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ABSTRACT

SH and Love waves in homogeneous isotropic linear and elastic layered

medium are considered. Roots (wave numbers) of the corresponding fre-

quency equation are complex in general, thus implying solution in terms

of progressing waves and locally standing waves, which decay exponen-

tially with increasing distance from the source. Using the ortho-

gonality of characteristics functions, the displacement field due to

a vertical strike-slip dislocation is evaluated in closed form. The

results can be summarized as follows:

1)

2)

3)

4)

Displacement and rotation spectra exhibit greater sensitivity to

the depth of the source as number of layers increases.

Contribution of locally standing waves to the total energybdensity
spectrum is significant within a distance which is of the order of
the thickness of the top layer.

In case of a single layer, the time displacement field due to lo-
cally standing waves at the surface z=0 can be neglected for x>»2h],
where x and h] represent the distance from the source and the thick-
ness of the layer, respectively.

The average ratio of progressing rotation spectra vs. product of
displacement spectra and frequency, remains constant for a wide
range of frequencies. The same ratio is strongly frequency-depen-

dent for locally standing waves.






1.1 Introduction

To improve current design criteria for structures close to the
active faults, it is worthwhile to explore the details of strong
ground motion there by means of simple analytical models. At present,
the numerical methods (e.g., finite elements) do not seem suitable
for modeling high frequency (f>1 Hz, short wavelength) motions.
Insufficient observational knowledge of the high frequency faulting
phenomena and strong ground motion in the near field, and lack of
suitable high frequency analytical solutions do not permit critical
testing of approximate numerical schemes. Simple, exact analytical
solutions, on the other hand, have the advantage that the results
depend explicitly on selected physical parameters so that relative
importance of different characteristics of the problem can be evaluated
directly.

One approach to analytical solutions, for example, is by the
method of Green's functions. However, as-pointed out by Anderson and
Trifunac (1977), much work remains to be done to compute realistic
Green's functions for use in strong motion seismology. The exact
three-dimensional velocity structure of the earth is not known. It
is, however, so complicated that the exact Green's function might not
be of practical engineering use. Therefore, a typical procedure is
to find a simplified model which approximates the earth structure.
For some simple models, the Green's function is evaluated exactly.

For more complicated ones, only approximate Green's functions can be



used. For the case of an infinite, homogeneous elastic sbace, the
Green's function is simple so integration in time can be performed
analytically (Haskell, 1969). The layered half-space model for the
earth represents a better approximation. However, it is considerably
more difficult to calculate the Green's function in this case (Apsel,
et. al., 1977). Consequently, for integrating ground motions, only
certain approximations have been studied to date (e.g., Helmberger,
1974 considers the low frequency approximations only). For additional
references, the reader is referred to the paper by Anderson and
Trifunac (1977).

At present, the functional form of attenuation of displacement
(velocity, acceleration) amplitudes near the source remains unsolved.
Correlation studies (Trifunac and Brady, 1976) indicate that most
investigators agree on what should be, say, the amplitude of peak
acceleration for distance range between 20 and 200 km from the source.
For distances less than 20 km, there is significant disagreement, re-
flecting the lack of data there and uncertainties associated with
extrapolation. At small distances, say 1 km, these differences are
as large as one order of magnitude (Trifunac and Brady, 1976).

The precfse nature of the attenuation of the ground displacement
(velocity, acceleration) field versus distance depends upon numerous
parameters such as, for example, geological properties of the model,
fault dimension, wave frequency, acceleration (displacement) amplitude
and the characteristics of the recording site. Thus, the attenuation

will be possible to'determine empirically only when many more strong



ground motion records become available. Until then, the only alter-
native is seen in developing models which could provide sufficient
information about the nature of attenuation in thé near-field.

The description of the near-field attenuation calls for a study of
static and dynamic parts of the displacement field near the source.

The waves ina multilayered half-space consist of body and surface waves,
the latter being either progressive or locally standing ones (corres-
ponding wave numbers being real or complex) (Achenbach, 1973; para. 6).
The Tocally standing waves produce the so-called static part of the
displacement field and decay exponentially with increasing distance from
the source. However, in the immediate vicinity of the source, their
contribution to strong shaking may be significant. Therefore, it is of
interest to examine the nature of both static and dynamic fields as
functions of distance from the source and frequency. The problem can

be solved in multilayered half-space by solving the corresponding fre-
quency equation (Haskell, 1953) for roots which are complex in general.
Then, by using the orthogonality of modes (Alsop, 1966; McGarr, et. al.,
1967; Herrera, 1964) the displacement field due to a dislocation, and
corresponding frequency spectra, can be evaluated in closed form.

The purpose of this report is to analyze the nature of strong
shaking near a long vertical strike-slip fault by means of an exact
analytical solution. By emphasizing the nature of amplitude attenua-
tion with distance and by analyzing the relationship of torsional

motions to translational motions, it is possible to devise a number of



useful results for future estimation of strong earthquake shaking in
the near field.

Recent advances in computational methods for structural response
to strong shaking (Newmark and Rosenblueth, 1971) have emphasized
the need for evaluation of rotational components of ground motion in
the near-field and their relation to the displacement field as a
function of distance from the source and frequency. At the present
time, no rotation spectra in the near-field due to dislocation at a

fault seems to be available in literature.



1.2 Statement of Problem

The model considered in this work (Figure 1) consists of n
homogeneous isotropic layers which extend to infinity along the y-axis.
The Tayers are bonded to a rigid half-space. A prescribed antisym-
metric displacement field is applied at x=0 uniformly along the y-axis.
The resulting displacement field is of the antiplane-strain type and is

given by u =u,= 0 and uy= v. The displacement input can be expressed
as

vi= v(x=0",2,0) = 9(2)F(w)e~ 10t (1.1)
where the functions g(z) and F(w) are known.

Steady state wave motions in the layered medium for x=0 are then

governed by

2
<v2+9—2—>v =0 , v2 = 3%/9x +3%/32°
B
Xe (0,°°) v
ze [0,z,] R (1.2)
where B(z) represents the shear wave velocity, w is the circular fre-
n
quency, and z = I hm’ with hm being the thickness of the mt]h layer.
m=1

By symmetry of the model and antisymmetric excitation at x=0+, the
resulting wave motion becomes antisymmetric with regards to x=0.
Hence, from this point and on, the motions for x=0 are studied only.

Since the top surface of the layered medium is stress-free and the
bottom is perfectly bonded to the half-space, the boundary conditions
are

av(x,0,w)

> =0 (1.3)
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v(x,z,,0) = 0 (1.4)

Along each interface between the layers, one requires perfect

bonding, i.e.,

- +
v(x,z_,w) = v(x,z ,w) (1.5)
m m m=1,2, ..., n-1
V(XsZ_ ,w) av(x,z+,w)
om —_m (1.6)
U 32 M1 3z > 2R

where the superscripts - and + denote that z is approached from below

or above, respectively, and p is the shear modulus.



1.3 Solution of Prob]em]

A solution of equation of motion is assumed to be of the form

v(x,2,) = ¢(z)e’*X | (1.7)
where k represents the wave number, function ¢(z) is yet to be deter-
mined, and the factor exp(-iwt) is omitted for brevity. Substituting
(1.7) into (1.2), there follows

'aﬁmsq]z+MSﬂ1%z , 0<z=<z

o(x) = < a,C0s qzz+bzsin:q22 » 215252, ¢ (1.8)
a cos qnz+bnsin 9,z > zn_]szszn ,
\ : /
where
2 _ W 2
q = =-k" , m=1,2, ..., n . (1.9)
m 2
B

The 9, can be either real and positive or pure imaginary and positive

for m=1,2,3, ..., n. These assumptions are discussed in more detail

later.

1.3.1 Frequency Equation

In view of (1.8) the displacement and stress in the mth layer are

given by
_ . ikx
v(x,z,w) = (amcos qmz+-bms1n qmz)e
z, 1SIsZ.
m=1,2, ..., n (1.10)

1 The alternate -approach is outlined in Appendix A.



_ . ikx
qyz(x,z,w) = umqm(-ams1n qmz-rbmcos qmz)e (1.11)

with u being the shear modulus. The origin of thé coordinate system

th

(x,y,z) in the m™" layer is next placed temporarily at z=z

m-1
(Haskell, 1963) and the elastodynamic state (Achenbach, 1973; para. 6)

is denoted by

V= ' (1.12)

The elastodynamic states at the top and the bottom of the mth layer

at x=0 are specified by

a
Vo, = m (1.13)
~m=1
“mqmbm

a cos thm-+bms1n thm
Vm = . ) (1.14)
umqm(-ams1n AP * bpCOSs thm)
From the last two expressions, the relation between elastic states

at the bottom and the top of the mth layer is given by

Ym = ﬁmYm—l R m=1,2, ..., n
cos thm sin thm
. M
ﬁm = (1.15)
.~umqmsin thm cos thm_

Similarly, for (m-])th layer, it follows

v =A .V

TS TEA T I m=2, ..., n . (1.16)

The continuity of elastodynamic states specified through (1.5) and

(1.6) implies
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+— = —
Ym = Ym s m=1,2, ..., n-1 , (1.17)

where the superscripts - and + denote that z is approached from below
and above, respectively. Therefore, (1.15) and (1.16) give

Vo = ARV, m-1,2, ..., n . (1.18)

By applying the above procedure repeatedly, it follows that
!n - 6!0 ’ (1.19)
where A is a 2x2 matrix defined by

A=Ay e Ay (1.20)

And Am is given by (1.15). The subscript "o" denotes surface x=0.

The use of boundary conditions (1.3) and (1.4) in (1.19) implies
A]] =0 , (1.21)

and this becomes the frequency equation for the problem under considera-
tion. Therefore, for a given circular frequency w, equation (1.21)
provides a set of the wave numbers {kj}, J=1,2, ... . This set repre-
sents the eigenvalues of the equation of motion. The corresponding
eigenfunctions are given by ¢(z) in (1.7).

As an illustration, the frequency equations for the cases of one
and two layers are studied in detail.

1.3.1.1 Single Layer

In this case, the frequency equation (1.21) reduces to

cos qih; = 0, (1.22)
with )

Ve _w 2 . 1.23

(q]> = B% kj, J=1,2, ... . ( )
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In a normalized form, equation (1.22) becomes

. . 9
2 2 2j- .

o -l - [( J ﬂ)] , 3=1,2,3, ... , ' (1.24)
where dimensionless circular frequency 9 and wave number K; are de-
fined by

wh] -~
Q= B—]' ’ l(j = kjh-l . (].25)

Throughout the analysis, the circular frequency w is assumed to be real.
Therefore, for the wave number pbsitive real or pure imaginary, the fre-
quency equation reduces to a family of hyperbolae or circles, respec-
tively. The positive real wave numbers represent surface Love waves
while the positive pure imaginary wave numbers represent locally stand-
ing waves (Achenbach, 1973; para. 6) which rapidly diminish with x.

The cut-off frequencies where the wave number changes from real to
imaginary are given by Q = (2j-1)/2, j=1,2, ... . It is seen from
Figure 2 that for Q<u/2 no progressive wave exists and only a local-
ized standing wave motion can take place. It can also be seen that at
a frequency greater than the first cut-off frequency only a finite
number of progressive modes will propagate through the elastic medium
xz0. At the same frequency, there will be infinitely many solutions
of the frequency equation that correspond to locally standing waves.

1.3.1.2 Two Layers

In the case of two 1ayers, the frequency equation (1.21) becomes

1q1

cos q]h]~ cos q2h2
Hp9

sin q]h] *sin q2h2 0 (1.26)

j=1,2, ... ,
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13

IV _w-o 2 -
(qm) = 82 kj ’ m=1,2,
m j=1,2, ..., (1.27)
Furthermore, it is assumed that\31<:32. It is easy to show that for

0~<kj<<w/31 the frequéncy equation is satisfied with real kj. For

kj==w/B], the frequency equation becomes

cosh 1/kj:' - wz/sg h,=0 . (1.28)

The last equation can be satisfied only if ,’k?-—wz/sg is pure imagi-
nary. For kj real this can be true only if kj<w/B2 which is contra-
dictory to the assumption kj==w/B]3>w/82. However, for kj pure imagin-
ary (1.28) holds. Similar arguments can be applied for kj=>w/B]-
Therefore, the real roots of the frequency equation are obtained for
the range of the wave numbers 0<:kj~<w/B].

Using dimensionless frequenqyszsum]/B] and wave number stskjh],
the dispersion curves for the case of the two layers are presented in
Figures 3 and 4. Examples of the dispersion curves for three and four
layers are presented in Figures 5 through 8.

For progressihg waves in each model, the wave motion at the top layer
consists of plane waves reflecting from the faces of the layer and con-
structively interferring with each other. The resulting dependence of
the wave field in the top 1ayer is expressed in terms of sines and
cosines. For the two layer model, this is depicted by Figure 9. The
apparent phase velocity in the x direction, c, and the wave velocity
along a ray in the top layer, B], are related through c==B]/sin63 where

6 is as defined in Figure 9. For 6 greater than the critical angle,
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Figure 7. Progressing Waves -- Dispersion Curves for Four Layers
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ecr==sin’](61/62), the motion transmitted into the bottom layer is of
the exponential character with increasing distance from the interface
between the two layers (Achenbach, 1973). However, for subcritical
angles (e'<ecr) the z dependence of the transmitted motion is of the
same sinusoidal nature. The lines x=Q and K==B]/82 (=Kcr==Sinecr°Q)
separate the dispersion curves in the k-Q space into two physically

different regions

2) K< 75_2'9 ’ B]<Bz

For the values k and Q in region 1 (B]/BZQ<:K<:Q) waves transmitted
from the top into the bottom layer depend exponentially upon the dis-
tance from the interface. For the pairs (x,Q) in region 2

(K<:B]/82 Q) the wave motion in the bottom layer is of the same
character as one in the top layer. It is seen that as 32 increases
the region 2 decreases. For progressing waves in the three layer

model (Figure 5) there are three regions

B
1
2) $Q<K<B]/BZ Q

3) Q<K<B]/B3Q ’ B]<82<63

For (k,2) in region 1, harmonic dependence of the wave motion with respect
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to z is taking place in the top layer only. The middle and the bottom
layer sustain the motions exponentially dependent upon the depth z.
For (k,2) in region 2, the exponentially dependent motion with
depth z is present in the bottom layer only. Finally, for (k,Q) in
the region 3, both bottom layers undergo the motions of sinusoidal
character in z.

Similarly, for progressing waves in four layer model (Figure 7) the

four regions are specified by

By
1) — Q<k<Q
B2
B
2) E‘3‘Q<K<B]/Bz Q

B
3) B%Q<K<B,/B3 Q

4) 'Q<K<B~|/B4Q [} B]<82<63<B4

Comparison of Figures 3, 5 and 7 shows that the region 61/62'<K<<Q is
common for all three models. Similarly, the region B]/s3< K<ZB]/82 f in
the three layer case (Figure 5) is preserved in the four layer model
(Figure 7), etc.

Once the frequency equation has been solved, one can proceed with
analysis of the eigenfunctions. This is the topic of the next section.

1.3.2 Eigenfunctions

The eigenfunctions are given by
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iij ,
vi(x,z.m) = ¢5(2)e » 3=1,2, ..., (1.29)

where ¢j(z), defined by (1.8) are called reduced eigenfunctions. Using

the boundary conditions (1.3) it follows

b] =0 . (1.30)

The continuity of stress and displacement fields (1.5) and (1.6) pro-

vides the following relations (superscript j being omitted)

a, = a]B2 b2 = a]D2 (1.31)
am = am-]Bm‘*'bm-]Cm
bm = am_]Dm-Fbm_]Em s m=3,4, ..., n, (1.32)

where Bm’ Cm’ Dm and Em are defined by

B = cos z *CO0S q 2 +Ebti!ﬁﬁil sin z +sin q z
m Ym-1%m-1 InZm-1 MG Im-1%m-1 InPm-1
- 19
R m=-1"m-1 . i
C, = sin Une-12m-1 ° COS qmzm_]--——i;a;—-cos Un-1Zm-1 " ST 9.2, 4
Ho 19
= : m-1"m-1 _. .
Dm = CoS Un-1%p-1 ° Sin UnZm-1 " TG SN q. 12, 7 ° COS UZm-1
Mo 1G
s . m-1"m-1 .
E, = sin Un-1%p-1 * SN qmzm_]+-xaﬁar—-cos qm-]zm-l cos q .z 4
(1.33)
The coefficients a and bm’ m=2,3, ..., n can be expressed in terms of

ays which is taken to be unity. Then, the eigenfunctions are

vj(x,z,w) = ¢J.(z)e1kjx s J=1,2,3, ... ,

where
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(a%cos q%z , Oszsz,
¢j(z)= ) a%cos q%zi-bjsin q%z s Zys zs2z,
Seos ap s pdein o
| 3,C0s qnz+bnsm Gz » Z,152s2,
J - pd J o nd
ay 82 b2 D2
J 2 pigd Jypdeded J
ay 8283 - Bm+DZC3C4 ces Cm
J = pipd Jypdedgd J
b BZD3 ces Dm+DZE3E4 ces Em
m=3,4, ..., n . | (1.34)

The coefficients BY, chn, D) and E% are given by (1.33).
1.3.2.1. Orthogonality of Eigenfunctions

In testing for orthogonality of eigenfunctions, a procedure sug-

gested by Alsop (1966) is followed.

Substituting eigenfunction (1.34) into equation (1.2), the following

wave equation is derived

2
. 2
J 4 ﬂ—-k":>¢.=o T N N (1.35)
dz? (BZ JJ i
Then one can write that
d¢, do; 2 .2 .
&0y T 01 0) = (G-Rerey o 175 . (.36

Before proceeding with integration of the last equation, it is neces-
sary to show that the term (¢j d¢j/dz--¢i d¢j/dz) is continuous. Along
the interfaces z=z , m=1,2, ..., n-1, due to the continuity of the
displacement and stress fields (1.5) and (1.6) it follows that
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do.(z" do. (2" do. (2}
¢j(z.§,)‘—-¢§(zm) (z) bt _ b [ + 304 (7)

Z S b\ — g7 = My |4 T dz
dg.(2})
- ¢ (210 (1.37)

The last result suggests introduction of a weighting function u. Then

(1.36) becomes

do.  do. )
ad?[“ <"’j‘azi’¢i‘dil)] - (K L (1.38)
In view of (1.37), the left hand side of the last equation is continuous

across each interface. Integrating (1.38) there results the orthogonal-

ity relation

Zn
f w(z)9;(2)95(2)dz =0 , i#j (1.39)
0

where u(z) is assumed to be constant within each layer.

| Since ki are either real or pure imaginary non-zero constants,
(k?-—k?) #0 for i#j and (1.39) holds for all members of ¢i(z) family
even when members corresponding to real and pure imaginary ki's are

considered.

1.3.2.2 Expansion in Terms of Eigenfunctions

In this section, the expansion of an input function g(z) (section
1.1) in terms of the reduced eigenfunctions ¢j(z) is considered. For

a single layer problem, the reduced eigenfunctions are given by

65(2) = cos L?.’g_;lmz i O0szsz L §el2, ... . (1.40)
1

Without Toss of generality the input function (1.1) can be chosen to
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satisfy

Q%égl =0 and 9(zy) =0 . (1.41)

To expand g(z) in terms of ¢j(z) the input function g(z) is extended as
an even function with period 4z] as shown in Figure 10a. Similarly, for
the case of n layers, g(z) can be extended as an even function with
period 4Zn‘

Using the orthogonality relation (1.39) the input function g(z) can

be expanded in terms of reduced eigenfunctions

g(z) = jzl as65(2) | (1.42)
where
_ (¢459) ind (1.43)

Q: = .

J (¢ja¢;)_
22 2z

_ n. ) _ n 2

49 = [ g s (o) = [ Nwa@a .

-2z -2z, (1.44)

Therefore, the input displacement field (1.1) can be written as

v = v(0,2,0) = F(w) £ a
J

j¢j(z) . (1.45)

At a given frequency w, only a finite number of progressive modes
(eigenfunctions corresponding to real kj's) and infinitely many locally
standing modes (eigenfunctions which correspond to pure imaginary kj's)
are present. Therefore, (1.45) represents expression of the input
field vi in terms of all modes which exist at the particular frequency

w.



27

L3pol 43ke7 atbuLs
404 uor3oung 3ndu] 40 uOLSUIIX]

*eQl 84nbL4




28

The displacement field v(x,z,u) can be expressed in terms of the

eigenfunctions as

v(X,2,0) = F(w) § aj¢j(z)e1ij : (1.46)

with aj specified by (1.43). Therefore, at fixed x and z, the displacement

field in layered media can be represented in the following form

v(x,2,0) = D(w)el®®) (1.47)

The frequency spectra D(w) and the phase shift 6(w) are defined by

[D(w) | = V(Re{v}® + Im{v}? (1.49)

and

- -1 Im{v}
6 = tan ﬁém

In the above expression Re{<} and Im{:} denote real and imaginary
parts of {+} respectively.

1.3.3 Energy Density

The frequency response v(k,z,w) at any station (x,z) has been speci-
fied by (1.47). Therefore, for delta function temporal input (i.e.,
F(w) = 1), the displacement field v(x,z,0) is given by

V(X,Z,w) = z aj¢j(z)eiij (1.51)

J

h

The velocity field for the jt mode (progressive or locally standing)

can be written as

Vi(x,2.0) = -iwaj¢j(2)e1ij . (1.52)

Taking into account only the geometry of the model and input field, a
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th

measure of energy density for the j~ mode at station (x,z) and at

frequency w can be defined in the following manner
_ ] ik.x,2 .
ej(x,z,w) = §-p(z)|aj¢j(z)e N, §=1,2,3, ..., (1.53)

with p being the density of elastic material. At each frequency w the
total energy density is a sum of energy densities of all modes present

at that frequency, or

(x,Z,0) (1.54)

e(x,z,w) = z eJ

J
where ej has been defined by (1.53).

It is evident from (].53) that energy density for a propagating
mode is independent of x, while for locally standing»modes, the energy
density exponentially decays with increasing x (distance from the
source).

One of the aims of this investigation is to determine the ratio of
the energy density of progressive waves versus energy density of lo-
cally standingwaves at stations (x,z=0) for different values of x. This
is done to establish how far from the source (input) the energy density
of standing waves is significant compared to the energy density of
progressive waves.

1.3.4 Rotation

Torsional and rocking excitation of structures are specified by
rotational field of strong ground motion. For problems under investi-
gation, the rotational field is determined by application of the curl
operator to the displacement field, i.e.,

0
r(x,z,w) = Vx | v(x,Z,w) . (1.55)

0
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the displacement field v(x,z,w) is given by (1.47). It follows then
from (1.55) that

r(x;z,w) = | 0 ; | (1.56)

~

For antiplane strain model, we seek the z-component of rotation vector
r, which represents the torsional excitation for structure near a

fault.

Introduction of (1.47) into (1.56) yields

r,(02,0) = 1F(0) I koges(2)e’ 5", (1.57)

J

with factor exp(-iwt) being omitted. The corresponding amplitude

spectrum is then

R (xsz0) = (ReZ(r} +Inlr,} (1.58)

where Re and Im stand for real and imaginary parts of { }, respectively.
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2. Evaluation of Results

2.1 Input Functions

The steady state displacement input (1.1) is described by two
functions: its temporal part is specified by f(t) and spatial part
by g(z). For the purpose of this analysis, the temporal function is
assumed to be given by superposition of a ramp function and a ripple

of finite duration, i.e.,

f(t) = f](t)+f2(t) R ~o< t<eo (2.1)
where '
(
0 s t<0
_Ja
f](t)—lfgt , Ostst (2.2)
[ @ . t>t0
;asingit O=st=st
to -2 -0
fz(t)= (2.3)
0 s t<0 and t>t0

The parameters ¢, a and to can be specified in each problem. Examples
of the functions f](t) and fz(t) are shown in Figure 10b.

Function F(w) in (1.1) represents the Fourier transform of f(t)

(oo}

Flo) =ff(t)e"“’t dt . (2.4)

By applying the Fourier transform to (2.2) and (2.3), it follows
F(w) = F] (w)+F2(w) s (2.5)



32

— -

0

2 |

gaf>

0 "

0

Figure 10b. Input Functions



33

where the principal part of F](m) is

_a e o-1 .
F](w) = f;‘—“—;g*-* (2.6)
and
- 2m e].“’to -1
Fz(w) = za I 7 (2.7)
w

The spatial function g(z) is chosen to be of the following form

v , &2 <z =nz m<n
- 0 m n°?
g(z) = {

(2.8)
0 » otherwise .

with Vo being arbitrary amplitude and 0<&, n<1.

Physically, (2.8) implies that the plane x=0 of the quarter space
layered medium is subjected to a constant displacement Vo uniformly
along the y-axis in a vertical region between &zm and nz, and acts ac-

cording to time function specified by (2.1).

In the present work, the shear wave velocity, density and the thick-
ness of the top layer are assumed to be of unit magnitude, i.e.,
B] =Im/s, p = 1kg/m3, and h1 = Im. Furthermore, the parameters of
the input field (2.1 - 2.8) are assumed to be a = Im, t0 =1s, ¢z = 0.2,
Vo = Im. Consequently, all the results are presented in dimensionless
form. Indeed, all spatial variables are normalized with respect to
h] = Tm, all temporal variables are normalized with respect to to = 1Is,
all velocities are normalized with respect to the velocity of the shear
wave in the top layer By = Tm/s, etc. (To simplify the notation, the
physical quantities are denoted by the same symbol after being norm-

alized, since the normalizing factor is always of unit magnitude. For

example, by the displacement field v(x,z,w) it is understood



34

v(x,z,w)/h] = v(x,z,w)/1, etc. The only exception to this rule will
be dimensionless frequency @ and the wave number « which are frequently

written explicitly as Q = wh]/B], and k = kh].)

2.2 Dispersion and Distribution of Shear-Wave Velocity

In the analysis of the layered model (Figure 1), its dispersion pro-
perties are examined first by considering the influence of shear wave
velocity distribution upon dispersion of progressive waves. In par-
ticular, for the two-layer model, the dispersion curves for different
velocity distributions are evaluated. Assuming the properties of the
top layer (without loss of generality, the shear wave velocity, shear
modulus, and thickness for all calculations are equal to 1), the shear
wave velocity and density of the bottom layer are varied. The results
of four examples are shown in Figures 11 through 14. Since for a single
layer progressing modes are represented by hyperbolae (Figure 2), one
can view progressing modes in the two-layer model as distorted hyper-
bolae in the Q- space. For example, by increasing the acoustic stiff-
ness of the second layer such that B, = 481, Figure 11 shows that the
first two modes essentially reduce to those of the single layer model
in Figure 2. Further increasing the shear wave velocity of the bottom
layer to B, = 681 (Figure 12) makes the first three modes resemble
those in a single layer (Figure 2). The fourth mode is the first to
"detect" the presence of the second layer. In Figures 13 and 14, the
dispersion curves are shown for By being 881 and ]OB], respectively.

For 82 = 1061, the dispersion curves for two layers reduce almost to the

dispersion curves of a single layer model in Figure 2. Thus, for the
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shear wave velocity in the bottom layer being one order of magnitude
greater than the shear wave velocity in the top 1ayer, the Towest dis-
persion modes reduce the the ones established in a single layer model
(Figure 2). In view of the discussion in Section 1.3.3, the results
of dispersion curves presented in Figures 11 through 14 clearly indi-
cate that as the acoustic stiffness of the bottom layer increases,
the motion transmitted into this layer becomes predominantly of the
type which depends exponentially upon increasing depth. The line of
"critical wave number" is given by Kep = B1/B, ©. For all (k,R)
above this line the motion in the bottom layer is of exponential
character in z. For (k,R) below the Kcr=]1ne, the motion in the
bottom layer is of the same type as the motion in the top layer
which consists of plane waves with sinusoidal dependence upon the

depth z (Figure 9). The slope of the critical line k__ is inversely

cr
proportional to the velocity of the shear waves in the bottom layer

62 (B] is assumed a pirori to be equal to unity). Thus, for 82= ]OB],
Figure 14 illustrates that the motion in the bottom layer is predomin-
antly exponential. For perfectly rigid bottom layer (32->m) the
"critical line" becomes Kep = 0 and the dispersion curves reduce

to one in the case of a single layer upon a rigid half-space. This
indicates that the assumption of a rigid half-space for z>z, is ac-
ceptable if the acoustic stiffness of layers for 2>z, is much greater

compared to the stiffness of the top layers (z~<zn).
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2.3 Displacement Frequency Spectra

2.3.1 Progressing Waves

We begin by considering the single layer model. The corresponding
frequency equation has been discussed in Section 1.3.1 and the reduced
eigenfunctions are given by (1.40). Using (1.43) and (1.44), the
expansion coefficients e are calculated as

2h1

] g(z) « cos ig%ﬁ%lzé
0

e

OLJ- R dz s J‘_'] 323 e ey N . (2'9)

The frequency response (1.47) is then

N . .
v(x,z,w) = Flw) £ a.cos L@g;llzg_elij R (2.10)
Rl 2h
j=1 1
with e 1wt being omitted. For input functions F(w) and g(z) defined by

(2.5) and (2.8), the Fourier amplitude spectrum of. progressive waves D(§)
is shown in Figure 15. The numbers along the spectral amplitudes in
Figure 15 denote the frequencies where the corresponding progressive
modes begin to contribute. For example, 4 denotes the frequency point
where the fourth progressive mode begins to propagate. From the fre-
quency on the spectrum is represented by the first four progressive
modes. After point 5, the first five progressive modes contribute to
the frequency spectrum and so on.

For the range of dimensionless frequencies considered in Figure 15
the first six modes of progressive waves are present in the system.
To illustrate the amplitude contribution of each mode to the overall
ampiitudes, the higher modes are omitted in succession. This is

shown in Figures 16 through 20.
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Figure 18. Progressing Waves -- Displacement Spectra for Single Layer
and Deep Source: Only the First Three Modes Included
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45

.01 L

.001 |
1 Q 10 20

Figure 19. Progressing Waves -- Displacement Spectra for Single Layer
and Deep Source: The First Two Modes Included (B1=£ﬁ =rﬁ =1,
x=2,2=0,&=0.7, n=0.9)
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Figure 20. Progressing Waves -- Displacement Spectra for Single Layer
and Deep Source: Only the First Mode Included (81 =py = h]
=h2=1, x=2,2z=0, £=0.7, n=0.9)



47

Examination of Figures 16 through 20 indicates that the relative
contribution of the higher modes to the final Fourier amplitude
spectra is small compared to the contribution of lower modes. Further-
more, the frequency spectrum decreases with increasing frequency.
Study of (2.10) reveals that this decrease is proportional to 1/w.

In source mechanism studies (e.g., Trifunac, 1972) the amplitudes
of the Fourier amplitude spectra of far-field displacements are fre-
quently related to seismic moment Mo which represents the product of
the near source rigidity u, source area A and the average source
dislocation v. By computing a; from (2.9) and for sufficiently small
g and n in (2.8) so that the contribution from second and higher modes
can be neglected, one obtains o =2u]v0(n-g)h]. Since 2v0§\7 it is
seen that o represents the seismic moment amplitude per unit length
(along the y-axis) normalized with respect to the thickness of the
layer as would be expected in this two-dimensional problem. As can
be seen from Figure 15, the cut-off frequencies are easily detected
through jumps in the spectrumamplitudes. Fromthe frequency equation
(1.24), it follows that the cut-off frequencies are given by
Q0= (2§-1)m/2, §=1,2, ..

For the model with two layers, the frequency equation is specified
by (1.26) and the dispersion curves are shown in Figure 3. The set

of reduced eigenfunctions can be deduced from (1.34) to be

J
cos gqyz », O=sz=<z
$.(z) = L 1 (2.11)
? a‘jcos j+bjsin J.z z2,.Sz=<z s J=1,2 N
2 q2 2 q‘l B 'l‘ - 2 ’ 9& 9 ey E)
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with q],qJ defined by (1.27).
To find the frequency response (1.45) one calculates first the

expansion coefficients L In the case of two layers, the expansion

coefficients (1.43) are

0. = (q)ng) (2.]2)
N anbj)
Z 222 .
(¢j,9) = 29 W + cos q%z - g(z)dz
0 222-z]
‘ - )
Z, 222 z, ;
+ w53, + Cos 5z +g(z)dz|} (2.13)
o I J |
PRI L IO PN L [ ded
(65505) = uy G‘“’z)lo r o0, | [edee
2 A - ’
.. Z L. . 22, -2
+blad(2,2)] 2 + |aded(2,2) +bdad(2,2)| 2 7! (2.14)
272 271 272
z : z
1 2
. sin quz
eg Jmz) sz —T | m=1,2, ..., (2.15)
s J
2qm

The function G]’Z(m,z) being introduced to simplify notation and
£(2)|° = £(b) - f(a).

For dispersion relations shown in Figure 3, the corresponding Fourier
amplitude spectra of displacements are shown in Figure 21. As indicated
earlier, all spatiaT and temporal variables are normalized with re- |
spect to the thickness of the top layer h] and to, respectively. It

is further assumed that h] = 1 and t0 = 1.
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Figure 21. Progressing Waves -- Displacement Spectra for Two Layers
and Deep Source: All Modes Included (B] =0 =h] ==h2=],
B]=p]=2, £€=0.7,n=0.9, x=2, z=0)



For the frequency range under consideration and the set of para-
meters specified, there are nine modes of progressive waves present
in the model. To demonstrate dependence of the spectral amplitudes
on the progressive modes, the spectra are evaluated by consecutively
neglecting higher modes one by one. The results are shown in
Figures 21 through 29,

An example of the frequency spectra for progressive waves and for
three-layer model (_h]=h2=lh3=1, Pr=1s py=2, P3=3, By =1, B, =2,
B3==3) is shown in Figure 30. There exist eleven progressive modes
in the frequency range considered.

2.3.2 Locally Standing Waves

The cut-off frequencies in the case of a single layer are given
by ng = (2j-1)n/2, j=1,2, ... . The frequency equation (1.24) implies
that for Q<:ng corresponding wave number is purely imaginary. This
can be used in the frequency equation which reduces to a family of
circles in the Q-k space

92+KJ2. = [(2-1)1/21% , 3=1,2.3, ... . (2.16)

Dimensionless frequency @ and wave number x have been defined by
(1.25). The family of circles is shown in Figure 2. It is seen that
at each frequency, there exist infinitely many wave numbers, which
satisfy the frequency equation (2.16). However, due to exponential
decay of the frequency response in x (see 2.10), only the first few

roots will contribute significantly to motions at any station (x>0,z).

In particular, the total of six modes are included in Figure 2.

An example of the frequency spectra for a single 1ayér due to
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Figure 22. Progressing Waves -- Displacement Spectra for Two Layers

and Deep Source: Ninth Mode Neglected (B1=py=hy=hp=1,
Bo=pp=2, £=0.7, n=0.9, x=2, z=0)
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Figure 23. Progressing Waves -- Displacement Spectra for Two Layers

and Deep Source: First Seven Modes Included (By=pj=hy=h2

=1, Bp=pp=2, £=0.7, n=0.9, x=2, z=0)
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Figure 24. Progressing Waves -- Displacement Spectra for Two Layers
and Deep Source: First Six Modes Included (B1=p7=hy=ho
=1, B2=pp=2, £=0.7, n=0.9, x=2, z=0)
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Figure 25. Progressing Waves -- Displacement Spectra for Two Layers
and Deep Source: First Five Modes Includes (B1=p]=hy=h2
=1, 62=p2=2,, £=0.7, n=0.9, x=2, z=0)
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Figure 26. Progressing Waves -- Displacement Spectra for Two Layers
and Deep Source: First Four Modes Included (By=p7=hy=ho
=1,Bz=p2=2,g=&7,n=03,x=2,z=0)
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Figure 30. Progressing Waves -- Displacement Spectra for Three Layers
and Deep Source (B1=p1=hyj=h2=h3=1, Bp=pp=2, B3=p3=3,
£=0.7,n=0.9, x=2, z=0)
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progressing waves is shown in Figure 15. For the dimensionless frequency
between zero and the first cut-off frequency, only locally standing

waves are excited in the system. For the frequencies greater than the
first cut-off frequency in addition to locally standing waves (e.g., Fig-
ure 31) the progressive waves are induced as well.

The exponential term exp(-kx) for the locally standing waves causes
their amplitudes to diminish with increase of distance x. However, at
cut-off frequencies, the wave number becomes zero and it follows that
the corresponding waves are constant along x. The apparent wave num-
ber being zero is equivalent to the vertical ray incidence upon the
stress-free surface, and consequently corresponds to pure standing
wave contribution to the frequency spectra. This corresponds to peaks
in the frequency spectra in Figure 31.

An example of locally standing waves in two layers is shown in
Figure 32. As in the case of a single layer, at each frequency, there
exist infinitely many wave numbers which satisfy the frequency equa-
tion (1.26). Due to exponential term exp(—ij) only several modes are
needed in evaluation of spectral amplitudes at a station (x>0,z). The
parameters for this example are the same as in the case of the progres-
sive wave shown in Figure 5.

An example for locally standing waves in the case of three layers

is shown in Figure 33.
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Figure 31. Locally Standing Waves -- Displacement Spectra for One
Layer and Deep Source (By=p1=hy1=1, £=0.7, n=0.9,
£=0.2, x=2, z=0)
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Figure 32. Locally Standing Waves -- Displacement Spectra for Two
Layers and Deep Source (Bj=py=hy=hp=1, Bp=p2=2,
£=0.7, n=0.9, x=2, z=0)
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2.4 Comparison of Shallow versus Deep Source

2.4.1 Single Layer: Progressive Waves

The amplitude spectrum for progressive waves shown in Figure 15
is evaluated for relatively deep source (£=0.70, n=0.9; see (2.2)
for definition of the depth of the source). To evaluate the effect
of source depth, we next consider a source to be near the surface,
z=0. In particular, the coefficients £ and n are chosen to be zero
and 0.20, respectively. The temporal part of the input field f(t)
is assumed to be the same as in the case of deep source (Figure 10).
The spectral amplitudes for shallow source are presented in Figure
34. It is seen that the spectra at lower frequencies are greater for
the shallow source compared to the deep source. At higher frequencies,
the opposite is true. This is to be expected on the physical grounds.
Indeed, for deep source, one expects higher frequency modes to con-
tribute more to the spectral amplitudes compared to the lower fre-
quency modes. In the case of shallow source, one expects the
opposite; i.e., the contribution of lower frequency modes to be more
pronounced in relation to the contribution of the higher frequencies.

2.4.2 Two Layers: Progressive Waves

The spectrum shown in Figure 21 is evaluated for "deep source,"
while the one presented in Figure 35 is for the shallow source.
Comparison of these results implies the same conclusion as in the
case of a single layer. With increase of source depth the higher
frequency modes are excited more compared to the lower frequency
modes. However, in the case of two layers, this is much more pro-

nounced compared to the single layer problem. Even greater
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influence of source depth is demonstrated in the three layer problem.
The corresponding spectrum for shallow source is given in Figure

36. The model parameters (p; =1, hy=1,8;=1, p,=2, h2'=2, By =2,
p3=3, h3=3, B3=3, a=1, v0=1, g£=0.2) are the same in both cases.
Comparison with one and two layer examples shows the similar influence
of the depth of the source on the observed Fourier amplitude spectra
of displacements.

2.4.3 Locally Standing Waves

Examination of the displacement spectral amplitudes for deep source
(Figures 32 and 33) and shallow source (Figures 37 and 38) reveal the
similar characteristics as in the case of progressive waves: the deeper
the source, the more high frequency modes are excited in the system;
this sensitivity increases with the number of layers.

Analysis of Figures 31, 32, 33, 37 and 38 will show that as the
dimensionless frequency approaches zero, the Fourier spectrum ampli-
tudes of standing waves behave Tike 1/w. This is as one would expect
since as w=+0, f](t) in (2.2) approaches aH(t) and its Fourier am-
plitude spectrum is a/w. After all transient motions are over for
w>0, 2 aj¢jeikj represents contribution of locally standing waves to
v(x,z,t) and physically reduces to a static amplitude representing

permanent ground deformation at (x,z).

2.5 Energy Density

2.5.1 Single Layer

Energy density e (see (1.54)) is next evaluated on the surface

z=0 for various x and w. Analysis of expression (2.9) for expansion



68

A4
.2 L
.1 L

.01 |

.001 N i L

1 1
Q 0

Figure 36. Progressing Waves -- Displacement Spectra for Three Layers
and Shallow Source (B1=pyj=hy=hp=h3=1, B2=p2=2, B3=
p3=3, £=0, n=0.2, x=2, z=0)

20



69

TR
.2
1L
.01 L
.001 JL
.1 " 10 %o
Q

Figure 37. Locally Standing Waves -- Displacement Spectra for Two
Layers and Shallow Source (B1=p1=hy=h2=1, B2=pp=2,
£=0,n=0.2, x=2, z=0)
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Layers and Shallow Source (81=p1=hy=hy=h3=1, Bp=p2=
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coefficients o shows they are frequency independent for each mode
(progressive or Tocally standing). Thefefofe, ehergy density of each
progressive mode in addition to being x-independent is also frequency
independent. Energy density of locally standing modes is exponentially
decreasing with increasing x. In e-w space and for progressive modes
the situation is depicted in Figure 39. Below the first cut-off fre-
quency, no contribution to the energy density arises from the progres-
sive modes. After the first cut-off frequency, only the first mode
contributes; after the second cut-off frequency, the first two modes
contribute, and so on. It is evident from Figure 39 that for shallow
source, higher modes contribute less to the energy density compared to
the Tower progressive modes. For shallow source, the contribution of
the second progressive mode to energy density is about 74.3% of the
first mode contribution. Contributions of the third, fourth and fifth
mode are 38.6%, 11.2% and 1.02%, respectively, of the first mode
contribution. For deep source (dashed 1line) the contributions of
second, third and fourth mode are 6.91, 8.54 and 4.54 times greater
than the contribution to energy density of the first mode. The
fifth mode contributes 49.3% of energy density of the first mode, for
example. Therefore, as the source location changes from shallow to
deep the maximum energy density contribution of single mode shifts
from the first mode to higher modes.

The total energy density for a single layer model is shown in
Figure 40. As indicated earlier, the total energy density consists
of energy density due to progressive and locally standing modes. The

former are presented by e=const planes in e-x-Q space while the latter
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decrease with increasing x (only two cut-off frequencies are included
in the frequency range shown in Figure 40).

In Figure 40, one finds the contribution of locally standing waves
to the total energy density to be of importance up to distances x=0(h)
only. For x/h] >1 their contribution becomes negligible and energy
density reduces to that of progressive waves only.

In the case of two layers, expansion coefficients o given by
(2.12) are frequency dependent for each mode j while in the case of a
single layer, they are frequency independent. The total energy den-
sity for a surface station in the two layer problem is shown in Figure
41. The results again indicate influence of locally standing waves
for x/h] <1. For x/h]> 1, their contribution to displacement ampli-
tudes become negligible and energy density consists of progressive

modes only.

2.6 Rotation Spectra

2.6.1 Progressing Waves

The z-component of the rotation spectra (1.58) is evaluated in a
manner analogous to the displacement spectra. The results are illus-
trated by Figures 42 through 45. The rotation spectra for single
layer case and for various depths of the source are shown by Figures
42 and 43 (p]=], h]=1, B]=1, £=0.2, v0=1, a=1). The rotation
spectra for two layers are jllustrated in Figures 44 and 45 (p2==2, ho=1,
32==2). It appears from these results that the two-layer model
is more sensitive to the depth of the source relative to a single
layer model. Similar situation was encountered for the displacement

spectra (see (2.4)).
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Figure 42.

10
0

Progressing Waves -- Single Layer Rotation Spectra for
Shallow Source (B}=pj=hy=1, £€=0, n=0.2, x=2, 2=0)
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Figure 43. Progressing Waves -- Single Layer Rotation Spectra for
Deep Source (B1=p1=hy=1, £=0.7, n=0.9, x=2, z=0)
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Figure 44. Progressing Waves -- Two Layers Rotation Spectra for
Shallow Source (By=p1=hj=hz=1, B2=p2=2, x=2, 2=0,
£=0, n=0.2)
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Figure 45. Progressing Waves -- Two Layers Rotation Spectra for

g=h1=h2=1, B2=p2=2, £=0.7,

0
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2.6.2 Locally Standing Waves

Examples of the rotation spectra due to locally standing waves
for two and three layers are presented by Figures 46 through 49,
respectively. These spectra have been evaluated for shallow and deep
source to examine its influence upon the amplitudes of rotation spec-
tra. By comparing these results, it follows that at higher frequencies,
the three layer model is more sensitive to the depth of the source
relative to the two layer model. Of course, on physical grounds, one
expects in both cases that deep source excites higher frequency modes
compared to the shallow source. This is in agreement with the results

for displacement frequency spectra (see (2.4)).

2.7 Rotation Versus Displacement Spectra

It is of considerable engineering interest to establish whether
there exists a sfmp]e relation between rotation and displacement
spectra. A question often arises as to how to calculate the rotation
spectra if the displacement spectrum is known.

For the case of a single layer, shallow source and progressive
waves, the ratio of rotation versus displacement spectra (R/D) is
shown in Figure 50. It can be seen that the ratio R/D increases with
frequency. Division of this R/D by frequency Q provides results pre-
sented in Figure 51.

Spectral ratios R/DQ smoothed along the dimensionless frequency
axis (Holloway, 1958) are shown in Figure 52 (see Appendix B for de-

tails of smoothing procedure). This figure includes results for two
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Figure 46. Locally Standing Waves -- Two Layers Rotation Spectra
for Shallow Source (B1=p1=hy=hy=1, Bp=pp=2, £=0.0,
n=0.2, x=2, z=0)
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Figure 47. Locally Standing Waves -- Two Layers Rotation Spectra for
Deep Source; (By=p1=hy=h2=1, B2=p2=2, £=0.7, n=0.9,
x=2,2z=0
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Figure 48. - Locally Standing Waves -- Three Layers Rotation Spectra
for Shallow Source (By=p1=hy=hp=h3=1, Bp=p2=2,
B3=p3=3, £=0, n=0.2, x=2, z=0)
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Figure 49. Locally Standing Waves -- Three Layers Rotation Spectra

for Deep Source (B)1=p]=hy=hp=h3=1, By=p2=2, B3=p3
=3, £=0.7, n=0.9, x=2, z=0)
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Figure 50. Progressing Waves -- Single Layer Ratio of Rotation vs.
Displacement Spectra, Shallow Source (B1=p7 = hy=1, £€=0,
n=0.2, x=2, z=0)
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Figure 51. Progressing Waves -- Single Layer: R/(DQ), Shallow Source
(61=p]=h1=1, £=0, n=0.2, x=2, z=0)
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Figure 52. Progressing Waves -- Smoothed Ratio R/DQ for Shallow Source

£=0,n=0.2, x=2, z=0: 1) S1ng]e Layer (B]- p1=hy1=1);
2) Two Layers (By = p]-—h] = % pg 3 3) Three
Layers (B]=p1=hy=h2=h3=T, 8= 02 33 p3 =
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Figure 53. Progressing Waves -- Smoothed Ratio R/DQ for Deep Source
£=0.7, n=0.9, x=2, z=0: 1) Single Layer (Bj=p1=hyj=1);
2) Two Layers (By=py=hy=hp=1, B2=pp=2); 3) Three
Layers (By=py=hy=hp=h3=1, B2=pp=2, B3=p3=3)
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and three layer models. It follows from Figure 52 that the ratio of
smoothed R/DQ spectra remains constant for a wide range of frequencieé.
The results for deep source, depicted by Figure 53 suggest small in-
fluence of depth of the source upon the smoothed R/DQ amplitudes.

For shallow and deep sources and locally standing waves, the

smoothed R/D spectra are presented in Figures 54 and 55.

2.8 Evaluation of the Response in Time Domain

The time response v(x,z,t) is evaluated by application of the in-
verse Fourier transform to the frequency response v(x,z,w) in (1.47)

v(x,z,t) = f(t)'*ﬁ%(x,z,t) . (2.17)
In the above equation, f(t) represents the input function (2.5), *
denotes the convolution (Carrier, et. al., 1966), and %G(x,z,t) is
the inverse Fourier transform of the function defined by

6(2,%,0) = 2 a;(0)9;(w,2)e 5% (2.18)
J

Since the function G(x,z,w) is in general too complicated to invert
in time domain in a closed form, the time response v(x,z,t) is evalua-

ted numerically by considering the integral
= iwt
v(x,z,t) = v Flw)G(x,z,w)e dw . (2.19)

An outline of the numerical procedure is given in Appendix C.

2.8.1. Analysis of Results

For illustration of the time response v(x,a,t) a case of a single

layer is considered. The layer is assumed to have the shear wave
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Figure 54. Locally Standing Waves -- Smoothed Ratio R/D for Shallow
Source £=0.0, n=0.2, x=2, z=0: 1) Single Layer (By=

p1=hy=1); 2) Two Layers (Bj=p1=h1=hp=1, Bp=p2=2);

313;hr‘ee Layers (B1=py1=h1=h2=h3=1, B2=p2=2, B3=p3
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Figure 55. Locally Standing Waves -- Smoothed Ratio R/D for Deep
Source £=0.7, n=0.9, x=2, z=0: 1) Single Layer (B =
p1=h1=1); 2) Two Layers (By1=p1=hy=hp=1, B2=p2=2);
3)3";'hr‘ee Layers (By=p1=h1=h2=h3=1, B2=pp=2, B3=p3
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velocity B], density Pys and thickness h], all equal to unity. The
shallow source (£=0.0, n=0.2; see (2.3)) is considered first.

The difficulties arise if one attempts to work with the Fourier
transform of (2.2) of the input field (2.1) since it has only the
generalized Fourier transform, unbounded for w=0 (see (2.6)). Since
the response in layered medium is to be evaluated in some finite in-
terval of time (0,t*) it is convenient to introduce an equivalent
temporal input function fe(t) instead of f(t). Denoting by w(x,z,t)
and we(x,z,t) the time response in the layered medium due to input
function f(t) and fe(t), respectively, the criterion for constructing
the equivalent function fe(t) is given by the requirement that we(x,z,t) =
w(x,z,ta]) for te [a],t*]. The parameters a]2:0 and t* result from
the construction of the fe(t). A choice of equivalent input field is
presented by Figure Cl1 as an odd periodic function with period T. It
is seen from Figure Cl1 that fe(t) = f(t) for te:[a],T/Z]. The para-
meter ay is chosen sufficiently large compared to T to ensure that the

equivalent time response w_ is equal to the original response w for

e
interval of time te:[a],t*]. Namely, the motion w.(x,z,t) starts
initially from zero. From t==a] on, the motion is the same as
w(x,z,t-a]) provided that a is sufficiently large (see Figure C1)
so the motions due to the remaining part of fe(t) do not reach the
observation station x,z in the time interval (a],t*).

For locally standing waves and the station x = 0.5, z = 0.0, re-

sults are presented by Figure 56. Of course, one has to take into

account that actual response is represented by nonzero part in the
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Figure 56. Locally Standing Waves -- Time Response for Single Layer
v(0.5,0.t)--(B1=py=hy=1, £=0, n=0.2, x=0.5, z=0)
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region t =30 due to the property of application of the Fast Fourier
Transform (Brigham, 1974). Thus, after initially being zero (see
Appendix C) response reaches the long time 1imit (static solution) at
which it remains. It can be seen that a relatively strong vibration
is present in the response. This turns out to be due to waves (rays)
which are perpendicular upon the surface of the layer. Namely, at
cut-off frequencies @ = (2j-1)n/2, j=1,2, ..., the wave number which
satisfies the frequency equation is equal to zero (Figure 2). As
- discussed in the evaluation of the frequency response, this corresponds
to vertical rays which reflect back and forth from the faces of the
layer. For x#0 and kj =0, Ezc?xterm e-ij becomes one, which is re-
latively large compared to e 3" for a nonzero wave number, thus
contributing significantly to the frequency response at the cut-off
frequencies. The first two cut-off frequencies Q = n/2 and 3w/2 cor-
respond to the waves of periods T = 4 and 4/3, respectively. The waves
of the period T = 4 are clearly displayed for displacement field in
Figure 56. Even the waves with period T = 4/3 can be seen; however,
their contribution is insignificant compared to the former ones since
the value of expansion coefficients %3 in (1.47) at the higher fre-
quencies are small.

For the same station and progressing waves, the situation is
presented in Figure 57. By superposition of the results for locally
standing and progressing waves, the total wave field is given by

Figure 58. Again, actual response is the nonzero part in t=30. As

it can be seen from Figure 58, for a station close to the source,
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Figure 57. Progressing Waves -- Time Response for Single Layer
v(0.5,0,t) -- (B] =P =h] =1, £€=0, n=0.2, x=0.5, z=0)
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Figure 58. Time Response for Single Layer and Shallow Source v(0.5,0,t)
(By=py=hy=1, £=0,1n=0.2, x=0.5, 2=0)
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contribution of locally standing waves is significanf compared to

the contribution of progressihg waves. For stations z=0 and x=1,

1.5 and 2, the total wave fields for shallow source are shown by
Figures 59 through 61. As the distance from the source increases,

the influence of locally standing waves diminishes. This is illus-
trated in Figure 62 by the amplitude of the long time limit displacement
due to locally standing waves, AS, and the maximum amplitude of total
displacement field, Ad' For example, at distances of one thickness

of the layer from the source amplitude due to locally standing waves
accounts for about 38% of the maximum amplitude for shallow source and
about 21% for deep source. For source distance x =2, this contribution
is 14% and 7%, respectively.

The results in Figure 62 illustrate the influence of the locally
standing waves in total wave field compared to the progressing waves.
For distances from the source greater than two thicknesses of the
layer, the displacement due to locally standing waves can be neglected.
However, within the distance from the source which is less than the
thicknesses of the layer, the locally standing waves contribute sig-
nificantly to the displacement field and cannot be ignored. These
results imply that for structures in immediate vicinity of a fault,
the contribution of locally standing waves must be incorporated in
safety analysis of the structures. Failure to do so might result
in unsafe design by increasing the risk to damage of the structures

in the event of an earthquake.
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Figure 59. Time Response for Single Layer and Shallow Source v(1.0,0,t)
(B'I:p]:h]:]’ £=09 T],=0-2, x=1, Z=0)
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Figure 60. Time Response for Single Layer and Shallow Source v(1.5,0,t)
(By=py=hy=1, £=0, n= 0.2, x=1.5, z=0)
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Figure 61. Time Response for Single Layer and Shallow Source v(2,0,t)
(B]=p]=h]=1, £=0, n=0.2, x=2, z=0)
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3. Summary

The problem studied in this work consists of a layered medium
perfectly bonded upon a rigid half space. Elastic medium is sub-
Jjected to antiplane strain displacement field in such a way as to
simulate a simple model of a strike-slip fault. The frequency spectra
are devised for an arbitrary number of layers. Particular examples
of one, two and three layers are evaluated in detail.

It is confirmed that deeper source excites higher frequency modes
more compared to the shallow source. Overall sensitivity of resulting
motions on the depth of the source appears to be greater as the number
of layers in;reases. Contribution of locally standing waves (which
decay exponentially with distance from the source) to kinetic energy
density appears significant within the distance from the source com-
pared to one thickness of the top layer.

Inversion of the results in time domain for a single layer implies
that the displacement field due to locally standing waves is substan-
tial compared to the contribution from progressing wave for distances
from the source which are less than two thicknesses of the layer.

Comparison of rotation and displacement spectra shows that for pro-
gressing waves, the average ratio of rotation spectrum versus the
product of the frequency and displacement spectrum, remains constant
for a wide range of frequencies. This suggests the possibility of
determining the rotation spectrum from known displacement spectrum and

vice versa.
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APPENDIX A

An alternate approach to derive the representation for dis-
placement field v(x,z,0) due to input displacement v(x=0,z,w)
= F(w)g(z) is shown here for the case of a single layer.
For a layer x,ye (-»,»)x[0,h] the steady state wave motion is
governed by
2 2

2 )
<V2+-“’7> v(x,z,w) = 0, vzs—a——2~+—a7 (A.1)
B ox~ 9z

where w and B represent the circular frequency and the shear wave ve-

Tocity respectively. The boundary conditions are specified by

avfxgg,w) =0 (A.2)

v(x,h,w) =0 (A.3)
and |

v(0,x,w) = F(w)g(z) (A.4)

with g(z) and F(w) being the known functions.
The wave motion is antisymmetric with regard to x; thus, the

sine Fourier transform is introduced (Sneddon, 1973)

f(g) _2j f(x)sin £x dx (A.5)
o

f(x)

n
A=

j f(g)sin gx dg . (A.6)
o

Application of the sine Fourier transform to equation of motion (A.1)

implies

2
VZZ(E,Z,U)) + <‘£2" g2> ; = -2£g(z)F(w) (A°7)



A.2

At this point, one can extend v as an even function with respect to
z=0. In particular, the extension over interval 4z] = 4h] is shown
in Figure 10a. Consequently

;z(.gyosw) = VZ(Ethaw) =0 ‘ (A8)

The Tast property calls for application of finite cosine transform

defined by a pair (Sneddon, 1973)

2
V*(E,n,0) =j V(E.z,0)cos T 2 (A.9)
0
V(E,2,0) = g V¥(£,0,0) + | I V*(E.n.0)cos W2 (A.10)
n=1

It follows then from (A.7) and (A.8) that double transform of the dis-

placement field is given by

V(ganw) = - —BEWL (A.11)
2 _ 131)
q (2h
where
2
¢’ = G- g (A.12)
B
2h
_ nmg
bn —I g(z)cos >h dg . (A.13)
0

Application of inversion (A.10) to (A.11) provides

- o gb

v(E,z,w) = - 2F(w) gy —N  _.cos W2, (A.14)

h - 2 2h

n=1 2 nmw
’ 9 |\ 2n

To satisfy boundary condition (A.3) one replaces n in (A.14) by 2m-1,

i.e.,



A.3

VE.zw) = - ) T 2 (2m-1)m

b * COS
- _ 2 “2m-1 :
1 q2_ [(Zm ])w] (A.15)

Inversion of sine Fourier transform implies

2F o (2m-1)7z gsin Ex
V(X’Z,w) = e — Z b - * COS *
A =y 2m-1 2h j; o - [(Zm-l)'n]z
zh (A.16)

The £-integral is evaluated next. Since the integral is an even function

of £ one has

° , * igx
I =I 2 Esin £x__ g - E].L I — —~dg . (A7)
gy L

The pd]es of the integrand are determined by

2
2 - [S&"E-J_m] =0, w123, ... (A.18)
or
W2 [em1)n]?
8_2_.. Em = 2h ’ m=] ,2, coe (A']g)

The Tast equation is recognized as the frequency equation for a single

layer model derived earlier by different methods. Assuming that

g$>0 s msn
(A.20)
g§|<o , m>n

The poles for the I-integral (A.17) are depicted by Figure (Al). The
real poles gm, m=1, ..., n represent progressive modes while the pure

imaginary poles igm, m=n+1, ... lead to locally standing waves.
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Figure Al. Poles in Complex &-Plane




A.5

Application of Jordan's lemma (Carrier, et. al., 1966) leads to the

value of the g-integral

2
2 [(2m-1)xw m
°© q - [“-Zh" ]

where g is the solution of equation (A.19). Consequently, the displace-
m

e + ) e
1 m=n+1

13 o o1

igmx o -£ X }

(A.21)

ment field (A.16) is given by

vix.z.0) = f'(ﬁ@')‘ { n (2m-1)mz e

b * COS
m=1 2m-1 2h

+ I b

_gx
omo1 * €OS igm%%lﬂz-e m } . (A.22)
men+1 <M

This is the same result derived earlier by modal analysis.






APPENDIX B

Smoothing Procedure

Given a sample of m discrete values {yt}, t=0,1,2, ... m-1, a

smoothed set ¢{y.}, t=0,1,2, ..., m=1 is defined by (Holloway, 1958)

as n
¢{yt} = kjin Wilip o t=0’]’2’,.'.’ m-1 , (B.1)
where {wk}, k=0,%1,+2, ..., *n represents a set of weighting functions
such that
n .
Iowe=1, (B.2)
k=-n ‘

and n is assumed to be an even number.
In present works, the weighting function is chosen to be of trian-

gular type (Figure B1)

W, = ;]J—w(kS)S(A- ks) k=0,+1,%2, ..., #n (B.3)
where

l+s/a -a<s =0

w(s) = (B.4)
1-s/a , a>s =20

s = a/n ' (B.5)

n
g = z Wk (B~6)
k=-n

and 8§ represents the Dirac's delta function. In particular, "n" and"a"
are assumed to be 20 and 10, respectively.

It is seen from (B.1) that the set of m sampled values of {yt} must



B.2

Figure B1. Weight Function for Smoothing
Procedure



B.3

be approximately extended to the left and to the right with respect to
the first (t=0) and the last (t=m-1) sample value respectively. Thisl
is done in the following manner
y, =0 R kK=-n, ..., =1
k (B.7)
‘yk'l - ym—] ? k = m3m+]s seey m"]+n
The process of smoothing can be repeated until satisfactory appearance

of the data is achieved.






APPENDIX C

The Inverse of the Fourier Transform

Numerical calculation of v(x,z,t) in (2.19) calls for the appli-
cation of the Fast Fourier Transform algorithm (FFT).

To avoid difficulties stemming from the ramp function (2.2) which
has the Fourier transform in generalized sense only and is unbounded for
w=0 (2.6), the input function f(t) in (2.5) is replaced by an equivalent
one, fe(t). The equivalent input function is defined by (Figure C1)

f(t) ., 0st=T/2 '
fo(t) = (C.1)
-f (t) ,  -T/2sts0

Function f_(t) is given by

H(t -a])f(t-a]) , 0=st=T/4
f(t) = (C.2)

fm(t) s T/4=t=<T/2
where H( ) represents the Heaviside step function, fm(t) stands for an
axial symmetrical extension of H(t-a])f(t-a]) about axis t=T/4, T
‘is a period, and 2, is a parameter to be specified later. Therefore,
the equivalent function is an odd periodic function, i.e.,

fo(-t) = -f (t)

(C.3)
fo(t+T) = f(t)

In particular, for a set of parameters for function f(t) (a=1, t0==1s,
v0==1m, £=0.2) period T is chosen to be T*=8a]-+4. The time response

due to equivalent input function fe(t) provides response due to original
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c.2

2L 'o-2/1 'n 0
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C.3

input f(t) in region a]Stst/4. It should be noted that the Fourier

transform of fe(t) reduces to Fourier series expansion, i.e.,

F () - in ; b,(8(2-0,) - s(a+q )] (C.4)
T/2

Q = %’1 n o, ob = %f fe(t)sin§$—“ tdt . (C.5)
-T/2

Choosing sampling interval AR=7/60 it follows that required period
T = 120. Number of sampling points is taken to be N==29==512, which
implies the Nyquist frequency QNy = g—- AQ. Consequently, the sampl-
ing increment in time domain is specified by AT = T/N. The program
for evaluation of the Fast Fourier transform in this work is a slight

modification of the program supplied by Wong and Trifunac (1977).






