difference is getting smaller,

it would seem reasonable to assume that the result may converge to the exact-
one.Another approach would be to compare the present results with the ones
obtained by some other approximate technique.For time being,the first method

of checking the results has been used in this work.Sensitivity of the displacement
field upon the number of sources has been done and the results presented hereafter
do have certain degree of accuracy.However,the final error analysis is post-

poned for later date.Therefore,the results shown here are of preliminary

nature and no specific accuracy is assigned to them.

DIFFRACTION OF PLANE SV-WAVE BY A SEMI-ELLIPTICAL ALLUVIAL VALLEY

Alluvial valley is specified by Eq.(35),with source surfaces C] and C2

being defined by (36).An incident plane SV-wave is given by

wi =_(1/k)e—i[k(xsin 6, - ycos 60)- wt] i (38)

where o represents the angle of incidence and k is the wavenumber as-
sociated with equivoluminal waves.The free field corresponding to the incident
SV wave (38) is given in Appendix B.The observation and the source

points are chosen in the same manner as in the case of incident P wave.
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For angle of incidence of 30° and circular frequency 0.31 s—] the absolute
value of displacement field along the interface is depicted by Fig.23.It can
be seen that along the major part of the interface the predominant motion takes
place in horizontal direction.The largest displacement amplifications occur at
the surface of the half-space at both ends of the alluvial valley.

Comparison of the results for incident P and SV waves reveals that,for the
chosen set of physical parameters in the problem,the displacement amplification

along the interface is larger for SV-waves then for P-waves.

DIFFRACTION OF RAYLEIGH WAVES BY A SEMI-ELLIPTICAL

ALLUVIAL VALLEY

For the alluvial valley (35) and the source surfaces (36) the free
field consists of Rayleigh waves specified in Appendix B by (B28-B34).
The amplitude A is chosen to be equal unity.The observation and the source
points are chosen to be the same as in the case of incident P and SV waves.
For the circular frequency 0.31 s'],the displacement field along the
interface is shown by Fig.24.It is seen that incident Rayleigh wave produces
rather uniform displacement field throughout the interface between the half-
space and the alluvial valley with predominant motion taking place in vertical
direction.Comparison of the results with the corresponding ones evaluated
for incident P and SV waves indicate that the displacement amplification due to
Rayleigh wave may be of great importance even along relatively deep interface.
However,the maximum amplification effects are smaller for incident Rayleigh

wave compared to amplifications due to P and SV waves.
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SUMMARY AND CONCLUSIONS

Scattering of plane waves by an elastic inclusion of arbitrary shape

embedded in an elastic half-space were considered by using the source

method. Approximate results are compared with the existing exact solutions

implying good agreement between the two for a wide range of physical

parameters of the model under consideration.

Variation of location of the sources and their number provided some

insight into the quality of approximation of the source method. These

results can be summarized as follows:

1.

The approximate results depend on the frequency (wavelength) of
excitation. Lowering the frequency leads to smaller error in the
scattered wave field for a fixed number of sources.

The number of sources influences significantly the quality of
approximation. In general, larger number of sources leads to a
smaller error in the results.

Due to singularities of the Green's functions as the "source"
point approaches the "observation" point the sources should not be
placed too close to the interface.

Although much more work remains to be done in acquiring complete

understanding of the source method, these initial results do indicate

the power and efficiency of the source method in problems of geophysics

and earthquake engineering.
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APPENDIX A

DILATATIONAL LINE SOURCE FOR A HALF-SPACE

Consider a half space |x|<~ , y > 0 subjected to a dilationational
lina source at a point (0,f). The wave potential of the source in an in-

finite solid at (o,f) is given by

6 = 1P (hr) sy =0 Pl (y -l (A1)
(2)

where HO is the Hankel function of order zero and of the second kind,
h is the wave number of the Tongitudinal waves and the factor e+iwt is

understood. The boundary of the half space is stress free, i.e.

‘v o) = (A2)
syy(x,o; 0
Oxy(x,O) =0 (A3)

In order to solve for the half-space problem, the superposition of the
potentials of the full-space problems is used. Therefore, an equal source
to the one given by (A1) is placed at (0, -f). Thus the potential of the

sources 1is given by

oS = Héz) (hr) + Héz)(hr') ;0 =050 =% 4 (y+ )2, (aa)

It is easy to check that the waves specified by A4 satisfy the boundary

condition (A3) i.e. 0_>(x,0) = O but the normal stress o;y(x,o) is dif-

S
Xy
ferent from zero and it must be "removed" in order to solve the half-

space problem by superposition of the full space problems. The wave po-

tentials (A4) can be represented in more convinient form (see for example

Lapwood, 1948)
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. ~af
S 4 _
¢ = ;%tha € 5 coshay cosgxdexdy ; ws = 0; azs 42 - h2; y < f, (A5)

where the following integral representation for the Hankel functions has

been used

(2)p, V2, 2 .

0]
The wave field ¢R and wR is added to the (A5) in order to satisfy the

boundary conditions (A2,3) exactly, i.e.

o(x5y) = 6% (x,y) + ¢R(x,y) (A7)

v(x,y) = WR(x,y) ) (A8)

Additional field is assumed to be of the form

¢R = %i-~/~ (A cost x + B singx)e'aydg (A9)
(6]

WR = %l (C coszx + D sincx)e’Bydc ; (A10)
(0]

82 = gz - k2 )

where k is the wave number associated with the transverse waves. The un-

known A,B,C, and D are determined from the boundary conditions (A2,3) to be

2,2 - -

B=C=o0 A = (2c2_k )2e of D = ZC(ZQZ - k2)e af .
a F(z) F(c)

(A11)

s 2 . 2 2
Flz) = (22 - k%)% - azap .
Then from (A7,8) it follows that the wave potentials in the half space
due a longitudinal line source at (o,f), which satisfy the stress free

boundary conditions oyy(x,o) = oxy(x,o) = 0, are given by
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- 4(2) (2) (o k2)2
2(x,y) = Ho™ (hr) + H % (hr) - 2 (ig—({)“) g0y * f)cosgxdé
= 4. (
i S D
= Héz)(hr‘ ) - Héz)(hr') - L?/_ngr% omoly + ) cose xde

0

i
,——‘

/L(B ooy + )CO dec}

2
b(x,y) = 8‘ %)——’k—) e of “BYsingxdz. (A12)

The displacement and the stress fields are calculated to be

(2)
o —hx[ Hy (hr)

sin &x dg

2)
“1”“"”] +]61 £%8 -a(y + f)

- Gk

. 2
_ %l[ BE(2E” - k%) -of - gy sinex de (A13)

(a2 22
V(b:-h [.V;f H](Z)(hr)_l_yr""f H](Z)(h‘”')J +?TJ_'/(%%)_Q

e-a(y * f)cosg xdg

f (2‘5 e'o‘1E " Weosexde (A14)
- 2 2
S8 =L 0 W) [ty 0 ]

2 2
-2h F'l -2 (Y_ + f) ]ng)(hrl) - [th (y+ g) _ kZ]H(()Z)(hY")

1 Y"B Y"
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. o 2
+ laﬁ-jf %Tg) (k2 + 2a2) e—a(y +f) cos& xdg

% 2
. -k -of -
LA F(Z) ) gmof - By cosgxde (A15) .

: 2
O_Xi /]J = 4”)((% - f) ng)(hr) _ 2h X(! - f) Héz)(hr‘)
r

+ 4hx(§ + f) H](Z)(hr') ) ZhZX(zx + f) H(()2) (hr')

r r

. 2 22
- %l. §i§%zzi_5_l.e oy + f) sing xdg
Qo
.7 2 2,2
+ %l./ﬁ élgéTE%—E_l e "0F -BY ¢ine xdg (A16)
(e}
gyi Ju = 2h|:—]r—-%—- H](Z)(hr)+ [2:2" - K2 ]H(()Z)(hr')
2 - 22
L1 2x (2) [th 2] (2),, .
-2h| - - =5 | H " (hr) - - k™ {HY"(hr")
[r. WEN r.2 0

(o]

. 2 2
_ 161 [ g BE(:%E) = k7)o -aly + f) cos¢ xdg

(i
o

o0}

. 250082 _ 12
4+ 16i [ 828 - k7)o ~of = BY (oor xae (A17)

m F(¢)

(0]
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EVALUATION OF IMPROPER INTEGRALS

The displacement and the stress fields (A13 - A17) contain improper
integrals which are evaluated by using the contour integrations in com-

plex plane. The integrals are of the form (Lapwood, 1948)

[ood

I =-f G(z) coszxdz 3 I, =f t6(z) singxdg (A18)
0 [0)

where G 1is an even function of ¢ which is considered to be complex in
general. Branch points of the integral occur at ¢ = tk and ¢ = #*h
(recall o = ‘zz - h2 s B = ';2 - k2 )and the isolated singularity is
at & = k, where k is assumed to be solution of F(k) = 0 (see (A11)). The
branch cuts are chosen in such a fashion that along the integration path
Re o > 0 and Re B > O,which physically correspond to bounded displacement
and stress fields at infinity. Denoting ¢ = £ + inand w = s - ic the
condition Re o = 0 implies
. SC 2 2 S -C 19
En = - = and £" - n" <, (A19)
c c
L L

where CL denotes the velocity of the longitudinal waves. Similarly,
Re B = 0 implies

En = - §92 and 52 - n2 < 5——:?5— , (A20)
with Cr being the velocity of the transverse waves.

Therefore, for Re w > 0 conditions (A19,20) define the branch cuts

in the complex &-plane as parts of hyperbolae depicted by dashed lines

in fig. Al.
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Fig. Al The Contour of Integration
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DEFORMATION OF INTEGRATION PATH

The integrals (A18) can be written in the following form

- 1 U 6(1) eltX gy + I 6(g)e™ eX dc] (21)
d 0

L= [f ts(1) e'o¥ dy f ca(t)e 16X d‘g] . (A22)
o) [e)

By choosing the contours ' and r, for integrals involving e1€X and

e-1£x respectively the following result is derived (Ewing et al, 1357)

I, = ‘? gﬁ G(t)e %% d¢ - 2mi Res l% 6(g)e™ % K} (A23)
£ +&
a 7B

I, = %.1. f ¢G(g)e "X dy - 2ni Res‘ %—i LG(g)e K} (A24)
£+ ¥

a

where 'QE and Q?B Ere keyhole parts of theI‘Z-loop shown by Fig. Al,

and the sense of integration is indicated. As w tends in the Timit to

a real number, the paths of integration Sfa and(zb degenerate, as

shown by Fig. A2.

Taking into account the sign of o and B along the path of integ-
ration the improper integrals of type (A23,24 ) can be evaluated in
sych a form that no singularities of integrends occur along the range
of integration. The integrals needed in evaluation of the displacement
and stress fields (A13-A17) are summarized as follows:

Summary of integrals.

2)2

Q|
1]
=
i
Yy
w|
1}
‘ij
-
=
~~
['aat
S
it
—~
N
yry
N
]
~



77

@ Z+n? B % F:(n)=(2n2+k2)2_4n2=&~=§
N N Frl:(i) = (26° - K4t 165" o%g?
(A25)
#1
j- CBB ooy + f) s C _
g F(z) singxdg = ~2/ nBe nxcos[&(y+f)] dn +
‘ o Fo(n)
h , k .
2 f £°8 e";gx cosfaly + )] 4 , [E3B'(2£i - kP)%eoly + f)g-iex a
0 Fo (&) B F(€)
-a (y + f) -ikx
_ .k BKe K e (A26)
F' (k)
#2
[ 8 (228 - k%) e of - BYsinexde = -2f nB(2n° + oliz)e—”xco-%[?f + Byldn
F(z) s F0 (n)
h
2| eee® - k3 -iex p B(26% - k%) —af -iex
: hg e cos[of + Bylde + f 3 e e
[(25;2 - k2)2cos§y + 4228 sin By]de
2 2 .
kB (2" - k%) -a f -8 -ikx
- K e < .e (A27)
F'(k)
#3

[o0}

2 0.0 T 2 2\2 _
(e - K% -aly + Foogrp -2 (20 * KD ™ Ginlaly + £)]dn
(e k)

F(z )
‘o 0 Fo(n)
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h k
. 2212 § 02 2\2.,.2. - .
-2i f (Z‘E (k) e S Xsin[a(y+F) 1de+i f (267-k )k.% "a-ge a(y+f)e_1gx dg
0 0l& h F(€)
-a (y + f)
-mi (2K2 _k2)2 e oKX

F' (k) (A28)

#4
20,2 2 T 2002 . 2y "X = . %
| [c (IZ:‘E’;)' k) o -oF - BY (osrxde = zfn (20 + KO)e™Msin(GF + By) 4,
F (n)
[0}
h k
2,5,2 2 . 2,,,.2 2 .
; 21[ E28 - k) o8 gin(ar + Fy)de - i[ 26 - k) gof o-iex,
F(c) R (c)
2 2., 2 2y -af-8 .
[(2&;2 - kz)sinﬁy - 4£2dﬁ'coséy]d£ - K (2¢” - k) e % < o~ 1KX
F'(x)
(A29)
5
2, -a(f+y), 2., 2 C
-/- z B (k“+20" )cosgxdg _ 2=, 2 2.2 - -NX
g Fley © =2 Bl 2t osSiyee)le
0 Fo(ﬂ)
h k »
. 2=r. 2 2 .2 .. 27102 20, 2 2 .2
+21 j g B[ﬁ +2(g°-h")] cos[U(f+y)]e—]Exd£+i jg (2¢ l-(k v)B[k +2(g"-h")]
.e-a(f+y) e-iixdg
-o (f +y)
K_ZBK e K .[kz + 2(K2 _ h2)] )
-mi e"'IKX

F' (k) (A30)
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#6
[ 2,052 2 -of-gy
-/- E—E%%%7—£~l e cosgxdg=-2 ~/-3—§i§ﬂ——5—lcos(af+8y) X dn
o A Fo(n)
h -iEx
+ 21 j £2(2:2 - ki)cos(’o?f + By)e de
) Fi(z)
k -af
2xi0s2_ 2 2 -iEx
+ i / & B(ZE _k e [(Zgz-kz)cosﬁyﬂgzo@sinEy]e dg
LR
-a_ T -8B
KZBK(ZKZ - k2)e K <’ -1KkX
. e
=-T1 F'(K)
(A31)
#7
2 ,2\2 02,202 -nx_ . —
(20°-K7)° o (y+f) . _ n(2n"+k%)“e™sina(y+f)dn
F e singxdg = -2 —r
l{ Q) J Fo(n)
k
(262 2)2 Slex £3(262.42)2 aly+f) _ -ikx
/ sina(y+f)de+4 ————-k—é-———— e of e dg
L R bR
o (y+f) .
K(2K2 _ k2)2 e K -1KX (A32)
- e
F'(k)
L
2 .22 -of - gy
[-—T)—————C(Z‘;i z k™) e singxdg =

o)

2 2,2 -nx . .
= _zf n(2n” + k%)"e sin(af + By)dn
; Fo(n)
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k2)2 e-igx
£)

h 2
9 f5(25 sin(af + By)dg
F
0

k

f
o

2 2,2 -of -i&x

a(zg( ; k)" e T [(262-k%)%sinBy-462aBeosTy 1de
(e

ho

K(ZKZ - k2)2 —qu - BKy _iKX
-7 e e
F' (k)

(A33)

#9

[ee]

2,052 2y -a(y + f)
*IR 4 8(§%C)‘ KD o coszxdg =

6]

=4, 2 2y _-nx _
. f 1B+ koJe T oosG(y + )3

o ©

h - _3
gzs(Zgz _ kz) 1EX

FQ(&)

e

+ 2 cos{E(y + f)}dg

k .
. (

i o e (A34)
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#10

[ 2,,2 2 -af - gy
./~ S Bé%g) k”) e cosgxdg =
o}

&DnzﬁYan + k%) e
=2 cos{af + By}dn

J Fo(n)

+

2.2 2. -i&x
23 f‘z B2 - KT) e oo, By}de

h
J )
k .
2 2 2 -of -'I£X 2
+ f‘i B2 k) e e (a2 48)costy + acluBsingylar
- Foo(€)
h h
2. ., 2 2 .
KB {2k  ~ k") -0 f-Bv -ikx
-1 K e ~ K e

F'(k) (A35)

Introduction of integrals (A26 - A35) into (A13 - A17) allows nume-
rical evaluation of the Green's functions for the longitudinal line.source
in the half space. Generalizations for the line source at an arbitrary
point.(xs, ys) can be easily achieved by replacing f with Yq and x by
tx - xsl.

The Green's functions (A13 - A22) are in agreement with results de-
rived differently by Wong (1979), however, he evaluated the improper integ-

rals in quite different fashion than in this work.
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EQUIVOLUMINAL LINE SOURCE FOR A HALF-SPACE

The half space |[x|< =, y >0 is subjected to a shear line source
at a point (o0,f). By following the same procedure as in the case of
a dilatational line source the wave potentials, which satisfy the stress

free boundary conditions Oy (x,0) = Oyy (x,0) = 0, are derived to be

[ee]

. 2 2
b= —glf E(_ZC—(_)U' e " B sin oxde | (A36)
F(z

[ee}

i 2 2.2
Y = HO(Z)(kr) + HO(Z)(kr') _ 4 (2 - k7) e'B(y+f) cos gxdg
™
S BF(z)
.2
- HO(Z) (kr) - HO(Z)(kr') - 160 }r-éii e BUH) Cos exde, (A37)
J F(z)
where
o = cz - h? ; g% = cz e ; F(g) = (2<:2 - k2)2- 4c2a6
(A38)

r = Vx%+(y-f) , r' = VX2+(y+f)2

Corresponding displacement and stress fields are calculated to be

o]

y _ -8i .]' ¢2(2c2-k2) o~y - Bf
F(z)

cos gxdg

-kl B er) - 8w B ey f?fﬂ

[e0]

el ‘lﬁ LEEE_:_EEQ? e"B(y+f) COoS &xdg . (A39)
™ -
g f)
p _ 8i u§(2c2 - kz) -ay - Bf _.
V= — e sin zxdg
F(z)

2 (2) (e *
, kx[”1( () D s f 02’ B Gin oxde

r r' T F(z) (A40)
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[e e}

sin gxdg
F(z)

4 2
4kx§z-f) H](Z)(kr) - ZE_%LXZfl Hoz(kr)

r r

2
4kx€y+f) H](z)(kr') - gk_ﬁi%ifl. HO(Z)(kr')

r r'

o 2,2
.81 IM e‘B(y+f) sin zxdc
™

s F(r)
161 [ af@c?k?) -y - af exde
T & F(z)
2x2, L2k (2)  (2)
+1- Z5) [ 1 k) - (kr)]
r r
2

(- 2B ey g 2 (ke )
r r

(oo}

, 2 1.2
161 ﬁ/ﬂac (227-k7)  -B(y+f) cos zxdg.

™ F(z)

_ §j_~/'€(2C2:EElE.e'“y " BT gin xdr
m F(z)

2
_ 4kx§z-f) H](z)(kr) + gﬁ.%ii:f).Ho(z)(kr)

r r
kxf3+f) (2) (kr') + Zilz_ﬂ) Hg (2) (kr )

r

. 2 2.2
§1_~/~ c(2e7-K7)" o-B(y+f) sin ¢xdg -
T F(z)

(A41)

(A42)

(A43)

improper integrals in (A39-A43) are evaluated by contour inte-
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gration as indicated by (A23-24). The summary of integrals is presen-

ted as follows:

2
F(z) = (2¢ -kz)2 - 4c2a8

a=Vneg? 7= Vil Fo(e) = (26282 as%a &

n? g = Vel

VB 5 VA2 Fo () = (2 + k82 - a2 5 3
o - \kg_hz 8- 2.2 ﬁ]k(g) - (262 - )4 4 16:% (282
#1
F2,,2 2 F 20,.2.,2 _
.I. z(2e7-kT) e - Bf s gxdg = 2‘}r D~£§2;15—l e ™ sin(ay + Bf)dn
F(z) F, (n)
0
! 2,,.2 2
-2 .I~ £ (28 h_ k”) e TEX sin(ay + Bf)dg
5 F, (8)
k -
+ i ./~ A (25 - i ) e Y e X [4e208 cosE £ - (Zgz-kz)zsin B fldg
Fr (&)
2/, 2 2
. k- -k - - 6 f -1K<
i (2 ) o 4y (A44)
Fr(x)
#I1 o *©
2_,2y2 -B(y+f) 2,,2\2 _-nx _
f (2g”-k%) cos zxdg = 2[2” +kw) € — sin Bly+f)dn
F(z) F, (n)
0 0
h
2 22 .
- 2i ~/$£§§_B;_K_)__ e 18X sip B (y+f)de
F, (&)
K 2 2.2
w4 | B KT 18X 14220 7 cosE (yaf) - (26202 sin B (y+F) 1de

F, (€)
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-ikx

5 2 2\2 -8 (y+f)
i (2" - k7)™ e "k e

A55
Fi() (A55)
#IIIOo
2 _ 2 oy =15 2,2y =NX . .
f co(2g k%) e"% - Bf singxdc= —2[ na(ch:-k Je cos(ay + Bf)dn
2 F(z) g F (n)
4 2 2 13 K 2,2
- _ -1EX _ _ -ay _-igEx
.+2‘/‘ Ea (2% k™) e cos(ay+8f)d£-[ ga (28 -kl)<e e
g Fo 8 X Fo < (€)
[(2£2 - k%)2 sinBF -462F cos BFlde
2 2 .
ko (2% - k%) -a y-B f -ikx
S e KT (A56)
F' (k)
#IV_ m
3 .-B(y+f) 3= _-nx _
f oL e 7 singxdg = - 2 J D-—"%3———0,05 B(y+f)dn
J F(z) Fo (n)
'h3— — -iEx K 3 _-i&x 2
+ 2]5 o cgs Bly+f)e dg —[Qé:—er——[(Zgz-k.z)s1'n'é"(y+f)__-4§2a“8"cos§(y+f)d€]
F, (&) F, (€)
0 h
-, _(y+f)
% K3 e © -ikx
-T e (A57)
F' (k)
s 2 2y,,2., 2 F 2.2
_ 2 =2
f £(2e7-k7) (k+2a%) _-ay ‘stingxdc=2f”(2” O (K™-207) o -nxgsn (S4B )dn
F(z) | Fo (n)
L R NP ok 2 2\, 2,5 2
-2f B2 M K4207) 18k (et )a +f‘5(2‘E S T
F, () Fi ()

h

[46%0BcosBF - (262-k2)2sinBF]de
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2 2v,,2 2 :
i k(2c“-k%) (k +20, ") e-aKy - B F o-ikx
F' (k)
#VI
2212 ,-B(y+f) 24k%)2 o7
f‘:‘(zi : singxdg = -2[ (Zn:k ) sin B (y+f)dn
F(c) Fo ()

2 ,2,2 . 2 2,2 -iEx
'2,/‘§£g%%‘ﬂi—l— e 185 inBly+f)de *;/ﬂ S e "2, grosBly+f) - (262-k2)
o

sinB(y+f)]dg
-8, (y+f) -ikx
o K(ZKZ- 2)2 e
F'(x)
#VII
2 202 _
f ta(2 k) o -ay BT cosxdz = j———u(zn +k Xcos (Gy+Bf)dn
s F(z) (n)
h k
" 2—15.2 2y -iEX 2 2 2y - -1
si | EREEA) € Too(ay v pryag + 1 [ Eel(2EkT)eT™ eTTEN
F " (e) FA(e)
0 h
[4%08 cos@F - (262-k%)%sin BFlde
-ay -8 f
Lo (22-k2)e & TR iy
-1 K e
F'(x)
#VIII
f tfa(2c?-k%) e B oseydr = _OL(_ZTli_)e cosB (y+f)dn
5 F(z) (n)
h
~ 2 2 2y -iEx 2 2 2y -iEx
+21‘j 3 OT(ZE ke ooy (y+f)dg +ifE O‘(ZE ke "14e%05 cosE (y+f)
F(e) Fo<(€)
- (262k2)2sin Bly+F)1de
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2
oK aK(ZKz-kz) -BK(y+f) -iKkX
=T1 e e
F'(k)
#IX -
2.,2\2 -qy -gf 2. 2.
£(25°-k%) : e = =
f—;—(—g)———- e singxdg = _4n(2nw+ k?) e sin (ay + Bf)dn
2 Fo (n)
0
" 2 ,.2,\2 K
_ s _ 2  2\2 ~ay -i
-%/aélgéﬁlil—-e sin(ayent)ar + [ LR2EK) W o
F () F K
0 / h (E)
h
-(2g2-k2)2 sinBf]dg
. K(2K2-k2)2 e-aKy -8 f e-in
F' (k)
B
r 2 ,2,2 C
z(25°-k -B(y+f) . 2022 ot
——————-F( ) ) e (y )smcxdc = -2[ n(2n H:o) S sin B (y+f)dn
5 4 F, (n)

0

h k
2 .,2\2 -ikx 2_12y2,-1
2e2_ o _ 1EX
"fg(f‘h( Lo T sing(y ) e +f (28 k)T e 2E cosE (yef)
d o g) h Fh (E)

-(262-k%)25inB (y+f)]de

(y+f) -iKkx
e

2,22

-B
- k(2c“-k“)%e K
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APPENDIX B

For the sake of completeness the free field results are summarized

next.

Incident Plane Longitudinal Wave

For incident P-wave geometry of the problem is depicted by Fig. B1.

Incident and reflected waves are calculated to be (Achenbach, 1973)

-i[h(xsineo -y coseo)- wt]

i
¢ = Ao e (B1)
o - a e—i[h(XSineo +y coseo)- wt] : (©2)
1
-i[k(xsing, + y cosf,)- wt]
r 2 2 ’

yo= AZ e (B3)
where
sin6, = b-sine

2 k 0 (B4)

By scaling A, = %-IPl the amplitudes of reflected field are evaluated

to be
A] N %l'Ao AZ - 22' Ao > (B5)
where
Ay = -(2h251’n260- k2)2+ 4h4sin360c0360
8, = -2h°sin2e (2hsin%e, - k%) (56)
A = (2h251'n26o - k2)2 + 4h4sin360coseo.

Consequently, the free field is calculated to be

off = ol + ¢ (87)
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R (8)

uff = -ihsin60{¢i(x,y) + ¢r(x,y) + ctane, wr(x,y)} (B9)

Vit - -ihcoseo{¢i(x,y) - ¢ (x,y) + ihsind P (x,y)} (B10)

otii = (@fcoss K0 (x,) + o7 ()] -2hsindo ctano, ¥"(x,y) (B11)
og,/u = hzsin260[¢i(x,y) + ¢ (xy)] + (2h251n260 - k%) 0" (0y) (B12)
ofiu = (2hsin®s - k%) [67 (x,y) + o"(x,y)] + 2hsine ctans, 4"(x,y)

(B13)

Free Field for Incident Plane SV Wave

For incident plane SV-wave the geometry of the problem is depicted by

Fig. B2. Incident and reflected waves are given by (Achenbach, 1973)

wi - AO e—i[k(xsineo-ycoseo)-wt] (B14)
¢r = A, e—i[h(xsine1+ycose])—wt] (B15)
wr - AZ e—i[k(xsineo+ycoseo)—wt], (B16)
where
sine] = %—sineo (B17)
A
_h _ 5 .
M=3h Ay =7 Ro s Ag=-ils|/k (B18)
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2

4. :
Ay = 4k sin6,coso, (2s1in eo-l)
e, . 3 . 2 2
A, =k [4sin 6, cosb, ctandy - (2sin 60-1) ] (B19)
Y .2
A = k' [4sin 6, C0sO, ctand, + (2sin 60-1)2].

Therefore, the free field is evaluated to be

off = o" (820)
W=yl ey (B21)
uff = ik[-sino 6" + coso (p'-y")] (B22)
fo = iksineof-ctane]dJr + 9+ ¥ ] (B23)
oii/u = kz[(Zsinze0 ctanze] -1)¢" + Zsineocoseo(wi-wr)] (B24)
sz/u = kz[-Zsinzeo-ctan6]¢r + (251n260-])(w‘+w”)] (B25)
ff, _ 2 . 2 r .. ir
oyy/u = k“[(2sin 60-1)¢ -251n6 coso, (v =y )]. (B26)

Throughout the derivation the following relations between the wave

potentials and stress field have been used

2 2
K2y 2 30 W

o, /0 =
XX 3y X3y
%y 2 3%y
Gyl = 2 S Sy -2 2 (B27)
AXoy X
2 2
o /u = -k2d> _2 ...a..—%. - 2 M
Yy ax X dy
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FREE FIELD FOR RAYLEIGH WAVES

For the Rayleigh waves in the half space |x| < «, y > 0 the dis-

placement and the stress fields are derived to be (Achenbach, 1973)

il -b, y 2 -bLy ] '
Uff = A e ]K(X Ct)[e L _ _;_ (2 _ E"‘z) e T (828)
T
i b, by 2\ -byy
v = iepeix(x-ct) [__% e U1 (2- C-—2_>e T] (B29)
K ZbT Cr
. 2 2 -b 2 -b
ff, _ . —1K(x~ct){[ c c ] LY c Ty
o . /u = ixkAe 2 + + 2 e + (2 - e
XX '( ;T??) E:T? ( ;:7?)
T L T
(B30)
2 2
KZ <2 - E——Z— )
s _ -b, y o -b‘y]
ol fpu = periklxct) o0 L, T e | (B31)
Xy L 2b
T
. 2 -b,y -b-y
ff, _ . -ik(x-ct) c ) ( A T )
Oyy/“ ikA e (? Z_? e e , (B32)
T
where
2 1 2 \%
bL=K< °——2> : bT=K<]-C——2—> (B33
cL Cr

The velocity of the Rayleigh waves ¢ satisfies the equation

2 \? 2\ 2\
<2 -9—2—> - 4 <1 C—?>2 <1 -E—2> (834)
CT C

‘1 L

Throughout the Appendices L and Cr denotes the velocity of dilatational
and equivo]umiha] waves respectively. (In the main body of the paper
the velocity of dilatational and potential waves is denoted by o and

B respectively).






