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INTRODUCTION

Through generalizations and extensions of Rice's work on the distribution
of amplitudes of random noise (3), Longuet-Higgins (2), and Cartwright and
Longuet-Higgins (1) presented results which find useful applications in earthquake
engineering and strong motion seismology. In particular, they show that the
distribution of amplitudes of a random function, f(t), which can be represented
by the series

.f(t) c„ cos (w„ t + 4.,) .......................... (1)

may be characterized by only two parameters , m,V2 , and e , in which

m 2

e =1- 2 .................................(2)
m0m4

represents a measure of the width of the energy spectrum, E(w), of f(t). In
Eq. 1, c„ are related to E(w) through

+do 1
- 2C = E(w)dw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
2

in which w„ represents circular frequency; t = time; and assumed to
be randomly and uniformly distributed between 0 and 2 ar. In Eq. 2
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m" = f E(w)w"dw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)

0

represents the nth moments of the energy spectrum E(w).
Cartwright and Longuet -Higgins ( 1) also present the distribution function,

the expected values, and the most probable values of the peaks of f(t) and
the most probable values of the largest among the considered N peaks. These
results are particularly useful in earthquake engineering applications when one
of the most frequently used functionals for characterization of strong motion
amplitudes is the response spectrum . This spectrum represents the amplitudes
of the maximum relative (or absolute) response of a viscously-damped , single-de-
gree-of-freedom oscillator excited by strong earthquake shaking. In the linear
response range, structural vibration can be represented by a function of the
form equivalent to f (t) in Eq . 1 and therefore, results on the distribution of

TIME (sec)

FIG. 1.-Relative Displacement of Single-Degree-of-Freedom System for Natural
Period T. = 2.5 sec and Damping t; = 0.07; Peak Labeled a' is Largest Relative
Displacement ; Peaks a2, a3, ..., Represent "Second Largest," "Third Largest ," etc.,
Peaks of f(t)

amplitudes off (t) can be applied directly to the analyses which deal with response
spectrum estimation and its use in design (4).

Fig. I shows an example off (t ) for small E. It represents relative displacement

of a single-degree-of-freedom system for natural period T. 2.5 sec, and fraction

of critical damping g = 0.07, excited by the El Centro earthquake acceleration.
The peak labeled a' is the largest relative displacement during this excitation
and corresponds to the relative displacement spectrum amplitude . For the

purposes of this paper , a' is referred to as the largest peak off (t). The peaks

a2, a3, ..., then represent the "second largest," the "third largest," etc., peaks
off (t).

The use of a' only in the current definition of the response spectrum technique
for design of earthquake -resistant structures clearly ignores much valuable
information on overall structural response. By ignoring a2, a3, ..., and the total
number of peaks, N, the response spectrum functionals disregard explicit data

I
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on the distribution of response maxima and on the overall duration of response.
By strict adherence to the formalism of the response spectrum superposition
approach, the design of structures in the linear response range can , of course,
be carried out in terms of a' only. Unfortunately, the common practice in
earthquake-resistant design which often extrapolates arbitrarily the response
spectrum superposition approach to design structures for nonlinear response,
not only violates the rational principles of mechanics, but also requires a
considerable degree of engineering judgment which may be difficult to justify.

The aim of this paper is not to reconcile the use of the response spectrum
approach in the design of nonlinear systems, nor is it to advocate the use
of this method when means are available to do better. Its objective is to present
some new results on the distribution of a" amplitudes and thus help a designer
to consider the relationship between all response maxima (their number and
amplitudes) to the physical characteristics of the structural system which is
designed. The estimates of the amplitudes of the second a2, third a3, etc.,
largest peaks of the equivalent linear system should be helpful in understanding
the number of times certain response levels may be exceeded as the structural
system is progressing into nonlinear response . These results may further be
useful for qualitative interpretation of the observed damage of structures in
terms of the number of the equivalent linear excursions beyond the assumed
design strength.

It is noted that the results of the expected and most probable amplitudes
of a" as presented here are applicable to numerous other problems outside
the field of earthquake engineering, in which the function f(t), as used in this
paper, adequately describes the process which is studied. Thus, while the
motivation for this work comes from the need to understand in greater detail

the response of structures to earthquake excitation, the theoretical derivations
presented here are general.

EXPECTED VALUE OF nth LOCAL MAXIMUM, E(a")

It is convenient to normalize the subsequent results for the amplitudes a"
in terms of a which represents the root-mean-square (rms) amplitude of the
peaks of f (t ); thus

1 1 1/2N(a"2 +a2'2+...+a''2) I .. .. .. . . . . . . . . . . . . . . .(5)

For narrow-band function f (t) (when E - 0), a is closely approximated in terms
of

arms=
[T Jf2(t)dt J '/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . (6)

the rms off (t), as follows (4):

a
= V L arms L M0'/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7)

In Eq. 6, T represents duration off (t).
It can be shown that the expected value of a", when E = 0, is given by

(see Appendix I):
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E(a") n r N(N - 1) N(N - 1)(N - 2) 1
N - + + ... (-1)N+l

a 2 2! 1/ 2 3!\/3 VN

-n(n - 1) C 2N (2N - 1) 2N(2N - 1)(2N - 2)
+ 2N -

3! 2 2!\ + 3!V2

r 3N(3N - 1)zN+^ 1 1 n(n - 1)(n - 2) V
3N+...( -1> , NJ + 3! 2

L
- 3!/2

TABLE 1.-E(a")/a from Eq. 8 as a Function of N and n (E = 0)

N

n 2 4 6 8 10 100 1,000
(1) (2) (3 ) (4) (5) (6) (7) (8)

1.19 1. 42 1.56 1.64 1.71 2.28 2.74

2 0.94 1. 20 1.35 1.45 1.52 2.13 2.61
3 1. 10 1.26 1.36 1.43 2.07 2.56
4 1. 03 1.21 1.30 1.37 2.03 2.53
5 1.16 1.26 1.33 2.00 2.51
6 1.12 1.24 1.29 1.98 2.49
7 1.22 1.26 1.96 2.48
8 1.21 1.22 1.95 2.48

3

2

0 I
tog N

2

FIG. 2.-E(a')/a Versus logo N for E = 0

3
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3N(3N - 1)(3N - 1) 1^ar
+ 3! ... (-1)3N+1 1 N J _

-I)" .
2 [,,N

N/ 3

nN(nN - 1) nN(nN - 1)(nN - 2) 1
+ + ... (-1)nN-l

2!N/2 3!-v/ 3 NInN

TABLE 2.-E(a")/5 from Eqs. 9 and 10 as a Function of f, n, and N

N

(1)

1
(2)

2
(3)

3
(4)

4
(5)

5
(6)

n

6

(7)

(a) E = 0.00

7

(8)

8

(9)

9
(10)
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4 1.42 1.20 1.10 1.04

6 1.56 1.35 1.25 1.19 1.15 1.12
8 1.64 1.45 1.36 1.30 1.26 1.23 1.21 1.18
10 1.71 1.52 1.43 1.38 1.34 1.31 1.29 1.27 1.25 1.24

100 2.28 2.13 2.07 2.03 2.00 1.98 1.95 1.95 1.94 1.93

1,000 2.74 2.61 2.56 2.53 2.51 2.49 2.48 2.46 2.45 2.45

(b) E=0.20

4 1.32 1.09 0.98 0.92
6 1.50 1.28 1.19 1.13 1.08 1.03

8 1.60 1.40 1.31 1.25 1.21 1.18 1.15 1.13

10 1.68 1.48 1.40 1.34 1.30 1.27 1.25 1.23 1.21 1.20
100 2.27 2.13 2.06 2.02 1.99 1.97 1.96 1.94 1.93 1.92

1,000 2.73 2.61 2.56 2.52 2.50 2.48 2.47 2.46 2.45 2.44

(c) E = 0.40

4 1.32 1.09 0.98 0.92
6 1.50 1.28 1.19 1.13 1.08 1.03
8 1.60 1.40 1.31 1.25 1.21 1.18 1.15 1.13

10 1.68 1.48 1.40 1.34 1.30 1.27 1.25 1.23 1.21 1.20

100 2.26 2.11 2.05 2.01 1.98 1.96 1.94 1.93 1.91 1.90
1,000 2.72 2.60 2.54 2.51 2.49 2.47 2.46 2.45 2.44 2.43

(d) E = 0.60

4 1.32 1.09 0.98 0.92
6 1.42 1.20 1.10 1.04 0.99 0.96
8 1.55 1.35 1.25 1.19 1.15 1.12 1.09 1.07

10 1.64 1.45 1.36 1.30 1.26 1.23 1.21 1.18 1.17 1.15
100 2.23 2.08 2.02 1.97 1.95 1.93 1.91 1.89 1.88 1.87

1,000 2.70 2.57 2.52 2.48 2.46 2.44 2.43 2.42 2.41 2.40

(e) E = 0.80

4 1.18 0.94 0.82 0.76
6 1.32 1.09 0.98 0.92 0.87 0.83
8 1.42 1.20 1.10 1.04 0.99 0.96 0.93 0.90
10 1.55 1.35 1.25 1.19 1.15 1.12 1.09 1.07 1.05 1.04

100 2.17 2.01 1.94 1.90 1.87 1.85 1.83 1.82 1.81 1.80
1,000 2.64 2.52 2.46 2.43 2.40 2.39 2.37 2.36 2.35 2.34



212 FEBRUARY 1981 EM1

For n = 1, this reduces to the result presented by Longuet-Higgins (see Ref.
2, Eq. 53), for e = 0.

Eq. 8 gives the exact values of E(a")/a for n and N, but may be difficult to
evaluate numerically for large N. It can be shown, however, that (see Appendix I):

E(a") =n [ (ln N)"2 +
a

y(1nN) 1/2] -n(2! 1) [ (In2N)"z

+ 2 y (In N)
1/2 j l)"+' [ (In nN)'/2 + 2 y (in nN)-'/2J (9)

The difference between Eqs. 8 and 9 is of the order of On N) 3"2, so that
Eq. 9 represents an excellent approximation to Eq. 8 even for small values
of N. For n = 1, Eq. 9 also reduces to the result previously presented by
Longuet-Higgins (see Ref. 2, Eq. 59).

Fig. 2 and Table 1 present the exact values of E(a")/a for n = 1, 2, .. ,
7 and 8, and for N between 2 and 1,000. It is seen that E(a")/a decreases
most rapidly for small n. The difference between E (a'. and E (a'+') / a
diminishes slowly with increasing N. Table 2 presents E (a n) l a computed from
Eq. 9, and shows that this approximation is quite good even for small N.

For E 0, and neglecting the terms of the order of (In [(1 - E) 112 nN ]) -3/2,
Eq. 9 can be generalized (see Appendix I) to

E(a") z
)

1/2 1/2 1 2) 1/21 1/22 =n [In (1 -E N] +2[in(1-E) ]

-n(n2- 1) IY [In (1 - e2)'/z2N] i/2+ 2 [In (1 -£2)"22N] 1/2}

3

2

0 I 2

.Qoq N

3

FIG. 3.-11 (a")/a Versus log10 N for E = 0
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(-1)" j [In (I -E2)112nN] 112+ I y [In (I -E2)112nN]-1121 (10)

Table 2 presents E(a")/ a for E = 0.00, 0.02, 0.04, 0.06 , and 0 .08, and for
selected values of n and N. Though it contains values of E (a")/a for large

TABLE 3.-µ(a")/a from Eqs . 12 and 13 as a Function of E, n, and N

n

N 1 2 3 4 5 6 7 8 9 10
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(a) E = 0.00

4 1.29 1.13 1.04 0.99
6 1.42 1.27 1.20 1.15 1.11 1.09
8 1.52 1.37 1.30 1.25 1.22 1.19 1.17 1.15

10 1.58 1.45 1.37 1.33 1.30 1.27 1.25 1.23 1.22 1.21
100 2.17 2.07 2.02 1.99 1.97 1.95 1.94 1.93 1.92 1.91

1,000 2.64 2.57 2.53 2.50 2.48 2.47 2.46 2.45 2.44 2.43

(b) E = 0.20

4 1.28 1.12 1.03 0.98
6 1.41 1.26 1.19 1.14 1.10 1.08

8 1.51 1.36 1.29 1.24 1.21 1.18 1.16 1.14
10 1.58 1.44 1.36 1.32 1.29 1.26 1.24 1.23 1.21 1.20

100 2.17 2.07 2.02 1.99 1.96 1.95 1.93 1.92 1.91 1.90
1,000 2.64 2.56 2.52 2.50 2.48 2.47 2.45 2.45 2.44 2.43

(c) E=0.40

4 1.26 1.09 1.00 0.95
6 1.40 1.24 1.16 1.11 1.08 1.05
8 1.49 1.34 1.27 1.22 1.18 1.16 1.14 1.12

10 1.56 1.42 1.34 1.30 1.26 1.24 1.22 1.20 1.18 1.17

100 2.15 2.05 2.00 1.97 1.95 1.93 1.92 1.91 1.89 1.88
1,000 2.63 2.55 2.51 2.48 2.47 2.45 2.44 2.43 2.42 2.41

(d) E = 0.60

4 1.22 1.04 0.95 0.89
6 1.36 1.19 1.11 1.05 1.01 0.98
8 1.45 1.30 1.22 1.17 1.13 1.10 1.08 1.06

10 1.52 1.37 1.30 1.25 1.21 1.19 1.16 1.14 1.13 1.11
100 0.12 2.02 1.97 1.94 1.91 1.89 1.88 1.87 1.86 1.85

1,000 2.60 2.52 2.48 2.46 2.44 2.42 2.41 2.40 2.39 2.39

(e) E = 0.80

4 1.13 0.93 0.82 0.75
6 1.26 1.08 0.99 0.93 0.87 0.85
8 1.36 1.19 1.10 1.05 1.00 0.97 0.94 0.92

10 1.43 1.27 1.19 1.14 1.10 1.07 1.04 1.02 1.00 0.98
100 2.05 1.95 1.90 1.86 1.84 1.82 1.80 1.79 1.78 1.77

1,000 2.55 2.46 2.43 2.40 2.38 2.36 2.36 2.34 2.33 2.33
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e, for completeness of presentation, the accuracy of these approximate results

diminishes with increasing a and decreasing n and N.

MOST PROBABLE VALUE OF a"

The most probable value of a", denoted by µ (a"), can be determined by
finding the maximum of the probability density function of a" with

r(a") _^a = ^ . . . . . . . . . . . . . . . . . . . . . . . . . . (11)
a

2

a

and for e = 0, it can be shown (see Appendix II) that a is the solution of
the following equation

(n1 -l)(1

ee°) )N

]
I - In l - 2 aa=1n lljN[1- (1 - e-")"' J . . . . (12)

Fig. 3 and Table 3 present µ (a ")/a for selected values of n and N. Comparison
with corresponding entries in Table 1 show that the amplitudes of E (a ") / d

and µ(a ")/d for e = 0 are similar for small n and N. [Note: µ(a")/d =

.V-.- ].
For e > 0, but small, a in Eq. 12, can be approximately generalized to

2

KERN COUNTY , CALIF. EQ. (TAFT ) JULY 21, 1952

II A004 N21E

DURATION 54.36 sec
Nc 44, T=2.5

Highest Peak / nth Peak

C
--- 0.01
.......... 0.02

0

0.07
---- 0.10

2 4

n
6 8

FIG. 4.-Ratio of Largest and nth Peaks [µ (a' )/ µ (a" ) and E (a' )/E (a")] for Accelero-
gram (A004 , Component N21 E) Recorded during July 21,1952 Kern County Earthquake
in California
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(N(1
-E2)'/ze

"]Na = - Ez)'^z 1 -
1 - [ l - (1 - E ] N

215

1
- In 1 - 2a [1 - (1 - E2)'/ze (13)

Table 3 presents µ(a")/a for selected values of E, n, and N.

ANALYSIS

The preceding results are applicable to f(t) which are stationary in time,
and to the cases in which the local extrema of f(t) are mutually independent.
The success with which these results may then be able to describe the relative
amplitudes of the local peaks of f (t) will depend on the degree to which the
problem at hand departs from these simple conditions. In earthquake engineering
applications, e.g., in which f(t) may represent the relative displacement of a

FIG. 5.-Ratio of Largest and nth Peaks [µ (a' )/µ (a ") and E(a' )/E (a")] for Accelero-
gram (W343, Component NORTH) Recorded during Sept . 12, 1979 Lytle Creek
Earthquake in California
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viscously-damped oscillator (see Fig. 1), excited by strong ground acceleration,
these assumptions are not realized exactly. The nonstationary nature of strong
shaking results in nonstationarity of the response, and the "memory" of the
oscillator of the preceding excitation increases with decreasing fraction of critical
damping. Thus, the relative response , f(t), is neither stationary , nor are the
local extrema mutually independent. From the practical viewpoint, however,
it is of interest to find whether for some range of the variables describing
relative response, the preceding analysis offers some useful information on the

PARKFIELD CALIF. EQ. JUNE 27, 1966

II B037 N65W

DURATION 30.41 sec

N;^24, T=2.5

2F-

B

Highest Peak/ nth Peak

f

.......... 0.02

0.07

1
2

1
4

n

t-0 } E(a( 1) ), E (a( n))
E=0.6

1
6

FIG. 6.-Ratio of Largest and nth Peaks [µ(a')/µ(a" )and E (a')/E(a")] forAccelero-
gram ( 8037 , Component N65W ) Recorded during June 27, 1966 Parkfield Earthquake
in California

trends of the relative amplitudes of peak responses. To this end, a numerical
experiment was carried out in which the peaks of the computed response, f(t),

were compared with the prediction from the stationary theory.
Figs. 4, 5, and 6 present typical examples. In these figures, the ratio of

the highest and the nth peaks of relative displacement response are plotted
versus n for selected fractions of critical damping t. To facilitate presentation,
the discrete points at n = 1, 2, 3, 4, ..., are connected with lines. It is seen
that the computed ratios a'/a" gradually increase in a manner not too different

^i__/µ(OU)) ^µ(a(")1 l , -0.6
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from the theoretical trend of E(a')/E(a") for small n. As E, or n, or both,

increase, the computed ratio a' l a" increases more rapidly than E (a') / E (a'),

suggesting that the theoretical model may be adequate only for small n. The

ratios p.(a')/ p.(a") are very close to the ratios of E(a')/E(a"). As n increases

past 4 and 5, and for a longer nonstationary record, Fig. 5 suggests that both

µ(a") and E(a") may cease to be adequate estimates of a" amplitudes.
Figs. 7, 8, and 9 compare E(a")/aandp.(a")/a from Eqs. 10 and 13 with

computed response to selected recorded strong motion accelerations.
Table 2 predicts that, on the average (for E - 0), the largest peak of the

relative response amplitude is from about 5% (for N - 1,000) to about 20%
(N - 4) greater than the second largest peak. Table 3 shows that the most

probable largest peak is from about 3% (for N - - 1,000) to about 14% (for

3

2

0
2

n
4 6 8

FIG. 7.-E(a")/a and µ(a")/a Versus n from Eqs. 10 and 13 Compared with Com-
puted Ratios from Accelerogram (A004, Component N21 E ) Recorded during July
21, 1952 Kern County Earthquake in California

N - 4) greater than the most probable amplitude of the second largest peak.
This suggests, e.g., that by reducing the high frequency end of the relative
response spectral amplitudes by -5%, the low frequency end by about 14%-20%,
and the intermediate spectral amplitudes by the appropriate intermediate percent
reduction, one can determine the expected or the most probable spectral
amplitudes which will be exceeded only once throughout the shaking correspond-
ing to the original unreduced spectrum. Continuing further in this direction,

by reducing the high frequency spectrum amplitudes by about 10%, the low
frequency spectral amplitudes by about 30%-50%, and the intermediate spectral
amplitudes by the intermediate spectral amplitudes by the appropriate intermediate
reduction, one arrives at the expected or most probable response spectrum



218 FEBRUARY 1981

I I T I I T

EL CENTRO EO, MAY 18, 1940
II A001 S90W

DURATION 25 sec
N;z^20, T=2.5

2

I I I I I 1

2 4 6

n

EM1

FIG. 8.E (a")/a and µ(a")/a Versus n from Eqs . 10 and 13 Compared with Com-
puted Ratios from Accelerogram (A001 , Component S90W) Recorded during May
18, 1940 Imperial Valley ( El Centro ) Earthquake in California

I I I

PARKFIELO CALIF. EQ JUNE 27. 1966

II 8037 N65W

- - 0.01
.......... 002

0.05

007

---- 0.10

I I I I 1 1

2 4 6

n

FIG. 9.-E(a")/a and µ(a")/a Versus n from Eqs . 10 and 13 Compared with Com-
puted Ratios from Accelerogram (B037, Component N65W) Recorded during June
27, 1966 Parkfield Earthquake in California
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amplitudes which will be exceeded only twice during excitation , corresponding
to the originally considered spectral amplitudes . In this analysis, it is assumed
that the frequency dependent duration of strong shaking is such that for a
typical excitation, high-frequency oscillator experiences 100 cycles - 1,000 cycles,
while the low -frequency oscillator vibrates through several cycles only (5,6).

The foregoing analysis applies to the rough , overall trends of the response
of structural systems which can be characterized by a narrow -band (i.e., E
- 0) function of the form of f(t ) used here. In specific examples, however,
departure from the average or most probable trend may be significant as suggested
by Figs. 4-9.

APPENDIX I.-COMPUTATION OF E (a')/ ii

Cartwright and Longuet-Higgins (1) show that with

f(t)
= 1/2 ...................................(14)
mo

2
m

and E2 = 1 - 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (15)
mam4

the probability density function of the heights of maxima Off(t)/M o 2 is given
by

21 1
P(YI)_

V 2,rr (
Eexp -2 e2

1 "'^'-E2^^i2^E
2+ (1 - e)'/2TI exp ( - 2 i2) J exp I - 2 x2 J dx j (16)

The cumulative probability 4) (-I) defined by

(rl) P(rl)dTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17)

is then given by (1):

1 L f e-1/2x2dxLJ(^ ('q )= -72 /E
''I(1-e2) 1/2/c

+ (1 - E2)'/2e-'/2'12 e-'l2x2dxI (18)

For consistency with the notation of Longuet-Higgins (2) note that for a,
as defined by Eqs. 5

a = N 2 arms = V L M'1/2 . . . . . . . . . . . . . . . . . . . . . . . (19)

For E = 0, Eq. 5 becomes

4(r) = e_2/°2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (20)

in which 4(r) = the probability that a should exceed a certain value, r; thus
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P(acer)=e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (21)

Then, the probability that every a in the sample of N will be less than r (assuming

independence of extrema) becomes:

P(a;<-rIi=1,2,...,N)=(1-e-'2/"2)N . . . . . . . . . . . . . . . . . (22)

The probability that at least one of N peaks shall exceed r is (4):

P(a;?rIi=1,2,...,N)=1-(1-e-'2/"2)N . . . . . . . . . . . . . . . (23)

Assuming independence of all local extrema and using Eq. 23, the probability

that n of a" s (denoted by a") shall exceed r as given by:

P(a">-rIi=1,2,...,N)= [1-(1-e-'2/"2)N]n . . . . . . . . . . . . . (24)

Using the aforementioned results, the probability that a shall lie between r

and r + dr becomes

p(r<- a<-r+dr)=p(a,"?rIi= 1,2,...,N)

-p(a"?r+drI i= 1,2,...,N) . . . . . . . . . . . . . . . . . . . . . . (25)

or p(r<--a,, :5 r+dr)=-d([I-(1-e-'2,°2)N} . . . . . . . . . . (25a)

From Eq. 25a, the probability distribution of a" becomes

p (r)
= 2nNr

e-'2/O2(1 - e-'2/O2 )N-' [1 - (1 - e-'2/O2)N] n
-1

. . . . . . . (26)

a

The expected value of a", E(a") is then

E(a")=- J mrd {[ l- (1-e-'2/") N] "} . . . . . . . . . . . . . . . . . (27)

First , integrating by parts, with 0 = r2/[12, or both

E (a") 1

a 2

Next, using binomial expansion and

n (n - 1) n (n - 1)(n - 2)
1-n+ - +...(-1)"=0. . . . . . . . . . . . (29)

2! 3!

there follows

(N - 1)e-z9 +...(-1)N e
2!

[ Ne _0e 9)N ]
= n

N

I

-n(n-1)[
2Ne_e 2N

(2N-1) 1
- e-ze + ... + (-1)2N - i a-2N0 !I

2! 2!

nN(nN - 1)
1 nNe-e - e 2e + ... + (_1)"N -1 a-nNB (30)
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Using Eq. 30 and considering the integral (2):
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i/zJ me 8'/2d8 = - . . . . . . . . . . . . . . . . . . . . . . . . (31)
o n

we find

E(a") - n \ CN N (N - 1) +N(N - 1)(N - 1)

a 2 2! V2 3! 3

1
N +l- 1+ + ( )...

n (n - 1) 2N (2N - 1) 2N (2N - 1)(2N - 2)
2N - +

(2!) 2 2! V^ 2 3! N/ 3

1 1 n(n- 1)(n-2) V (- 2N(2N- 1)
+ ... + (-1)zN-` I + 1 2N -

V2N 3! 2 2! V

2N(2N - 1)(2N - 2) 1 a r
+ 3 ! ^- + ... + 1)3N+1 V- J - (-1)"

2 L nN
3 3N

nN(nN - 1) nN(nN - 1)(nN - 2) 1

2i ! \ + 3!
+ ... + ,^ (32)

Using Eqs. 28 and 29 one can write

= r^E (a") 1

a

2

o

o1
[n - n(1 - e-e)N ]e-112d8

rn(n 1) -n (n - 1) (1 - e- )2N

J B -' /2d8
2! 2!

l( [n(n-1)(n-2) - n(n-1)(n-2) (1-e-e)3N18-1/2dOt

0 3! 3! J J

+ f [(-1)" ' - (1 - e -e)"N] 8 -i/2 d8 . . . . . . . . . . . . . . (33)
0

Then, making use of the approximation suggested by Longues-Higgins (2), which
for the case of n = 1 states that

[1 -(1-e e)N]8 1/2dO=(1n N)'/2+ 1 y(in N) - 1 /2

2 0 2

+ 0(1n N) 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (34)

one can derive E(a")/d for any n, as

E (a") _ n I (In N) "2 2 +
2

y (In N) 1 /2
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n(n - 1) 1
2! (in N)'^2 + 2 y (In 2N) '^^^

EM1

[(in nN )'12 + 2 y (ln nN)
_'^2
I (35)

The difference between E(a")/a in Eqs. 35 and 32 is of the order of (In N) -'/2
and does not affect the approximate result even for small values of N (4) when
n = 1.

To generalize these results to the case when e 34 0, we follow the same
procedure as in the case of e = 0 in deriving the expected value E (a'). The
probability distribution of a" is

-d({l - [1 - 43(u1)] N}") . . . . . . . . . . . . . . . . . . . . . . . . . . (36)

d
or P(i)=-a ((1- [I-4(^l)]N}") . . . . . . . . . . . . . . . . . . (37)

^l

and the expected value of q" becomes

E(i")=-f qd{l-[1-43(,q)]N) " .................. (38)

Separating the aforementioned integral in two parts we have

f o d

E(,q")=+% W-q (1- [1-4) (^I)]N}"d,I

+ Im-u d {1- [1-43(_q)]N}"dq . . . . . . . . . . . . . . . . . . . (39)
o dq

Then expanding the term (I - [I - 4) (,)j N) " as:

n (n - 1)
[1-(1-^)N]"=1-n(1-^)N+ 2! (I_4)) 2N

n (n - 1)(n - 2)

3!
(1 -43 )3N + ... + (-1)"(1 - 43)"N . . . . . . . . . . . (40)

and substituting Eq. 40 into Eq. 39, there follows

E(T1") f 0^+,Od^ [n(I_43)Nn(n2 ' 1) (l_43)2N

d
+...+(-1)"+'(1-43)nN du+ Id^ n(I-4)N

0

nn-1
( 2! )(1-1)2N+...+(-1)"+'(1_43)"N di . . . . . . . . . . . (41)

To simplify Eq. 41 we first consider n = 1. Then
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f
d d

E(,l')
J +'d-(1-^)Ndq+ ^oqdq (1-(^)Ndq . . .

. . . . (42)

Integrating the first integrals by parts yields

E(,q')= 'rl(1 - 4)N10-- J°W(1 - O )Nd 'q+ I(1 _4)N J W
0

1 (1 - ^)Nd^l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (43)
J o

Note that X1

*1 -'0)N J

(1 - 4) "] °„ = 0. Also note that one can write

m = y m l del . . . . . . . . . . . . . . . . . . . . . . . . . . (44)

Thus, from

E(-l')=-

o Jo

Eqs . 43 and 44 there( follows

S (1-^)Ndl+ SW [1-(1-^)N]dl . . . . . . . . . . (45)
o

With the use of Eq. 45 and writing Eq. 41 as the sum of terms like

C° d d
E(ll) - J + drl (1 dl + ° q a^ (1 - 4)'Nd1l . . . . . . . (46)

in which i = 1, ..., n, we can write

nHo m (1 -^)Nd-9+ J
0

0' [1 -(1 - 4,)N]d -9
JJJ

n(n2' 1){ °(1 )2Ndl+ J ° [1-(1-^)ZN2d1}

n (n - 1)(n - 2) °
+ -^ (1 -^)3Ndrl + y [1 -(1 -^)3N] do
3! J0

(_1)n+1 j_ f ° ( 1 - (^) "Nd^l+ [ 1 - ( 1 -4)"N] d.iJ . . .. . . . . (47)

When N is large, [1 - 1(rl)] N is very small unless 4 (^l) is of the order of
I/ N. Thus, Eq. 47 can be written as

(' -
E(rl") = n ° [1 - (1 - (^)N] del +

(-n)(n

n

1)
o [1 - (1 -.0)2N] del

+...+(-1)"+^ di1 . . . . . . . . . . . . . . . . . . . (48)

Note that as x tends to infinity
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x e'/zx2dx = e-I izx2 [-- +

Using Eq. 49 in approximating Eq. 18, we find

E2 )1/ze -l/z"2 + 0 C \
3
/

e-l/2"2/-21 . . . . . . . . . . . . . (50)
J

for large values of 9 and when 0 <- E < 1. If is of the order 1 /N, then
is of the order (In N)'/2 Therefore, neglecting terms of order (in N) -3/2

we have (1):

E2)1/2e-"n"2 (51)

Letting 0 = 1/2112 in Eq. 51 and substituting into Eq. 48 there results

1
E(,q")=,,In I [1-(1-E2)'/2e °]Ndn

2

1 n(n - 1)2 ^m(l - [1-(1-E2)1/2e-e]2N)d,q1/z jl
2

2 I / 2 j 1)" J o ( 1 - [ 1 - (1 -E2) 1/2e -e ] "N) d,q . . . . . . . . . . . . . (52)

To evaluate this integral, consider the last integral only

1
21/2 (1 - [1 - (1 -EZ)1ize-e] "N)d11 . . . . . . . . . . . . . . . . . (53)

0

Cartwright and Longuet-Higgins (1) show that the aforementioned integral is
equal to

e'/2 [01/2 + + 0 (93/2)] (54)
2

in which 90 = In [(1 - E2)'/2iN] . . . . . . . . . . . . . . . . . . . . . . (55)

and i = 1, 2, ..., n. Neglecting the terms of the order (In [(1 - E2)'/2iN]) -3/2
and using Eq. 55, one can write an approximate result as

E(1 ") = 2 '/2 (n { [ln (1 - E2 )'/2N] 1/2 + Iy [In (1 -E2)'/2 N]
-t/2}

n(n2! 1) 1 [In (1 -E2)1/22N] `/2+ 2 y [In(1 -E 2)'/22N] - 1/2

[ln (1 - 2)1/2nN] 1/2

+ 2
y [In (1 - E2)1 /2nN] /2} . (56)

I
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APPENDIX II.-COMPUTATION OF µ(a")/Q
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The probability distribution of a" from Eq. 26 in Appendix I is (for f = 0)

P(r) = 2nNr_2 e-
' 2 /°2(1 - e- '2 /°2)N -1 [1 - (1 - e-'2/O2) N] "-1 . . . . . . . (57)

a

The most probable value of a" which is denoted here by µ (a") is derived
by finding the maximum value of p (r).

Let a = r2/a2, then

- e J(1 e-a)N]dp
= e a( l - e-a) N2 [1 - (1 )Ni n -2

da 2 N/ a.

- 'V/a (l - e-')[1 - (1 - e a )N] + (N - 1) e a)[1 -(I - e a)N]

- N(n - 1)ae-a(I - e -a)N} . . . . . . . . . . . . . . . . . . . . . . . . (58)

Setting the terms inside (} equal to zero and dividing by 2 a (l - e - a) [ 1 -
(1 - e -a)N] results in

ea =

Nrl-
(n-1)(1-e-a)N1

1 -(I - e -a)N J
.....................(59)

1--(1-e-a)
2a

(n - 1)(1 - e-a)N 1 r 1
or a=lnN 1- N 1 -In r 1-

1 - (l - e a) 2a
(1-a-a )N I . . . (60)

For E # 0, p (r) in Eq. 57 is of the form

d
P(,I)=-^ ([1-(1-4,)N]"} . . . . . . . . . . . . . . . . . . . . . . (61)

Letting i 2 / 2 = a, taking the derivative of p(ry) and setting it equal to zero,
we find

(1- E2)1/2e -a[1-(1-E2)1/2e
-a]N 2f1 - [ 1-(1-E2)1/2e -a ] N}n 2

E2) 1/2e -a ] (1 - [I - (I - E2)1/2 e-' ] N)

2-v/ -.

a [ 1 - (1 - € 2 ) ' " 2 e " ]
r
(I - [I - (I - E2

)1/2 e-' I N)

+ (N - 1) V a (
I -E2)1/2e

-a ( l - [l - (I -E2)1/2 e-a] N}

- N(n - 1) Na ( I - E2)1/2e -a [1 - (1 -E2)1/2e -a] N) = 0 (62)

This results in
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N(1 - E2) 1/2

1 - (n - 1) [ 1 - (1 - E2) 1 /2 a-a ] N

{ 1 - [1 - (1 - E) r /2e -a] N

EM1

e° = (63)
1 7

-E2)r/2e-
2a

or a=ln N( 1- E2)112j1-

(n - 1) [ 1 - (1 - E2) 112 a-" ] N 1

1- E2)112e-a]N J7

In j 1 --1 [1 - (1 -E2)'/2e-°] (64)
l 2a
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APPENDIX IV.-NOTATION

The following symbols are used in this paper:

a

a rm
a
E

E (w)
f(t)
mo

m2
m

M"

N
P
r

T

rms amplitude of the peaks off (t);
rms off (t);
nth highest peak off (t);
expected value;
energy spectrum;
random function;
zero moment of energy spectrum E(w);
second moment of energy spectrum E (w);
fourth moment of energy spectrum E (w);
nth moment of energy spectrum E (w);
total number of peaks of response;
probability function;
amplitude off(t);
natural period in seconds (T = 2a/w");
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'Y =
E

Euler ' s constant (0.5772);
measure of the width of E(w ) spectrum;
damping;
most probable value;
cumulative probability distribution; and
natural circular frequency.
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16050 DISTRIBUTION IN EARTHQUAKE RESPONSE
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ABSTRACT: In the response spectrum approach to earthquake-resistant design, it is
assumed that: (1)The structure remains linear or can be modeled by an equivalent
linear system; and (2)vibrations can be described by the largest relative (or absolute)
response amplitude. From the viewpoint of understanding the progressing damage,
however, it is useful to determine other response characteristics which, for example,
relate duration of strong shaking with all, not just the largest, relative response
amplitude. A generalization of the theory of Cartwright and Longuet-Higgins is
presented to describe the expected and the most probable amplitudes of local response
peaks in terms of. (1)Root-mean-square amplitude of the response; (2)a measure, (e),
of the frequency "width" of the response spectrum; and (3) total number of peaks of
response.

REFERENCE: Amini, Ali, and Trifunac, Mihailo D., "Distribution of Peaks in Linear
Earthquake Response," Journal of the Engineering Mechanics Division, ASCE, Vol.
107, No. EMI, Proc. Paper 16050 , February, 1981, pp. 207-227
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