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ABSTRACT

This report reviews the physical bases and the observations of strong earthquake
ground motion for quantitative extrapolation of spectral amplitudes to long (T > 10
sec) and to short (T < .04 sec) periods. This will serve as a basis for the subsequent
formulation of empirical scaling equations for the response spectrum amplitudes in the
same broad frequency band. The present empirical scaling equations of response spec-
trum amplitudes are limited to periods between .04 and 10 seconds. As the design of
long structures and of structures on multiple distant supports requires knowledge and
specification of design ground motions well beyond this frequency range, this report ad-
dresses the first important step in the extrapolation of the available response spectrum
amplitudes, and deals with the formulation of the physical basis for such extrapolation.
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I. GENERAL INTRODUCTION

The earthquake resistant design of extended soils and structures (such as tunnels,
channels, dams, landfills and reclaimed land) and of structures with multiple supports
(such as bridges, aqueducts, pipelines and transmission lines) requires that the speci-
fication of the design motions be given in a broad frequency range which may extend
beyond the currently available strong motion data. Irrespective wether the analysis and
the design are carried out using spectrum superposition methods or computer simula-
tion of the response in the time domain (nonlinear analysis), it is possible to view the
response of extended structures as a combination of two parts: 1) the pseudo static re-
sponse caused by the differential motions of extended or multiple foundations, and 2) the
dynamic response resulting from the action of the inertial forces (Kashefi and Trifunac,
1986; Koji¢ and Trifunac 1991a,b).

The fundamental periods of vibration of long bridges are in the range longer than
5 seconds. Depending on the local soil and geologic site conditions, these frequencies
may correspond to wave lengths in the range from about 1 km to about 50 km. At
high frequencies (for example a wave with period T = .1 sec, propagating through soft
soil with wave velocity of, say, 100 m/sec, will have wave length of 10 m), the waves
shorter than the bridge spans or the tunnel lengths will contribute differential motions
which may lead to significant quasi-static contribution to the shears and moments in the
structural components, and to large relative sliding and rigid body motions in statically
determinate structures. Thus, as our ultimate aim is to present a general, broad band
description of spectra of strong ground motion in California, we begin by analyzing the
physical basis for extension of the spectral amplitudes to short and to long periods, but
well beyond the currently available frequency band ~ .1 to 25 Hz. Once this extension
has been accomplished for the Fourier amplitude spectra, it will be simple to extend
these results to scaling of the response spectrum amplitudes.

This report is divided into four chapters. Following this general introduction, Chap-
ter II examines the extension of the existing empirical scaling equations to prediction
of spectral amplitudes for long periods (T' > 10 sec). Chapter III analyses the existing
data and interpretations in the intermediate frequency range (.1 to 25 Hz), and attempts
to reconcile the observed trends with the plausible interpretation of the physical phe-
nomena at the earthquake source. The fourth Chapter presents an extension of the
available spectra to high frequencies (f > 25 Hz), and analyzes the physical implications
of the relationships presented here with other independent high frequency studies. All
the chapters have been organized into self contained units and have separate discussions,
conclusions, and references.



II. LONG PERIOD FOURIER AMPLITUDE SPECTRA OF
STRONG MOTION ACCELERATION

The empirical equations for scaling Fourier amplitude spectra in the frequency band
from ~ .1 to 25 Hz can be extrapolated to describe the long period strong motion am-
plitudes. The results of this extrapolation can agree with (1) the seismological and field
estimates of permanent ground displacement (near field), and with (2) the independent
estimates of seismic moment and the observed corner frequencies of far field Fourier
spectrum amplitudes.

II.1 INTRODUCTION

Since the 1960’s and the early 1970’s, following the pioneering works of Haskell
(1964; 1969) and Brune (1970), numerous studies and interpretations were published
dealing with spectral representation of the physical processes at the earthquake source
(Anderson, 1991). From those, we learned that the corner frequencies in the observed
far-field spectra can be associated with the characteristic source dimensions, that the
high frequency fall-off of ground displacement amplitudes, beyond the corner frequency,
can be described by w™™ (where n is in the range between 2 and 3), and that the zero
frequency spectral amplitudes can be related to the seismic moment M, (Keilis-Borok,
1960). During the following 20 years, many papers were published on (1) the physical
interpretations of the processes at the earthquake source and their influence on the shape
and amplitudes of the far-field displacement spectra, (2) the simple source characteristics
as determined by the measured features of the observed far-field spectra, and (3) the use
of the inferred source characteristics and the statistics of the observed source parameters
to predict spectra of future strong and distant ground motion.

Simultaneously, in earthquake engineering, the strong motion data base was grow-
ing, and the first studies of the near field spectral characteristics using strong motion
accelerograms at distances typically less than 100 km could be carried out. At present,
detailed empirical equations are available to describe the Fourier amplitude spectra of
strong motion acceleration in the frequency range from ~ 0.1 to 25 Hz and for distances
between about 10 and 100 km (e.g., Trifunac, 1989a,b).

The purpose of this chapter is to address mainly two questions: (1) is it possible
to extrapolate the empirical equations for scaling Fourier amplitude spectra of strong
ground motion, near the source, to frequencies f < 0.1 Hz, and (2) can thus extrapo-
lated spectral amplitudes be tested and used to verify the physical continuity between
the observations in the near field and at intermediate and teleseismic distances. The
engineering need for such information continues to grow with design of long bridges,
fluid storage tanks, large dams and long tunnels, for example. Also, providing consistent
and continuous spectral representation of earthquake wave amplitudes for long period
motions and from small to large distances, should help in the studies and in the use of
distant spectral amplitudes. Earthquake ground motion recorded by strong motion ac-
celerographs contains fairly complete and reliable information on the earthquake source,



because the scattering, diffraction, geometrical spreading, and inelastic attenuation along
the wave path are smaller than for other distant recordings. The proximity to the source
offers more detailed, direct and more complete data on strong ground motion, and thus
can be used to (1) check and calibrate the distant recordings, and (2) learn more about
the high frequency features of the earthquake source.

This study differs from many seismological analyses in that it uses regression equa-
tions in the frequency band from ~ .1 to 25 Hz, and is based on actually recorded strong
motion data in the western U.S. and mainly in California. Our equations have terms
which can be attributed to the processes at the earthquake source, the attenuation along
the wave path and the observed ground motion in general, but in the end represent a
carefully chosen empirical regression models, with coefficients and coefficient functions
significantly different from zero in the frequency band considered. In this chapter, we do
not modify these equations, but merely explore how those can be extrapolated to lower
(f < .1 Hz) frequencies.

In contrast, most seismological studies assume functional forms for the spectral am-
plitudes, for example following Brune’s (1970) shear wave spectra (e.g., Boore, 1983;
Joyner, 1984), or assume a physical model of the source which then results in a func-
tional form which determines these spectral estimates (e.g. Aki, 1967; Boatwright, 1988;
Gusev, 1983; Papegeorgiou and Aki, 1983, 1985). These models are specified by the scal-
ing parameters: seismic moment, Mo, one or two long period corner frequencies (f1 and
f2 which are inversely proportional to the source dimensions), some form of stress drop
on the fault plane, and the low-pass filtering characteristics of the surrounding medium
(fmax, Hanks, 1982) or the non-linear phenomena at the tip of a propagating disloca-
tion (Papageorgiou, 1988). Since M, determines the long period spectral amplitudes,
while the stress drop characterizes the high frequencies, such models provide means to
interpolate the spectral behavior for the intermediate frequency band. In the end, these
results can be calibrated in part using the recorded strong motion data (e.g., Gusev,
1983; Papageoriou and Aki, 1985), but their accuracy finally depends on one’s ability to
predict My and the stress drop.

In the following sections, we will extrapolate the near-field spectra of strong motion
acceleration F'Syr(w) (see Eq. (13)), by using equations whose functional form can be
related to the earthquake source theory. We will use the source theory to determine the
shape of the spectra only. The spectral amplitudes will be chosen so that the assumed
spectra have same amplitude as the empirically determined spectra (see Eq. (1)) at
period T'(N.), which will be defined in the following as the longest period for which
Eq. (1) can be relied on. |

To describe the spectra for the far-field strong motion acceleration, FSpr(w) (see
Eq. (26)), we will assume that the shape of the Fourier spectral amplitudes can be de-
scribed by functions which are similar to the body wave spectra in the Haskell (1969)
source model. The amplitudes of the far field spectra will be determined by matching
their amplitudes at T'(N,) with the empirically determined spectra (Eq. (1)). Finally,
to present the spectral amplitudes for all distances, we will consider a linear combina-
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tion of the far field and of the near field spectra ayrFSyr(w) + arrFSrr(w), with
anr + arpp = 1 for all distances. The overall quality of this approach will be tested by
comparing the implied (extrapolated) spectral amplitudes and their scaling parameters
with independent measurements of various source and strong motion characteristics.

II.2 STRONG MOTION DATA

The strong motion acceleration data base started to grow from March 10, 1933,
when the first strong motion accelerograms were recorded during the Long Beach (M
= 6.3), earthquake in California. The San Fernando, California earthquake of February
9, 1971, contributed the first major increment to the strong motion data base. After all
the accelerograms were digitized, together with selected older recordings from the period
between 1933 and 1971, 186 uniformly processed free-field strong motion records were
available (Trifunac, 1976a,b). Following the Imperial Valley, in 1979, the Coalinga in
1983, and the Morgan Hill in 1984, earthquakes in California, the uniformly processed
strong motion data base more than doubled, to 493 uniformly processed records. With
the recent recordings by the Los Angeles strong motion array (1987 through 1992) and
following the Loma Prieta, 1989 California, earthquake, when all this data is uniformly
processed, there will be well over 1000 excellent records in the strong motion data base.

I1.3 EMPIRICAL SCALING EQUATIONS

The most recent equation for empirical scaling of Fourier amplitude spectra, F.S(T),
is of the form

log1o FS(T) = M + Att(A, M, T) + by (T)M + by(T)h + bs(T)v + bs(T)hv

(1)
+b5(T) + bs (T)M? + 6)(T) SV + 6P (1) S P,

where M is the earthquake magnitude (Richter, 1958; Trifunac, 1991), b;(T') through

b;z) (T') are scaling coefficient functions of the period T', and Att(A, M, T) is the frequency
dependent attenuation function (Trifunac and Lee, 1990),

Ao(T) logyo A; R< R,

tt(A,M,T) =
A ( ’ ) {AO(T)logon——(R——Ro)/200; R>R0,

(2)

with A, the “representative” source to station distance,

R2+H2+S2]_1/2

A=Sln[R2+H2+Soz

(3)
R is the epicentral distance and H is the focal depth, both in kilometers. Ry is the
transition distance (about 150 km for T < 0.05 and = 50 km for T > 1 sec) beyond

which the attenuation equation has slope equal to 1/200, and A, is the value of A in
Eq. (3) when R = R, (more detailed description of Ry can be found in Trifunac and Lee



1990). Att(A,M,T) depends on M implicitly, through S, which is the linearized “source
dimension”
S =0.2+8.51(M —3), for M > 3. (4)

So is the coherence radius of the source (Gusev, 1983) and is approximated by So ~ 8T'/2,
where 3 is the shear wave velocity in the source region, and T is the period of motion.
When S/R and So/R become small, A — (R? + H?)'/2, which is the hypocentral
distance to the source. Ao(T) in Eq. (2) is represented by a parabola (in log,, T),
between T' = 0.04 and 1.8 sec. It is near —2 for T = 0.04, it increases to ~ —0.7 and
remains constant for T > 1.8 sec (Trifunac and Lee, 1989).

h represents the thickness of the sedimentary layer, extending from the ground
surface to the basement rock (in kilometers). v = 0 is for horizontal motion and v
= 1 is for vertical motion. The term b4(T)hv models progressively steeper incidence
of body waves for soft and deeper sedimentary sites. b;(T)M and b(T)M? model the
saturation of strong motion amplitudes versus M, for —b1(T)/(2b6(T)) = Mmin < M <

Mpax = —(1461(T))/(206(T)). Sg (1) and S %) are indicator variables defined by

Sz(,l) _ {1 if sz =1 (stiff soil) and Sz(,z) _ {1 if sz = 2 (deep soil) 5)

0 otherwise 0 otherwise

where s;, = 0, 1 and 2 represent “rock”, stiff soil and deep soil sites. The sites with soft
to medium clays with strata of sands and gravels, as defined in the original investigation
by Seed et al. (1976), are not common in the Western United States and are therefore
not considered in this analysis.

With ﬁ(T) representing the Fourier amplitude spectra estimated from Eq. (1), and
FS(T) indicating the spectra computed from recorded accelerograms, the residues (T)
can be calculated from

e(T) = log,o FS(T) — log;o FS(T). (6)

e(T) can be described as a normal random variable with cumulative probability distri-
bution function p(e, T), mean u(T) and standard deviation o(T). Then,

_ 1 =(T) 1 (z—pu(T) 2
p(e,T) = m/—w exp [ 3 (T(T—)—) }daz (1)

is the probability that log,q FS(T) — log,o FS(T) < (T). Table I gives b;(T) through
b(2)( T), Muin, Mnax, 1(T) and o(T) at 12 periods T(N), N = 1,2,...,12, between
T(1) = 0.04 and T'(12) = 14.0 sec.

The first empirical model for scaling log,, F'S(T') that involves the frequency depen-
dent attenuation Att(A, M, T) was developed in 1985, but without explicit consideration
of the soil site parameters sz, (Trifunac and Lee, 1985, 1987, 1989). Simultaneously with
that analysis and with the model described above by Eq. (1), we studied also the geologic
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site conditions using s = 0,1 and 2, in place of h (see Trifunac and Brady, 1975, for def-
inition and examples of site characterization with s, and Seed et al. 1976 for definition
and examples of assigning sz). The reader may wish to peruse the details on how these
models have evolved, starting with our analysis in 1976 (Trifunac, 1976a), but for the
purposes of this report it will suffice to recognize only the four most recent models:

1. MAG-SITE Model (Trifunac and Lee, 1989),

2. MAG-DEPTH Model (Trifunac and Lee, 1989),

3. MAG-SITE-SOIL Model (Trifunac, 1989b), and

4. MAG-DEPTH-SOIL Model (Trifunac, 1989a, Eq. (1) and Table I)

In what follows, we will use these four models collectively, and will refer to them as the
“group of four recent scaling models” (G4RM). In the above, “MAG” implies scaling in
terms of earthquake magnitude, “SITE” indicates the use of the geological site param-
eters s = 0, 1 or 2, and “DEPTH” implies the use of h as in Eq. (1) above. “SOIL”
shows that the soil site parameters s = 0, 1 and 2 are used in the scaling equation. In
the models 1 and 2 such dependence is omitted.

Fig. 1 illustrates log,o F S(T) plotted versus frequency, f = % It shows Fourier

amplitude spectra (dashed lines) for probability of exceedance equal to 50 percent

(p(e, T) = 0.5 in Eq. (7)), and for M = 4, 5,6, 7 and 8 (bottom to top), at epicentral
distance R = 10 km, and for source depth H = 0 km. For the long periods, the
spectral amplitudes, computed from Eq. (1), are valid for progressively shorter periods
(T(N:) =1/fco) as the magnitude decreases and the source to station distance increases.
This is caused by the recording and processing noise, whose spectral amplitudes are
shown in Fig. 1 by the rectangular shaded zone, increasing from FS ~ 10~! in/sec for
f ~ 10 Hz, to FS ~ 1 in/sec near f = .1 (Lee and Trifunac, 1990; Amini et al., 1982).
At the high frequency end, the empirical spectra are defined only up to 25 Hz, the limit
chosen more for convenience in data processing than for poor signal to noise ratio. At
high frequencies, the spectral amplitudes recorded by the strong motion accelerographs
have smaller amplitudes than what is shown in Fig. 1, because most strong motion
transducers which contributed data to this database had natural frequencies between
14 Hz and 25 Hz (Trifunac and Hudson, 1970; Trifunac, 1971, 1972c; Lee et al., 1982).
While the algorithms for correction of the instrument response and for reconstruction
of the ground motion can be extended to apply for frequencies higher than 25 Hz, so
far, we did not find it necessary to preserve the digitized data at sampling rate higher
than 50 points per second (Lee and Trifunac, 1990). In Fig. 1, the top shaded area
shows the region where the empirical Eq. (1) is valid. Table II shows the cut-off periods,
T(Nc) = 1/fco, versus magnitude. For uniformity, all G4RM empirical equations are
defined for 12 periods T(N), N = 1,...,12, listed in the first row of Table I, but can be
used only for the periods with N < N, (in Table II).
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3
10 Domain where Eq. (1) applies
Digitization noise

* Corner frequencies fy
c Corner frequencies fp
B P Peak frequencies fp
o  Cut—off frequencies fo, = 1/T(N;)
10° — Extrapolated spectra

o 10
[1D)
wn
~N
=
|
N
=
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10"2 L bl Lot ternl L1 1 rrnl 1

162 10} 1 10

Frequency - Hz

Fig. 1  Fourier amplitude spectra (in/sec) versus frequency (Hz), for probability of
exceedance equal to 0.5, for M = 4,5,6,7 and 8 (bottom to top), at epicentral distance
R = 10 km, and for a source at depth H = 0. Outside the shaded region, between
feo = 1/T(N,) and f = 25 Hz where Eq. (1) is valid, the spectral amplitudes (heavy
solid lines) can be extrapolated to f < f., as it is suggested in this paper. The corner
frequencies f1, f2 and f., are defined in the text. The processing and digitization noise
amplitudes are shown by the shaded zone increasing from FS ~ 10~! to F'S ~ 1 in/sec
for frequencies decreasing from 10 to .1 Hz.



Table II.
Cut-off periods T'(N,) versus magnitude
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In what follows, we will extend the spectral amplitudes to low frequencies, starting
at the “end period”, T(N;), of the spectra, as shown in Fig. 1 by the heavy solid lines
for T > T(N,) sec (f < feo = 1/T(N.)). Also, all the spectra and the analysis will
be based on the estimates of strong ground motion at sites on basement rock (s = 2 or
h = 0) and on a “rock” soil site (s = 0). This will eliminate complications introduced
by the local site conditions (Trifunac, 1990) and will allow more direct comparison with
the seismological studies and observations. Finally, without loss of generality, we will
use the results of Eq. (1) for horizontal motions only (v = 0) to further simplify the
presentation and interpretation of these empirical equations.

II.4 LOW FREQUENCY EXTENSION

- Two separate cases will be considered. In the first case, the recording site is so close
to the earthquake source, that the ground will experience permanent static displacement
after an earthquake. This will occur when the site is close to the fault surface, at a
distance smaller than the characteristic source dimension. One can refer to this case as
the “near-field” ground motion. In the second case, the recording station is far from the
source, so that the contributions from the static displacement are negligible, that is, all
near and intermediate field terms (Haskell, 1969), which attenuate as R~* and R~2, have
become negligible, and only the body waves (attenuating like R~!) and surface waves
(attenuating like R~V %), where R is the source to station distance, will contribute to
the strong motion amplitudes.

Near-Field Displacements

Following Brune (1970), we represent the near field displacement, dyr(t), by
dyr(t) = dp(1 — ") (8)

where d,, is the static displacement at the station (on ground surface) following the earth-
quake, t is the time, and 7 is characteristic time, which will be related to the duration of
the faulting. The real details of ground motion, of course, are more complicated. When
the observation point is on the fault surface, the average of d, can be described by

d= —007 (9)

where o is the effective stress drop, r is the equivalent (radius) dimension of the source
area and p is the rigidity in the source region (typically in the range from 1 to 5 x 10!
dynes/cm?). Cy is a “constant” which depends on the type of faulting and is in the range
from .4 to 1.6 (Table III). The factor of 1/2 in Eq. (9) relates the displacement of a point
(c_lp) with the average source dislocation amplitude %, which for symmetric faulting is
2d. The bars on u and d designate the average values. For a vertical strike slip fault of
considerable length, L, the width, W, will be equal to éW, (where 0 < ¢ < 1 for a fault
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Table IT1

u=Coor/p, ©=2d

| Type of faulting and fault geometry Co r represents
Dip-slip displacement along an infinitely long ?—g Fault width
narrow strip in a uniform shear field(!)
Infinitely long vertical surface fault with strike 2" to Z** Fault width
slip displacement(2)
+

Diameter of circular
dislocation (Fault
width)

Circular fault plane in a infinite medium®) %

(1) A.T. Star, Slip in a crystal and rupture in a solid due to shear, Cambridge Phil.
Society Proc. 24, 489-500, (1928).

(2) L. Knopoff, Energy release in earthquakes, Geophys. J. 1, 44-52, (1958).

(3) V.I. Keilis-Borok, On estimation of the displacement in an earthquake source
and of source dimensions, Annali Geofizica, 12, 205-214, (1959).

Surface fault.

% %

Deep fault.

* Poisson ratio, v = 0.25.

Note: To model the assumed “continuous” changes of the faulting type and
geometry, for the body of strong motion data studied here, I will define Cg = .4,
-5, .65, .85, 1.6 and 1.6 for earthquake magnitudes M = 3,4,5,6,7 and 8. C§ = .4 is
representative of small “circular” faults, while C§ = 1.6 will represent long surface
faults.
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rupturing the surface, and W, is the fault width of a deep buried fault which does not
break the ground surface). When £ = 1, we can represent the dislocation amplitudes by

U = Umax (;‘V—f - %&;) Then, the average dislocation is w(£) = (2¢ — $£2) umax, where
z is pointing up and is normal to the ground surface (z = 0 is at the bottom edge of the

fault, (€W, below ground surface). When £ = 1 or when § = 1/2, w = %umax. When

E=3/4,u= %umax. On the ground surface, the peak dislocation amplitude, 2d,, and

the peak particle displacement, d,, are described by d, = ll—'_'% (1‘—"5“) For ¢ ~0,d =7,
_ 273
and for € =1,d=0.

As the area of the fault surface, LW (L is fault length, and W = ¢W.,), increases
with increasing magnitude, W becomes larger and u,ax is located at progressively greater
depths. Detailed source mechanism studies in California for the earthquakes which have
contributed to the strong motion data base used here, suggest that the largest dislocation
amplitudes do not occur near the ground surface (Archuleta, 1982; Harzell and Heaton,
1983; Harzell and Helmberger, 1982; Olson and Apsel, 1982; Trifunac, 1972a,b; 1974).
During the Parkfield earthquake of 1966, the dislocation apparently occurred at depth
(Trifunac and Udwadia, 1974) and its eventual surface expression grew through creep for
about one year following the earthquake. For the purposes of this analysis, we need dp, (on
ground surface), and since sufficient data is not available on the average displacement, d,
versus magnitude, faulting mechanisms, fault types and on the distribution of rigidities
and stresses on the two sides of the fault (Scholz, 1982), we assume that the average of
dp occurs for 3/4 < £ <1, and approximate it by

- 3u

d~ 13 (10)
The Fourier amplitude spectrum of dyr(t) in Eq. (8) is
d 1
Onp(w)= L ——"——F (11)

Tw (w2 + 7-2)1/2°

When w — 0, Qnp(w) — dp/w. Using the approximate relationship between d, and @
in Eq. (10), this implies that

— 3u

nu}f‘o — 8o (12)
The fluctuations of d, on the ground surface are considerable, and will depend on the
relative position of the observation point with respect to the fault surface and the three-
dimensional properties of the geologic medium surrounding the fault. Since we are
dealing here with empirical scaling of Fourier spectrum amplitudes, and because our
model equation (e.g., Eq. (1)) represents the average trends for many observations, it
will suffice for the purposes of this analysis to deal with the average trends of d, as in
the above equations.

For Fourier amplitude spectra of strong motion acceleration in the near field,
FSnr(w), Eq. (11) gives
wd,

Fonrle) = o

(13)

12



"} pue ¢ ‘g ‘T s[ppow 10} apnjruSew oyenbyjres snsioa (44) Yipm pue (7) yjsus[ yney gz ‘S

wy — (1) 0'30r
[ 1 0 1-
m T I T | T I !
gg > N ‘M0'801 882 + 6% = N

GG < N ‘MO'301 8O'¥ + 6SE = W 7 ¢

01501 ¥a: . 7

11801 461 + ¥6¢€ = N o

¥ 19PON |

™

¢y > N ‘MO1801 ¥6'1 + ¥6E = N ,

czy < N ‘MOS0l 80V + 668 = W 17 =
10801 ¥6'1 + ¥6€ = W \\\ o
— — ¢ I9PON \\\ 7 m.
7 c
Mo'301 00% + 007 = K o

01801 002 + GL€ = K —H9

— — 2 I°POK

N GE'T + 2L8-= A
01801 ¥6'1 + ¥6€ = W - @
1 12POK

13



where 7 can be approximated by 7 ~ r/f# (B is the velocity of shear waves) when
r<W/2. When L >>W, 7t~ % + To, where v is the average velocity with which the
dislocation propagates along the fault length, and Ty is the dislocation rise time (Haskell,

1969). For -f)'— >> Tp, the corner frequency f; = 32 — 7. For intermediate frequencies,

fi= [% -+ To]_l, with typical value of v = 2.2 km/sec, Tp ~ %, and f# ~ 3.0 km/sec.
Here, it may be assumed that for typical strike slip faulting in California, the dislocation
grows more or less as a circular dislocation up to r < W/2. When the size of W has
been reached, we assume that the fault surface grows in terms of L only. Thus, we
approximate w7 in Eq. (13) by

2 [ L w
wT~—T_<ﬁ+?>' (14)

For intra-plate earthquakes, the estimates of the fault width, W, suggest growth of
log,o W versus magnitude, up to W =~ 5 to 10 km and for M =~ 6. For larger magnitude
events, W seems to become independent of magnitude (Chinnery, 1969). Correlations of
the fault length, L, and magnitude show large fluctuations (for 3 < M < 8), but most
estimates tend to fall between

Lpin ~ a x 10°M (15q)
and
Lmax ~ 0.20 x 104%™ (15b)

where L is measured in kilometers (Jovanovich et al., 1974a,b).
The fault width W can be approximated by

W = ¢ x 10¢M (16a)
or by
W=e+ fM. (16b)

Table IV presents the coefficients a through f for the four cases (referred to as fault
models 1 through 4) used as examples in this study (Fig. 2). As will be seen from the
following, it is remarkable that both L and W can be approximated with so simple func-
tional forms and for such a broad range of magnitudes. Furthermore, various constraints
on the spectral amplitudes limit the permissible fluctuations of L and W to a relatively
narrow range, making fault models 1 through 4 very similar, and thus controlling the
possible range of the coefficients a,b,c,d,e and f, which were chosen here by trial and
error.

In Eq. (14) we choose L = a x 10®™ which corresponds to Ly, already mentioned
in Eq. (15) and for a and b as given in Table IV. We also choose Wy, = W (as in
Eq. (16)). As will be clear from the following, Ly;, and Wy, correspond to the smallest
fault dimensions for unilateral faulting. For bilateral symmetric faulting L ~ 2L;, and
W ~ 2Whin.

14



Table IV

Coefficients a and b in Ly, = a x 10°™ and ¢ and d in W = ¢ x 10¢M

fault length Lmyin: (km) fault width W: (km)
Modell a b conditions
—-377+1.347TM M > 3.1*
0036 .5 a7 - {
1 0936 14 M >4.77 %% 131M M<31
c d
2 .0133 .50 d .25 M > 3.5*
W=1L for M < 3.5
3 .00931 515 132 .245 M > 4.25*
W=1L for M < 4.25
4 .00931 515 132 .245 M > 5.5*
.0145 419 M <55

*

in the text these magnitudes are designated by M.,

1 Fault models 1 through 4 have been chosen to illustrate the plausible variations in
W and L (allowed by the data), and the consequences of these variations on other
characteristics of the models.
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Comparison with Other Estimates of L and W

For small intra-plate sources (e.g. M < 4 to 5), the fault length, L, and width,
W, are about the same. For larger earthquakes, the fault continues to grow mainly
through L, while W may only continue to increase slowly until it reaches the width
of the seismogenic zone. A range of models describing W in terms of M has been
considered in this report. This analysis showed that the permissible variations of W
versus magnitude are controlled well by the available data and suggested typical models
with W = L for M < M, and W = ¢ x 10®™ for M > M, (Table IV). This dependence
of L and W on magnitude is in good agreement with the data on the field estimates
of L and W (Fig. 3) and with the data on a corner frequency, f2, which is seen in the
far-field spectra of shear waves (f, in Papageorgiou, 1988), which can be approximated
by 2.2/W, as will be discussed later.

In Fig. 3, the shaded zone to the right of Lmin and Wi (see Eq. (15a) and (16))
outlines the range Lmin < L < 2Lmin, and Wi, < W < 2Wp,iy in this example for the
fault model 2. In 7 = %+ %, it is implicitly assumed that L >> W, and, so, 7 is defined
by a dislocation propagating unilaterally Ly, kilometers from the focus at one end of
the fault, towards the other end of the fault. Since it is the duration of faulting which
is constrained by wr and is fitted to the strong motion spectral amplitudes, it is seen
that, for bilateral faulting, our scaling implies that the fault length L = 2Lp;,. Thus, all
field observations of fault length falling between L,;, and 2Ly,;, would be in agreement
with our interpretation of near-field strong motion data, assuming some distribution of
events in the range between unilateral and bilateral faulting. Detailed comparison of
our estimates (exemplified by the fault models 1 through 4) with field and seismological
estimates of fault length and width (Fig. 3) indicates fair agreement (e.g. Jovanovitch
et al., 1974a,b).

Permanent Displacements

By computing Fourier spectrum amplitudes (in the near field) for T — oo, it is
possible to evaluate the average dislocation @ (in cm) implied by the G4RM models and
by the choices for L and W (Table IV). For this, we first equate Eqs. (1) and (13) at
we = 27 /T, assuming that wr is given by Eq. (14) (L and W are computed from Egs. (15)
and (16) for given M) and compute dp. Then, letting w — 0 in Eq. (11), and multiplying
d, by 2 we obtain %. The result can be compared with other independent estimates of w.
- For continuity with the previous studies (Trifunac, 1976b), and to focus on earthquakes
which contributed to this data base, we use the data on %, as shown in Fig. 4. The
shaded regions correspond to % estimated from the G4RM, for probabilities p(e, T') of
exceedance (Eq. (7)) equal to 0.1, 0.5 and 0.9, and for the fault model 3 as an example.
It is seen that the trends of u associated with the G4RM are in excellent agreement
with our estimates of % using strong motion data, but are larger than the estimates of
Thatcher and Hanks (1973), which are based on distant seismological recordings.
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Careful analysis of the accuracy of u will reveal that considerable simplifications
are required to obtain the data shown in Fig. 4. Likewise, the above extrapolation of
FS(T — o), using Eq. (13), to evaluate FS(T) for T > T'(N.) depends on the proper
choice of wr versus M (i.e. choice of L versus M) and on selection of N, in T(N.). Yet,
the agreement of the estimated @ (using Eq. (1) and (13) at w.), with the independent
estimates in Fig. 4 suggests that the empirical spectral amplitudes of FS(T) contain
most of the relevant information, up to and including T = T(N,), to define the average
FSNF(T) for T >> T(Nc).

Far-Field Displacements

As the observation point moves away from the source, the permanent offset (dp)
goes to zero and the ground displacement experiences only a “transient pulse” which
could be characterized by the Brune’s (1970) pulse,

r O'ﬂ '
drp(t) ~ =—te™* ¢'>0 17
rr(t) ~ e 2 (17)
where ' =t — R/B (r is the source dimension, 0 = Brune’s effective stress drop, 8 =
shear wave velocity, R = source to station distance, and u = rigidity). The Fourier
amplitude spectrum of dpr in Eq. (17) is

rof 1
UrW)~ g i v a2 (18)

and the strong motion acceleration spectrum is

1
FSFF(w) ~ %%ﬂ—i_l_—(g_—)—f. (19)

Since a ~ 2.343/r (Brune, 1970), and assuming that r ~ L/2 (r ~ W/2), for § ~ 3
km/sec, a/w ~ 2.23T/L. As T — oo, Eq. (19) implies that FS(T)pr ~ 1/T2. Also,
since

Qrr (w) = Mo(4mpRB3)~1, (20)
7I'Mo

where p = p/% and My is the seismic moment defined by

Mo = u-ﬂA. (22)

u is the dislocation amplitude (u ~ 2d) averaged over the fault surface A.

Using the Haskell’s (1969) representation in the far-field, for S waves, it is possible
to compute the Fourier amplitude spectra of the ground displacement, if the dislocation
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function is specified on the fault surface. Assuming that this dislocation grows linearly
during time Ty, until the final dislocation amplitude is reached, and that this dislocation
propagates along the fault of length L, with constant velocity v, it can be shown that

2 2
|Qrr| ~ oL Y ‘*’;;’ (23)
v

Eq. (23) is characterized by two corner frequencies, one, f;, associated with the
duration of faulting (L/v) and the other, fz, with the duration of the dislocation rise
time Tp. As w — 0o, like Eq. (18), Eq. (23) implies QrFr ~ 1/w?.

If one assumes a dislocation buildup function of the form 1 — exp(—t/T), for t > 0,

then (Savage, 1972)
sin L 1

0 2 ;
QFF| ~ ol (17 w2Tg)1/?

(24)

If it is assumed that the duration of the slip is controlled by the narrow dimension of the
fault W, then the displacement rise time is To ~ W/2v. Assuming that this time should
roughly correspond to 90% of the maximum dislocation, gives 2.3To = W /2v (Savage,
1972) and the second corner frequency

we =4.6 v/W . (25)

For v =~ 3 km/sec, fo = 2.2/W. The other corner frequency, w; = 27v /L, depends on
the duration of faulting L/v.

Guided by the above results, we chose to approximate Qrp by

1 ' 1
1+ (%) ]1/2 trr

Qrr(T)=C, (26)

where the constant C, can be computed from

Cy = FSpp(we)w]? [1 + ( 2;VTC>2] <1 + T%) (27)

with w, = 27 /T, and T, = T(N.) (see Table II), and where F Spr(w.) is set equal to the
spectral amplitude computed from Eq. (1) or its equivalent for one of the four models
(G4RM).

1/2

The empirical estimates of the spectral amplitudes in Eq. (1), for A = 0, first
decrease with T approaching T, and then begin to curve up near T = T, and for T' > T..
In part, this is due to the decreasing signal to noise ratio in the recorded accelerograms
(Lee et al., 1982; Lee and Trifunac, 1990), but we also assume that it results from the
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gradual transition of the empirically computed spectral amplitudes to the slopes which
are analogous to those defined by Eq. (13), for w < 27/T(N.). In this work, we chose
first N, so that T(N,) is near such turning points. Then, as it will become clear from the
following, by trial and error, we selected the final values of N, (see Table II) to obtain
the “best fit” with various data and known constraints. In the end, for the far-field
strong motion amplitudes, we use Eq. (1) to predict FS(T) for T < T(N.) and w?*Qrr,
with QrF given by Eq. (26), and C, computed from Eq. (27).

Comparison of M, Determined from Strong Motion Accelerograms with
Other Estimates

Egs. (23), (24) and (27) result from a simplified consideration of the shear wave
spectra only, while FS(T) estimated from Eq. (1), via one of the G4RM, represent the
Fourier amplitudes of the complete strong motion signal including all the waves. In
our recent work on local magnitude scale computed from strong motion accelerograms,
M f M (Trifunac, 1991), we found that using the complete time history of strong motion

near a source leads to systematically larger estimates, when compared with more distant
. . . .o —SM ]
seismological estimates of M. This difference D (M L ) = MM — M, (where M, is

the published magnitude), for the strong motion data in the Western U.S., is summarized
in Table V. It can be used to adjust the moment M5M, computed from Egs. (21) and
(27), to agree with the distant (say further than 200 km) estimates of the moment Mo

—SM
log;o Mo =~ log,o MG™ —kD(M ). (28)

In Eq. (28), the factor k is the empirical slope of log,o Mo versus M (e.g. Wyss and
Brune, 1968), and M35™ is the seismic moment computed from Egs. (20), (26) and (27)
using the strong motion data in terms of the GARM. We used k = 1 for M < 4.5,k =
1.25for 45<M <5,k =15for 5< M <7,and k = 1.3 for M > 7, in Eq. (28).

Eq. (28) can be used then to evaluate Mo from MEM | and to compare it with other
independent distant (> 200 km) estimates. This is shown in Fig. 5, where the three
shaded zones, for probabilities of exceedance equal to 0.1, 0.5 and 0.9, show log,, Mo
versus magnitude. In this calculation, we used the variable value of uf as follows. The
typical shear wave velocity in the source region was assumed to increase linearly from
0.5 km/sec at the surface to 4 km/sec at depth of 10 km. The material density was
also assumed to increase linearly, from 2 gr/cm? at the surface to 3 gr/ cm® at depth of
10 km. The fault surface was assumed to be vertical with the lower long edge (along
L) at H = 10 km, and with the top edge at H — W (km). u and p were calculated at
depth H — W /2, for W specified by one of the four fault models (see Fig. 2 and Table
IV). The resulting u3 ranged from 4.7 x 10'® dyne/cm/sec (for M = 8) to 18.12 x 10'®
dyne/cm/sec (for M = 3). The straight line given by log,;q Mo = 1.5M + 16, and some
data on field and seismic estimates of the moment M; using body wave spectra and using
strong motion data are also shown in Fig. 5. It is seen that the agreement between our
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Table V*

D (HiM) = HiM“ — M_;** versus M,

M, D (Hf” ) M, D ('M’fM )
3.1 1.30(1.70)* 6.4 0.27(0.29)
3.5 1.24(1.60) 6.8 0.03
4.0 1.15(1.45) 7.0 -0.11
45 1.05(1.26) 7.4 -0.40
5.0 0.9(1.05) 7.1 -0.63
5.5 0.72(0.81) 8.0 -0.87
6.0 0.47(0.53)

* from Trifunac (1991a)
—SM . . .
** M, local magnitude estimated from computed response of Wood-Anderson seis-
mograph excited by the recorded strong motion acceleration.

ok % is the published earthquake magnitude typicaly corresponding to Mj for
< 6.5.
p >

1 D(HiM) as used in this study is based on the subjective manual fit of the data
(Trifunac, 1991b) in the low magnitude range, typically M < 5. The values shown
inside brackets represent the smooth parabolic fit to all data as in Trifunac (1991a).
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estimates based on Eq. (20) and the above procedure, and the results from the previous
studies is good.

A trend of departure of the data points on log,o My versus magnitude from a straight
line (with the slope k ~ 1.5) near M = 4 has been observed for several data sets in
California and elsewhere (Hasegawa, 1983; Nuttli, 1983). Its explanation has been sought
in terms of different stress drops for some M < 4 events, resulting in systematically
higher corner frequencies (Bakun, 1984). Also this change occurs for events whose corner
frequencies are close to the corner frequency of the Wood-Anderson seismometer (Boore,
1983; Fletcher et al., 1984). The physical considerations of the source mechanism, for
most earthquakes (with rupture time longer than 5 to 10 seconds, and with rise time
shorter than ~ 5 sec), lead to log;, My ~ 1.5M. For small earthquakes (with magnitudes
less than ~ 4 to 5), having smaller dimensions and shorter rise time, log,o Mo ~ M
(Kanamori and Anderson, 1975; Vidal and Munguia, 1991).

Using the equation log;o Es = 1.5M, + 11.8 to relate the surface wave magnitude,
Mg, and the total energy of seismic waves, Es (Gutenberg and Richter, 1956), and
the equation Eg = noMoy/u, where G is the apparent stress, leads to log,q Mo =
1.5 Mg + 11.8 — log, !’f For no = 10 bars, and equating Mg with M, for magnitudes
smaller than about 7, gives log;, Mo = 1.5M + 16.1. In Fig. 5, showing the trends for
the G4RM and the four fault models (Table IV), it is seen that the average trend of
log,o My versus M is close to ng = 10 to 20 bars.

For completeness of this discussion, we note that since My = puAd and A = ac x
10(+)M (see Table IV), and @ = CioW/u (Table III), one can write log;o Mo =
log;0(Caoac?) + (b+2d)M. For M < M, b+2d ~ 1.5, and for M > M,, b+ 2d ~ 1.1.
Also, for M < 4, log,o0 ~ —.75+%, for4 < M <6, log,;p0 ~ %M, andfor 7 < M < 8,
log,p0 ~ 1.4+ (1/9)M. Thus, when M < 4, the G4RM imply log,o Mo ~ 2M, for
4 < M <6 log;o Mo ~ 1.5M, and for M > 7, log,, Mo ~ 1.3M. However, for M < 4,
f1 and f, become comparable to, and for small M, exceed f, (Fig. 1), and, so, our
estimates of W and L (via f; and f,) may not be reliable, and are probably too large
for this magnitude range. The larger estimates of log;, Mo than the linear trend implied
by 1.5 M + 16 in Fig. 5, for M < 4, may not be real, but merely a consequence of
the natural low-pass filtering the spectra of recorded motions by low Q. Many small
magnitude (M < 3.5) strong motion accelerograms must be recorded near or at the
source (e.g. A < 10 km) to interpret the trends of log,, My, f1 and f; versus M in this
magnitude range.

Egs. (21) and (27) imply that C; ~ 1/R, while the amplitudes of FSrr, computed
from FS(T) at T(N,), attenuate like A#(T) (see Eq. 2). However, C, is computed from
Eq. (22) at different cut-off periods T'(N.), and so it depends on magnitude directly
through FS(T) and indirectly through W and L (i.e. 7). To verify that C; ~ 1/R and
that Eq. (21) indeed results in Mo which is independent of R, we computed log;, Mo
versus M for R in the range from 0 to 200 km. For 50 < R < 150 km, the results were
insensitive to R. For the cases considered, near R = 200 km, Eq. (28) underestimated
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log;o Mo by about .2 moment units on the logarithmic scale. For R < 50 km, FS(T) in
Eq. (1) begins to be sensitive to the near-field effects, and Eq. (28) ceases to apply.

Transition Between Near Field and Far-Field Spectra

To provide a continuous transition between Qyr(w) and Qpp(w) and complete a
representation for use in engineering applications, we use the results of Jovanovich et
al. (1974a,b). They show that the error in representing the static displacement field by
a point source is typically less than 5 percent at distances greater than 4L, where L is
the source length. We define the distance S;, between the station and the “top” of the
vertical fault with “dimension” S (see Egs. (3) and (4), and Gusev, 1983) and at depth
H as [ 2 ( )2]1/2

_JIR*+(H-S8 , H>S
f1= {R , H<S (29)

We use S = .01 X 10-°™ when S < 30 km, and S = 30 km for larger events, and then
combine FSyp(T) and FSpp(T) as follows

FS(T) = FSyr(T)e (%) + Pspr(r) (1- (), T>7(V).  (30)

In the above expression, 3/4 is used to scale S;/S so that when S;/S = 4, the exponent
is equal to 3, (so that e=3 ~ 0.05), in agreement with the recommendation of Jovanovich
et al. (1974a,b). For T < T(N,.) (see Table II), we use equations of the type illustrated
by Eq. (1), depending on which of the G4RM is used.

For f < feo(=1/T(N.)), Fig. 1 (the heavy solid lines) shows FS(T) computed from
Eq. (30). For R =10 km, H = 0 and M = 4 (bottom heavy solid line), since S; and A
are both greater than 45, F Spr(T) contributes mainly to FS(T), and so FS(T) ~ 1/T2.
For M > 7, S; and A are smaller than 45, and the amplitudes of F.S(T) shown in Fig. 1
are dominated by the flat portion of FS(T) ~ d,/7 (see Eq. (13)), for T near and longer
than 1/f,. For M = 5 and 6, the spectra, FS(T'), display progressively changing slope
for f < f1. With increasing M (increasing S), this slope decreases from —2 towards 0,
as M goes from 4 to 7 and 8, in the period range shown in Fig. 1.

I1.5 COMPARISON OF VARIOUS SOURCE PARAMETERS
WITH PREVIOUS DATA AND INTERPRETATION

The selection of T'(N,), where the empirical (Eq. (1)) and extrapolation equations
(Eq. (30)) meet, and the assumed dependence of W and L on magnitude define the
near-field and the far-field long period Fourier spectral amplitudes of strong motion as
outlined in the above Egs. (13) and (26). These equations, in turn, imply a number of
other source characteristics, which can be compared with other independent estimates
and with other observations. In the following, we show some of these comparisons, to
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test the suitability of the chosen functional forms of the Egs. (13) and (26), of their
scaling parameters, and of our overall extrapolation method.

Corner Frequencies f; and f;

Fig. 6 shows log,, f2M, and log,, f2M, plotted versus log,, My for the four fault
models. Those can be approximated by the linear trends

1

For small Moy, f1 and f; are nearly the same. Near log;, Mo ~ 20, f2 slowly becomes
larger than f;, and after a transition region, 20 < log,, Mo < 23, log,, fZM, attains its
own trend as in the above Eq. (32). The trend of log,, fZMo as used by Gusev (1983)
is also shown, and agrees well with our results.

In terms of L, W, f; and f; for the four fault models in Table IV, and recalling
that log;o Mo ~ 1.5M, + 11.8 — log,o(n0/1), and that & is the apparent stress, it can
be shown that our results imply no = 10 to 20 bars for the average trends, and for
log,o Mo > 23.

Fig. 7 compares our results on log;, Mo versus log,, f1 and log,, f2 with the analysis
of Chouet et al. (1978). It is seen that our curves for the extrapolation models 1 through
4, for f, and f, agree well with the observed corner frequencies, with the corresponding
trends for f; of Hanks (1975) and Gusev (1983), and with f, from Papageorgiou and Aki
(1985). For log,;, My < 19, the observed corner frequencies in Fig. 24 of Chouet et al.
(1978) cease to increase with frequency, apparently due to the low-pass filtering effects
of the attenuation. The corner frequency of Hanks and McGuire (1981) is close to our
log,q f2 for log,y My < 25, and then is roughly in the middle between our log,, f1 and
log,, f2 for log;o Mo > 25.

Another way of combining the data on f;, f2 and My is to plot log,, f2Mp versus f.
Fig. 8 shows an example (fault model 1 in Table IV) of our estimates of fZM, and fZM,
versus f, and compares those with the data used by Papageorgiou (1988). In making
this comparison, we do not attempt to establish what is the physical meaning of f,. We
only recognize that such a corner frequency is observed by some investigators (Irikura
and Yokoi, 1983; Papageorgiou and Aki 1983) and that it is not difficult to associate it
with f, ~ 2.2/W. The fault models 2, 3 and 4 result in very similar trends, and agree
equally well with the data on f;, f; and M.
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Similarity

For similarity to exist among different earthquake events, the dimensional analysis
of the static and of the dynamic parameters, describing the gross features of source
mechanism and of the static field after an earthquake require that: 1) W/L = const., 2)
u/W = const., and 3) v/B = const. For constant stress drop, and if conditions 1) and 2)
hold, then 3) is equivalent to vTp/L = const. For a set of earthquakes occurring in very
different tectonic environments, Geller (1976) has found W/L to be relatively stable,
with value near 0.5. Works of Thatcher and Hanks (1973) and Kanamori and Anderson
(1975) imply that the strain drop (i.e. w/W) is relatively stable, and, with typical values
of stress drop between 30 and 50 bars, imply strain drop of the order to 10~%. Though
only a small number of detailed source mechanism studies can be used to determine v/
(Archuleta, 1982; Harzel and Helmberger, 1982; Harzel and Heaton, 1983; Jordanovski
et al., 1986; Olson and Apsel, 1982; Trifunac, 1974; Trifunac and Udwadia, 1974), this
ratio is near 0.6. Gusev (1983) interprets these observations to imply that the similarity
hypothesis can be accepted for large earthquakes. We note however, that both Geller
(1976) and Kanamori and Anderson (1975) treat a very broad collection of sources from
different parts of the world and including both intra-plate and inter-plate events.

In earthquake engineering applications, one is interested in the similarity aspect in
a more localized and regional sense, to the extent that it may influence the estimation
of strong shaking from the sources typically not further than 200 - 300 km from the site.
Thus, unless one is dealing with a site which is close both to a large subduction zone
and to the local shallow thrust and strike slip faults simultaneously (e.g. Alaska, east
coast of Japan e.t.c.), it may be appropriate to consider only a more restricted subset
of contributing events, for example strike slip and thrust faults in southern California.
In this paper, we can consider such events only because the strong motion data used to
develop the G4RM is all recorded in this area. Therefore, in the following, we address
the question of the source similarity for such events only.

Figs. 9 and 10 show the variation of W /L and of log,,(%/L) plotted versus magnitude
for the four fault models (Table IV). The nature of the assumed dependence of L and
of W on M, for these four models, obviously does not satisfy the first two similarity
requirements. Fig. 11, which considers 2.2 T/ L, shows minor fluctuations of this ratio
for the three fault models and nearly a constant value for Model 1.

Assuming that the dislocation grows linearly with time as in gf-t (Brune, 1970),
until it reaches the final dislocation @ = 2d, we can assume that the rise time 7} is

T ~ —.
0~ 38 (33)
Also,
ro
u=Cy—, 34
0o (34)
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Fig. 10  log,(%/L) (average dislocation/fault length) versus magnitude for Models 1
through 4 (Table IV).
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f2To versus magnitude for Models 1 through 4. Shaded areas illustrate the
range of Cy derived from analytical (disk) and numerical analyses of static displacements
around a rectangular fault (W = width, L = lengthz and at depth ho (ho = O for a surface
fault, ho = oo for a fault in elastic full space).

long faults are shown with solid and dashed lines. C{ represents the smoothed trend
through the data and the numerical and analytical analyses (Table III).
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where Co and r are given in Table III, for different fault geometries. Since umax ~ %ﬂ
on ground surface,
4 r r
To ~ gCoIE ~ Co; (35)
From Table III, r ~ W (assuming unilateral faults) and, since we assume f, ~ 2.2/W,
it follows that
foTo ~ Co. (36)

Fig. 12 shows Cy = f2T, plotted versus magnitude for the four extrapolation models.
Here we used the average T, computed from the average of the G4RM, for 50 percent
probability of exceedance and for u/B ~ .3 X 10'® dyne sec /cm®. For small magnitudes
(small faults), Cp computed from Eq. (36) is very close to Cy from Table III for circular
(and for elliptic) faults. With increasing magnitude, Cy increases, and for 6 < M < 7,
is in the range % < Cop < 2. The limits of this range correspond to dip-slip and to
strike-slip faulting on “long” faults (Table III). For M > 7, Eq. (36) predicts Cp > 2.
This is outside the range for which strong motion data is currently available, and where
the multiplicity of sources and other complications contribute to the erratic behavior of
v, so that our simplified representation may cease to apply there. Between magnitudes
3 and 7, the average trend of Cy can be represented by C§ (Table VI), which is also

plotted in Fig. 12.

Fig. 12 suggests that our data and the models are consistent with more or less
“circular” faults for M smaller than about 4, gradually changing to thrust and dip-
slip faulting as L and W — 5 to 10 km, and as L begins to exceed W. Then, as W
becomes constrained by the width of the seismogenic zone, our typical event “looks” like
a strike-slip fault for which Cp > 1.6. This continuously changing C§ thus implies that
the dynamic similarity requirement, expressed via W (vTo/W ~ f3To = const.) is not
satisfied.

Fig. 13 shows f;T, plotted versus magnitude. Fig. 11 showed 2.2 Tp/L, versus
magnitude. It is seen that both results could be interpreted to imply that f;To ~ const.,
and 2.2 Tp/v ~ const. Since the strong motion accelerographs can sample only local
aspects of strong motion, becoming less sensitive to distant (say > 100 km) contributions
from large dislocation amplitudes and stress drops (faulting on very long faults with large
M and small f;), it is not possible to extrapolate the above results and consider that
this will apply also and directly to teleseismic observations. More detailed interpretation
of the “high-pass” filtering of the observed strong motion in long periods, by the whole
process of strong motion recording and analysis, must be performed before deciding how
much and how this contributes towards apparent similarity (f17To ~ const.) of large
earthquakes, and above which wave length resolution this may apply.

Characteristic Source Durations Ty and 7

Assuming that the time rate of growth of the dislocation amplitudes is proportional
to the effective stress drop (Brune, 1970), and that the multiple events are excluded from
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Fig. 14  Comparison of Ty (the dislocation rise time) and 7 = 1/f; gthe duration of
faulting) with the teleseismic estimates of source duration by Somerville et al. (1987).

The two gray zones for Tp and 7 = 1/ f; illustrate the range of values for the four faulting
models and for the G4RM.
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this consideration, the dislocation rise time Ty can be estimated from Eq. (33). This
should also be related to the time it takes for the dislocation to propagate through the
full fault width W, and since W ~ 1/ f,, f2To should be nearly constant (Eq. 36), perhaps
only slowly changing with magnitude (i.e. the fault geometry, Fig. 12). Thus, in terms
of the overall source duration characteristics (integrating over the high frequency pulses
that may result from asperities and fault barriers), Tp can be viewed as the shortest
overall characteristic duration of the source. On the other hand, 7 = %— + To can be
viewed as the longest characteristic source duration, where v can be chosen so that it
incorporates the delays between the multiple rupture events, when those do occur in the
corresponding frequency and wave length domains.

Fig. 14 shows the trends of the durations Ty and 7 = 1/ f; versus seismic moment M,
for the G4RM studied here. For comparison, it shows also the data on source duration
compiled by Somerville et al. (1987). Their source durations were estimated from the
duration of triangular or trapezoidal source functions, which provided the best fit to
the teleseismic long and short period body waves. Their data contains 22 events which
were recorded in California between 1933 and 1983 and which coincide with most of the
events contributing to our strong motion data base used in this work. The method of
Somerville et al. (1987) should give reasonable estimates of source duration for simple
events (corresponding to To), but it will underestimate the source duration for multiple
rupture or multiple plane events. This seems to be confirmed in Fig. 14 where most
points fall around T and between Tg and 7 = 1/ f;, but in most cases do not reach .

Fault Area

The fault area, A, is directly related to the estimates of f; and f;, since W ~ v/ f,
and L ~ v/ [f1 (1+ 5%-)], giving

A=) (14 377) €

Using the approximations for L = a10°™ and W = ¢10%M gives
A = ac10C+)M (38)

Then, from Table IV, ac ~ .001 to .0017 and (b + d) ~ .74 to .77. For large events
(M > M,), Table IV thus implies

1
log,o A ~ 5 log,o Mo —11 , M, >10% (39)

assuming that log,;, My ~ 1.45M + 16 (Wyss and Brune, 1968), and that M, > 10%3,
For M < M,, ac ~ .0001 and b+ d ~ 1, giving

2
log,o A ~ 3 logio Mo — 148 , Mo < 10%3, (40)
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Table VI

Average rise time T in seconds and average C§, versus magnitude

M To(sec) C3
3 .05 4
4 31 .5
5 .73 .65
6 1.6 .85
7 5.4 1.6
8 (26.4) (1.6)

* u/B = .3 x 10° dyne sec/cm?
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Thus, our four fault models result in slope of log,, A versus log,o Mo equal to ~ 2/3
for M < M,, and to ~ 1/2 for M > M,. We note that the equation log;o Mo =

3 log;o A +22.25, for 10?5 < M, < 10%°, used by Purcaru and Berckhemer (1982) would
be identical to Eq. (40) if extrapolated to M < 1025, This remarkably constant slope,
equal to 2/3, for the entire range 102! < M < 10%° implies log,, u% ~ constant.

Starting with the definition of seismic moment My = pAu and representing u ~
Cs W" gives

log,0 A = log,o Mo — log,o CoWo. (41)

An advantage of this expression is that it eliminates x4 and can be used to test the
internal consistency of various estimates when u is not known. Using averages from the
four fault models to compute C§ (Table VI), log,, W and log;o Mo, a family of curves
representing Eq. (41) can be shown in Fig. 15, for ¢ = 1, 10, 100 and 1000 bars. More
directly, My = uuA gives

In Eq. (42), log;o @ can be computed from the long period estimates of spectral
amplitudes (Eq. (13) and Fig. 4) in the near field, and log,, My can be determined from
the long period spectra of the far field motion (Eq. (21) and Fig. 5). For the fault model
2 as an example, and for the range of amplitudes computed from the G4RM, Eq. (42)
is shown in Fig. 15 by one of the shaded zones.

For a circular fault and known stress drop, log,, A can also be written as

2 16
loglo A = g loglo MO - Ioglo WCI . (43)

Using the average stress drop for the G4RM results in the second shaded region shown in
Fig. 15. The slope of this equation, 2/3, is consistent with that of Eq. (40) for M < M,,
while W ~ L for the four fault models (Table IV). This slope is apparently maintained
as long as W and L are approximately the same, even for the largest faults on the
subduction zones (e.g. Chile, Alaska, Kanamori and Anderson, 1975). In contrast, for
the strong motion data in California, where W is limited by the width of the seismogenic
zone, for magnitudes near M., this slope reduces to 1/2.

Fig. 15 presents also examples of log,, A, assuming circular dislocation and based
on the spectral analysis of strong motion accelerograms (Trifunac 1972a,b; Fletcher et
al., 1984). It is seen that A = WL (the solid continuous curve in Fig. 15) is close to
this data, but may overestimate A for M < 1023, For M, < 1023, the data points are
also in agreement with log,, A = .83log;, My — 18.4, which is equivalent to log,y A =
1.21M, — 5.05 in Bdth and Duda (1964).
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I1.6. DISCUSSION AND CONCLUSIONS

This work is based on a simplified description of shear wave spectra. This represen-
tation does not evolve from a solution of some specific source slip, but can be thought
of as an intuitive collection of relevant parameters and functional relationships based on
simple dimensional analysis, which result in a coherent picture of the main features of
strong ground motion. The remarkable outcome of this exercise is that the various com-
parisons of our model with the independent estimates of seismic moment, and average
dislocation lead to good agreement, and to resolution and scatter which are consistent
with other independent estimates. ’

The largest uncertainties in our extrapolation exist near T'(N,), where the empirical
scaling models approach the recording and processing noise. The tests performed so far
suggest that the resulting F S(T) are probably very realistic for 3.5 < M < 7 and for
horizontal ground motion. The slopes and amplitudes of empirically computed F'S(T') for
vertical motions suggest that near T = T'(N,.) our empirical models may not be reliable
for M > 6.5. To understand these amplitudes, we need more recorded accelerograms for
M > 7 and, so, we must patiently wait for this data to become available.

Extrapolation of FS(T) on log — log scale by Egs. (13), (26) and (30), from T'(N,)
towards T — oo sec appears reasonable and agrees favorably with the known trends of
the seismic moment, My, and of the average dislocation amplitudes, ¥, versus earthquake
magnitude. Since the corner frequency, 1/7, in the near field ground motion is ~ v/r,
where v is the dislocation velocity (typically between 2 and 3 km/sec), and r is the
representative source dimension, it is seen that 7 can be larger than T'(N.). This is so
assuming that, for the frequencies considered here the rupture occurs as a “smooth” pro-
cess. Many studies have suggested that the fault slips irregularly, with large dislocations
distributed at several or at many “hot” spots, with large dislocation amplitudes, making
larger events look like a sequence of smaller events. While this faulting behavior can
affect 7 appreciably, we do not have at present, reliable data to identify such behavior
in our analysis.

The highly “local” nature of strong motion recordings, local in the sense of the
proximity to the fault (less than say 100 km), and the fact that it is ¥ and not the
overall source magnitude or moment and the long source dimensions (L) that govern the
near field strong motion amplitudes, all agree with the observed trends of strong motion
amplitudes predicted by the G4RM.

Numerous further tests and studies of the relationships analogous to Egs. (13), (26),
(30) and (33) (and of the associated amplitudes, corner frequencies and scaling param-
eters) are possible. Also the empirical equations exemplified by Eq. (1) can be used
to investigate the high frequency attenuation and the trends implied by the peaks of
spectral amplitudes for frequencies less than 25 Hz. Some of these studies have been
completed and are presented in this report, in the following chapters. The picture which
emerges from this work is that of detailed internal consistency and agreement with near
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strong ground motion and distant seismological inferences on one hand, and with the
simplified theoretical source representations on the other.
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III STRESSES AND INTERMEDIATE FREQUENCIES OF STRONG
MOTION ACCELERATION

In this chapter, we examine the peaks of Fourier amplitude spectra of strong earth-
quake acceleration, again using a dimensional analysis. We find that the results may be
interpreted to imply simple (one patch events) earthquakes for M < 5 and multiple patch
events for M2 5 (~ 10 near M = 6.5 and ~ 100 for M = 8%). We also find that the
root mean square of peak stress drop on the fault appears to increase with magnitude
for M< 6 and then becomes constant, near 100 bars, for M 6. For M > 6, peak of the
Fourier spectral amplitudes then appears to grow because of the greater number of the
peaks (patches) from which the sample is taken (~ 100 for M = 8%), i.e. not from the
increasing mean of stress amplitudes. :

III.1 INTRODUCTION

The study of the Fourier amplitude spectra of strong motion acceleration can be
divided into three frequency bands: 1) long period spectral amplitudes, for frequencies
below those of the corner frequency f; ~ v/L (v is the dislocation veloc1ty and L is the
fault length), 2) high frequency spectral amplitudes, for f > fg = g4 (Q is the quality
factor, B the shear wave velocity and A the hypocentral distance) and 3) intermediate
frequency range for f; < f < fy. The long period spectral amplitudes are governed by
the permanent fault offset @ in the near field, by the seismic moment My in the far field,
and by the fault geometry (fault width W and length L). In the intermediate frequency
range and close to fx, the spectral amplitudes are determined by the stresses on the
fault (Brune, 1970). At high frequencies, f > fg, the spectral amplitudes continue to be
determined by the stress drop, but the spectral slope is determined by the attenuation
and the scattering properties of the geological environment surrounding and between
the source an the recording station. Since 1970’s, many studies have investigated these
frequency bands (Anderson, 1991).

Recently, a family of empirical scaling equations has been presented (Trifunac
1989a,b; Trifunac and Lee, 1989) describing the Fourier spectrum amplitudes for
~ .1 < f < 25 Hz. These scaling equations, representing the average trends of strong
motion amplitudes near the source (e.g., hypocentral distance A < 100 km), offer new
and independent basis to compare with and to calibrate other results which are usually
based on intermediate and teleseismic distances. The proximity to the source and the
high frequency characteristics of strong motion accelerographs offer advantages in the
data quality and in the simplicity of propagation modeling, which can be exploited to
learn more about the earthquake sources. The purpose of this chapter is to investigate
the intermediate frequency Fourier amplitude spectra (f; < f < fg), and to focus on
those aspects of scaling the strong motion amplitudes, which are related to stress drop
on the fault plane.

In what follows, we will study these spectral amplitudes for intermediate frequencies
near the peak amplitudes of FS(T) at f, (Fig. 1). Also, all spectra and analyses will be
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based on the estimates of strong ground motion at basement rock (s = 2, or A = 0) and
on “rock” soil site (s, = 0). This will eliminate complications introduced by the local
site conditions (Trifunac, 1990) and will allow more direct comparison with seismological
studies and observations. Finally, we will discuss the results of Eq. (1) for horizontal
motions only (v = 0) to further simplify the interpretation of these empirical equations.

III.2 LOW FREQUENCY EXTENSION

To define spectral amplitudes F'S(T') for periods longer than T'(N,), we will extrap-
olate FS(T) in the near field by an equation of the form,

2T

FSyr(T) = Z

[(30)

where d is the average permanent ground displacement, d = %/2, at the fault, on the
ground surface. % is the dislocation amplitude averaged over the fault surface A, and 7
is the characteristic source time (r = 1/f;). We will approximate 7 by

r~ (5 + %) (45)

v

(44)

1] 1/2°

=+ | &l

where v is the dislocation velocity (~ 2.2 km/sec), and will choose d such that FSyr(T)
is equal to FS(T) computed from Eq. (1) for G4RM at T(N.) (Table II). This will
result in estimates of W versus earthquake magnitude which will be used throughout this
chapter, typically for p = 0.5 (in Eq. (7)).

In the far field, we will extrapolate FS(T) for T > T(N.) by

27 1

2 1
) TS
1+ (%)] T

FSpr(T) = C, ( (46)

where C, will be computed such that FSpr(T(N,)) is equal to the spectral amplitudes
computed from Eq. (1) at T = T(N,).

In Eqgs. (44) and (46), the fault length, L, and width, W, can be defined by

L = a10*M (47)
and
W = c10%M (48q)
or
W=e+fM (48b)
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Table VII

Selected source parameters which are associated with the “four fault models.” *

M | MODEL1 MODEL2 | MODEL3 | MODEL4
log,oe 3 -95 -.71 -92 -.68 -1.00 .76 -1.02  -.78
(cm) 4 60 .75 49 .64 43 .58 39 .54

5 1.44 1.49 1.46 1.51 141 1.46 1.40 1.45

6 2.36 2.42 241 2.46 2.36 2.41 2.37 241

7 3.05 3.18 3.11 3.23 3.06 3.19 3.05 3.19

8 3.52 3.711 3.57 3.76 3.54 3.72 3.54 3.72
log;oA 3 -.81 -.75 -.95 -1.07
(km?) 4 42 12 .06 -.13

5 1.01 87 .89 .80

6 1.69 1.63 1.65 1.65

7 2.32 2.37 2.41 241

8 2.93 3.12 3.17 3.17
log, oMy 3 20.30 20.42 20.37 20.48 20.32 20.44 20.31 20.42

(dyne-cm) 4 21.91 22.03 21.79 21.92 21.77 21.89 21.67 21.80

5 23.35 23.40 23.30 23.35 23.29 23.34 23.26 23.31

6 24.86 24.92 24.86 24.92 24.85 24.90 24.85 24.90

7 26.43 26.55 26.47 26.59 26.46 26.58 26.46 26.58

8 27.68 27.87 27.75 27.94 27.75 27.94 27.75  27.93
fi(Hz) 3 4.10 3.82 4.93 5.21

4 1.0 1.29 1.51 1.67

5 A48 45 51 .53

6 17 15 17 17

7 .056 .050 .055 .055

8 .018 .016 017 017
f2(Hz) 3 5.60 5.22 6.47 8.40

4 1.36 2.20 2.06 3.20

5 .74 1.24 .99 1.22

6 51 .70 .56 57

7 .39 .39 .32 .32

8 31 22 .18 18

* See table IV for description of fault length, (L) and widths (W) corresponding to these
four fault models.

The fault area A = WL and the two corner frequencies f; = 1/ 5% + %/_) and f; = %i,l

are direct functions of W and L and are thus uniquely defined for the four fault models in
terms of a,b,c and d in Table IV. @ and M, are computed for the G4RM (see Eq. (13), and
(21)) and thus result in the range of values, as shown.
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where, the constants a through f are specified in Table IV for Models 1 through 4. These
four models have been chosen to illustrate variations in the definitions of W and L, and
all fit the data and many other constraints on the source parameters (see Chapter II).
In the following, we will refer to these models again as “four fault models”. Table VII
summarizes selected source parameter which are associated with these four fault models.
In this table My is the seismic moment, f = v/W, and A = WL.

II11.3 EFFECTIVE AND APPARENT STRESS

The stress 0 = 0o — o7 will be referred to as effective stress (Brune, 1970). It could
represent the difference between the stress on the fault before the earthquake, oo, and
the frictional stress, oy, opposing the dislocation. For simplicity, in this work, unless
otherwise stated, we will assume that o equals the stress drop (¢ = 1 in Brune, 1970).

The stress o, = ngﬂ%ﬁl will be called apparent stress (Wyss and Brune, 1968),
where o, is the stress on fault surface A after the earthquake, and n is the seismic
efficiency.

II1.4 PEAK AMPLITUDES OF FS(T)

It can be shown that the Fourier amplitude spectrum of strong motion acceleration,
for frequency f > f. (corner frequency), is proportional to

FS(T)max = 0B/u (49)

where FS(T)max would be the high frequency spectral asymptote in an ideal medium,
without attenuation. The corner frequency, f., depends on the wave type and the
source to station distance for stations near the source, but can be approximated by
fe ~ max|[f1, fa], with fi ~ [L/v + To]~! and f2 ~ v/W, where T is the dislocation
rise time.

As the frequency increases, the attenuation and scattering diminish the spectral
amplitude by exp (——5"—&,—). This attenuation becomes pronounced near fg = 525, and

begins to dominate the shape of the spectral amplitudes for f > fg (Trifunac, 1973).
For small earthquakes (Fig. 1), f. may be close to or higher than fg, so that the constant
plateau o(/p in Eq. (49) may not be attained. In those instances, the peak spectral
amplitudes will be smaller than o3/u and can serve only as lower bound estimates of o.
The peaks of FS(T) occur near T = .2 sec (f, = 5 Hz, Fig. 15) for M = 3 and move
towards T = 1 sec (fp, = 1 Hz) for M = 8.

In this chapter, o will designate the effective stress drop, and the partial stress drop
(e < 1, as defined by Brune, 1970) will not be considered. The empirical scaling Eq. (1)
for the G4RM then can be used to evaluated the peak amplitudes of F.S(T) for A = 0.
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Taking 8 ~ 3.5 km/sec and u ~ 1.3 x 10!! dynes /cm? then gives 0 ~ FSnax(T) (in
bars if FS(T) is measured in in/sec).

In Fig. 16, this estimate of o is compared with the results of several studies on stress
drop in the same area and for many of the same earthquakes which contributed to the
strong motion data base used here. The three shaded areas in Fig. 16, for p = 0.1,
0.5 and 0.9, have been computed from G4RM and for 3 < M < 8. It is seen that the
overall agreement of the stress drop estimates is reasonable (relative to strong motion
studies), but that the data from seismological (distant) source mechanism studies suggest
larger variation with magnitude. This can be explained in part by the high frequency
attenuation (low Q) which will progressively reduce the peak amplitudes of FS(T) for
decreasing earthquake magnitude.

II1.5 STATIC STRESS DROP

The average dislocation amplitude, %, the average static stress drop, o, the source
dimension, r (e.g. fault width W), and the rigidity of the surrounding rock, u, can be
combined into

or
u=Co— (50)
7
where Cy is given in Table III and r is defined by the geometry of the source. Solving

Eq. (50) for Co and taking r = W gives

up
Co =7’ (51)
where & can be computed from the long period limit of the near field spectrum, using
the G4RM and for say p = 0.5 in Eq. (7). To model the assumption that smaller events,
most probably, occur near stress concentrations with higher u, while large events, say
with M > 6 and 7, result in large faults and are thus associated with average p, I will
assume that for M = 3, 4, 5, 6, and 7, one can take u = (4, 3, 2, 1, and 1) x10'!
dynes/cm?. The fault width W can be computed from the example data in Table VII,
while 0 ~ FS(T)max- The four Cy curves, thus computed for the four fault models, are
plotted in Fig. 17. The result increases from ~ .3 to ~ 1.6 in going from M = 3 to
M = 17. The average trends of Cy are approximated by C§ = .4, .5, .65, .85 and 1.6 for
M =3,4,5,6 and 7 (Table III and VI in Chapter II).

Starting with the definition of seismic moment My = puA%, and using A = WL and
u = CoWo/u gives
Mo = CQO'LW2. (52)

Computing My for the four fault models, and with o, L and W available, Eq. (52) can
be solved for Cy. As Fig. 18 shows, this approach gives Cy smaller than that calculated
from Eq. (51). Recalling, however, that L and W in both equations are lower bounds
(based on the assumption of unilateral faulting), and recognizing that some events in
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C0=ﬁu/W0 L=co

_ Model 1
- __ __ Model 2
— — _ Model 3
——__ Model 4

X CB

0.8

0.4

—— Dip-slip
= - - = - Strike-slip

0.0 | | | | | 1

2 4 6 8
Magnitude

Fig. 17 Co = up/(Wo) versus magnitude for the four fault models 1 through 4. The
shaded areas show the range of C derived from analytical (disk) and numerical analyses
of static displacements surrounding a rectangular fault (W = width, L = length) and at
depth ho (ho = 0O for surface faults, ho = oo for a fault in elastic full space). Cp from
theoretical solutions for infinitely long faults are shown with solid and dashed lines.

Cy represents the smoothed trend through the data and the numerical and analytical
analyses (Table III).
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Co=Mo/aLW? =e

— Model 1
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Fig. 18 Co = My/(0 LW?) versus magnitude for the four fault models 1 through 4. The
shaded areas show the range of C derived from analytical (disk) and numerical analyses
of static displacements surrounding a rectangular fault (W = width, L = length) and at
depth ho (ho = O for surface faults, ho = oo for a fault in elastic full space). Cp from
theoretical solutions for infinitely long faults are shown with solid and dashed lines.

C; represents the smoothed trend through the data and the numerical and analytical
analyses (Table III).
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our data base should be bi-lateral in L, would increase the estimates in Fig. 18 by a
factor of about 1.5. For small events (M = 3 and 4), Eq. (52) appears to underestimate
Co. For those events L ~ W, and so the fault area is ~ LZ. An increase in the fault
dimensions by about 30%, a decrease of the moment estimates by a factor less than 2, or
a combination of these effects would modify Cyp in Fig. 18 to agree with that in Fig. 17.

It can be shown also that
Co ~ f2To (53)

where fo = v/W and Ty is the dislocation rise time assuming Haskell (1969) type dislo-
cation. Fig. 12 (in Chapter II) shows Co computed in this way for the four fault models.
Again, we observe very good agreement with the average trend of Cgj, with essentially
“circular” dislocation regime for small events and the transition to dip-slip and strike-slip
mechanism for the larger events.

Egs. (51) (52) and (53) are not independent, but show how different combinations
of source parameters can be used to evaluate Co and Cj. Since these parameters are
derived from the long period (@, My, L via f), the intermediate (W via fs, To) and
the high frequency (o) parts of the empirical spectra, and from the parameters which
are based on the assumed extrapolated nature of the spectral amplitudes (@, L), and
parameters which are more directly estimated from strong motion data (Mo, W via
f2, To), Egs. (51), (52) and (53) and Figs. 17, 18 and 12 also represent an internal
consistency test for properly chosen scaling parameters. We conclude that these results
indicate good internal consistency.

II1.6 STRAIN DROP

The quantity o/u represents strain drop during an earthquake. It is equal to
u/(WCE). If the average (representative) u is known, the stress drop can be computed
from the high frequency amplitudes of FS(T) (Eq. (49)). Then, evaluating the strain
drop from u/(W C{) represents intermediate (W) and long period (%) estimate. Fig. 19

presents log;, (% for our four fault models, plotted versus log;, My. It shows a well
1]
defined linear growth which can be represented by

o I
1 — =] —_— = —12.78 4 .3821 M,. 54
0810 " 0810 WCs + 0810 Mo (54)

It also shows the related results by Izutani (1981) and by Papageorgiou and Aki (1985).
The strain increases from ~ 10~% for M = 3 to ~ 1073 for M = 7.

It is reasonable to speculate that small earthquakes occur around high stress con-
centrations which are associated with “more rigid” geological environment, since in the
inhomogeneous material more rigid components will tend to “attract” higher forces
(stresses). Here, this hypothesis can be evaluated by computing o from FS(T)pax and
dividing the result by log,, %, computed from Eq. (54), with the assumed relationship
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logio(o/p) = logyo(u/WCp)

I Model 1
— — Model 2 7,./
_ _ _ Model 3 —
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7
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logio Mp

Fig. 19  Strain drop, log;o(0/u) = log,o[w/(WC§)] versus log,o Mo.
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log;o Mo = 1.5M + 16. Using the average stress drop shown in Fig. 16 gives u ~ (5, 4,
3,2 and 1) x10!! dynes/cm? for M = 3,4, 5, 6 and 7.

II1.7 DYNAMIC STRESS DROP

Here we use again the Brune (1970) concept of the effective stress o, which models the
difference between the stress before the earthquake and the “frictional” stress operating
during the earthquake. We also assume 0 ~ F'S(T)max, and ignore the possible low-pass
filtering effects (resulting in smaller values of ¢), caused by the attenuation quality factor
Q, for small magnitude events, say M < 4. Then, referring to Fig. 16, we wish to explain
the observed trends of o.

Joyner (1984) suggests that high frequency spectral acceleration should be propor-
tional to A!/2 for all earthquakes. To test this hypothesis I plotted o versus (WL)I/ 2
for the four fault models. The results are shown in Fig. 20. If we accept the two as-
sumptions: 1) that o can be estimated by FS(T)max at A = 0, and 2) that the four
fault models are representative, then this hypothesis by Joyner does not hold. As Fig. 20
shows, o increases at a progressively slower rate as (W L) 1/2 increases. It appears that
o is not proportional to the linear dimension of the source.

Scholz (1982) finds that @ ~ L and that & ## W, and presents alternatives to the
common relations between o and the fault width. Our models indicate that u is not
related linearly to either L or to W (Figs. 21 and 22). If we plot w versus L, so that
small dislocation amplitudes are compressed near the origin, then @ for M = 7 and 8
suggest @ ~ aoL, where ag = 37.5. But, this falls in the range of amplitudes (M =7
and 8) which are outside the range of the overall strong motion data and, so, this cannot
be taken as a reliable support for the linear hypothesis w ~ L. It is of interest to note
that Sholtz (1982) finds 10 to 15 times smaller ap (o = 1 to 2 for strike slip and thrust
earthquakes). For large intra plate earthquakes Matsuda et al. (1980), find ap ~ 10.
This “discrepancy” in ag, of 2 to 20 times, can be eliminated by recognizing that our L
represents a lower bound (assuming unilateral spreading of the dislocation). For bilateral
faulting, this “discrepancy” would be reduced to 1 to 10. Furthermore, since some data
on L comes from inferences based on the distribution of aftershocks, which often tend
to overestimate the initial “dynamic” fault dimensions, it is seen that this discrepancy
can further be reduced or eliminated.

We plotted o versus (L/W)'/2, log,o(L/W) and L/W and found that only the plot
versus log,o(L/W) could be interpreted to lead to a simple “linear” trend, but with too
large scatter to make a convincing case.

To analyze the observed high frequency spectral accelerations we consider the fol-
lowing model (Fig. 23). If = represents length, at some representative depth, along the
seismogenic layer, say less than 20 km deep (in California), then the stress in the crust
might be distributed as in Fig. 23b. For some strain rate, averaged over the thickness of
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this seismogenic layer, the stress fluctuations can result from large scale fluctuations in
the rigidity u, can be caused by some parts of the fault plane being locked, while other
parts are continuously slipping, can result from stress concentrations near those parts
of the fault which remained locked during previous earthquakes or can be caused by a
combination of these, for example. When a “small” earthquake occurs it will release
high stresses over some area (the shaded peak in Fig. 23b and the small “disk” area in
Fig. 23a). If this area of stress concentration is “small” and is surrounded by relatively
low stresses, the outcome will be a “single event” earthquake of magnitude M <~ 5.
As this stress drop increases, and as it is released over progressively larger area, larger
magnitude (moment) event will take place. As the event area becomes larger, it may
release stress concentrations on nearby stress peaks. On the average, it may be expected
that an oval fault slip area will be associated with an event as long as its fault dimen-
sions are smaller than W, (Fig. 23a). For the purpose of this discussion we will assume
Wo ~ 3 — 5 km (for unilateral faulting) (e.g. see Archuleta, 1982; Harzell and Heaton,
1983; Harzell and Helmberger, 1982; Olson and Apsel, 1982; Trifunac, 1972a,b; 1974;
Wald et al., 1991, in the references for Chapter II). As larger inertial forces are developed
with progressively larger stress drop, accelerating the surrounding medium with progres-
sively larger volume, the first initiating event will grow to the largest possible patch size
Ao (here assumed to be ~ 16 km?) and the excess inertial energy will trigger release of
stresses in the area of another, presumably nearby patch, triggering the second event
there. Since the growth of the single fault area (patch) is limited by the width of the
seismogenic zone (Wy), large earthquakes will have to occur on a sequence of patches,
more or less extended and propagating along z in one or in two directions. The final
fault area A ~ WL will then consist of a number of patches, some smaller some larger,
reflecting the nature of stress oscillations along z, but in no case will a patch size be
much wider than W,. Obviously, the size of W will vary from one tectonic region to
another, and will depend on the specific geometrical and physical properties of the area
surrounding the fault.

In the above model, the peak spectral acceleration will be associated with the largest
of the nearby peaks in the stress pattern when M > 5. In such cases the peaks of
stresses plotted in Fig. 23b should be thought of as being low pass filtered below a
suitable frequency (say ~ 1 Hz) to simulate the attenuation effects between the recording
station and more distant contributing peaks. Since, for simplicity, we used p = 0.5 in
selecting the F'S(T)max amplitudes, the high frequency spectral acceleration should be
proportional to the expected value of the largest peaks of the stress patches contributing
to the motions recorded. Assuming that the stress indeed fluctuates along z, as suggested
by Fig. 23b, then the expected value of the effective stress is

E[o] ~ &(In N,)/? (55)

where E[o] ~ FS(T)max for p = 0.5, ¢ is the root mean square of the stress peaks in
Fig. 23b, and N, is the number of peaks in the stress function after low-pass filtering
the stress diagram to maintain only the “long period” stress fluctuations. Since N, ~

WL/Ag, N, can be determined if Ay is known or assumed. We will assume that for a
single patch A9 ~ WL, but that both W, L < 4 km. Using definitions of L and W for
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the four models in Table IV, for M = 4, 5, 6, 7 and 8, the estimates of Ag become ~
1/2
1, 6, 16, 16 and 16 km? respectively. For M > 5, this gives E[o] ~ 100 (ln 245) , as

1/2
shown in Fig. 24. Remarkably linear growth of E[c] versus (ln 240—) and small scatter

of the results predicted for the four extrapolation models, suggest that this may be a
useful model for further testing and verification. @ = 100 bars is also in good agreement
with numerous seismological and strong motion studies (Anderson, 1991) of stress drop
inferred from the high frequency spectral amplitudes of recorded motion.

Within the frequency resolution of the shortest wave length data available today
(say less than .5 km for f < 2 Hz), which are imposed by the limits associated with
the distances at which the records are obtained, by @ and by the size of geological
inhomogeneities along the wave path, and not by the recording instrumentation, the
above suggests that we can think of an earthquake as becoming a multiple event for
M > 5 (in California). Of course, there is no physical basis to assume that there are
no multiple events for M < 5 also, but we just may not be able to “see” them with the
frequency resolution characteristics in our current data.

For M < 35, the situation is different. Here A < Ao, and the dynamic stress is
associated with stress release on one or two extreme stress peaks. The dislocation stops
because the surrounding stress amplitudes are small, or because of material barriers or
constraints. Some of these events may have very large dynamic stress drop (Trifunac
1972a,b), but this may occur at very high frequencies, whose amplitudes are low-pass
filtered by scattering and by attenuation. As the fault dimensions increase, the stress
drops further, until for a single patch, near say M = 5 to 6, it reaches “troughs” in the
stress diagram (Fig. 23b). The average stress drop implied by 0 = FS(T)max (Fig. 16)
is then almost same as . Beyond M ~ 6, in this representation, the local stress drop
does not grow because the large earthquake is associated with larger &, but because
A/Ao becomes large and, so, the probability of finding a larger peak increases. Fig. 25
summarizes this for E[o] and @, showing graphically this transition in the nature of the
problem near M = 6.

Since & = "Wiq;" it is seen that &/u = (100 x 10° dynes/cm?)/ (1 x 10! dynes/cm?)

= 1073, The trend of strain estimates (@/WC{), based on the intermediate and long
period estimates gives about 1072 near M = 6 (¢ = 100 bars), and about 3 x 10~3 near
M =8 (o ~ 200 bars).

II1.8 MAGNITUDE VERSUS FREQUENCY OF OCCURRENCE

The above hypothetical model can be used as a basis to explore the possible implica-
tions for the magnitude frequency relationships in a region. Associating an earthquake
event with a patch of stresses on the fault surface, where there is larger than average
stress (in the sense of Fig. 23b, and of course, in two dimensions), can be adopted as a
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causative mechanism to determine the size (area) and the number of events which can
occur on the existing fault. Let Wy, and Lr; represent the widths and the lengths of
L faults in the region. Let Wy, and Ljps represent the typical length and width of a
patch (for M < 5 to 6) or of a group of patches (for M > 6), which are determined
by the four fault models, for a magnitude interval M + AM/2. Then the number of
earthquakes of magnitude M + AM/2 which may occur in the region during given time

will be Ny, = (Ef’:l W, LF,.) / (LamWar), where the summation is taken over all Ly

faults in the area. In terms of the expressions for L and W for our four fault models
(Table IV),

N Zt— WF LF 0—(b+d)M (56)
ac

Since the typical magnitude frequency relationship is of the form log;, Nar = apr—bp M,
where Nz is the number of earthquake in the magnitude interval M + AM/2, it is seen

that aps = (Zf’:l WF,.LF‘.) /(ac) and bps = b+ d.

Empirical seismicity estimates usually give 0.8 < bps < 1. From Table IV it is seen
that, for M < M,, our results suggest bps ~ 1.1, and for M > M,, by ~ .8, i.e. there
is a change in the slope of log Njs versus M relationship. This would imply bas ~ 1.1
for frequency magnitude relationships in the subduction zones, for example, or where
the thickness of the seismogenic zone does not provide a constraint on one of the fault
dimensions, and bps ~ .5 to .6 for a very shallow seismogenic zone (where W ~ const.).

For example, for the period between 1900 and present, the Benioff zone only, south
of Prince William Sound, and bellow Kenai Peniusula and Kodiak island in Alaska, gives
bar ~ .9 (for 5 < M < 8). On the other hand, for shallow faults in the deformed zone
just behind the trench, and the Castle Mountain Fault north of Cook Inlet, bas ~ .5 (for
4 < M < 7). In Southern California, in the Imperial Valley region, for the period from
1932 to 1971 (Hileman et al., 1973), for 3 < M < 5, bps ~ 1, and for M > 5, bps ~ .75.

II1.9 DISCUSSION AND CONCLUSIONS

The observed trends of the peaks of the Fourier amplitude spectra of strong motion
acceleration (~ o) and of the corresponding estimates of the source dimensions (fault
width W and fault length L), together with the average dislocation, %, the seismic
moment, Mo, and the dislocation rise time, T, can be interpreted by a population of
events, which, for M 5, have essentially “circular” faults (W ~ L) and are associated
with one “patch” (single event, see Fig. 23). Near this magnitude, the width of the patch
approaches 3-5 km and is constrained to grow further by the thickness of the seismogenic
zone in California. For larger events, the larger fault area is realized by accretion of
several (M ~ 6) to many such patches (M ~ 8). The small and intermediate events
(L < 2W) can be visualized as “circular” dislocations at some depth, but for M > 7 our
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analysis and the available strong motion data favor very long surface faults (strike slip
or dip slip, Figs. 12, 17 and 18).

The available strong motion data is consistent with strain drop ~ 1075 for M ~ 3
and with ~ 1073 for M ~ 7. For large events, & appears to be proportional to the fault
length (L), but for smaller events @ # L and u # W.

For M > 5, the expected amplitude of the stress drop, E[o] ~ FS(T,), grows linearly
with [In(W L/Ao)]/?, where A, ~ 16 km?, and the slope of this linear growth is constant
with & = 100 bars, the root mean square of the peaks of stress drop on the fault surface.
Our model then can be interpreted to be consistent with & growing to ~ 100 bars for
M ~ 6 and remaining almost constant for MX 6. Thus, in this interpretation, E[o]

1
continues to grow for M > 6, but because [ln A%] grows for large events, while @

remains close to a constant.
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IV. Q AND HIGH FREQUENCY STRONG MOTION SPECTRA

Empirical scaling equations for Fourier Amplitude Spectra of strong ground motion
are used to describe Ag and k in the assumed (high frequency) shape of strong motion
amplitudes: FS(f) = Aa’rkf . The results show (1) excellent agreement of the computed
Ag and k with other independent estimates, (2) smooth decay of strong motion spectral
amplitudes for f > 25 Hz, without an abrupt low-pass filtering of the high frequencies,
and (3) excellent agreement with other estimates of the regionally specific attenuation
of high frequency seismic waves.

As the strong earthquake shaking in the western United States typically samples only
the shallow (< 10 km) and local (< 100 km) characteristics of wave attenuation, the
recorded strong motion accelerograms can be used as the most direct means of describing
the nature of the high frequency attenuation of the entire strong motion signal. Lg and
coda wave studies to estimate Q may sample different volume of the crust surrounding
the station, and involve different paths of the waves. These differences must be carefully
documented and understood before the results can be used in earthquake engineering
characterization of strong motion amplitudes.

IV.l1 INTRODUCTION

The high frequency Fourier spectrum amplitudes of strong motion acceleration for
frequencies f > v/r (where v is the dislocation velocity and r the smallest relevant
source dimension), in linear elastic homogeneous and isotopic medium are expected to
be proportional to o3/u, where o designates the stress drop and B and u are the shear
wave velocity and material rigidity in the region surrounding the earthquake (Brune,
1970). In the real earth, this spectrum is low-pass filtered by a combination of physical
factors (scattering, diffraction, inelastic attenuation, nonlinear source and transmission
phenomena). For frequencies typically higher than 1 to 10 Hz, this attenuation dominates
the spectral amplitudes of recorded strong motion acceleration (Trifunac, 1973).

Several authors suggest the existence of high frequency “corner” (or cut-off) (Hanks,
1982), where the spectra of accelerograms recorded at close distances “crash” abruptly
to progressively smaller amplitudes. Papageorgiou and Aki (1983a,b) and Papageorgiou
(1988) attribute this to a source effect, which is caused by a non-linear zone at the
edge of the crack, of dimension d, acting as a low-pass filter, with corner frequency
fmax ~ v/d. Anderson and Haugh (1984) show that if the logarithm of the spectral
amplitudes is plotted versus frequency on a linear scale, this “corner” disappears and
the spectral amplitudes decay linearly as in e~™*f, until the recording and processing
noise take over. The factor k = A/(Qp) is inversely proportional to the quality factor
Q and velocity g integrated along the propagation path of length A (Cormier, 1982).

For frequencies higher than ~ 10 Hz, the recorded accelerograms are distorted by
the accelerograph transfer function (Trifunac and Hudson, 1970; Novikova and Trifunac,
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1991), and must be corrected for the instrument response (Trifunac, 1971; 1972; Amini
and Trifunac, 1985; Amini et al., 1982, 1991; Wong and Trifunac, 1977; Novikova and
Trifunac, 1992). This correction is feasible as long as the signal to noise ratio is signif-
icantly larger than one, and, so, it depends on the size of the earthquake and on the
recording distance (Amini et al., 1982; 1987). The typical accuracy of the high frequency
instrument correction is such that the high frequency strong motion can be reproduced
for frequencies well beyond the nominal recording range of the recording transducers
(Lee and Trifunac, 1974) but, for practical reasons mainly related to the need to control
the volume of the data storage, it was decided in the late 1960’s to preserve the strong
motion data up to 25 Hz only (50 points per second, Lee and Trifunac, 1982; 1987; 1990).

The purpose of this chapter is to summarize the observed nature of the high fre-
quencies of the Fourier amplitude spectra of strong motion acceleration. In contrast to
the previous studies (Anderson, 1991), we will not analyze selected accelerograms, but
will use empirical equations for prediction of strong motion spectral amplitudes, to de-
termine the nature of the high frequency attenuation. The consequence of this approach
is that the fluctuations associated with individual recordings will be “smoothed out” via
regression analyses, and so the overall average and regional picture may emerge. We
will compare the results with other seismological inferences and will show that these
are usually in good agreement. Also, in this work, the Fourier amplitude spectra of the
complete strong motion signal will be used, rather than spectra of body or of surface
waves. This is necessary for engineering characterization of strong ground motion. Vari-
ous other studies of the high frequency attenuation and of @ use many different parts of
the recorded motion (body waves, surface waves, coda) at small and at large distances.
In this work, we will consider the strong ground motion recorded mainly in California,
at distances typically less than 100 km, and for frequencies between ~ 5 Hz and 25 Hz.

For short epicentral distances, the attenuation at depths less than ~ 5 km may over-
shadow the attenuation along the deeper portions of the crust. For understanding and
for prediction of strong motion amplitudes, it is thus necessary to know how @ changes
with depth and with frequency. This requires higher space and time resolution than
what is available from distant recordings, but, by averaging the results over representa-
tive depth, the inferences on shallow @ structure based on strong motion data, can be
interpreted and compared with other surface wave and coda wave studies.

In this study, we will take the advantage of (1) small epicentral distances, (2) shallow
sources and (3) high frequency strong motion acceleration data, to estimate @ near the
surface, and only locally near the source. More distant seismological measurements are
usually based on specific wave forms (e.g. Lg, Chun et al., 1987; Gupta and McLanghlin,
1987), or may use coda waves (e.g. Singh and Herrmann, 1983; Woodgold, 1990) and thus
sample larger volume of the crust and along different rays. Since Q may change rapidly
with depth and laterally, we must develop procedures to map @ in three-dimensions and
for small epicentral distances. This will then allow improved estimation of strong motion
amplitudes for earthquake engineering applications.
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In what follows, we will study the amplitudes of FS(T) for high frequencies f > 5
Hz, and will consider strong motion amplitudes for epicentral distance less than ~ 100
km.

IV.2 HIGH FREQUENCY SPECTRA

Little observational work has been done on high frequency (f > 25 Hz) attenuation of
strong motion data. Until recently, most of the recording instruments could register only
moderately high frequencies (say < 30 Hz). Routine processing of strong motion data has
been performed up to 25 Hz (50 Hz sampling rate, Fig. 26) even though the typical analog
records are of good quality, so that we could have extracted even higher frequencies
(perhaps up to 35 or 40 Hz). The main obstacle in understanding the attenuation
of high frequencies is the lack of data on the irregularities in the earth’s crust, and the
relatively large distances separating the source and the strong motion recording stations.
We could saturate some areas with broad band strong-motion instruments, but it is
not likely that we will be able to describe the three-dimensional inhomogeneities in the
earth’s crust for some time. Furthermore the current computational capabilities to model
scattering and diffraction for very high frequencies (short waves) are still very limited
(e.g. Todorovska and Lee, 1990; 1991). Thus, most investigators continue to use the
empirical description for the combined effects of inelastic and scattering attenuations
in the form exp(—wA*/2Qp), where A* is the distance traveled by the wave, Q is the
quality “constant” and S is the (shear) wave velocity. For granites and basalts, Q is
in the range of thousands, but for near surface soil and sediments it can be as low as
10. Recent results on the variation of Q through the central United States have been
presented by Michell and Hwang (1987). They show Q values increasing from about
1000 to 5000 for depths between 0 and 50 km in the central United States. For the
western United States, their models suggest Q between 150 and 300 at a frequency of
about 1 Hz. For sediments, typical results from several studies suggest low surface Q’s,
in the range from 10 to 50, increasing to 25 to 100 between 500 m and 2 km (e.g. Baker
and Stevens, 1983; McDonal et al., 1958; Ganley and Kanasevich, 1980; Hauge, 1981;
Johnson and Silva, 1981; Joyner et al., 1976; Malin and Walker, 1985; Singh et al., 1982;
Tullos and Reid, 1969).

We will approximate the high frequency spectral amplitudes by FS(f) = AQe"'kf
(Trifunac, 1973; Anderson and Hough, 1984). Using two frequencies, f; and f,, both
larger than the frequency corresponding to the peak of the spectral amplitudes ( fpin
Fig. 26), one can compute k and Ag from

_ InFS(f,) - In FS(f)
7"([1 - fr)

k (57)

and
Ag = FS(fi)e™h, (58)

In Figs. 27a and 27b, we plot k averaged for the models 3 and 4 from the G4RM. k
changes little with respect to magnitude and, so, in these figures, this effect is averaged

75



3 Domain where Eq. (1) applies
— Digitization noise
B * Corner frequencies fy
- c Corner frequencies fj
- P Peak frequencies fp
o  Cut—off frequencies f,, = 1/T(Ny)
10° |
) ~
7)) L
\ -
k= -
| -
&
1
W\
W\
1 W
10_ — \\\\
- 1\ \
— i
- !
- wt
/ w !
-/ \\\\“
10-2 //I L1 11l L1l 1 |“‘|‘\|||||I
10! 1 10 10°

Frequency — Hz

Fig. 26  Fourier amplitude spectra (in/sec), versus frequency (Hz) for probability of
exceedance equal to 0.5, for M = 4, 5, 6, 7 and 8 (bottom to top), at epicentral distance
R = 10 km, and for a source at depth H = 0 km. Outside the shaded region, between
feo = 1/T(N.) and f = 25 Hz, where Eq. (1) is valid, the spectral amplitudes (dashed
lines) can be extrapolated as it is proposed in this paper. Corner frequencies f;, f2, and
the cut off frequencies f., are defined in the text. The processing and digitization noise
amplitudes are shown by the shaded zone increasing from FS ~ 10~! to FS ~ 1 for
frequencies decreasing from 10 to .1 Hz.
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Fig. 27b k= A/(QP) versus A (km), for three frequency bands (5.3 - 9.1) (9.1 - 15.4),
and (15.4 - 25.), for vertical motion, and for models 3 and 4 from the G4RM. The shaded
zones outline the fluctuations caused by the local soil and local geologic site conditions.
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Fig. 28a log,o Ag versus A (km), for M = 6, probability of exceedance p = 0.5, for
horizontal motion and for different local soil (s1) and geologic (s) site conditions. The
Richter (1958) attenuation equation log,y Ao(R), where R is epicentral distance, and

the Trifunac (1991) attenuation equation Att(Ao) with Ag = (R? + H?)'/2, both with
an arbitrary vertical scale, are shown for comparison.
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Fig. 28b  log,o Ag versus A (km), for M = 6, probability of exceedance p = 0.5, for

vertical motion and for different local soil (s;) and geologic (s) site conditions. The
Richter (1958) attenuation equation log,, Ao(R), where R is epicentral distance, and

the Trifunac (1991) attenuation equation Att(Ao) with Ao = (R? + H?)'/2, both with
an arbitrary vertical scale, are shown for comparison.
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Table VIII

aatR=100km

Horizontal/vertical s, =0 sp =2
h=2km 1.51/1.52 85/.85

h= 0 km 1.16/1.26 65/.70

s =0 s =2

s=0 1.48/1.45 95/.93

§=2 1.24/1.24 79/.79

*M=6, p=05 H=0km
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for M = 5 and 6. k also changes little in going from s = 0 to 2 and from sz, = 0 to
2. To display the frequency dependence of k, three bands are shown for the three pairs
of (fi, f+), equal to (5.3, 9.1), (9.1, 15.4) and (15.4, 25.). k increases with distance
(for the examples shown, it is assumed that the source is at the surface, H = 0), and
asymptotically approaches a constant level for distance ~ 100 km. Comparison of our
results with selected estimates of k for sites in southern California (e.g. Hough et al.,
1988) shows good agreement of the amplitudes and of the shape of k versus distance,
computed for selected strong motion data.

The amplitudes of the high frequency spectra are determined by the zero frequency
asymptote, Ag, in Eq. (58). Ag depends on the earthquake magnitude, hypocentral
distance A, and the local soil and geologic site conditions. To illustrate its behavior
with respect to the epicentral distance, Figs. 28a and 28b show Ag for M =6, p = 0.5,
R between 0 and 200 km (H =0),s=0and 2, h =0and 2 km and s =0and 2. Asa
function of R, the shape of Ag should be close to the family of attenuation equations de-
scribing peak accelerations (e.g., Trifunac, 1976b), to the Richter’s attenuation law used
in estimation of local magnitude, log,, Ao(R) (Richter, 1958), and to our attenuation
function Att(Ao) used in computation of the strong motion magnitude M f M (Trifunac,
1991). It is seen from Figs. 28a and 28b that the slopes of log;, Ao(R) and of Att(Ao)
are the same as for Ag for distances greater than ~ 80 km, but that At¢(Ao) agrees
better with Aq for zero and small distances. Figs. 28a and 28b also show that for Models
3 and 4, Aq is the smallest for sites on basement rock and for s, = 2 (deep soil sites).
It is largest in sediments (s = 0 or h = 2 km) and on “rock” soil sites (s = 0). Table
VIII illustrates Ag for R = 100 km. The amplitudes of Ag increase by a factor between
1.5 and 2 in going from s = 2 to s = 0 (or from h = 0 to h = 2 km). At deep soil sites,
Ag is reduced by a factor in the range from 2 to 3, relative to the “rock” sites (s = 0).

IV.3 AVERAGE QUALITY FACTOR @Q

Since k = A/(Qp) (for shear wave content of the strong motion), using k in Figs. 27a
and 27b and estimating (3, one can compute @ as a function of distance, A, and frequency.
Fig. 29 shows Q™! computed in this way for distances equal to 1, 26, 51 and 76 km,
together with other but different estimates of @' in California (Cormier, 1982). To
compute @ from k, we assumed that the average velocity f is equal to 3.35 + 0.00175 A,
which approximates the average travel times for S waves in southern California (Richter,
1958), and where A (< 200 km) is the hypocentral distance. Also, we have assumed
here that A ~ A*, where A* is the distance traveled by the waves.

Figs. 30a and 30b show Q plotted versus distance, A, for Models 3 and 4 in the
G4RM. To reduce clutter, but to illustrate how @ changes with frequency, and with s
and s, we averaged the Q estimates for M = 5 and 6 and for Models 3 and 4. The label
s = 0 represents the average result for s = 0 and h = 2 km, and where s = 2 stands
for s = 2 or h = 0 km. At high frequencies (15.4, 25.) Hz, the site effects appear to be
insignificant. For lower frequencies, (5.3, 9.1) and (9.1, 15.4) Hz, there is more variation
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Fig. 29 Q™! versus frequency, for distances equal to 1, 26, 51, and 76 km, compared
with selected other estimates (Cormier, 1982).
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Fig. 30a Q-versus A (km), for three frequency bands, and for horizontal motion. For
each curve (note that many curves overalap), the corresponding local geologic (s = 0
and 2, first and second column) and local soil (s;, = 0 and 2, third and fourth column)

site conditions are identified by an “x” placed in the corresponding columns at the same
level and next to the right most point of the curve.
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Fig. 30b @ versus A (km), for three frequency bands, and for vertical motion. For
each curve (note that many curves overalap), the corresponding local geologic (s=0
and 2, first and second column) and local soil (s, = 0 and 2, third and fourth column)
site conditions are identified by an “x” placed in the corresponding columns at the same
level and next to the right most point of the curve.
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with site conditions. The local site condition s; seems to result in high @ on “rock”
sites (s = 0). However, because of all other simplifying assumptions, these variations
cannot be taken as significant. The only clear and distinct trend that is seen in Figs. 30a
and 30Db is the frequency dependent slope of @ versus distance.

The changes of @ with A are almost linear for broad intervals of A, and thus the
average @ can be approximated by

Q = ag + boA, (59)

using two segments, say one for 0 < A < 20 km and the other for 20 < A < 200 km.
Table IX summarizes ag and bg for horizontal and for vertical ground motion.

Inversion of data on average k or @ versus distance, to determine @ variations
with depth, requires detailed description of the velocity of waves versus depth, and
careful separation of the recorded motion into body and surface waves (e.g. Hough and
Anderson, 1988). Our estimates of k and Q however are different, since we use empirical
description of spectral amplitudes of the entire strong motion signal, thus arriving at
the overall “average” values of these parameters. The resulting estimates of k and Q
lead to so simple functional forms, that one can consider a simplified representation,
to further interpret this data. Thus, we assume that it is possible to approximate the
velocity structure by a linear dependence on depth, (Fig. 31) by

v(y) =vo+vi(y—d), y>d. (60)

For shallow depths (short distances, 0 < A < 20), we will assume vop = 1 km/sec and
vy = .25/sec. This may be typical of the Los Angeles basin, where many accelerograms in
our data base have been recorded during San Fernando, 1971 earthquake, or of Imperial
Valley near El Centro site, which also contributed many strong motion accelerograms.
For a deeper structure (and for larger distances, 20 < A < 100 km), we will consider
vo = 2 km/sec and v; = .04/sec.

For linearly increasing velocity, the ray path of body waves is defined by a circle
of radius Ry, centered at d = vo/v; above the surface (Fig. 31). For the source and
the recording station both on the surface, the circular path has length Rompo/180°,
where o = 180° — 20 (Fig. 31) and A = 2Rycosfg. In what follows, we will assume
approximately that all strong motion waves collectively sample @ uniformly inside the
circle z2 + y? = RZ, for —A/2 < z < A/2 and for d < y < (R? — z2)1/2. Relative to
the coordinate system (z,y), assuming that @ increases as a linear function of depth, we
write @ = a; + by,, for y > d or Q = go + ¢1(y — d), for y > d, with a; = go — ¢g1d and
by = g1. The average @ inside the circle in Fig. 31 is then equal to

cos?fg
sin 26 ’
-5 - 0@]

Qav = a1 +bA (61)
3(3

The function cos? 8¢/ [3 ( g - %— ~ 0Q) increases at first slowly from .212at g =0
to about 1 for §g ~ 7/3 and then, as g — 7/2, grows like 2/(7/2 — 0g).
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Source Station
(H=0)

Yy

Fig. 31 Parameters of circular ray path, in the half space, (y > d), with linear velocity
structure v(y) = vo + v1(y — d), for a surface source (H = 0).
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Fig. 32 ) Q Ay Versus depth y4. For comparison, different estimate of Q, (based on shear
waves) in California are shown also.
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Egs. (59) and (61) can be combined to compute a; and b; and then go and g, for
a given A. Then, go and g; can be used to compute @ 4, at some representative depth,
say at y4 = (Ro — d)/2. By repeating this process for successive A, one can arrive at
estimates of @ versus y4, which are shown in Fig. 32. For comparison, we also show the
range of @ estimates for S waves for selected, but representative locations in California.
In spite of the simplified and different nature of our and of these different estimates, and
the differences in the wave types used, the agreement is good.

Fig. 33 shows a continuation of the @ estimates for 4 < y4 < 12 km. In this
second interval, we used vo = 2 km/sec and v; = .04/sec. With A less than about 100
km this approach allows estimation of @ for depths less than about y4 = 12 km. If
the function Q(y) is irregular or has large jumps, the above approach smooths those
variations by fitting the best straight line and then estimating the average value of Q at
some representative depth. For large jumps in @, k versus A should become constant
(when @ — oo) or suddenly increase (when @ — 0), as the down going ray enters the
layer with such @ values. For A2 100 km, k versus A for (5.3, 9.1) Hz becomes nearly
constant (Fig. 27a,b). For a model consisting of parallel layers, this could be used to
find the depth when @ jumps to higher values. However, since we study the attenuation
of the entire strong motion signal, and not only of body waves, this distance of 100+ km
when k becomes nearly constant may also be associated with the horizontal dimensions
of large sedimentary basins (e.g. Los Angeles, Imperial Valley), where high frequency
strong motion surface waves should attenuate more than along paths which go through
the basement rock. This interesting question is however beyond the scope of this brief
study since it will require regional grouping of recorded accelerograms rather than the
use of the overall k and Q, as used here, to represent the smooth trends of all strong
motion data in the western United States.

IV.4 DISCUSSION AND CONCLUSION

Fourier Amplitude Spectra of the complete strong motion record can be characterized
by Age™*"f for f > fp,. Ag and k (or Q = A/(kB)) thus computed agree favorably
with many other seismological estimates of the same quantities. Neither our empirical
models of Fourier spectrum amplitudes (e.g. G4RM), nor the directly computed spectra
of recorded strong motion indicate the existence of abrupt decay of spectral amplitudes
in the sense of frax (Hanks, 1982; Papageorgiou and Aki, 1983a,b). If some low-pass
filtering effects (sharper than e~"*f) exist, those must occur for f > 25 Hz, i.e. outside
the range for which strong motion data is processed and achieved at present.

In the frequency band between 5 and 25 Hz, our results on Q are in good agreement
with those of others, reported for the same region where the strong motion data has
been recorded. These results give @ ~ 10 to 50 near the surface, increasing to about
300 to 500 at a depth of 4 km. The estimates of Q for vertical motion (with only
one exception) are larger (by 5 to 20 percent) than the corresponding estimates for the
horizontal motions. These differences diminish with increasing frequency, and for 25 Hz
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become negligible. In all calculations we used the same velocity (8), for horizontal and
for vertical motions. Assuming that for vertical motions the “representative” velocity is
between (1/p)'/? and [(A + 2u)/p]"/? helps to explain the observed differences. At high
frequencies, near and beyond 20 Hz, the same Q estimates for horizontal and vertical
motions invite consideration of scattered waves, with about equal participation of S-
and P-wave potentials, in both the horizontal and vertical direction. Near 10 Hz, b3(T)
changes sign (see Table I), also implying that, for f near and larger than 10 Hz, the
spectral amplitudes of horizontal and of vertical motions are about the same (between
1 and 3 Hz, horizontal motions are about two times larger than the vertical). At high
frequencies (f > 10 Hz), b3(T') becomes positive, i.e. vertical spectral amplitudes become
larger than the horizontal. Another explanation for the observed trends may be sought in
the increased participation or recording, digitization and processing noise in the recorded
high frequency signals exceeding ~ 10 Hz. Obviously, more detailed investigation will
be required to explain all these trends in a unique and consistent way.

Since 1970, we have been processing strong motion data up to 25 Hz. This choice
was governed by the characteristics of older strong motion accelerographs and their
transfer functions (Lee and Trifunac, 1974; Amini et al., 1982, 1987). Currently used
transducers (Amini and Trifunac, 1985; Amini et al., 1991) would allow extending this
frequency limit to 50 Hz, but this would probably not alter much the overall quality
and the information, contained in the processed strong motion data. For significant
new information, it may be necessary to extract strong motion data up to, say, 100 Hz.
Though this is technically feasible, it is not likely that this can be realized at the level of
national and world wide strong motion networks in the near future. So, we must devise
more detailed and ingenious analyses to infer the high frequency characteristics of strong
ground motion by extrapolation from the presently available data.

Assuming the simple functional form Q@ = Qof" to describe Q versus frequency
f, our study leads to v ~ .4 (horizontal motions) and v ~ .2 (vertical motions), for
frequencies between 5.3 and 9.1 Hz, and to v ~ .7 (horizontal) and v ~ .6 (vertical),
for frequencies between 15.4 and 25 Hz, and for the distance range from 25 to 75 km
(Fig. 29).

Seismological studies of the frequency dependent Q (using Lg and coda waves) give
4 ~ .1 to .3 for the central and south-eastern United States, ¥ ~ .3 to .4 for north-earthen
U.S. and v ~ .4 to .8 for the western U.S. (e.g. Singh and Herrmann, 1983).
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APPENDIX A: NOTATION

a - empirical scaling coefficient in description of the fault length L = a X 100M.
ao, a; - scaling coefficients for @;
ap - coefficient in log;o Ny = ap — b M,

Ao(T) - parabola w.r.t. log,o T which defines the frequency dependent attenuation
in A#(T) (see Eq. (2));

4o(T) = —-0.732 T > 1.8 sec
/7 Ya+blogyoT + C(logyoT)? T < 1.8 sec

where ¢ = —0.767, b = 0.271 and ¢ = —0.526, (see Trifunac and Lee,
1989).

Att(A, M,T) - a function describing the frequency dependent (f = 1/T') attenuation
of the spectral amplitudes versus distance A and magnitude M (is defined

by Eq. (2));
_35
anF,apF - a function describing the contribution of near-field (ayr =€ 4S5 ) and

_35;
of far-field spectra | apr =1 —€ 4S5 | to the Fourier Amplitude spectra

of strong motion acceleration, F.S(T)
A - fault area, A = WL (km?);
Ao - area of a single path (asperity);
Agq - zero frequency asymptote in FS(f) = Age™ "1,
b - empirical scaling coefficient in L = a x 10°M;
bo, b1 - scaling coefficients for @;
bas - coefficient in log,o Np = anm — b M

b;(T) - empirical scaling “coefficients” in Eq. (1);
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bgj ) (T) - empirical scaling coefficients in Eq. (1) for the indicator variable j;
¢ - empirical scaling coefficient in W = ¢ x 10¢M

Co - scaling “coefficient” relating the average fault displacement, d, or the average

fault dislocation, u(u = 2d), with the source dimension r and the rigidity
of the surrounding rocks, u;

Cj - proposed “average” trend of Cg versus M;
C, - a scaling constant (see Eq. (26) and (27));

d - empirical scaling coefficient in W = ¢ x 109M; also used as 1) the position above
surface for the center of a circular ray path of radius Ry, d = vo/v1 (see
Fig. 31), and 2) the width of the nonlinear tip of the fault breaking through
an unfractured fault zone;

dp - permanent ground displacement, d, = dnr(t), for t — oo;
d(t) - displacement of the ground motion versus time;

dnr(t) - near field strong motion displacement (for A < S);
dpr(t) - far-field strong motion displacement (for A >> §);

d - average of dyr(t), for t — oo, on the fault surface;

D(HfM) - difference between M7 ™ and M,;

E; - seismic energy;

E|o] - expected value of o;

[ - frequency (Hz); also used as a coefficient in W = e + fM;
f1 - corner frequency, f; = (% + To)_1 (Hz);

f2 - corner frequency, f, = 2.2/W (Hz);

Jp - frequency where FS(f) has peak amplitude (see Fig. 1);
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feo - frequency (= 1/T(N.)) below which Eq. (1) is not valid (see Table II)
fr - cut-off frequency, fg = QB/(5A);
fmax - high frequency corner or cut-off frequency.

FS(T), FS(w), FS(f) - Fourier amplitude spectrum of strong motion acceleration
at period T, circular frequency w, or frequency f.

FSyr(w) FSnr(T), FSrr(w), FSpr(T) - Fourier amplitude spectra of near-field
and far-field strong motion acceleration, at frequency w, or period T';

go, g1 - coefficients in Q@ = go + g1 (y — d);

G4RM - group of four regression models. Model 4 is shown in Eq. (1). (1. MAG-
SITE; 2. MAG-DEPTH; 3. MAG-SITE-SOIL; 4. MAG-DEPTH-SOIL);

h - depth (thickness) of the sedimentary layer beneath the station (km);

ho - depth (below the surface) of the top edge of a vertical fault plane (km);
H - focal depth (km);

k - slope of log;o My versus M (see Eq. (28));

L, Lpyin - fault length and minimum fault length (km);

Lp, - length of Ly faults in a region;

Lz - length of a patch (for M < 5 to 6);

M - magnitude;

M, - cut off magnitude;

Mpyin, My.x - minimum and maximum magnitudes defining the range My, <
M < My.x where the strong motion amplitudes begin to saturate. For
M > Mmax, FS(T) in Eq. (1) is constant, i.e. does not grow with M;

Mj - seismic moment (= p%A) (dyne cm);
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M§M _ seismic moment computed from strong motion data;
M, - the local magnitude scale (Richter, 1958);
M f M _ local magnitude computed from strong motion accelerograms;

M, - “magnitude” as published in various catalogues (without specification of the
wave type, used, or the procedure employed);

M, - surface wave magnitude;

N, - number of peaks of a random function (N, = W L/Ao);

Nz - number of earthquakes of magnitude M £+ A—ZM in a region during a given time;
p(e,T) - probability density function describing the distribution of ¢(T') in Eq. (7);
Q - the quality factor;

Qo - the value of @ at f = 1 Hz;

Q4 - the average value of @ for a range of depths;

r - the characteristic source dimension (see Table III) (km);

R - epicentral distance (km);

R, - transition distance where the frequency dependent attenuation Att(A,M,T)
becomes ~ R/200 as in log,, Ao(R) (Richter, 1958); Ry is also used to
represent the radius of the ray path in Fig. (31);

s - the geologic site condition parameter (s = O for sediments, s = 2 for basement
rock and s = 1 for intermediate sites);

sy, - a parameter describing the local soil site condition (s = 0 for “rock” sites,
s = 1 stiff sites, and s, = 2 for deep soil sites);

S - the source dimension used in Eq. (3) and defined by Eq. (4). Also used in
Eq. (29); the “source dimension” S = .01 x 10-*™ (km);
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S £l), S £2) - indicator variables describing the local soil conditions (see Eq. (5));
So - the coherence radius (Gusev, 1983) of the source (km);

S; - distance between the station and the top of a vertical fault (km);

t - time (sec);

t' - delayed time, t' =t — R/f;

T - period of vibration, T = 1/ f (sec);

T(N) - periods (N = 1,2,...,12) for which b;(T), Mmin, Mmax, #(T) and o(T) are
prescribed in Table I. Eq. (1) can be used for N < N, (see Table II) i.e.
for T < T(N.);

T, - period where FS(T) is maximum, Tp, = 1/ fp;

T. - cut off period T, = T(N,) = 1/ fco (see Table II);

T, - the dislocation rise time, To ~ g% (sec);

U, Umax - dislocation amplitude, maximum dislocation amplitude;

u - dislocation averaged over the fault surface;

v - an indicator variable; v = 0 for horizontal motion, v = 1 for vertical motion;
v - dislocation velocity (km/sec);

vo, V1 - coefficients in Eq. (60);

W, Whin, W - fault width, minimum fault width, a distance such that W = ¢W,,
for 0 < ¢ < 1, (km);

Wg, - width of Ly faults in a region;
Was - the width of a patch (for M < 5 to 6);

ya - the depth, y4 = (Ro — d)/2, where the average Q is evaluated;

101



a - corner frequency in the Brune’s spectrum (see Eq. (18));

ap - scaling constant (in @ = agL);

B - velocity of shear waves, 8 = (u/p)'/? (km/sec);

~ - exponent in Q = Qo f"7;

A - the “representative” source to station distance (see Eq. (3));

€ - a factor (0 < € < 1) indicating a fraction of the stress drop o (Brune, 1970);
&(T) - residuals, £(T) = log,o FS(T) — log;o FS(T) (see Eq. (6));
n - the efficiency in the expression for the apparent stress, o, = no;
k - the high frequency attenuation constant, k = A/(QB);

u - shear modulus, u = pB? (dyne/cm?);

p(T) - the mean of distribution p(e,T);

7 - constant (=3.14159);

p - material density (gr/cm3);

o - effective stress (also used as stress drop, Brune, 1970), defined as the difference
of stress before the earthquake and the frictional stress during faulting;

T - root-mean-square of the peak stress amplitudes on the fault surface (different
from @ in 0, = 10);

o(T) - standard deviations of the distribution p(e,T) in Eq. (7);

0, - the apparent stress, also designated by @, here and in literature (note that in
this paper ¢ has different meaning when it is used alone (without 7), e.g.
to represent the root mean square amplitude of the peaks of the stress on
the fault surface;

7 - the characteristic source time, 7 = 1/f; = % + To;
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w - circular frequency, w = 27 f (rad/sec);

Onr(w), Qpr(w) - near-field and far-field Fourier amplitude spectra of strong motion
displacement;

w1, we - corner frequencies wy = 27 f1, wy = 27 f2, (rad/sec).
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