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ABSTRACT

A generalized inverse method for boundary conditions is adapted
for boundary value problems in elastic wave propagation. Two exact
solutions; the first for SH-wave scattering by a semi-cylindrical
canyon, and the second for P-wave scattering by a cylindrical cavity
are used to test the accuracy of this approximate method. Subsequent
applications of this numerical method involve problems not solvable
by exact methods, these include the diffraction of P, SV, or Rayleigh

waves by irregular surface topographies.






Introduction

In classical seismology, the theoretical models used to compliment
the experimental data are usually based on models with simple geome-
tries, the elastic half-space or the layered medium are the most
often used. These theoretical models are adequate for studies of long
period waves with irregularities smaller than the wavelengths. But
recent interests in earthquake engineering and in strong motion seis-
mology have expanded the scope of seismological study to include near
field ground motions, where shorter period waves become dominant. The
irregular surface topographies or subsurface inhomogeneities can play
a major role on the amplification or deamplification at a given site.
Moreover, the contribution of soil conditions as observed in recent
earthquakes (Jennings, 1971; Sozen, et. al., 1968) to the total motion
can no longer be ignored.

As a response to the interests within the field of strong motion
seismology, several theoretical investigations were presented to analyze
the wave amplification effects. But the progress in analysis is par-
tially stalled by some difficult aspects of the problem: first, the
spatial dimensions of the earth's volume is exceptionaily large; se-
cond, the governing equations for elastic wave propagation are coupled
between components; and third, the stress-free boundary which bounds
the soil medium poses a much more difficult wave guide problem than
those in acoustics and in physics, limiting the number of cases which
can be solved exactly.

Perhaps the simplest problems in elastic wave scattering is the

two-dimensional SH wave problem. The simplicity is developed from



the acoustic behavior of the SH component, allowing it to be analyzed
separately from other body waves. Using basically an image method,
exact solutions for SH-wave diffraction problems can be obtained in
coordinate systems where the scalar wave equation is separable. Thus
far, the cases of a canyon and an alluvial valley with circular
(Trifunac, 1971, 1973) or elliptical shapes (Wong and Trifunac, 1974a,
1974b) have been treated.

For the more difficult cases of P or SV incident waves, the mode
conversions during reflection or transmission does not permit the use
of images, thus, the wave solution is required to satisfy the boundary
conditions at the half-space boundary and at the curve boundary simul-
taneously. Most orthogonal wave functions developed in classical
physics are not suitable for these problems. Lee (1978) resolved this
difficulty for a hemispherical canyon by expanding the spherical wave
functions further into a power series to match all the boundary condi-
tions successfully; the solution procedure, however, leads to a set
of infinite matrices which must be solved approximately. Although a
similar procedure can be applied for other separable coordinate sys-
tems of the wave equation, most problems involving irregular boundaries
are treated by approximate numerical methods.

Among the earlier numerical solutions for wave diffraction, the
perturbation method has been used to analyse minor irregularities
(Asano, 1966; Mclvor, 1969), generally, only the first order approxi-
mation is retained. Using a similar idea, Aki and Larner (1970) and
Bouchon (1975) attacked the problem by assuming the irregularities
have shallow slopes and are periodic, the latter assumption enables

the problem to be solved by Fourier series. All the restrictions of



small irregularities and shallow slopes can be lifted by using an in-
tegral equation method (Wong and Jennings, 1975), formulated with the
Green's function of the soil medium. This method was conveniently
applied for the study of SH-waves because the Green's function can be
derived simply; for more difficult problems, the degree of diffi-
culty is measured by the complexity of the Green's functions.

Other numerical solutions in the field of elastic wave propagation
consist of discrete analyses such as the finite difference methéd‘
(Alterman and Karal, 1968; Boore, 1971; Cherry, 1973) and the finite
element method (Smith, 1974; Reimer, et. al., 1974). The detail al-
lowed in these models is theoretically unlimited, but the size of the
problem can easily exceed all major computing capabilities. Usually,
the real time analyses must be shortened to avoid the reflections from
the model boundary. Although Smith (1974) shows that the unwanted
boundary reflection ﬁan be eliminated from a finite volume analysis by
a specialvalgorithm, the effort required increases significantly as the
number of ficticious boundaries increases. Nevertheless, from a prac-
tical point of view, these discrete methods represent an excellent
tool in analyzing the inhomogeneity in the soil.

More recently, several investigators have proposed (Zienkiewicz;
1977a,b,c; Chopra, et. al., 1974) to use the discrete method together
- with the methods in continuum mechanics. This approach is capable of
utilizing the strength of the discrete method (based on a volumial
formulation) to analyze the more refined locations near the site and
the strengthof the continuum mechanics approach (based on a boundary
sﬁrface formulation) to represent roughly the outgoing waves to the

surroundings. This type of approach has the potential of solving many



difffcult.problems, but the Iack of applications in the area of wave
propagation can be explained by the difficulty of the continuum solution.
Currently, there is no numerical solution in continuum mechanics that
is general for two- or three-dimensional elastic wave propagations
having a semi-infinite space as a basic model configuration. It is a
problem that requires further research.

In this paper, the method of solution applied by Ohsaki (1973) on
a static foundation problem will be extended and adapted for dynamic
wave propagation problems. This method has been applied (Sanchez-Sesma
and Rosenblueth, 1978; England, et. al., 1978) to study SH wave diffrac-
tion about a canyon of arbitrary shape, a comparison with exact solution
is also made with success. The numerical applications made in this re-
port centers around P, SV, and Rayleigh wave problems, all of which have
not been treated extensively in the past because it is difficult to
develop admissible solutions that satisfy the stress-free surface of the
semi-infinite elastic medium. Using the solution of line sources in a
half-space (Lamb, 1904), however, either the wave amplification effects
around an arbitrary shaped canyon or the focusing effects within an
alluvial valley can be studied simply and accurately. The numerical
results as well as the procedures will be described in the following

sections.



Description of Ohsaki's Method

In order to obtain an exact and unique solution to an elastodynamic
problem, it is well known that both the governing equation and the
boundary conditions must be satisfied. Currently, most approximate
numerical methods take the approach of first constructing a solution
which satisfies approximately the governing equation, then satisfying
the boundary conditions at a set of boundary points. This type of
approximation is evident in some of the most powerful numerical
methods, for example: (1) the finite difference method substitutes
the solution of difference equations for that of the original partial
differential equations; (2) the finite element method uses the Ritz
criteria to construct a solution with shape functions that satisfy
only approximately the problem's Euler equation; and (3) the integral
equation method substitutes the integral by a discrete sum and forms
a matrix equation that approximates the integral equation. All three
of these methods match the boundary conditions exactly at a given
set of discrete point; other points on the boundary are ignored.

Using Ohsaki's method, however, a different approach is taken by
making all approximations with boundary conditions. A function with
unknown variables is first chosen to satisfy the governing equation
exactly, then the boundary conditions are satisfied in a least-square
sense by a generalized inverse method. The advantage of this method
is that more attention can be directed at the boundary (where the so-
lution is of interest) rather than at locations far removed from the

site.



In setting ub a trial so]ution for the governing equation, the
function must be suitable for the problem at hand; perferably, it
should satisfy automatically most of the simpler boundary conditions
so that the least square approximation of boundary conditions can be
reserved for a few difficult locations. In the topographic models
studied in this report, the configuration (Figure 1) consists of
basically a local irregular topography, I', and a flat boundary ap-
proximating the distanced topographies. Also, since the earth's vol-
ume is extremely large, the x and positive y boundaries are assumed
to be infinite. With the geometry of the problem in mind, one suit-
able basis for the trial function is the line source solution be-
cause it satisfies the governing equation exactly except at the
source ﬁoint, and it already accounts for the free surface condition
at the half-space surface and the Sommerfeld's radiation conditions
at infinity. Therefore, by superimposing several of these line sources,
the boundary condition at the irregular surface I' can be approximated
by adjusting the unknown magnitude and phase of the sources, a procedure
efficiently performed by the generalized inverse method (Noble, 1969).
Physically, the configuration of the model is that of a half-space
but the presence of the canyon is ficticiously created by a mathemati-
cal trick.

A generalized inverse problem can be set up by defining a matrix
[G] so that

[G1{a} = {b} (1)
where {b} is an N-véctor which contains the solution function at the

N discrete boundary points, {a} is an M-vector which contains the



FIGURE 1



complex amplitude of the line sources, and [G] is an NxM matrix which
contains the complex solution for umit line sources. The matrix
elements of [G] should contain the solution function corresponding to
the type of boundary conditions prescribed, i.e., if {b} must match
a stress boundary condition {b'}, [G] should contain the stress
solution of the line sources.

Since there are usually more conditions than unknowns, {b} cannot
match {b‘} exactly unless there are (N-M) redundant equations in
matrix equation (1). It can be shown (Noble, 1969), however, if {a}

is calculated as

* - %
{a} = 167617 (61" (6"} (2)
with the boundary condition being {b} = {b'}; then the square of the

error, E, defined as

E2 = {b' - b} (b - b}
will be minimized. 4The notation [G]* and {b' - b}* represents the ad-
joint (complex conjugate franspose) of [G] and {b'-b}, respectively.

. Theoretically, the boundary condition can be matched without any
error if equal number of observation points and source points are
taken. But a poor placement of these singular sources can cause the
solution to be quite poor and unstable at boundary locations other
than the prescribed points. The generalized inverse procedure (equa-
tion 2) described can give some consideration to additional points on
the boundary. Mathematically, the excess of N over M can be considered
as extra constraints that create a correction on the solution generated

by just M constraints. The magnitude of the correction can be deduced



by partitioning the matrix equation (1) so that

| o) ‘b'} v 1)
&, T\, , (t

where [G]] is an MxM minor of [G] having the largest determinant and
{b]} is the corresponding right hand vector. The matrix [G2] and vec-
tor {BZ] are composed of the remaining (N-M) rows of [G] and {b},
respectively. Since the matrix [G] has a rank of M, [GZ] can be ex- .
pressed as a linear combination of the rows in [G]] as

[6,] = [P1[G,] (5)
in which [P] is an (N-M) xM matrix.

Using [P], the generalized inverse solution of equation (4) or (1)

can be written as
[6,1{a} = {b)'} + [1+P"P1" [P} (b, - Pb '}, (6)

where {bz'} and {b]'} are the partitioned vector of the boundary con-

dition
b]'
{bl} = -B-T- . (7)

The solution of {a} in equation (6) is exactly the same as that
in equation (2), but it is in a better form to show that the solution

{a} can be expressed in two parts

{a} = {a;} + {a,} (8)
where
-1 \

is the major part of the solution {a} that matches the most prominant

boundary conditions and
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(a3 = 1617 11+ P17 (P1 (b, - b 1) (10)

acts as a correction to the solution {a}. |If the correction is rela-
tively large, the trial solution is far from representing the exact
solution; but if {az} is small compared to {a]}, the solution is
excellent. Moreover, if the (N-M) extra equations

[6,1{a} = {b,} | (1)

of the partitioned matrix equation (4) are redundant with the first
M equations, then the vectors {bz'} and {b]'} are related as

{b,'} = [PI{b,'} (12)

where [P] is defined in equation (5). Consequently, the substitution
of equation (12) into equation (10) would render the correction vector
{az} zero.

The procedures described above can be applied‘to various boundary
value problems. Ezch case requires a matrix similar to [G]. In the
following sections, the method will be applied first to two simple pro-
blems which have been solved exactly. The first case shall be the
diffraction of SH-waves by a cylindrical canyon (Trifunac, 1973), and
the second case is the scattering of a plane P-wave by a cylindrical
cavity in an infinite space (Mow and Pao, 1971). These examples are
to be used as test cases for the accuracy of the method, and also for
a feel of how the source locations might be best chosen. Following
these examples, the diffraction of P, SV and Rayleigh waves by topo-
graphies of arbitrary shape will be studied. Since there are no exact
solutions for these latter problems, the accuracy of the numerical

method will be judged by the success of the example problems.
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Diffraction of SH-Waves From a Semi-Cylindrical Canyon

As one of the few exact solutions available for wave propagation
in the geophysics discipline, the solution for wave amplification
around a semi-cylindrical canyon subjected to plane incident SH-waves
(Trifunac, 1973) is chosen as a test case for Ohsaki's method. In
the report by Sanchez-Sesma and Rosenblueth (1978), the numerical
results using this method have been performed and compared favorably
with the exact solution; it is repéated here with the emphasis
placed on the art of choosing a suitable location for the sources.
This exercise can be helpful for future application in a more com-
plicated problem where no comparison is possible.

The configuration of the model is shown in Figure 2; the soil
medium surrounding the canyon is assumed to be homogeneous and elas-
tic, having a shear wave velocity of B and a shear modulus of M.

The governing equation for the antiplane harmonic displacement,

uze'wt, is the scalar Helmholtz equation
Bzuz Bzuz 2
—+ —=+ k“u_ =0 (13)
2 2 z
9x oy

where k = w/B is the wave number. The boundary conditions for a

stress-free surface along the entire topography are given as

O,y =0 , for |x| >R, y=0 ; (14)

and

o =0 , for x2+-y =R_, (15)
zn

where Ozn is the shear stress identified with the unit normal, 3, at
the curve surface I'. Additional boundary conditions for the boundary

at infinity is posed by the Sommerfelt radiation conditions.
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FIGURE 2
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Using the principle of superposition, the total displacement field

uz(x,y) can be expressed as
ff s
u, (,y) = u, (x,y) + u,”(x,y) (16)

where»usz(x,y) is the free-field displacement in the half space with-
out the canyon, and uzs(x,y) is the displacement field of the wave
scattered from the canyon. Similarly, the stress fields can be ex-

pressed as

o(x,y) =o' (x,y) + 05(x,y) (17)

S

in which cff and ¢° are the stresses corresponding to usz and u,",

respectively. Since the free field motion is usually a given part of
the problem, it is convenient to solve the problem with uzs(x,y), in-
stead of uz(x,y), as the unknown solution. Thus, the boundary condi-

tion for o, ®(x,y) can be introduced as

n

ff(x,y), for xz-l-y2 =R, (18)

o (x y) = -0
zn ’ z o

n

by substituting (17) into (15). Boundary condition (14) remains valid
for ozys(x,O) because dzyff(x,O) satisfies already that condition.

As indicated in the previous section, the scattered wave motion
uzs(x,y) may be constructed by superimposing the displacement solutions

generated by line sources as

M

s
u, (x,y) =

j ajuZ(X’YIXJ’yj) ’ (]9)

]

in which the source points (xj,yj) are placed within the surface T.
The line source solution for antiplane displacements in a half-space

is simply
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Gz(x,y l XssY ) = {;[Ho(z)(k J(x- xs)2 + (y- YS)T>

(2)

where Ho is the Hankel's function of second kind and zero order.

It is interesting to note that Gz satisfies the governing equation

2~ 2A

a uz 3 uz 2’\ 2 —2‘
_T+_T+kuz=-6(J(x-xs) + (y-ys) ), (2])
ax ay

and therefore satisfies equation (13) at all points except the source
points. Furthermore, Gz satisfies automatically boundary condition (14)
and the Sommerfeld's conditions; the only boundary condition remains
to be satisfied is equation (18).

If N observation points (xi,yi) are specified on surface I', the
stresses of the scattered wave can be expressed in a form of a matrix

equation as

o (x! v Xy, .
....... n(x's Y e

(22)
where the matrix elements Gén can be calculated from Gz through the

constitutive equation as

A __a__ ~
O O0o¥ [ xp0y5) = Hgnu Gy [ xy)) (23)

or

30_(x,y | x.,y.) 3u_(x,y | x.,v.)
A 4 9 9
czn(x,y] xj,yj) u [ z J ( X) + 2 J J ( z)

ax on dy on
(24)
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using the direction cosines, (3x/9n, dy/3n). Equation (22) is now
in the form of equation (1), with the matrix [0] and the vector {ozns}
corresponding to [G] and {b}, respectively. The approximate boundary
condition for vector {Gzns} can be obtained from equation (18) as

iy (25)

.

J~ s, 1 i - ~
Ozn (X )Y ) = ozn

where {-8znff} corresponds to {b'} of equation (2). The next step of

the numerical procedure is to calculate the unkowns {a} as

ta} = 16°617'181%¢-0,, 3, (26)

then the error

N . . . .
£2 - I z][gzns(xu’yl) + Oznff(xl,y')]z | (27)

1=
=

will be minimized at the N observation points on T.

The numerical procedures derived up to this point are applicable
for all arbitrary surfaces I'. The parameters that define the shape
of T are the N cbservation points (xi,yi), and the direction cosines
(Bxi/Bn, Byi/an) of the unit normal. For this particular exémple, the
observation points are distributed evenly over the circular arc

(Figure 2), and the direction cosines are calculated as

§1<i_=3.<__
on R
o
and
oyt Lyt
an R0 (28)

In order to compare systematically with the exact solution presented
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by Trifunac (1973), the dimensionless frequency

T8 (29)

is defined. It representsbphysically the ratio of the canyon width
to the wavelength of the incident wave. The wave form usz generated
by a horizontally propagating SH-wave is also chosen, expressed
simply as

. X

ff
u, (x,y) = 2e Ro (30)

in which the reflected plane wave from the half space boundary is
included.

The major difficulty in aﬁplying Ohsaki's method is the lack of a
systematic way for placing the source, making the method a trial-and-
error type. As an initial attempt, the sources are evently distributed
at a circle of radius Rg (R$<<Ro), making R, the only parameter that
controls the source locations. Numerically, RS can be varied until
the error E is minimized. But for each assumed value of Rs’ a comblete
recalculation of all matrices and vectors is required, making the
guessing type procedures unattractive aﬁd uneconomical. Therefore,
some numerical experiments must be made to devise a better scheme for
placing the source.

In Figures 3a,b,c the error E accumulated at the boundary is
plotted versus the radius Rs for n = 0.1, 1.5, and 4, respectively.

In Figures 3a, N is chosen to be 19 points, and 3 sets of solutions
calculated with M=3, 6 and 9 line sources are shown. When M= 3, the
radius Rs = 0.07 gives the smallest E; while for M=6 and M=9,

Rs = 0.3 and RS = 0.5, respectively, are the optimal source locations.

Clearly, the optimal Rs increases as the number of sources increase,
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FIGURE 3 Error in Hatching of Boundary Conditions as a Function
of Source Locations -- Incident SH-Waves



a behavior caused by the '"In R" type singularity of the function Gz
at the source. |If the source is placed very near the boundary, only
the boundary conditions close to the source can affect its amplitude
and phase, thus, many source points are needed to match all the boun-
dary conditions satisfactorily. On the other hand, when the sources
are placed far away from the boundary points, their influences are
not too different from one boundary point to another; only a few
sources are then needed to balance the boundary points without intro-
ducing large errors at certain locations.

If the source locations are chosen with some care, the accumulated
error E is usually larger when M is smaller because the minimization
procedure has fewer variables. Moreover, for cases with large n, the
nuhber of sources must be large and near the surface to handle the
rapid variation of the boundary conditions. For example, for the case
of n = 1.5 (Figure 3b), the optimal RS is 0.7 while for n = 4 (Figure
3c), the optimal R, is 0.75.

Using the RS thch yields the least error, the solution of the
problem is calculated at locations on the flat surface as well as on
the curved surface. The approximate results and the exact solution
are tabulated in Table I, Il, and Il for comparisons. In Table I,
three sets of approximate solutions for n = 0.1 have been made with
M=3, 6 and 9, illustrating the improvement of accuracy as the number
of variables increase. For this low frequency case, the results have
a relative error of less than 0.1%. In Table Il, the results for
n = 1.5 is considered. The approximate results are nearly identical
to the exact solution at the locations |x/R [ =1 (on I). At the

locations [x| >R, however, the results deteriorate as |x| increases
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TABLE I
Comparisons of Approximate Solutions and Exact Solution for n=0.1
M=3 M=6 M=9 Exact
X/Ro N=19 N=19 N=19 Series Solution
Rs/Ro = 0.07 Rs/Ro =0.30 Rs/Ro=0.50

-4.000 (0.8144,-2.1608) (0.8152,-2.1614) (0.8152,-2.1614) (0.8152,-2.1614)
-3.000 (1.3153,-1.9748) (1.3160,-1.9756) (1.3160,-1.9756) (1.3160,-1.9756)
-2.000 (1.6774,-1.6642) (1.6779,-1.6649) (1.6779,-1.6649) (1.6779,-1.6649)
-1.500 (1.7881,-1.5055) (1.7885,-1.5054) (1.7885,-1.5054) (1.7885,-1.5054)
-1.000 (1.8341,-1.4198) (1.8339,-1.4176) (1.8339,-1.4176) (1.8339,-1.4176)
-0.866 (1.8697,-1.2482) (1.8696,-1.2493) (1.8696,-1.2494) (1.8696,-1.2494)
-0.500 (1.9315,-0.7768) (1.9318,-0.7810) (1.9318,-0.7810) (1.9318,-0.7810)
0.000 (1.9310,-0.1291) (1.9315,-0.1291) (1.9310,-0.1291) (1.9315,-0.1291)
0.500 (1.8318,0.5184) (1.8318,0.5227) (1.8318,0.5227) (1.8318,0.5227)
0.866 (1.6968,0.9897) (1.6964,0.9908) (1.6964,0.9909) (1.6964,0.9909)
1.000 (1.6343,1.1612) (1.6339,1.1590) (1.6339,1.1590) (1.6339,1.1590)
1.500 (1.5746,1.2497) (1.5741,1.2495) (1.5741,1.2495) (1.5741,1.2495)
2.000 (1.4371,1.4157) (1.4366,1.4163) (1.4366,1.4163) (1.4365,1.4163)
3.000 (1.0184,1.7515) (1.0177,1.7523) (1.0177,1.7523) (1.0177,1.7523)
4.000 (0.4736,1.9741) (0.4728,1.9747) (0.4728,1.9747) (0.4728,1.9747)
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TABLE II

Comparisons of Approximate Solution and Exact Solution for n=1.50

M=19
x/Ro N=39 Exact

Rs/Ro =0.70 Series Solution

-4 (1.2767,0.0854) (0.8950,-0.5536)
-3 (-0.1091,-2.8517) (0.4416,-2.1918)
-2 (-0.9053,-0.1618) (-0.8823,-0.1026)
-1.5 (0.3092,-2.2048) (-0.3101,-2.2105)

-1.25 (0.5239,1.6137) (0.5240,1.6142)

-1 (0.3744,3.8841) (0.3744,3.8842)
-0.74 (-3.3682,1.6040) (-3.3684,1.6040)
0.48 (-2.4298,-2.3578) (-2.4299,-2.3577)
0.25 (0.9337,-2.9987) (0.9338,-2.9988)
0.0 (2.6437,-0.2424) (2.6436,-0.2423)

0.25 (0.6820,2.1094) (0.6820,2.1094)
0.48 (-1.4517,1.1300) (-1.4516,1.1299)
0.74 (-0.2704,-1.1884) (-0.2702,-1.1885)
1 (-0.4726,0.8769) (-0.4727,0.8767)
1.25 (-0.7771,0.7310) (-0.7770,0.7305)
1.5 (-1.1508,0.0743) (-1.1499,0.0710)
2 (0.2184,-1.2552) (0.2414,-1.3144)
3 (-1.3252,0.4632) (-0.7745,-0.1966)

4 (0.8136,1.2307) (0.4319,1.8697)
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TABLE III

Comparisons of Approximate Solution and Exact Solution for n=4.00

x/Ro ;\14: 4212 Exact
Rs/Ro = 0.75 Series Solution

-4.00 (2.7570,-0.0401) (2.9935,-0.4792)
-3.00 (2.8928,-0.0462) (2.4720,-0.1624)
-2.00 (3.1457,-0.0640) (3.3787,0.4276)
-1.50 (3.4018,-0.0893) (3.0935,-0.5348)
-1.25 (-3.6209,0.1112) (-3.6668,0.0168)
-1.00 (3.9782,-0.1514) (3.9755,-0.1624)
-0.76 (-3.8716,0.5306) (-3.8613,0.5198)
-0.54 (3.0761,-2.0956) (3.0764,-2.1135)
-0.28 (-2.9419,1.6120) (-2.9507,1.6000)
0.00 (2.7347,-0.1153) (2.7325,-0.1156)
0.28 (-1.6208,-1.1498) (-1.6221,-1.1355)
0.54 (0.2574,1.3129) (0.2551,1.3210)
0.76 (0.4609,-0.7904) (0.4722,-0.7857)
1.00 (-0.3355,0.3873) (-0.3417,0.3964)
1.25 (-0.6133,-0.0881) (-0.6591,0.0060)
1.50 (0.3763,-0.6214) (0.0674,-0.1755)
2.00 (-0.6062,-0.6174) (-0.3732,-1.1091)
3.00 (-0.9201,0.4266) (-1.3406,0.9577)
4.00 (-0.5681,0.9419) (-0.3312,1.3809)
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because this approximate method is designed for locations near the
boundary.

The largest source of error for the solution at large distances
is caused by the phase errors of the sources. For the exact solution,
the reflected waves originate from the surface I' while in Ohsaki's
approach, the reflected waves are generated at points within the
boundary. Hence, the combined phase error of all M sources can be
quite large at long distances. The only way to eliminate this pro-
blem is to put the sources close to the surface and increase M at
the same time, then the solution would improve even at large distances.

In Table I1l the high frequency case, n = L, is compared. At this
high frequency, the numerical task is difficult even for computing the
exact series solution. Nevertheless, the approximate solution still
compares favorably for Ix/ROI =1. The numerical errors of the approxi-
mate solution seem to be most prominant when either the real or imagi-
nary part is much smaller than the other; this type of error is natural
for most complex solutions when the number of significant digits is
limited. At large distances and at high frequencies, the approximate
solution is usually not reliable due to the phase errors, but the
amplitude, |u|, approaches that of the exact solution because the
solution of the line source (equation (20)) éttenuates in the same
way as the exact solution.

Besides the results obtained by placing the sources on a concen-
tric cricle, several other experiments with source locations have been
performed with marginally improved solutions. Although there are

many combinations of trial functions possible, it is not cost effectijve
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to spend a lot of time hunting for the best solution; rather the
number of source points and observation points should be large enough
to describe the problem. Roughly, N should be 10 points per wave-
length, and the number of sources can be about 2/3 of N. In the next
section, more numerical examples will be performed on a plane strain

problem where the number of variables is increaSed by a factor of 2.
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Diffraction of P Waves by a Cylindrical Cavity

In this section, the solution for P-wave diffraction by a cylin-
drical cavity (Mow and Pao, 1971) is chosen as a standard for com-
parison with Ohsaki's method. Unlike SH-waves, the diffraction of
P-waves is coupled with SV-Waves for most circumstances, making the
problem mathematically and physical)y more difficult to describe. To
date, very few analytical investigations have dealt with the scat-
tering of P or SV-waves by irregular objects. Therefore, if Ohsaki's
method can be proven satisfactory, it can be used to solved many
previously unsolved problems.

Consider now the model shown in Figure 4. The infinite space is
assumed to be homogeneous and elastic, having a compressional wave
velocity of a and a shear wave velocity of B. The stiffness of the
material can be described by A and p, the Lamé constants. The boun-
dary conditions of the broblem are such that the normal stress %
and the tangential stress Oq¢ at the cavity surface must vanish; but

they can be rearranged as

s _ ff 2,2 _
0 (X,y) = - O (Xo¥) for Vx"+y R, > (31)
and
o, (x,y) = - ontff(x,y) . for NxPay? - R, > (32)

respectively, if the total stress 0 is assumed to be the sum of the
streﬁs induced by the free-field motion fo and the stress of the
scattered wave o°.

Since there are no other boundary conditions other than the

Sommerfeld's radiation conditions, the conditions of equations (31)
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FIGURE 4
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and (32) may be satisfied by a generalized inverse procedure. The
proposed solution for the scattered wave is again constructed from
the line source solutions, but the inplane displacements ux(x,y)

and uy(x,y) are governed by a set of coupled equations that are djf-
ficult to resolve. Therefore, it is convenient to introduce the

potentials ¢ and Y, so that the vector wave equation can be separated

as

2 2
2, 2%, 2,

ax 3y
and
2%y . 2% . .2
2l y-0 (34)
2 2
ax dy

where h = w/o and k = w/B are wave numbers for P and SV waves, res-
pectively. Using the potentials, the displacements, u, and uy, can be

expressed as

=% W

“x T ax Ty (35)
and

=% _ N

uy-% = (36)

Similarly, the stresses can be derjved directly from the potentials

as
2 2
= -1 2y ., 0370 3
SO =" Kb -2 2+23x3y , (37)
ay
52 324
g =-kip-2298 5,V (38)
vy 3X2 IxJy

and
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2 2
1o =230 2, _,3%
H 0xy 2 9xdy kp - 2 2 (39)

9x

Using the above expressions, the basis for the trial solution can
be composed of line source solutions for equations (33) and (34), they

are respectively,

B0y [ x vy = 0 (2 <h \/(x-xs)2+(y-ys)2) : (40)

and

Booy [ xg,yg) = 0 () (k \/(x-xs>2+<y-'ys)2) : (41)

The expression in equation (40) represents a compressional wave source
while expression (41) represents an equivolumial source. Both $ and

@ must be-used‘to form the trial solution because the diffraction of

a P or SV wave by a curved boundary guarantees mode conversion. Thus,
if M sources of each type are superimposed, the displacement field of
the scattered wave can be expressed. as

M A
u®(x,y) = EVICJU¢(x,y| xj,yj) + djuw(x,yl xj,vj)] (42)

j=1

where cj and dj are the unknown complex amplitudes, G¢ and GW are the
displacements generated by the sources $ and @, respectively. Equation
(42) holds true for either u, or uy - For the purpose of mathcing boun-
dary cdnditions, the expression for a general component of stress can
be written as
o®(x,y) = .
J
~y

hMx

o9 oV
][CJO' (X,Y ' ijj) + djc (X,Y I Xj,Yj)] ’ ("3)

¢

where ¢° and are stresses corresponding to ¢ and {, respectively.

The ten quantities used in equations (42) and (43), i.e., Gx¢’ Gy¢,
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g 4 5 b 2 b AY Ay A Ay A
Uxx , ny , ny’ ux , uy , oxxw’ oyyw, and Oxyw’ can be derived by sub-

stituting either equation (40) or (41) into equations (35) through (39).
Their expressions are compiled in Appendix A for reference.

To match boundary conditions for a surface that does not fit the
Cartesian coordinates, stress transformations from cxx’ ny’ and ox
to %nn and O, can be ‘applied. If the direction cosines of the unit

normal n are cosf and sinfB, then the stresses are related as (Fung,

1965)

2 . 2 .
n 0, COS 0 + oyysun 9 + Zcxyslnecose , (44)

and

o (-0 +o0 y)sinecose + cxy(cosze - sin26) , (45)

nt XX Y

These two expressions are necessary for matching boundary conditions
(31) and (32).
By specifying N observation points (x',y') on the cavity surface,

the stress field of the scattered wave can be expressed as a matrix

product
- : : 1 ¢: ( o)
. : c. :
.. . j . .
o b 0 & Y i s, i i
.. cnn (x',y lxj,yj) onn (x',y 'xj’yj) .. dj J Gnn (x ,y")
A G i A Y i : 5 Sl oy
e 0 (xy lxj,yj) o (x,y Ixj,yj) . ne (X,y)
] \ T

(46)
in which equations (43) through (45) were applied. The next step is
to introduce the approximate boundary condition for {US}, it can be

accomplished by quantizing equations (31) and (32) as
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ff(x',y') |
ff, i i
nt (x oY )

\ : ) \ )

s, i i
%n (x,y) %n

n
A

. 47
o 5 (xyh) - )

The remainder of the procedures follows as before, except the matrix
equation (46).has 2M equations and 2N unknowns, twice the size of the
SH problem.

The specification of the free-field motion is straight forward
for this problem because there is no extra reflection from a stress
free half-plane. The displacement fields of a plane compressional
‘wave traveling in the x~-direction are

uxff(x,y) - e-ihx , (48)
and

uyff(x,y) =0 . (49)

The corresponding stresses in Cartesian coordinates are

a2 .
_ l%_ e-lhx , (50)

1 ff
ﬁ'gxx (x,y)

- 0l -l (51)

] ff
T Oyy (x,y)

and

]
o

1 ff
E oxy (X’Y) (52)

The stresses Unnff and o f required for equation (47) may be obtained

t
by substituting (50), (51) and (52) into equations (44) and (45).
Borrowing the idea from the previous example, the sources are

again distributed evenly on a concentric circle Ry (RS<ZR0) within
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the circular boundary as shown in Figure 4. Various values of RS are
attempted to get as small a value of E as possible; the relationship
of E versus RS is shown in Figure 5a for n = 0.5 and in Figure 5b for
n = 1. Generally, the same type of conclusions can be made as be-
fore. They are:

(i) For a large number of sources, the sources must be placed
closer to the scatterer's surface.
(ii) The error, E, accumulated in matching the boundary condi-
tions, decreases as the number of sources increases.
(iii) For the same number of sources, E increases as the dimen-

sionless frequency n increases.
The accuracy of the numerical solution is again excellent as
indicated by the values shown in Table |V, where the radial component
of displacement,

ur(Ro,e) = u cos® + uysine | (56)

is compared for n = 0.5. Three sets of approximate solutions calcu-
lated with M= 29 observation points and N=8, 16 and 24 source points
(2 unknowns per point) are presented with the exact solution. It is
clear that the approximate solution is excellent for the case with
N=24, but even for N=8, the approximate values are adequate for
most applications. It is interesting to note that the optimal RS is
different (0.09, 0.3, 0.49) for each value of N, being consistent
with the conclusions above. Two other sets of numerical comparisons
are shown in Table V and VI for n=1 and n=2, respectively. The
overall results match remarkably well, giving a vote of confidence to
Ohsaki's method as a tool for more difficult wave diffraction pro-

blems.
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TABLE IV

Comparison of Approximate Solutions with the Exact Solution

DISPLACEMENT COMPONENT ur = uxcose + uysine

n=0.50 n=0.50 n=0.50
0 M= 28 M= 28 M=28 Exact
N=38 N=16 N=24 Series Solution
Rs/Ro=0°09 RS/R0=0.3 Rs/Ro =0.49

0 (-0.634,0.342) (-0.700,0.239) (-0.700,0.238) (-0.700,0.238)

w/7 (-0.511,0.316) (-0.517,0.303) (-0.517,0.303) (-0.517,0.303)

2n/7 (-0.305,0.248) (-0.234,0.335) (-0.235,0.334) (-0.235,0.334)

3n/7 (-0.352,0.212) (-0.311,0.241) (-0.311,0.241) (-0.311,0.241)

an/7 (-0.717,0.390) (-0.766,0.343) (-0.766,0.344) (-0.766,0.344)

Sn/7 (-1.092,0.879) (-1.169,0.852) (-1.170,0.851) (-1.170,0.851)

en/7 (-1.288,0.417) (-1.284,1.463) (-1.284,1.463) (-1.284,1.463)

m (-1.345,1.638) (-1.274,1.727) (-1.273,1.729) (-1.274,1.729)
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TABLE V

Comparison of Approximate Solutions with the Exact Solution

DISPLACEMENT COMPONENT u, = uxcose + uysine

n=1.00
6 M= 28 Exact
N=16 Series Solution
Rg/Rg = 0.35
0 ( 0.054,-0.405) ( 0.056,-0.401)
w/7 (-0.146,-0.276) (-0.144,-0.281)
2m/7 (-0.258,-0.003) (-0.261,-0.001)
3m/7 ©(-0.291, 0.121) (-0.289, 0.122)
an/7 (-0.665, 0.394) (-0.667, 0.393)
Sm/7 (-0.727, 1.176) (-0.727, 1.179)
6m/7 (-0.248, 1.873) (-0.246, 1.870)
m (-0.045, 2.081) (-0.043, 2.083)
TABLE VI

Comparison of Approximate Solutions with the Exact Solution

DISPLACEMENT COMPONENT ur = uxcose + uysine

n=2.00
9 M= 28 Exact
N=20 Series Solution
RS/R0=O.45
0 (-0.049, 0.263) (-0.054, 0.264)
n/7 ( 0.129, 0.014) ( 0.133, 0.011)
2w/7 ( 0.048,-0.354) ( 0.046,-0.353)
3n/7 (-0.359,-0.145) (-0.360,-0.144)
an/7 (-0.534, 0.567) (-0.534, 0.566)
Sw/7 ( 0.504, 1.213) ( 0.502, 1.217)
emn/7 ( 1.756, 0.540) ( 1.759, 0.538)

Tr ( 2.030,-0.004) ( 2.028, 0.001)
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Diffraction of P or SV Waves by an Elliptical Canyon

Since the accuracy of Ohsaki's method has been proven fo be ade-
quate for dimensionless frequencies as high as n = 2, it can be applied
with confidence to analyze the diffraction pattern of P or SV waves
by a canyon of arbitrary shape. The configuration of the present
model is shown in Figure 6. The canyon surface, without any loss in
generality, is assumed to be semi-elliptical in shape, having a
major axis of R° and a minor axis of R]. This particular shape of
the canyon is chosen mainly for its simplicity and partly for its
flexibility in varying the canyon depth. Furthermore, the amplifi-
cation of SH waves surrounding a semi-elliptical canyon (Wong and
Trifunac, 1974b) has been analyzed exactly by a series solution, it
would be appropriate to study the major differences between the
antiplane motions and the inplane motions. It is possible that the
physical phenomena of wave diffraction are entirely different for
the two cases even though the geometry of the canyon is the séme.

To obtain the solution of this problem, the techniques developed
by the previous examples are required. In the first example, the
problem has a geometry very similar to the present one, but the type
of waves studied were antiplane. In the second example, the wave
type is plane strain but an infinite space is used instead of a
half space, simplifying considerably the boundary conditions of the
problem. Using the similarities that exist between the current
problem and the previous examples, most of the equations derived in
the previous sections can be re-used. The parts that need major

revision are the line source solutions and the free-field motions,
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both of which must satisfy independently the boundary conditions,

]
o
-

cyx(x,O) (57)

and

[
o
-
o}
a1
x
v
~

cyy(x,O) = 0 (58)

at the half space boundary

Since the free-field motion, uff(x,y), for incident waves is de-
fined using a half-space configuration, the boundary conditions (57)
and (58) can be matched qﬁite simply (Ewing, et. al., 1957). The
pattern of wave amplification, however, is not trivial because the
reflection from the boundary usually includes both P and SV waves,
except for a few special cases. The necessary displacement and stress
fields for the current problem are displayed in'Appendix C.

In order to form a scattered wave solution, us(x,y), that satis-
fies the boundary conditions in equations (57) and (58), the line
source solutions to be used must also satisfy them. Unlike the
antiplane solution, the superposition of an image can eliminate only
one of the two stresses required. For example, an image source can
eliminate the shear stress, ny, for a compressional source and the
normal stress, oyy’ for a shear source. The remaining stress compo-
nent at the half plane can be eliminated by superimposing an equal
and opposite stress distribution, expressed usually in a form of an
infinite integral (Lamb, 1904). Thus, the expressions for $, $,

G, and 4 are all infinite integrals, all of which are presented in
Appendix B. The numerical evaluation of these line source solutions

is by far the most difficult part of the entire numerical procedure.
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It requires some complex contour integrations to evaluate these inte-
grals numerically because of the Rayleigh Pole in the functions.
Physically, the residue of the Rayleigh Pole represents the Rayleigh
surface waves.

Since the line source solutions in Appendix B satisfy already the
boundary conditions (57), (58), and the Sommerfeld's radiation con-
ditions, the boundary conditions at the canyon surface is the only
one that needs to be matched in the least square sense. The boundary
conditions of equations (31) and (32) applies also for the present
problem, therefore, procedures developed from equations (42) through
(47) can be applied once again. Overall, there are only two major
revisions of the procedure:

(i) Replace the expressions for the free-field motion in equations
(48) through (52) by the expressions in Part (1) of Appendix C
for.P wave incidence and those in Part (2) of Appendix C for
SV wave incidence.

(ii) Use the expressions for 9, ¥, U, and G in Appendix B instead
of Appendix A because the boundary conditions (57) and (58)
must be satisfied.

After the above changes, the procedure follows immediately.

The parameters to be used for the studies in this section are n,
the dimensionless frequency, Rl/Ro’ the ratio of the depth of the can-
yon to its width, e, the angle of P wave incidence (Figure Cl1), and
f, the angle of SV wave incidence (Figure C2). Once again, the ap-
proximate solutions are obtained by locating the source points on
an elliptical contour within the canyon boundary; its major axis is

Rs' The observation points on the canyon surface are distributed
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evenly in the parameter 6, which defines the elliptical surface as

x(0)

Rocose (59)

and

y(8) Rysinb . (60)

Before proceeding with the actual numerical work, it is important
to perform some checking on the convergence rate of the solutions.
Although there are no exact solutions available for comparison, the
checking can be perfofmed by comparing the approximate solution cal-
culated by a different number of source points and observation points.
The solutions can be considered convergent if the results improve as
the number of variables increases.

Tabulated in Tables VII and VIII are the approximate solutions
for the amplitude of uy induced by a vertically incident P wave.

They will be used for the convergence comparison. THe dimensionless
frequencies used are n = 1.00 and n = 2.00 for Tables VII and vViit,
respectively. The numerical solutions were calculated by taking 22
observation points and a varying number of source points as N=7, 9,
and 15. Since the case with N=15 accumulates the least error in
the boundary condition matching procedures, it will be used as the
basis for the comparison. Hence, the error € placed next to the
solutions with N=10 and N=7 are the relative error calculated using
the corresponding ''N= 15" solutions. It is clear that the error for
the solution using N=10 is generally lower than that using N=7,
showing a convergenf trend. The maximum error, however, does not

always occur at the same location of x/Ro because of the different
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TABLE VII

A Comparison Between Approximate Solutions

Values of Iuyl for n = 1.00, M = 22, and e = 90°

x/R0 N=15 N=10 € =7 €
1.000 2.514 2.392 5% 2.325 5%
0.989 2.420 2.324 4% 2.239 5%
0.956 2.121 2.076 2% 2.006 4%
0.901 1.725 1.737 0.7% 1.685 %
0.826 1.407 1.453 3% 1.401 0.4%
0.733 1.377 1.404 2% 1.312 4.7%
0.623 1.615 1.608 0.4% 1.475 8.5%
0.500 1.922 1.913 0.5% 1.802 6%
0.365 2,193 2,197 0.2% 2.166 1%
0.223 2.387 2.393 0.3% 2.455 3%
0.075 2.489 2.479 0.4% 2.605 4.7%

TABLE VIII
A Comparison Between Approximate Solutions
Values of luyl for n = 2.00, M = 22, and e = 90°

x/R° N=15 N=10 € N=7 €
1.000 2.477 2.495 0.7% 2.386 3.7%
0.989 2.124 2.150 1.2% 2.056 3%
0.956 1.287 1.336 3.8% 1.299 0.9%
0.901 1.049 0.981 6.5% 0.828 21%
0.826 1.695 1.632 3.7% 1.450 14%
0.733 2.123 2.184 3%. 2.113 0.5%
0.623 2.240 2.315 3% 2.376 6%
0.500 2.232 2.156 3.4% 2.290 2.6%
0.365 2.168 2.024 6.6% 2.106 3%
0.233 2.087 2.067 1% 2.038 2.3%
0.075 2.030 2.158 6% 2.066 1.8%
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source positions for each case. Using the discussion made by equa-
tions (4) through (12), the observation points near the sources have
a strong influence on the solution; other points are used mainly as
corrections.

The all-important factor for the placement of sources is again
studied; the error E is calculated for various source radii, Rs’ and
is plotted in Figure 7 for n = 1.0 and n = 2.0. The behavior of the
“E vs. Rs" curves are quite similar to those encountered in the previous
sections, having the optimal Rs/Ro between 0.4 and 0.6 for nearly all
cases. The analyses made in this section are calculated with RS/R°==0.4
for n = 0.5 or lower, and with RS/Ro = 0.5 for higher values of n. The
number of observation points used is 22 (2 components per point) and the
number of source points is 15 for all cases.

Consider the first amplification of P-waves around a circular can-
yon. The amplitudes of luxl and ldyl are plotted as a function of x/Ro
for n = 0.25, 0.50, 0.75, 1.00, 1.50 and 2.00 in Figures 8 through 13.
In each figure, the effects of the incidence wave angle e = 30°, 60°
and 90° are shown. It is important to note that the ffee field ampli-

tudes for P-waves are

l”xffl =1.39 , Iuyffl =1.12 , for e = 30° ,

|u ffl =0.96 , u ffl =1.74 , for e = 60° ,
x y

u ff| = 0.00 , lu ffl =2.00 , for e=90°,
. Y

so that the deviation of wave amplitudes caused by a canyon can be
judged. Generally, the amplifications of qul and |uy| by a circular

canyon topography are always less than 2 times the free field amplitudes.
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FIGURE 7 Error in Matching of Boundary Conditions as a Function
of Source Locations -- Incident P-Waves
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A similar conclusion has been made in the SH case (Trifunac, 1973).

There are large differences, however, between P and SH wave scatter-

ing, a phenomenon caused mainly by mode conversions in the former. For
SH wave incidence, there are always some shielding effects behind the
canyon, and the shielding improves as the frequency increases. For

P wave incidence, however, either the vertical or horizontal component
may be larger than the free field amplitudes. For example, the vertical
component for e = 30° is larger than the free field value of 1.12 at

n = 0.5 and 1.5; moreover, with n<1, the vertical components for e = 60°
is larger than the free field value of 1.74.

One particularly noticable difference between P and SH wave inci-
dence is that the amplitudes at the rear of the shield can be larger than
that at the front for a P wave. This reverse trend of amplification can
be explained by the fact that some of thekhorizontal energy has been
converted to vertical energy, or vice versa, through the stretching and
compressing of the canyon surface.

The amplification of SV waves around a circular canyon shows further
that a canyon or a trench does not necessarily shield away seismic
waves. To demonstrate such effects, the diffraction patterns for n=0.5,
1.0, 1.5 and 2.0 are shown in Figures 14 through 17; three angles of in-
cidence, f = 60°, 75° and 90° are used for each dimensionless frequency.
The angles less than the critical angie of 60 were not considered be-
cause the free field action becomes complex and attenuative in the y
direction.

Once again, the amplification of SV waves by a circular canyon is less

than 2 times that of the free field, a conclusion that should be identified
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FIGURE 15 Amplification Patterns Induced by Incident SV-Waves
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FIGURE 16 Amplification Patterns Induced by Incident SV-Waves
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with the geometry of the scatterer rather than the wave type. The

same type of mode conversion phenomena can be seen in the scattering

of SV waves as in the P waves; however, the effects appear more pro-
minent than those of P waves because the wavelength of SV waves is half
that of P waves at the same frequency for a Poisson ratio of 1/3.
Therefore, the presence of the canyon can be felt more readily by the
waves and the diffraction patterns become more complicated. As a basis

for comparison, the free field amplitudes for SV wave incidence in a

half space are as follows

quffl =3.k6 Iuyff] =0.00 , for f = 60° ,
lu Tl =9, [uyffl =0.50 , for f=75°,
lu "] = 2.00 |uyff| =0.00 , for f=90°.

It is interesting to note that the free field vertical components are
zero for f = 60° and f = 90°; thus, any nonzero vertical responses around
the canyon are induced purely by scattering from the canyon. With f = 60°
and for all frequencies, the vertical component increases gradually from
the front of the canyon toward the rear as some of the horizontal energy
is converted to vertical energy. It is important to consider the fact
that the amplitude of ]uyl can be as large as 4 at some locations behind
the canyon (x/R01>l) and these amplitudes are caused strictly by mode con-
versions. Therefore, with only a minimal amount of shielding provided by
the canyon for the horizontal component, it cannot compensate for the
large amplification of the vertical component.

Other considerations for the wave diffraction pattern is that
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standing waves form only in front of the canyon, where the constructive
and destructive interferences of the incidence and reflected waves occur.
While the translational components are diminished by the cancelling
effect at the points of destructive interferences, a large rotational
component generally occurs because the derivative of a harmonic function
is maximum when the value is minimum. The rotations that are associated
with the vertical component (P or SV waves) are of the rocking type
while the rotation associated with the SH waves are of the torsion type.
Both these rotational components have a strong effect on the structural
responses during an earthquake. The quiet points for the horizontal
component of P or SV waves represent true quiet points, but since the
location of these points are frequency dependent, they have no practi-
cal values.

To accoun; for the geometrical effect of the canyon, the depth of the
canyon is reduced to a ratio Rl/Ro = 0.5 for the next analyses. The re-
sults for |ux| and Iuyl are represented for incidence P wave in Figures
18 through 21. The overall differences from the free field amplitudes
are reduced because the size of the topography has been reduced. The
diffraction pattern and the mode conversion effects, however, are very
similar to those of the circular canyon.

Numerically, the calculation of amplitudes for Ix/R°3>I| is more dif-
ficult for shallow canyons than for deep canyons because there is less
volume at which the singular sources can be placed. As the result, the
sources are bunched closer together within the boundary of a shallow

canyon, causing the matrix equation to be ill-conditioned to various
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FIGURE 21 Amplification Patterns Induced by Incident P-Waves
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degrees depending on the frequency. Thus, the only way to improve the
numerical solution for shallow boundaries is to significantly improve

the accuracy of the line source solutions. At present, the line source
solutions of Appendix B can be calculated with an accuracy of b digits;

further improvement would require a laborious computational effort.
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Diffraction of Rayleigh Waves by a Circular Canyon

In two-dimensional plane strain wave propagation problems, the
Rayleigh surface wave tends to be more influential than the P
or SV waves. Due to the lower frequency content and the retrograde
type motion, the Rayleigh waves have been considered to be the main cause
for many observed damages. In fact, as explained by Cherry (1973), the
retrograde motion is most effective in causing landslides in unstable
slopes.

In this section, the diffraction of a Rayleigh wave by a circular
canyon will be examined. Since the Rayleigh waves attenuate exponentially
in depth and it is only '"skin" deep at high frequencies, the shielding
property of a canyon is entirely different from that of P or SV wave

- incidence.

Although the wave type is different, the method of numerical calcula-
tion is the same as that of the previous section; only the expressions of
the free field motion need to be changed. The free field displacements
and stresses generated by a Rayleigh wave are compiled in Appendix D.
They can be readily substituted into equations (48) through (52) for the
present analysis. The wave amplification patterns of [uxl and [uyl
generated by a Rayleigh wave propagating from left to right is shown in
Figure 22 for n = 0;5, 1.0, 1.5 and 2.0. Except for n = 0.50, a low
frequency case, the reduction of wave amplitudes at the rear of the
canyon is significant. With a free field amplitude of lu | = 1.0 and
|uy| = 1.56 for a Poisson ratio of 1/3, the reduction of amplitude is

approximately
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80% for n>1.25 ,
50% for 0.75<n<1.25 ,

and uncertain for n<0.75

thus, an effective shield can be provided for high frequency Rayleigh
waves.

It is important to point out that the amplitude of waves is nearly
doubled at the front edge of the canyon (x/Ro = -1) and the phase of
the two components differs by approximately w/2, indicating that a retro-
grade motion is retained. These complicated motions can be understood
more readily by viewing a series of time elapsed figures of the deforma-
tion shown in Figure 23 for n = 0.5, 1.0, 1.5 and 2.0. If all 8 frames
are placed one over another, the motion of the corner x/Ro = =1 will map
out a titled ellipse with a rétio different from that of the free field
motion.

Perhaps the most interesting phenomenon is displayed in frames

t = %-ﬂ for n=0.5 ,
t = %‘ﬂ forn=1.0 ,
t=0 forn=1.5 ,
t = %-ﬂ forn=2.0 ,

all of which indicate materials being thrown out into the canyon, a process
that may cause landslides of the slopes. Although the deformations in
Figure 23 are greatly exaggerated and the slope of the circular canyon is
larger than most realistic embankments, this analysis shows nevertheless

the possible effect of a Rayleigh incident wave.
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Conclusions

The method of Ohsaki has been adapted for elastic wave propagation
problems. Through the comparison with two exact solutions of different
nature, the approximate method has been shown to have adequate accuracy
for most applications. This method is most effectively applied to pro-
blems where most of the boundary conditions can be satisfied by the basis
of the solution, leaving just one or two difficult boundary conditions
fdr the géneralized inverse procedure.

As an important application of this numerical method, the scattering
of P, SV or Rayleigh waves by an elliptical canyon was analyzed. The
results can be summarized as follows:

(i) The amplitude of waves near an elliptical canyon is less than
2 times the free field amplitudes. The fact of 2 is associated
with the canyon geometry rather than the wave types.

(ii) For P or SV wave incidence, the large amplification does not
always occur in front of the canyon; the idea of applying a
shield to an important structure may not be valid.

(iii) Standing wave phenomena caused by interference of wave occur

only in front of the canyon. Large amplitudes at the rear
of the canyon are caused by mode conversions.

(iv) Rayleigh waves with wavelength shorter than the width of the
canyon can be blocked effectively by the canyon, but the front
edge of thé shield may sufferslope instabilities due to the

retrograde motion induced by a Rayleigh wave.
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APPENDIX A

Displacements and Stresses Generated by Line Sources

in an Infinite Elastic Medium

(1) Compressional Wave Source at Point (x,y) = (0,0)

$x,y | 0,0) = H B @r)

60y 10,00 = - 2w @ )

6 Pecy 0,00 =- X P

1c
i

=

1
n

where

6oy ] 0,0) = - L2 12y @)

2
2 2.2
" Z{h [% - ]H @) () - hrx i, (%) (hr)}

2
1-2y4) 2. (2
5,0y 1 0,0) = - L&) H_ ) (hr)

A

¥
2
+ z{h [—2-% - —i—] Hl(z) (hr) -
T

Tr

2.2
h 2
ay. Ho( )(hr)}

oxy¢cx,ylo,0)=2xy{ H, ) () - H(Z)(hr)}
I'

QlEe

oR o)

= VX? + yz

compressional wave velocity,

shear wave velocity,

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)
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H (2) H @) . Hankel's function of the second kind, zero and

first order, respectively.

(2) Shear Wave Source at Point (x,y) = (0,0)

vexy | 0,0) = H, P (ar) (A.7)
0,y 10,00 =B B ) (A.8)
0y 10,0 = X (4.9)
L5ty 0,0) = {—sﬂ Do - 5 K g m(kr)} (A.10)
15 Yxyl00 = 2o ‘P(x,ylo 0) | (A.11)
oy ey [0,0=-6F -y )l P - Su (z)uq)} (A.12)
I‘ I'
where k = w/B .

NOTE: To calculate ﬁ(x,y | xs,ys) or 3(x,y | xs,ys) using the above ex-
pressions, replace
(i) xby (x-x)
(i1) y by (y-vys)
@D Tby Jx-x)f e -y
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APPENDIX B

Displacements and Stresses Generated by Line Sources
in a Semi-Infinite Elastic Medium

(1) Compressional Wave Source at Point (x,y) = (0,f)

3y 10,6) »H By as ra0 (B.1)

P 1@ o) ]

T T

a2y 0,8) = hx[
0

0

. 3
+ 161 f ke v o EYsin (kxz)dz
o

m F(z)
. o 2 ! '
_8i kz(2z" -1)v _-kvf _-kv y_.
T, F(z) e e sin(kxz)dz (B.2)

ﬁy(b(x’YI 0,f) = -h [Hl (2) (hr) _(Xi—‘i)— + Hl(z) (hro,) Lzr%fl]

00
. 2 2
+ 1;_1[ k(Z; z" 1 e-kv(f+}')cos(kxz)dz
o

A '
- %1—[ kz 1(32(2 = 1) grkvE kv v (kxz)dz (B.3)
)

2 o2
L el Oy 0,8 = 2n |3 - 2050 ]Hl(z)(hr) + [th Q;—?—]HO(Z) (hr)

T

r0 T

27 .
; Zh[l 20ty P - [zh2 l———(r . kz] H, @) @)

o . o

722
16i k“z%  _-kvf [ 2, . 2] -kvy
+“L T(z) e {Zz + (1-2n7) e

- @2F-1e y}cos (kxy)dz (B.4)

2

2
. 12 2 2 2. @
oyy¢(x,y 10,6) = Zh[}- - _3‘5.]}11( ) (hr) + [Zh fz -k ]Ho (hr)

|-
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2 2
_ 1  2x (2) 2 X 2 2
2h [;— ;—3] H, B (e ) - [Zh Xk ]HO( )(hro)

(o}
0o r0

F2) fe kv kv Y}cos (kxz)dz
(B.5)

_16i f Kz 22% - 1)v' kot
™
o

2

1~ ¢ _ 4dhx(y-f) (2) 2h -f 2
i 8y Gy 1 0,6) = B By - ——’;éL—)HO( ) (hr)

2
. 4hx()35+f) Hl(Z)(h r) - 2h“x 2+f HO(Z)(hrol
r

r
(o) (o)

0

. 2 2 _ 142 '
) §_1_f k™z (22" -1) e-k\)f{e~k\)}'_e‘k\’ Y}sin(kxz)dz
o

T F(z)
(B.6)
where
i=v/T1
v = z2 _ YZ
]
v = Vz7-1

F(z) = (Zz2 -1)2 - 422\)\)'

h = w/a
k = w/B
Y = B/a
r= Vv 507

and the source is at (x,y) = (0,f) .
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(2) Shear Wave Source at Point (x,y) = (0,f)

Py 10,8 » H B ) as r>0 (B.7)

8y 0,6) = -k[ﬂl(z) () LRy B ey (25D ] |

o}

00

. 2 2 !
+ 2 A g o 0 cos (oxa)dz
8i ® X 2 2 ! k\)'
- _nl[ kz” (22" -1) e'k" fe' ycos(kxz)dz (B.8)
0 F(z)

A 'd) -
uy (x,y | 0,f) = kx [ = T

@ 2
i, ) (k) _ H, ¢ )(kro)}

00

. 3 '
16 - .
- ﬂlfo l;%z‘)’ e kv (f+)')sm(]ocz)dz

* 2
L 8i kz(2z27-1)v

T Z
o F

kv £ kY i (kxz)dz (B.9)

' 2
Loy 0,0 = 4 lﬁ‘%—flﬂl(z) (kr) - 2 ‘—‘—’;él‘—flﬂo(z) (kr)

2
4kx (y+f 2 kK™ x(y+f 2
. __LJ_r(S H B e - 2 K20 5 @O ey

T
(o) o

00
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8i k"z(2z"-1) -kv £ 2 N
A e {[ZZ + (-2nd)]e Y

- 222 -1)e Y}sin(kxz)dz (B.10)

2
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00
8i 122225 -1)2 k't

_k\)'
™ J, F(z) e [

- e Yy sin(kxz)dz
(B.11)

2
8, x,y | 0,8) = <1£r"7-> [Zr—k H, % ) - 13, @ o) ]

2
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(o)
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NOTE: To calculate ﬁ(x,yl xs,ys) or G(x,y | xs,ys) using the above expres-

sions, replace

(1) xby (x -xs)

(ii) £ by yg

(1) 1 by |Jx-x) + -y

(@) 1, by Jx-x)% + rey”
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APPENDIX C

Displacements and Stresses Generated by P or SV Incident Waves
in a Semi-Infinite Elastic Medium

1) Incident P-Wave:

For a plane P-wave with an angle of incidence of e and an

amplitude of |P| (Figure Cl), the displacement and stress fields

in a semi-infinite medium can be expressed as

wEe,y) = - ihcoseld (x,y) + 67 (x,¥)] - ihcosetanfyT (x,y)
(C.1)

uyff(x,y) = - ihsinewi(x,y) - ¢¥(x,y)1 + ihcoseyp” (x,y)

(C.2)
Loy = izhPsin®e - K1 10t 0y) + G0y
- 2h®tanfcos?ey” (x,y) (C.3)
Lg ff(x,y) = [2h%cose - K% [¢i(x,y) + 6T (x,))]
uyy
+ 2h%tanfeos®ey’ (x,y) (C.4)
1 ff - Wles i T 2 2 _.2..T
=0 (x,y) = h"sin2e[¢” (x,y) - ¢ (X,y)] + [Zh"cos”e - k" ]y" (x,Y)
THRS 9
(C.5)
where
63 (x,y) = Aexp(- ih(xcose - ysine)) (C.6)
¢r(x,y) = Bexp(- ih(xcose +ysine)) , (C.7)
and
xpr(x,y) = Cexp(- ih(xcose + ytanfcose)) . (C.8)
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The constants are defined as follows:

_i
A—hlpl ’

B = %-[-(thcosze - k2)2-+4h4tanfsinec053e] ,
C = & - 2n%sinze(2h’cos’e - )1

A= (2h2cosze - k2)2 + 4h4tanfsinec053e s

and
tanzf = j%—tanze + (j%u-l) .

2) Incidence of SV-Wave:

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

For a plane SV-wave with an angle of incidence of f and an

amplitude of |s| (Figure C2), the displacement and stress fields

in a semi-infinite medium can be expressed as

(C.14)

(C.15)

u Fx,y) = - ikeosf§¥(x,y) + iksinfli(x,y) - ¥ (x,y)]
uyff(x,y) = - iktanecosfo” (x,y) + ikcosf[pl(x,y) + ¥ (x,y)]
Lo Hooy = 2ktan’cos’s - 12167 (x,y)

+ 2sinfeost¥h (x,y) - ¥F (x,y)]

1 c ff(x,y) = [Zkzcoszf - k2]¢r(x,y)

uyy

- 2k®sinfcosf [wi(x,Y) - 9T (x,y)]

(C.16)

(C.17)
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1 ff - 2,..T
m oxy (x,y) = - 2k"tanecos“f¢" (x,y)
+ 2 2 2,1 T .
[Zkcos™f - k"1 [Y~ (x,y) + ¥ (x,¥)] (C.18)

where

v (x,y) = Dexp(- ik(xcosf - ysinf)) (C.19)

¥ (x,y) = Eexp(- ik(xcosf +ysinf)) (C.20)
and

¢" (x,y) = Fexp(- ik(xcosf + ytanecosf)) . (C.21)

The constants are defined as follows:

D =-HR§_L (C.22)

E = 2 [-(2%Kcos’t - kA7 + ai*tanesinfcos’f] (C.23)
F = 2 [4k’sinfcosf (2k%cos’t - k2)] (C.24)
A = [2KPcos?f - k%1% + ak*tanesinfcos ot (C.25)
k=g, v-g

and

tanze = than2f+ (YZ -1) | (C.26)
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APPENDIX D

Displacements and Stresses Generated by a Rayleigh Wave
in a Semi-infinite Elastic Medium

For a Rayleigh wave, the displacement and stress fields in a

semi-infinite medium can be expressed as

Sikxl VY 2] -vgy
uxff(x,y) = De T ¥le * - %—[2 -—Z—Z-]e B
27 1
-3 VY VoY
uff(x,y) = iDe | 1 --C-Z e ¥+ S P
y o 7
2[1.¢
i gz
2\ -vy 2\ v,y
ff ikx c o o B
—~a (x,y) = ikDe [(—3+2 )e + (2—-——>e }
W o g’

B
K 2—9;]
1 ff -ikx VoY B “vgY
HO’XY (XQY)=Del 2v e o +—-—R—B—————e
where
c
v =k J1-=>
o 0l2
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and ¢/B is the root of the equation

(%)6 - 8(%)4 + <24- 16 5;) (%)2 -



