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ABSTRACT

This paper presents a general methodology for simultaneous estima-
tion of the epicentral locations of local seismic events, their focal
depths, their times of origin and the crustal velocity structure of the
earth in their vicinity, using the first P-wave arrival times recorded at
an array of sensors.

The problem is formulated within the framework of the three-dimensional
ray theory. Having started with an initial "guess', a systematic method
is developed for iteratively improving the estimates of the four source
parameteré for each event and the local velocity structure, by using the
information contained in the observations. A highly effective and auto-
matic numerical algorithm for this purpose, based on an optimal control
formulation of the problem has been provided. The algorithm uses the
first order gradient method to minimize a positive scalar index representing
the deviations of the calculated P-wave arrival times from those observed.

The method is illustrated using two-dimensional simulations in which
either all or part of the parameters are to be estimated. The nonunique-
ness of the estimates is demonstrated, pointing to the fact that unless
large amounts of travel time data are available, the information contained
in‘such data may not be sufficient to pin down uniquely the source para-

meters and crustal velocity distribution.






INTRODUCTION

The problem of determining the local velocity structure, the loca-
tion and times of occurrance of the seismic events from the observation
of the times of the first p-wave arrivals at several sensors from local
earthquakes has received increasing attention from the seismologists in
the recent past. Wesson (1971) addressed the problem of determination of
simple lateral inhomogenities in the velocity distribution and determined
the parameters using an iterative least-squares apprbach. Lee and Engdahl
(1976) treated the problem of relocation of earthquakes. They used the
ray tracing approach and assumed a known heterogeneous velocity distri-
bution in the earth medium. Aki and Lee (1976) have attempted the com-
bined problem of determination of all four source parameters together
with the three-dimensional velocity distributions; however, they obtained
only approximate solutions by employing a single correctioﬂ, starting
with a homogeneous velocity distribution. Their method does not include
a technique for iterative corrections of both the source parameters
(the epicentral location, focal depth, and origin time) and the velocity
distribution using the ray theory approach.

Crosson (1976) has attempted a least-squares formulation of the
problem of simultaneously relocating earthquakes and determining the
velocity profiles. He uses the damped least-squares approach and cal-
culates the sensitivities of the first p-wave arrival times with respect
to those parameters that model the velocity distribution as well as
those that refer to the source.

In this paper we present a new iterative approach, based on the hill-
climbing technique, for simultaneous determination of the epicentral

locations, the focal depths and the origin times of local seismic events,
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and the local crustal velocity structure using the first arrival times

of the p-waves from these events, recorded by an array of seismic sensors.
The model for this problem employes ray-tracing in a three-dimensional
region with an inhomogeneous velocity distribution.

In the approach taken here, the estimation problem is viewed as an
optimal control problem (Bryson and Ho, 1969), wherein the parameters being
estimated are control variables and the ray equaﬁions govern the system
"'response'. The optimality criterion to be minimized is a positive
scalar index consisting of a weighted sum of the squares of the deviations .
of the calculated arrival times (based on the model) from those actually
observed. This approach leads to a gradient algorithm for the solution
of the inverse problem. This method for the identification of dynamic
systems appears to have been first employed independently by Chen et al
(1974) and Chevant et al (1975), in connection with the determination
of porous rock properties from oil pressure data in producing petroleum
reservoirs. Later Udwadia and Shah (1976) applied this method to the
problem of identification of distributed pafameters in a hyperbolic
equation modeling building structural motions during earthquake ground
shaking. The major difference between these problems and the travel time
inversion problem is that in the former set the dynamic state variables
are observed as they evolve in time, whereas in the latter, the observed
quantities (travel times) are fixed for a given model. Alternatively,
the observed arrival times in the present problem may be viewed as func-
tionals ofthe ray solutions, the co-ordinates of which are the evolving
staté variables of our '"dynamic" system.

Using the optimal control formulation of the estimation problem, ex-

pressions are derived for the gradient of the scalar functional in the



space of the unknown parameters; the calculated gradient is used in the
hill-climbing technique of the conjugate gradient directions (Luenberger,
1973) for minimization. These gradients are obtained by considering

the P-wave velocity to be a distributed parameter; they are later adapted
to the situation wherein the distribution is determined by a finite number
of scalar parameters. These expressions involve solutions to the model
equations and the associated adjoint equations. The adjoint equations are
derived considering the first variation of an expression for the minimi-
zation index; they are linear, inhomogeneous differential equations. An
important advantage of this approach is its computational efficiency: the
need for calculating the sensitivity of each observation with respect to
each of the unknown parameters is obviated; furthermore, the effort involved
in the least-square solution of large matrix equations, at each iterative
step, is eliminated. However, this saving is achieved at the expense of
the additional computational effort involved in searching (at each itera-
tion) for the first local minimum of the index in a conjugate gradient
direction in the parameter space.

The proposed gradient method is illustrated by application to a
simulated two-dimensional problem with all of the seismic events and the
sensors lying in a vertical plane. The velocity distribution is para-
meterized in two alternate ways: using block interpolation and horizontal
layers. The two-point boundary value problem, involved in ray tracing,
is numerically solved using the computer program PASW2 by Lentini and
Pereyra (1975) that employs a variable step method. Several alternative
estimation problems with different "true'" velocity distributions are
treated; for each velocity distribution, several alternative cases are

considered, with different kinds of parameters unknown in each case.



From a physical standpoint, it is clear that the observations of the
travel times contain information about the velocity distribution of the
medium mainly along the ray paths. Hence, in general, the velocity dis-
tributions cannot be determined in the regions which do not contain any
rays. Also, associated with each seismic event are its unknown source
parameters, thus further reducing the information content available to
decipher the velocity distribution. Thus, the number of sensors record-
ing the first P-wave arrivals from any seismic event must exceed the
number of its source parameters that are unknowns; moreover, improved
identification will be achieved by increasing the number of sensors. The
simulation studies reported herein bear out these facts and show that
the identification may lead to nonunique solutions. Numerical results
indicate that multiple solutions which match the given set of travel time

observations, with a certain accuracy, are possible.



FORMULATION OF THE PARAMETER ESTIMATION PROBLEM

For simplicity, we shall assume that the P-wave velocity
distribution is independent of the y co-ordinate. Then a ray between
two points in the x-z plane will lie entirely in that plane, and
the velocity distribution in a bounded domain D in the x-z plane is
to be estimated. However, we note that the methodology presented below
is equally applicable to the general three-dimensional problem with
v = v(x,Y,z) and the derivation of the gradient can be extended in a
straight forward manner to treat that problem.

The equation of the ray between a point (xo,zo) where a seismic

event originates and (xs,ys) where a sensor is located is given by,

'_dgis_ wx') - %‘}% =0 (1)
£z -0 | @)

with the boundary conditions,

x(0) = x&, z(0) = Zg » x(S) = X z(S) = 2z (3

s
where s is the arc length measured along the trajectory measured from
the origin point (xo,zo), S is the total length of the trajectory,
and w(x,z) = 1/v(x,z). For simplicity, we shall treat w as the dis-
tributed parameter to be estimated instead of v in the following.

Let there be m seismic events occuring at location (xo > Zg ) at

i i
times T, > i =1,2,...m and let there be n sensors located at
i
{(xS , 2z ) :3j=1,2,...,n} where the times of the first arrival of
. S
] ]

the p-waves from each of the m events are recorded. Then, denoting the

travel time of the signal along the ray between (x0 > 2 ) and (xs > 2g )
i i i 73



by ATij’ we have the observed time of the first arrival of the P-wave,

to be, obs
ij " To, " 8Tiy T Ny 4)
where nij is an observation error. ’ Furthermore, the travel time is
given by, S
84
ATij =J; w(s)ds (5)

where Sij is the length of the ray path from the i-th epicenter to

the j-th sensor.

Assuming nij to be independent, zero-mean Gaussian random variable

with variances Gij’ the velocity estimation problem may be posed as the
minimization problem:

Minimize J = %— g 1 ( oPs‘nglc)z

(6)
{w(x,z): x,zeD} _
{(xo.,zo )T, ): i=1,...,m}

i i i

1

where nglc
1)

is the calculated value of the first arrival time of P-
waves from the event i at the sensor j using the estimated values of
the unknown parameters,

real _ gest | ap
ij 0. ij

(N

We shall assume that the domain D is sufficiently large so as to
enclose all the mn ray paths at all stages of an iterative minimization
procedure. For simplicity, we take D to be the rectangle (0 < x < a,

0 < z < L) as shown in Figure 1.

In the following we propose an optimal éontrol formulation of

this minimization problem and derive formulae for the gradient of J

with respect to the unknowns.



Optimal Control Formulation:

In optimal control formulation, the minimization problem is
treated as an optimal control problem (Bryson and Ho, 1969) with the
minimization criterion J as a performance index and the parameters
to be estimated as control variables; the optimal control solution is
to be determined subject to the system equations, which are treated
as constraints on the state variables. From this standpoint, equations
(1), (2) and (3) form constiaints on the state variables xij(s) and
zij(s), and the quantities w, %%»and %% along the ray paths constitute
our control variables. However, the last three quantities are not in-

dependent of each other and the relations between them must be included

as constraint equations. Writing %¥-= fl and %¥-= fz, these are:
dwi. .
& - X550 26, | (8)
afl ) sz o
Bz - T (x.z)ED 9
where w..(s) is the value of w on the (i,j)th ray. In order to include

1)

(8) and (9) as constraints in our formulation, wij(s) and fl(x,z) may
be treated as additional state variables and fz(x,z) may be treated
as a control variable. Then, to determine uniquely these additional
state variables for a given value of the control variable f2, initial
conditions must be supplied to equation (8) and (9). Let these be,

wij(O) = woi i=1,2,...,m (10)

fl(x,O) = h(x) xe(o,a) (11)

Since the values of W and h(x) are unknown, they must be treated as
i
additional control variables.



Furthermore, in order to integrate the equations (1), (2) and (8)
the value of the total arc length S has to be known. However, since it
depends on the ray path it cannot be determined apriori. Hence, it also

must be estimated and thus added on to the list of the control variables.



Thus, the equivalent optimal control problem consists of determin-

ing the contral variables {woi,xoi,zoi,Toi :i=1,2,...,m}, {Sij :i=1,2,...m;j
=1,2,...n}, fz(x,z) and h(x) such that the value of the performance

index J defined in (6) is a minimum when the constraint equations (1), (2),
(3), (8), (9), (10), and (11) are satisfied by the state variables. We

note that instead of relation (8) we may include a more general relation

%} = £(,2)  (x,2)eD (10)

with the boundary condition,
w(0,2) = hy(x) an

However, relation (8) is preferred over (10) because the system equations
(1) and (2) depend only on the values of W and its derivatives along the ray
path. Furthermore, it is evident thét the observations contain information
about w, f1 and f2 at points mainly along the ray paths. Use of relation
(8) will lead to a formulation where the values of w only along the ray
paths are directly estimated.

The minimization of J can be efficiently carried out using the
hill-climbing technique as follows: starting with some a priori esti-
mates of the unknowns, we make small corrections iteratively in their
current estimates such that the value of J decreases locally at the
greatest possible rate. Evidently, the iterative correction at any stage
must be in the direction of the negative gradient of the function J in
the control variable space. In the following we derive a procedure
to calculate this gradient for a given set of estimates of the control

variables.
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Derivation of the Gradient of J with Respect to the Parameters:

Adjoining the constraint equations (1), (2), (8) and (9) to the
performance index J using arbitrary multiplier functions Aij(s),

alj(s), €5 (s) and ¥(x,z) we obtain,

~ b obs cal f '
J=1 I [20 ~ ( " T, - ATy ) { (s) (wux1J ) - fl]

i=1 j=1
wi.
+ 0y (5) [ds(‘”u 215 - f] 5550 |l - £x) -£,21 | has

f S ¥ ven - 2
¥(x,z) 537 ] dx dz 12)
X=

Let us consider the variation of J due to small variations in the con-

trol variables, Sh(x), 6f2(x,z),{5T 8w, 8x ,8z  :i=1,2,...,m},{SS..}.
0. o, .> o, ij
i i i i
Let the corresponding variations in the state variables be denoted by

Gwij’ axij’ GZij, and Gfl(x,z). Then we have

Sij
< _ 1 bs cal
§J =L L {— — (T..” - T )(GT + §I. Ww..(s)ds)
ij cijz ij °i 0, A ij
. - S..
I8 2 e oo
RO [ 5005 )-fl] s +) oy (s)[—d?(lezU) f]

+

v a
fsij [dwi. f f L [Bfl afz]
J _ ' ' _—

6»0 Eij(s) I flxijv fZZij ds-fdo . Y(x,z) 52 e dxdz

(13)

The first order variations (Gelfand and Fomin, 1963) of the inte-
grals along the rays in the last expression can be evaluated using the

following formula:

v[XI
7"
§J  £(x, ¥ys yl, Y1s Yos Yo ¥hs ees y1) dx

0
d d2
- = (f —_ (f Sy.dx
X

0
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d |
+|1f-Zf ,y!+Z (£ )D)y'-2:f y'.']Sx
[iyilidxy'i'liy'i'l x,
Xl Xl
vz (g, ,,> oy | Lz, oy (14)
i (yi ax Ty Xy i y'i' lxo

We give the results below for a single trajectory, dropping the sub-
scripts i and j for simplicity; we note that the lower limits of

all the integrals is fixed at s=0.

S S S S
Gf w(s)ds =f Swds + w(s)ésl =f6wds + w(S)48s (15)
0 0 0 %o |

S S
sf A(s)[—(—% (wx") - £ ]ds = sf A(S) [w'x' £ wx" - fl]ds
0 ) 0

S s
-f A'x' Swds +f [Aw + Arw']6x ds :[)\Gflds
0 0

S
+ Ax'&wl - A'wéx
0

S
Gj a(s) [Tiqs- (wz') -fz] ds
0
S S S
= -f a'z'dwds +f [a"w + a'w']dzds -f adf,ds
0 0 0

S S S
]
0 0 0 + owdz

af g(s) T X - fzz']ds

S d 3f1 3f2 7
- P ?
-](; £'Swds +j; [ds (Ef) g % x! Eax 2'{Sxds

S S T4 o, 3, S
-j; Ex'dflds +j(; [d_s (?—;f ) - F,—-— x' - E-a-z— z'|8zds - Ez'szds
0

S S S

+ Awéx' i (16)

+ (A'wx!' - Afl)ﬁs
0

0 0

S

- o'wlz 0

+ oz'Sw

+ (a'wz' - ozfz)ch (17

S S
- EfZGZ

0

S
+ £ 8w

- Ef,6x (18)

0 0
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S
where g(s) = g(8) - g(0). We note that since the sensor location
0

is fixed, in the above expressions 8x(S) = 8z(S) =
The first variation of the last integral in (13) can be ob-

tained after integration by parts as,

af Bf
ff ¥Y(x, z)[ dxd f — Gf sz]dxdz
a L J‘
+L ‘Péfl dx - ‘l’6f2

z2=0 0 1x=0
Substitution of results (15) through (19) into (13) and a rearrangement

a ‘ .
dz (19)

yields the following expression for the first order variation in J:

8 =L 3%
ij

5, 4 of of,
" —_— - —— 1] - R ]
J; %55%15 * %43%5 T CBaif) - By 3 Xy Biyr 2450024598
Sij
[(TObs -1y L xt wallzt, s gz.]cw..ds
ij| o ij

550 4 3 3£,
" t [} —_— - R ! - — !
o "13 ij * MYt as Gy 815 3x *ij " Gijax 24j|0%;;9s

ij ij ij 13 ij7ij

0
Sl] ij
- ' - '
J; [ 1j gljxlj Gflds ) [éij + Eijzij]éfzds

S,
lJ 1 I
+(A! E f ) 8x
o 13" Va0 %

+

'
(Aijxij + alJ ij g )Gw

S..
1]
0

S. .
' 1] )
+ (o + &, .f . +0 1J 136213

Sz + A..w,.6x!.
ij 13 0

o, ijrij o Uij

+

obs calc ' v ' _—
55 - m55 s Mgy - st s 3% ]

[T B || o[
Gf ]dxdz +f Y&f \ dx —J Y& £
3z A | A 2

ry 1 ohs calc
: (T;; - T:% ) 6T,
ij oij ij ij o3

a
dz

x=0 (20)
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So far, the multiplier functions Aij(s), aij(s) and £ij(s) are
completely arbitrary. We may select them in such a manner that the
expression for §J becomes the simplest possible. For this purpose,

we let Aij’ o.. and Eij satisfy,

1)
of of
d 1 2
" + MW —_— . - E.,., — Xx!. - ——— =
Mii t Mgt s Gagf) - 8y e Xy E R U (21)
' afl afz
" ' - Ry =
al] ij + aljle (513 2) EIJTZ_ xij El] 32 ziJ 0 22)
£l + ALx!. +al.z!. = -(1°S _ g2l s€(0,8. .) (23)
ij 1J ij ij 1J ij ij *ij
.. (0) = =0a..(0) = .. (S. N = .. . . = 0
AU( ) )ij(sij) czU( ) au( U) ElJ (SU) 0 (24)

We note that relations (21) through (24) constitute a well-posed,
linear inhomogeneous two-point boundary value problem in the variables
Aij’ aij’ and Eij' Hence, it has a unique solution.

When the multipliers are solution of the above problem, and

when the functions Xy (s), z; (s), Wy (s) and f (x,2z) satisfy the

system equations, we obtain the following expression for 8J after trans-
forming the remaining integrals along rays into integrals over D by using

delta and unit step (Heaviside) functions:

Y zz , )
ff { 3 Ogj* §5%15)8 0o 5 (0)8(z-2; (5| H(O) H(Sij)]}éfldxdz

J(;f {—-—— - f;ﬁ (on 513 lJ)6()( - Xy (s))ﬁ(z-zij(SD [H(O) - H(Sij)]}éfzdxdz

- Eij(O)Gwo + (At.w, . + gijfl)L=06xoi + (a!'.w.. + Eijfz)L=Oézoi

i ij 13 ijij
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+ [_(Tobs__Tcalc

1 obs ,.calc
.. Se )WL+ A w, . x! a!.wr.z!.] _ 6S.. - I—— (T,.°-T:2 )ST
ij ij ij ij ij7ij ij ijrij s—Sij ij ij Oij ij ij o,
L 2 a a : a
-J‘O ‘1’5f2 <=0 dz -J;) "P(Sfl 2=0 dx +J(; ‘l’dfl z=de (25)

Furthermore, we let the multiplier ¥(x,z) be determined by the

initial value problem,

oY _ ‘ , : N \

i f §1 O*ij + gijxij)G(x—xij (5))5(Z'Zij(5))[ﬂ(0) - H(Sij’]’
(x,2) €D (26)
W(X:L) =0 (27)

Then the first and the last terms on the right of (25) vanish.
The functional derivative 3$Tg£ZT’ of a scalar functional J with
: 3
respect to its argument function {p(x,2): xe(x ,xl), ze(z ,zl)} is

defined by (Volterra, 1959),
1.%1 53
&J =ff m Sop(x,z) dxdz (28)
X0 %o
where 8J is the change in the value of J due to a change 8¢(x,z) in

¢. Then from expression (25) we obtain the following functional

derivatives:
3?‘%%TET Ay 5. f (@35 *+ £;5245)8 (x5 (81)8 (22, 5 () [H(0)-H(S, )]

. ¥(0,2)8(0 - ¥(2,2)8(x-a), (x,2)eD (29)

83 _ 8J = -¥(x,0), xe(0,a) (30)

Sh(x) afl(x,o)
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Furthermore, we obtain from (25) the gradient of J with respect.to

he sca a .. an
t lar parameters Xy s z0 s Wy s SlJ and To as,

o

i i i
3J g
= Z{[M\.w,.. + E..f } (31)
8x°i 3 ij 1J ij l] s=0
9
2ot v g, ’ (32)
azoi J{ ij 1) ij 2] s=0
oJ
w - -2 &0 (33)
i J
9J [ obs _ calc
= |(T{5 - T ) +Al.x!. a'z].._
5Sij ij7ij ijmij) 1) s-Sij (34)
9J  _ 1 obs calc
ot -~ r oz Uiy 7 T ) (35)
i J %5

Thus, the gradient of J with respect to all the control vari-
ables can be directly evaluated once the system equation and the
adjoint equations are solved. Each of the sets of equations {(1),

(2), (3), (8), and (10)} and {(21) through (24)} is equivalent to a

two point boundary.value problem with five first order ordinary differ-
ential equations. (In a three-dimensional problem there will be seven
such first order equations in each set.) The dimensionality of these sets
of equations can be reduced if we restrict xij to be a single valued
function of z and use an alternative formulation of the ray equations
as presented below. In addition to the two point boundary value pro-
blems, the above formulation requires integration of two ((9) and (26))
inhomogeneous, linear, first-order partial differential equations. (In
a three-dimensional problem, there will be four such equations -- two
compatibility conditions and two equations for the corresponding mulit-

plier functions.)
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Alternative Formulation of the Problem:

If the velocity distribution v(x,z) is such that the ray solutions
are single valued functions often expressed either as xij = xij(z) or
zij = zij(x), then the parametric variable s may be dispensed with.

Assuming that xij = xij(z) are single valued for all i and j, the

equations describing the rays are,

2\k%
! 1+x!.°)?
d x.. 1 )
dz » zi%’ * 23 g =0 (36

v(1+xf. \'
1]

where g = g%-, together with the bouﬁdary cohditions,

xij<zoi> = xoi s xij(%sj>= xSj . 37)

In the present formulation, we will treat the velocity Vij(z)

on a ray path and gz(x,z) = %% as state variables, given by the additional

equations,

dvij

dz " *ij%1 * & (38)
g g

2 _ %1 ,

ox 9z (39)
V..(Z ) = v i=1,2, ..., n (40)

iji“s. S.

J ]
8,(0,2) = hy(z) z€(0,L) (41)

Furthermore, the signal travel time fromevent 'i' to sensor 'j' is now

given by,

X

5 2y 42

= !

AT f R SN E | (42)
X

0.
1

Then the optimal control problem requires minimization of J in (6) with

respect to the '"control variables' gl(x,z), hz(z), Ve s {xo., LI To.}'
j i i i
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Multiplying equations (36), (38) and (39) by the functions Aij(z),
Eij(z) and y(x,z) respectively, and adjoining them to the expression

for J in (6) we get

F = I; nz 1 1 (Tobs _ Tcal‘c)z
1 : 112 0..2 YTij ij
i=1 j=1 ij ,
z i 2.%
s, x!. (1+x!.9)
J d ij ij
+ AL (2) ] 5= + g, |dz
./; o dz L (1+x' 2)% v?. 1
0. ij
1 -3
z
SJ rdVi.
+ -—-—l- -
. g13(2) dz ~ xijgl 8,42
o,

fof 8g1 Bgz]
P(x, z) dxdz (43)

Taking variations of J as done previously and noting that J = J when
the system equations are satisfied, we come to the following conclu-
sions.

If Aij(z) and Eij(z) satisfy the linear inhomogeneous two-point

boundary value problem,
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dzxii ax, 2g,
A - 21 . . . =—=10
1 dz2 AZ dz A3l13 * gl] z
dgir. .
KA
A..(z = AX..(z ) =E../(z =0
13( oi) 13( sj 1]( Oi)
where,
1 1
A, =
1 v.. , 2.3/2
ij (1+xij )
] "
A, - 1 Yy 1 . 3 135"
2 dz . 2.3/2 V.. . 2.5/2
i (1+x;%) i (L+xfs)
"
Woo Ll 1 T T £
3 v..3 (1+x!.2j15 ij\ ox ij ox (1+x!.2)
ij ij 1]
x"
1 ij 2 1
A, = + - (g,-x!.8,)
4 v..z (1+x!.2)3/2 vij (1+x!.2) 1 7ij=2
ij i) 1)
_ ,.0bs calc y 2.5
As = (Tij Tij ) (1+xij )
-2
V..
1]

(44)

(45)

(46)

and if ¥(x,z) satisfies the inhomogeneous initial value problem,

Al x!.
X T 8(x-x,.)|H(z-z_ ) -H(z-z_)||&.. + 1] 1]
X ! (x X 0y S5 ij Vijz (1+xij25%
(47)
¥(a,z) =0 ze(0,L) (48)

then the gradient is given by,
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8J W ij
— — + LI 'S (x-x. . - - -
Ggl(x,z) T 2z ij v, (1+x' )1 g1Jx13 (x le(Z)) H(z zoi) H(z zsﬁ)
+ V(x,L)8(z-L) - ¥ (x,0)8(z) (49)
& _ 8J _
Sh,(2) ~ 3g,(0,2) V(02 (50)
aJ n 1 2, ..cbs calc
= I Al. + (1+x' J(T.:" - T.°77) (51
X, j=1 v..(l+x!.2)3/2 1] 1] 1 1 z=2 )
i ij ij 0;
aJ n 1 obs _ calc
= 3 (1+x} 2y (193 ) - Al.x!. (52)
9z, j=1 v..(1+x!.2)3/2 e [
i ij ij o,
oJ _ _ ; (Tobs _ Tcalc) 53
3T jop i3 ij (53)
i
9J
v - 2 E (Z .) (54)
sj i=1 J

The two point boundary value problems in the ray equations and
the adjoint equations are each equivalent to three first order ordinary
differential equations. This formulation is more attractive from the
computational standpoint because it requires less storage. We note
that the previous formulation resulted in mn additional auxillary
parameters {Sij} to be estimated, whereas there are no such parameters
in the present formulation. However, the assumption that {xij(z)} are
single valued functions may prove very restrictive; further, the deri-

vatives {xij} may become very large and lead to numerical difficulties.
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Estimation of Only Some of the Parameters

The foregoing formulae can be directly adapted to the situation
where part of the parameters in the estimation problem are known; then
the observations of the first arrival times may be utilized to estimate
the remaining parameters. For this, the gradient direction derivation
can be modified by simply setting in equation (13) the variations of the
known parameters to zero and proceeding in an exactly analogous fashion.
Then expressions for the gradient of J with respect to the fewer unknown
parameters are identical to the corresponding expressions in the foregoing,
the gradients with respect to the known parameters being ignored. This
leads to a very convenient situation in the numerical study of any given
problem, since a single computer program can be used to investigate the
effects of considering several alternative sets of parameters as unknowns.
We note that when the velocity distribution is known, the adjoint variable
Y(x,z) need not be calculated; and when only {To.} are to be estimated,
none of the adjoint variables are necessary. Inlfact, in the last situa-
tion, the observations are linear in the unknowns and J is quadratic;
then only a single solution of each ray equation is required to solve the

problem.

Parametrization to Reduce Number of Unknowns

Since the number of observations is limited, it is important to limit
the number of unknown parameters in order that the resulting estimates be
unique. For this purpose, the unknown functions (e.g., gl(x,z), hz(z))
should be approximated using a finite number of unknowns. As detailed be-

low, the foregoing results are easily modified to obtain the gradient
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of J with respect to the finite set of parameters used in the parametri-
zation. Let the finite dimensional representation of gl(x,z) be given

by, I
g, (x,2) =.21aifi(x,z) (53)
1=

I
Consider the variation 8J in J due to the variation 6g1(x,z)= z Gaifi

i=1
in gl(x,z). Then,

&J

8J
ffD 3g, (5, 2) 6g, (x,2) dxdz

I
‘ 8J
izlaaif'll; gl (X,Z) fi(x’z) dXdZ (54)

Then it follows that the component of the gradient, 8J/3ai is given by
the integral on the right of (54). Thus, any suitable parametrization

can be used in conjunction with the method presented here.

Computer Storage Requirements

The computer storage requirements in the present method as proposed,
are very severe in general, since the solution of the y equation and the
evaluation of the gradients requires the storage of all the ray solutions
and the corresponding adjoint variables. This problem is further com-
pounded by the fact that a largé number of arrival time observations are
needed for accurate estimation of the unknowns since each observation
contains relatively little information about the unknowns. A reorgani-
zation, indicated below, of the gradient calculation can reduce these
requirements to the storage of a single ray solution and the corresponding
adjoint variables, at the expense of increased computational effort.

Since the adjoint equations associated with a given ray are indepen-

dent of other rays, and since the expressions for the forcing term in the
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linear y-equation and the gradients iﬁvolve summation of terms, each of
which is dependent only on the solutions of the equations of a single ray
and its associated adjoint variables, the gradients can be computed in a
cumulative fashion. 1In this procedure, each data point is treated sep-
arately, and its contribution to the gradients is determined using the
foregoing formulae specialized to the case where only that datum is avail-
able for estimation. The respective gradient components, taking into
account all the available data points, are obfained by summing the contri-
butions of each datum computed in this manner (see Figure 1). 1In this
procedure, evidently the computations involved in the solution of the 1]
equation and those associate& with the parametrization in (54) have to be
carried out repeatedly for each observation. Of these two, the latter
involves a larger amount of labor since the integral on D has to be eval-
uated separately for each parameter a; and because the solution to the ¥
equation with a single ray is particularly simple.

The Minimization Algorithm:

The iterative first order conjugate gradient algorithm used for
minimization of J is summarized in Figure 1. For convenience, all the

unknown parameters are assembled in a single vector m, and the estimates

are denoted by 7. The search distribution di in the parameter space for

~

the ith iteration are determined as follows (Polack, 1973),

i
dj = - J/3M" + v;d;
where
¥, = 0
v; = Hesm 121 e 1%, is1

where the superscript i on 3J/3m denotes its value at the estimate of m



-23-

in the ith iteration. The unidirectional search involves repeated evalua-
tion of J, and thus is the step that accounts for a large fraction of the
total computer time required for minimization. The search strategy that
we followed involves searching with a constant step size until the minimum
is included in the interval between three consecutive points; thereafter
this interval is repeatedly divided until the size of the division

reaches a prescribed limit. Finally, the minimum is estimated by inter-
polation of J values at the three consecutive points surrounding the
minimum. A judicious choice of the step size and its dynamic alteration
during iterations are required to limit the computational effort involved

in the minimization procedure.
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(1) Start by setting:
i=1
current estimate Ei = initial guess m
(2) Using the current estimates:
(i) Integrate equations (39), (41) for gz(x,z)
(ii) For each observation:

(a) solve ray equations (36), (37), (38)

(b) calculate travel time and model arrival time

(c) solve adjoint equations (42), (43), (44)

(d) integrate Y-equations (47), (48)

(e) determine contribution to the gradient BJ/BW
using (49) - (52)

(iii) Add up the contributions to J and BJ/aﬂ by all obser-
vations to yield Ji, (BJ/Bw)l

(3) Determine the search direction d. using the conjugate gradient method.

(4) Search for the first local minimum of J in direction d i’ starting
with ﬂl

(5) Update the estimates:

i+ .. . .
mt L. the minimum found in the previous step

~

(6) Check the stopping criterion:

if satisfied, stop;
otherwise, set i = i+l and go to step (2)

Figure 1. The Conjugate Gradient Algorithm for Minimization of J
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A Comparison of the Gradient Method with the Least Square Method

First, we shall consider the computational effort required to solve
a travel time inversion problem for a three-dimensional domain using the
two alternative methods. Since both methods are iterative and the number
of iterations required by the two méthods for a satisfactory solution
are generally different, the computational effort per iteration of either
method will be considered.

For each iteration of the gradient method, two compatibility re-
lations between the partial derivatives of the velocity must be integrated.
These are mn ray equations and an equal number of linear, two point
boundary value problems in the adjoint variables to be solved. Further,
for each ray solution, the simple partial differential relations for the
two spacebdependent adjoint variables (equation Y(x,z)) must be integrated
with a single forcing term, followed by the evaluafion of the contribution
by that ray to the gradients of J. The latter includes the effort re-
quired in accounting for the parametrization of the velocity pértial
derivatives. In addition, the unidirectional search in the parameter
space muﬁt be carried out at each iteration. The search requires re-
peated simulations of all the observations with a different value of the
parameter vector each time, the number of the simulations depending on
the search stratgey; in our experience with the two dimensional problems,
the average value of Y was approximately 6. We recall that each simula-
tion for a three-dimensional problem consists of integration of two partial
differential relations for compatibility and mn ray solutions. The
average number of iterations of the gradient mgthod required for the two-
dimensional results reported here was 4.

Each iteration of the least squares method (Crosson, 1976)
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involves the calculation of the matrix of the sensitivity coefficients,
followed by the determination of the least square solution of the
resulting system of linear algebraic equations. The evaluation of the
sensitivit& coefficients (partial derivatives) of each of the mn observed
arrival times with respect to all unknown parameters requires a large
computational effort. However, the sensitivities with respect to the
velocity parameters are particularly simple to calculate for the travel
time inversion problem, since the variations in the ray path do not
influence the travel time to the first order (Backus and Gilbert, 1969);
thé sensitivity with respect to each of the velocity parameters is ob-
tained by a single quadrature along the ray path. Thus, in addition to
the mn ray solutions, pmn such quadratures must be carried out, where P
is the number of velocity parameters. The calculation of the sensitivities
of each travel time with respect to the three epicentral coordinates
requires the solution of three two-point boundary value problems, each
consisting of three coupled, second order, linear differential equations

for the sensitivities of the ray solution to one epicentral coordinate

(Bx (4) ay(d) 93z(4)

on ’ 3xo ’ on

) . The sensitivities with respect to the origin
times can be calculated without significant effort. Finally, if the total
number of unknown parameters is N, the least square solution of mn linear
algebraic equations in N unknowns must be determined at each iteration.

We note that the computational effort per iteration of the gradient
method presented here does not increase significantly Qith N, whereas that
for the least square method does; the effort for the sensitivity calcu-
lations increases as N, while that for the least square solution increases
as NS. Furthermore, although the number of times all the ray equations

have to be solved during the unidirectional search in the gradient method
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is large, the effort involved in these repeated solutions can be reduced
considerably by using for a given ray, the solution obtain in a pre-
vious step as the starting solution. Since the successive steps during
the search consist of simulations using the parameter estimates which
differ little from each other, this way of initialization leads to a
rapid convergence of the procedure for solving the ray equations. While
this makes it necessary to store the ray solutions, the storage require-
ments can be minimized by storing the solutions only at relatively few
points along each ray.

In the iterative least square method, the coefficient matrix in the
linear, algebraic system of equations is often nearly singular, loading
to numerical ill-conditioning. This difficulty must be obviated by
modification such as the use of 'damped least squares' method (Levenberg,
1944). On the other hand, the gradient method does not involve this
difficulty and yields the smallest iterative corrections in the parameter
estimates that lead to a given reduction in J. The gradient method leads
to a rapid reduction in J even when the initial guess of the parameter
values is grossly in error; however, the rate of convergence slows as the

minimum is approached.
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Illustrative Example

The results of the formulation with x as an independent variable
were applied to a simulated estimation problem in two dimensions. Ten
sensors located at the ground level were assumed to observe five seismic
events originating at various depths in a rectangular domain 14 km deep
and 15 km wide. The location of the sensors and the event origins afe
shown in Figure 2. The co-ordinates of the locations as well as the
times of occurrance of the events are listed in Table 4 under the heading
"True Parameter Values." |

Details of Parameterization:

The function gl(x,z) is determined by its values at the node points
a large, uniform rectangular grid covering the domain. If the co-ordi-

nates of the corners of a rectangle of the grid are (xi,zj), (xi+1,zj),

(xi,zi+1), (xi+1,zj+1) with xi+1>»xi, Zj+l>'zj’ the value of g, at any

point (x,z) within the rectangle is given by the interpolation formula:

)

(85.1,5) - 8,5) (g ;- ooz

. .- 8.
= l’J - 1’J+1 1,
g (x,2) g 5* XXy (x-x,;) + 21 %5

8i+r1,j+1 " 8i+1,5 " 8i,j41 "8

CNEENICAREER)

+

i,j (x-xi)(z-zj) 55)

where gi,j = gl(xi,zj). In the results reported here, D was divided into
four divisions in the x direction and five in the z direction, yielding a
total of 30 parameters representing gl(x,z) (Figure 3). The function
hz(z) is parameterized by its values on the large z-grid used above; the
value hz(z) is given by linear interpolation of hz(zj) and hz(zj+1) for
Zj f_zizj+l. Thus, sic parameters were used to approximate hz(z) .
Alternatively, a different parameterization was also used, such that

gz(x,z) is uniform within a horizontal layer so that
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gz(x,z) = hz(z) =c; z, <z<z, (56)

1 J
In this parametrization the value of gl(x,z) was held fixed at zero. Then
all the changes in estimates of gz(x,z) are due to those in hz(z), which
in turn is approximated by a piecewise constant (within each layer) func-
tion equal to {ci}. ‘Thus, the total number of unknowns in this para-
meterization replacing the functions gl(x,z) and hz(z) is equal to the
number of layers in D. This parameterization implies and continuous
velocity distribution that is independent of x, and piecewise linearly
varying in the z direction. In the results reported here, D was divided
into five horizontal layers of equal height (Figure 3).

In the sequel we shall refer to these two different descriptions of
the velocity distribution as '"block" and '"layer" parameterization, res-
pectively. Evidently, the layer description entails a much smaller number
of scalar unknowns associated with the velocity distribution among the

two parameterizations.

Numerical Solution of the Differential Equations:

The ray equations were solved using the program PASVA2 by Lentini and
Pereyra which employs a variable order variable step finite difference
algorithm. This program has automatic variable order and automatic mesh
selection capabilities which make it very suitable to the problem of ray
tracing in inhomogeneous media. The two point boundary value problem in
the adjoint equation was also solved using PASVA2; since these equations
are linear, the convergence is very rapid. The starting guess for the
ray solution was taken as the straight line segment joining the epicenter
with the sensor location for the iterative process in PASVA2. 1In all sub-
sequent solutions for a given ray, the ray path of the preceeding calcula-

tion, after necessary minor modifications to account for any changes in the
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epicentral location, was used as the starting solution in PASVA2. For
the adjoint two point boundary value problem, the uniform starting guess
of zero was used in all gradient calculations.

The z-grid in the starting solution of the ray equation was always
taken to be coincident with a smaller uniform grid, which divided the
depth L of D into 35 equal strips, with the exception of the first divi-
sion which extended from zg; to the next z level on this grid. The non-
uniform z-grid output by PASVA2 in the ray solution, which always included
the grid of the starting ray solutibn was used as the starting grid for the
adjoint two point boundary value problems, the coefficients and the for-
cing term at all subsequent stages being determined by interpolation.

The partial differential equations for g, and ¥ were integrated along
the characteristics z=const, using a uﬁiform grid which divided D into
respectively 28 and 35 divisions in the x and z directions (Figure 5).

The large grid which formed the boundaries of the blocks used for the
parameterization of 8, coincided everywhere with this small grid. The
forcing term in the y-equation (47) was lumped suitably at the grid point
on this smailer grid situated‘closest to the ray path for a given z. The
central differences were used for approximating the derivatives. The
smaller grid was also used in calculating the gradients in equations (49)
and (50).

Conditions of Simulation:

Five different "true" unknown velocity distributions, labeled D1
through D5, were used; they are shown in Figure 4. All'distributions ex-
cept D2 are uniform in the x direction (v(x,z) = V(z)). The distribution
D2 varies linearly in both_x and z directions; its two sections at x=0 are

shown in Figure 4.
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The initial estimates of the epicentral locations and the origin
times were held fixed for the simulations; they can be inferred from
Table 4. The initial estimates of the unknown velocity distribution D1
through D5 are all uniform in x direction; they are also shown in
Figure 4.

In all cases reported here, it is assumed that the velocities at the
sensor location {vsj} are known exactly and are held fixed at their true
values during the estimation process. This assumption is justifiable on
the basis that, the velocity distribution at the ground surface is avail-
able for direct observations and measurements, using auxilliary experiments.
This reduces the number of unknowns in the problem and thus aids a more
accurate estimation of the remaining parameters.

In order to investigate the effect on the estimation problem of
having good prior estimates of some of the unknowns through some auxilliary
data, simulations were also carried out where only part of the parameters
were to be estimated. In these cases, the remaining parameters were
assumed perfectly known, and their estimates were held fixed at the "true"
values during the entire estimation process.

Results and Discussion:

The results will be presented in terms of the estimate errors for the
different parameters. The errors in the x and z co-ordinates of the
epicenter will be reported separately, but will be combined over all the

events. For this purpose, we define:

e. = I |x. - x,tTUe (56)
X . ~i i
i=1
and A true (57)
€ = I Z. - Z.
z RO | i
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The quantities €y and €, will be reported to indicate the improvements in
the estimate (xi,zi) of epicenter locations. A similarly defined quantity
€ will be employed to represent error in the estimates of the origin
times of all the events. In real situations, these errors cannot be cal-
culated since the true values are unknown; nevertheless, they will be
employed for our simulated problems to obtain a measure of success of the
estimation procedure.

The estimation procedure presented here yields the P-wave velocity
only along the ray paths, whereas our interest is in obtaining the velocit
distribution v(x,z) in D. For this purpose we will utilize the estimated
distribution gz(x,z)and v(x,z) will be determined by integration of the
equations:

§¥-= gz(x,z) ,» V(x,L) = given - (58)

As mentioned previously, the velocity distribution v(x,L) at the ground
surface will be assumed known since it can be directly measured. Then
solution of (58) yields the distribution v(x,z) of interest. The results
of the simulation runs will be evaluated using the total estimate error
in v(x,z) as defined by

1 IZ est true
€, =5 s+ |Vis - Vi: |
v N1 ij ij ij

(59)

where the summation extends over all the points of the smaller grid, which
is used in the integration of equations (39), (47), and (58) and where
N1 is the total number of terms in the summation.

It is evident that the observations do not contain any information
about the velocity in those regions along the boundary of D through which
no rays pass; hence the evaluation of the estimates is more properly done

by excluding such regions while determining €, However, this is difficult
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since the rays are curved. Hence, we will report an approximate measure
év’ which is determined by excluding from the summation in (59) the lnwest
layer and the columns of blocks adjacent to the vertical edges of D.

In Table 1 we present the results of simulation using the velocity
distribution D1 and both types of parameterizations. The results for
several alternative cases where different kinds of parameters are known
are included in this table. In all cases except one, the final value of
J is significantly smaller than the initial values, which is indicative
of the success of the proposed method of matching the model behavior with
th¢ actual observations. However, in most cases, the errors ev, év’ Ex’
€, in the parameter estimates are relatively large even for the small
residual values of J. This is indicative of the ill-conditioning of the
problem; for model parameter estimates significantly different from their
true values, the model output is very close to the observed output.

The error €, does not always decrease with reduction in J, whereas
év invariably decreases. This confirms our expectation that in the regions
of D close to the boundary, through which no rays pass, v cannot be esti-
mated from the observations of the times of the first P-wave arrivals.

The origin times are the most accurately estimated parameters. When the
velocity distribution is among the unknowns to be estimated, the estimates
of the epicentral locations change very little and €x and ez remain vir-
tually unaltered from their initial values. This indicates that in this
problem, the parameters in decreasing order of influence on the observations
are: origin times, velocity distribution, and epicentral locations.

The estimated velocity distribution for D1, when all source parameters
are also estimated, is shown in Figure 5. The numbers in the grid give

the velocity in km/sec at the top left hand corner of the respective boxes.
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To facilitate comparison the "true" values and the initial estimates of

the velocity distribution (independent of x) are also shown. For illus-
tration, the ray paths form a single epicenter to two sensors, for the
three sets of parameter values corresponding to '"true'" values, initial
guess and final estimates, are included in this figure. The relatively
insignificant change in the epicentral location for this estimation pro-
blem is evident.

When the velocity distribution is exactly known, the x co-ordinates

of the epicenters are more accurately estimated as compared to the z
co-ordinates. This can be explained in terms of the geometrical proper-
ties of the problem as follows: an error in the estimate of zOi that places
the estimated epicenter above the ture location of the epicenter will yield
a reduction in the travel times for all the sensors, the resulting mis-
match can be reduced by an estimate of Toi, that corresponds to a later
occurrance of the ith event compared to its true origin time. Thus, the
mismatch due to an error in Zp; can be compensafed by a corresponding

error in Toi with little increase in J. On the other hand, since each

epicenter has sensors on either side in the x direction, an error in Xg.
i

will produce a reduction in the travel timeé of the signals to some of
the sensors, while increasing the rest. Therefore, all these changes can-
not be adequately compensated by an alteration in T°i’ and thus any error
in X, will lead to an increment in J. Thus, when Toi are unknown, the

i

influence on J of §0. will be greater than that of 20 . This possibility

1 i
of compensating errors in Eoi and T°i is illustrated later in Table 5.
From this discussion, it follows that when an epicenter lies on one side

of all the sensors, its x and z co-ordinates both will be ill-determined

if To is also unknown.
i
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A comparison of the results with the two different parameterizations
for distribution D1 shows that the estimate errors for all the parameters
are approximately equal for corresponding cases. This is an unexpected
result, because the number of parameters used to model the.v distribution
are greatly different (36 vs. 5) in the two cases. This probably indicates
that for this velocity distribution, although there are a large number of
parameters determining v distribution in the block parameterization, the
gradient of J in the region of interest is significantly steep only in a
very few directions in the parameter space. Then there are many directions
along which no corrections are made yielding large estimate errors.

Table 2 shows the results of simulations using distribution D2 for a
limited number of cases. In this case, the layer parameterization yields

significantly smaller errors év and €, than the block description for the

T
two estimation problems considered, indicating the advantage of using a
smaller number of parameters. We note that év is smaller for the layer
description, in spite of the fact that this description cannot exactly
represent the true velocity distribution D2 (due to the linear viariation
in x direction), whereas the block description can. The errors €y and €,
do not reduce appreciably when all the parameters are unknown. Further-
more, the final errors Ev and €r for a given parameterization are not
appreciably different whether or not the epicentral locations are ex-
actly known. This clearly shows the insensitivity of the observations
to small changes in the epicentral locations.

Table 3 shows the results of simulation using D3. For this distri-
bution, the velocity estimation problem appears to involve numerical

difficulties; the ray solution algorithm often failed to converge, perhaps

because the slope x' of some rays is very large in magnitude due to rapid
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variations in the velocity distribution. For such problems, the ray
equations in the first form, with the distance s as an independent vari-
able, would be more suitable. Hence, only the results of the estimation
problems involving unknown epicenter locations and origin times are re-

ported. As noted earlier, the final error €. is much smaller than €, and

T

€, when both the locations and the origin times are estimated; furthermore,
the x co-ordinates of epicenters are better determined than the z co-ordi-
nates. When only the locations are unknown, the final value of €, is smaller
than N This indicates that the sensitivity of observations with respect

to {zo.} is larger than that with respect to {xo.}, which is explained by

the fait that for the given geometry and velocit; distribution, the change

in ray path length from an epicenter to a sensor (and hence the travel time)
is more influenced by z,. than X, - When only origin times are unknown,

the estimation problem i; linear ;nd consequently accurate estimates, as

evidenced by small €p are obtained.

The occurrance of mutually compensating errors in the estimates z
and fo. is clearly illustrated in Table 4 by the detailed estimate errois
for ca;e No. 1 of Table 3. 1In this set of data, it is evident that the
larger ATo. is, the greater is Azo.. On the other hand, the error Ax )
does not s;ow any definite trend. 1These detailed estimate errors were1
compared with those in case No. 2 of Table 3, where only sensor locations
are estimated; although the final values of J are approximately equal in
the two cases, the errors Azo' are much smaller in case 2, and show no
apparent trend. This undersc;res the influence of the unknown origin
times, {To.}a These mutually compensating errors point to the possibility

i

of non-unique solutions when both epicenter locations and origin times

are to be estimated. When velocity distribution also is unknown, the number
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of ways in which such errors can occur in the various estimates becomes very
large and the degrees of nonuniqueness increases. As the number of para-
meters characterizing the v distribution increases, implying a greater
flexibility in the distribution, this problem of nonuniqueness intensifies.
Tables 5 and 6 present the results of some simulations using velocity
distributions D4 and D5. These results reinforce the remarks and con-

clusions in the foregoing discussion.

Conclusions

1. A new method for matching the model output with the observations is
developed. It is applied to several two-dimensional simulated pro-
blems with different 'unknown' P-wave velocity distributions.

2. When the velocity distribution, and the epicentral locations and the
times of origin of the seismic events are to be estimated, the order
of decreasing accuracy of the parameter estimates is: origin times,
velocity distribution, epicentral locations. In the simulated pro-
blems, relatively accurate estimates of the origin times were obtained,
velocity estimate errors decreased considerably whereas the errors in
epicenter locations did not alter significantly.

3. The estimation problem appears to have nonunique solutions due to the
occurrance of estimate errors invdifferent parameters which can lead
to little net effect on the observations. For example, when only the
origin‘times and the epicentral locations are to be estimated, an
estimate error in the origin time can nullify the effect, on the
observations, of an error in the depth of the epicenter if the epi-

center lies laterally to one side of all the sensors, such compensation
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can also occur with the errors in the estimates of its lateral posi-
tion. When the velocity distribution is also unknown, the number of
possible different solutions that match the observations is much
larger thén in the problem with knowﬁ velocity distribution;
furthérmore, this degree of nonuniqueness increases with the flex-

ibility (the number of scalar parameters) in the model velocity

distribution.

P.C. Shah F.E. Udwadia

Research Associate Associate Professor

Department of Civil Engineering Department of Civil Engineering

University of Southern California  University of Southern California



10.

11.

12.

13.

14.

15.

REFERENCES

Aki, K., and Lee, W.H.K., 1976. Determination of Three-Dimensional
Velocity Anamolies Under a Seismic Array Using First P-Arrival Times

from Local Earthquakes, Part I, Journ. of Geophys. Res., 81, No. 23,
4381-4399.

Backus, G., and Gilbert, F., 1969. Constructing P-Velocity Models to
Fit Restricted Sets of Travel Time Data, Bull. Seis. Soc. Amer., 59,
1407-1414. T

Bryson, A.E., and Ho, Y.C., 1969. Applied Optimal Control, Ginn
Waltham, Massachusetts.

Chen, W., Gavalas, G., Seinfeld, J., and Wasserman, M., 1974. "A
New Algorithm for Automatic History Matching," Soc. of Petroleum
Engg. Journ., 14, No. 6, 593-608.

Chevant, G., Dupuy, M., Lemmonier, P., 1975. History Matching by
Use of Optimal Theory, Soc. of Petroleum Engg. Journ., 15, 74-86.

Crosson, R.S., 1976. Crustal Structure Modeling for Earthquake Data.l.
Simultaneous Least Squares Estimation of Hypocenter and Velocity Para-
meters, Journal of Geophysical Res., 81, 3036-3046.

Engdahl, E.R., and Lee, W.H.K., 1976. Relocation of Local Earthquakes
by Seismic Ray Tracing, J. Geophys. Res., 81, No. 23, 440-4406.

Gelfand, I.M., and Fomin, S.V., 1963. Calculus of Variations, Prentice-
Hall, Englewood Cliffs, New Jersey.

Lentini, M., and Preyra, V., 1975. An Adaptive Finite Different Solver
for Nonlinear Two Point Boundary Problems with Mild Boundary Layers,
Stanford University Report STAN-CS-75-530, Computer Science Dept.,
Stanford, Palo Alto.

Levenberg, K.A., 1944. A Method for the Solution of Certain Nonlinear
Problems in Least Squares, Quart. Appl. Math., 2, 164-168.

Luenberger, D.G., 1973. Introduction to Linear and Nonlinear Pro-
gramming, Addison Wesley, 133-186.

Polack, E., 1973. A Historical Survey of Computational Methods in Op-
timal Control, SIAM Review, 15, No. 2, 553-584.

Udwadia, F.E., and Shah, P.C., 1976. Identification of Structures
Through Records Obtained During Strong Earthquake Ground Motion,
Journ. of Engineering and Industry (A.S.M.E.), 98, Series B, 1347-1362.

Volterra, V., 1959. Theory of Functional and of Integral and Integro-
differential Equations, Dover, New York.

Wesson, R.L., 1971. Travel-Time Inversion for Laterally Inhomogeneous
Crustal Velocity Models, Bulletin of the Seismologic Soc. of America,
61, 729-746.



TABLE 1

Simulation Results

Velocity Distribution: D1

Initial Estimate Errors: ¢ 0.3385 Ev = (.2409

€p = 2.4 , e = 2.9, e, = 2.6
Parameters
Being Estimated J Final Estimate Errors
No. [v(x,z) |(x, »2, ) T, |Initial] Final - - - - -
i i i ) v T X z
Block Parameterization
1 b X x| 9.797 | 0.187 | 0.3047] .1527{0.296|2.31 {2.94
2 X - - | 1.557 .0927 .3096] .1492 - - -
*3 X - x | 7.883 | 5.807 .3713} .1851}2.16 - -
4 X X - 1 3.149 | 0.2326 .3409| .1768 - 12.89]2.57
x5 - X x | 6.776 .0091 - - 10.323/0.918] 2.02
Layer Parametrization
1 X X X 9.797 | 0.108 [0.370 {0.193 [ 0.330/2.86 |2.55
2 X - - |} 1.557 | 0.0613 {0.359 |0.186 - - -
3 X - x |7.883 .00357{0.326 {0.164 | 0.183| - -
4 X X - | 3.149 | 0.2944 }0.411 |0.220 - 12.89 |2.55

* No further convergence was obtained for this initial guess; perhaps

converged to a local minimum.

** In this case, since the velocity is not being estimated, the specifica-

tion of its parametrization is irrelevant.




TABLE 2

Simulation Results

Velocity Distribution: D2

Initial Estimate Errors: sv = 0.75 ev = 0.60
€T = 2.4 € =2.9 e = 2.6
X Z
Parameters
Being Estimated J Final Estimate Errors
No. v(x,z) ((x ,z ) T Initial] Final -
0.’ %0. 0. £ € € € €
i i i} v v T X z
Layer Parametrization
1 X X X 36.04 | 0.3496 0.2091] 0.121 1 0.26 |2.90/2.53
2 X - X 27.64 | 0.1155 0.2391]10.129} 0.354| - -
Block Parametrization
1 X X X 36.04 .414 0.314] 0.236] 0.474| 2.89} 2.57
2 X - X 27.64 1 1.91 0.340] 0.237 ] 1.20 - -
TABLE 3
Simulation Results
Velocity Distribution: D3
Initial Estimate Errors: € = 0 Ev =0
Em = 2.4 e = 2.9 e = 2.6
T X z
Parameters
Being Estimated J Final Estimate Errors
No. |v(x,z) (xo.,zo.) To. Initial] Final e g e e e
i i i \'/ v T X z
1 - X x | 6.629 |0.716x10°%| - - 10.361]0.957| 2.163
2 - X - | o.2666] .637x10%] - - - |o.498| 0.257
3 - - x | 6.10 [0.643x10® - - | 0.0004 - i,




TABLE 4

Details of Estimate Errors

Velocity Distribution:

D3

Initial Value of J = 6.629

Estimation Parameters: {(xoi,zoi), To;}

Final Value of J =

0.716x10"2

Event | True Parameter Values|Initial Estimate Errors* Final Estimate Errors
No. xoi zoi TOi AXOi Azoi ATOi AXOi Azoi ATOi
km km sec km km sec km km sec
1 1.6 2.4 0.6 -0.4 -0.4 -0.4 |-0.379|-0.473 -0.104
2 7.4 1.8 0.9 0.3 -0.3 -0.5 0.096{ -0.358 | -0.061
3 12.8 2.0 -0.5 -0.8 -0.8 0.6 |[-0.256|-0.279|-0.008
4 4.5 5.0 -0.8 -0.7 -0.5 0.6 |-0.121;-0.690|-0.126
5 9.8 3.8 0.3 -0.7 -0.6 -0.3 0.105] -0.363|-0.062
~ true
* Ax = X X , etc.
0. 0. o




TABLE 5

Simulation Results

Velocity Distribution: D4

Initial Estimate Errors: € = 2.463 EV = 2,34
‘ ep = 2.4 € =2.9 € =2.6
X z
Layer Parametrization
Parameters
No. Being Estimated J Final Estimate Errors
v(x,z) |[(x ,z ) T Initial| Final =
0,770, 05 ev ev eT o €,
1 X X X 166.5 0.415x161 0.206] 0.230| 0.821|2.877|2.323
2 x - x| 147.0 | .61ax164 0.220] 0.260| 0.761| - -
TABLE 6
Simulation Results
Velocity Distribution: D5
Initial Estimate Errors: € = 0.50 Ev = 0.40
€, = 2.4 e = 2.9 e = 2.6
T X z
Layer Parametrization
Parameters
No. Being Estimated J Final Estimate Errors
vix,z) {(x ,z )| T Initial} Final -
(PRGN o4 €, €, €r €4 €,

1 | X X X 11.13 10.1723 0.215{0.152| 0.371| 2.882| 2.634
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