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INTRODUCTION

The problem presented in this paper represents a special case of the model
studied by the writers in Ref. 2, in which they evaluated response of a multilayered
medium subjected to a vertical strike-slip fault and analyzed its application
to earthquake engineering and geophysics.

The purpose of this paper is to present a different method of solution and
to illustrate the nature of the results in the case of single elastic layer overlying
the rigid half space. Though too simple for many practical applications, this
model can serve as a test case for more general numerical models in earthquake
engineering and strong motion seismology dealing with strong shaking in the
near field. The exact analytical solution presented here can thus be employed
to critically examine the quality of the approximate boundary conditions, mesh
size, and integration schemes in Finite Element and Finite Difference approxima-
tions that deal with similar and related problems (2). The results of this analysis
can further be employed to better understand the physical nature of the near
field strong shaking in the vicinity of a vertical strike-slip fault in detail which
is possible only in terms of the exact analytical solution.

This paper presents only the solution to the steady-state periodic source,
since it contains all relevant physical characteristics of the problem. Through
Fourier synthesis (2), it is possible to construct the details of transient motion
everywhere in the model.

Note.-Discussion open until January 1, 1981. To extend the closing date one month,
a written request must be filed with the Manager of Technical and Professional Publications,
ASCE. This paper is part of the copyrighted Journal of the Engineering Mechanics Division,
Proceedings of the American Society of Civil Engineers, Vol. 106, No. EM4, August,
1980. Manuscript was submitted for review for possible publication on August 14, 1979.
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STATEMENT OF PROBLEM

EM4

The model shown in Fig. 1 consists of a homogeneous, isotropic, linearly
elastic layer which extends to infinity along the y-axis. The layer is bonded

to a rigid half-space and subjected to a prescribed antisymmetric displacement
field at x = 0 uniformly along the y-axis. The problem just presented is the
antiplane-strain type in which the displacement field is given by ux = u. =
0 and uY = v (x, z, t), in which the subscripts on u,, uY and u. denote components

of the displacement vector along the coordinate axes x, y, and z, respectively.

The steady-state displacement input is defined by

v' = v(x = 0+, z, (o) = g(z)F(W)e-,w . . . . . . . . . . . . . . . . . . . . . . (1)

with functions g (z) and f (w) being known.

FIG. 1.-Model Geometry

The equation of motion is given by

W2 1 a2 2
[ V2 +

+ 2 ; XE (-^, ); ZE [0, h] (2)2 V(X, z,W) = 0; V 2 2R oza x

in which (3 = the shear wave velocity of the layer; w = the circular frequency;
and h = the thickness of the layer. By symmetry of the model and antisymmetric
excitation at x = 0, the resulting wave motion becomes antisymmetric with
respect to x = 0. Thus, it is sufficient to study the motions for x >_ 0 only.

The top surface of the layer is stress-free and the bottom surface is perfectly
bonded to a rigid half space; therefore, the boundary conditions are specified

through

a v(x,0,W)

az

v (x, h, 0) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
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Since the wave motion is antisymmetric in x, the sine Fourier transform
is introduced, defined by a pair (5)

.f (C) = 2 f f(x) sin ^ x d x . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)
0

1
.f (x) _ - f((o) sin Cx d:; . . . . . . . . . . . . . . . . . . . . . . . . . . . (6)

Tr o

Application of the sine Fourier transform of Eq. 2 implies

2 2

2 + C2 -C2)
2gg (z).f(w) . . . . . . . . . . . . . . . . (7)

C z

By extending the displacement field first as an odd function about z = h in
the region h <- z <_ 2h, and then as an even function with respect to z =
0 over an interval -2h <- z : 0, it follows that

av(Z,0,w) ai(C,2h,w)

az az

The last property calls for application of the finite cosine transform defined
by a pair

f 2h nTr z
v * ( n, w) = J v ( , z, w) cos 2h d z . . . . . . . . . . . . . . . . . . . . (9)

0

1 1 °° nTrz
v(, Z' W) = 2h v*(, O,w) + h 10(k, n,w) cos 2h (10)

Application of the finite cosine transform to Eq. 7 yields

)
v*(,n,w )

2 t F(w)
= 2 b^; n = 1, 2, 3 . ... . . . . . . . . . . . . . . . (11

q

2h

nTr )2

z

in which q2 = 2 - g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . (12)

n1T^

b., = g(C) cos dg (13)?h . . . . . . . . . . . .

0 2h

Inversion of the finite cosine transform implies

2F(w)

h m=1 2q - 1

fir
b„ COS - z . . . . . . . . . . . . . (14)

nTr 2 2h

2h

To satisfy the remaining boundary condition in Eq. 4, the displacement field
i5(, z, (o) is written in the following form
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2F(w) (2m - 1)Tr
i (k, Z, W)

h (2 m - 1)7r 2 b2m
- 1 cos

2h
z (15)

q
z- [ 2h I

Inversion of this cosine integral transform then gives the displacement field as

v(x, z,w )
2F(w)

b2m-, co
(2m - 1)Tr

z
h 2h

i;sin x
d:; ......................... (16)

-

2 L
r(2m - 1) Tr 12

q 2h J

The ^-integral is evaluated next by considering the following integral in complex
^-plane.

7=

etgx

J ^W d . . . . . . . . . . . . . . . . . . . . . . (17)
[(2m-1)irl2

q L 2h J

The simple poles of the integral are determined by

2 1
-^Z m=1,2,3 .... . . . . . . . . . . . . . . . . (18)

Z 2hR

Eq. 18 is recognized as a frequency equation for the problem under consideration
(1). Assuming at a given frequency w that
E2 > 0;

E2_<0; m<n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (20)

FIG. 2.-Contour Integration and Poles in Complex c-Plane

[(2m- 1)ar 2
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the poles for the integral in Eq. 17 are depicted by Fig. 2. Since the waves
moving to the right (and x > 0) are of interest only, the proper contour of
integration is shown by Fig. 2. An application of Jordan's lemma (2) leads
to the result

l
(; sin k x °°dt e'e,„ + e 9mx / (21)[ (2m_

2h J0

Consequently , the displacement field is given by

F(u) r (2m - 1) rrz
v (x, z, w) = Sl b2,„_, cos e'c m

2h

(2m - l)nz
+ b2m_1 cos e-c"' e' . . . . . . . . . . . . . . . . . (22)
m= +1 2h

Examination of this displacement field shows that real poles, ^;„ > 0, correspond
to progressing waves, while the pure imaginary poles, E2„ < 0, imply locally
standing waves. Therefore, motion of the layer at a frequency w consists of
the superposition of a finite number of progressing modes and an infinite number
of locally standing modes.

DISPERSION RELATION

Frequency Eq. 18 can be written in dimensionless form (1,3)

SZ2 (2m
- 1) irr 12- Km
2

, m= 1,2,...,E (23)[
The dimensionless frequency f2 and wave number Km are defined by

wh
fZ= R ....................................(24)

Km =^mh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (25)

For the real wave numbers, the frequency equation reduces to the family
of hyperbolae; for the pure imaginary waves numbers, it reduces to the family
of circles (1). This dispersion relation is depicted by Fig. 3. Analysis of Fig.
3 reveals a change in the number of progressing modes with an increase of
frequency. Below the cutoff frequency, ft < Tr/2, an infinite number of locally
standing modes are excited in the system (there are no progressing modes).
For the frequency fl > 'rr/2, in addition to an infinite number of locally standing
modes, there exists a finite number of progressing modes. This fact is reflected
in the structure of the displacement field in Eq. 22.

Because of the exponential decay of locally standing modes with distance
x from the source, their contribution is of interest in the near field only. In
the far field, the displacement field due to locally standing waves may be neglected.



614 AUGUST 1980

EVALUATION OF RESULTS

EM4

To illustrate the preceding results, the input field (Eq. 4) is assumed to be
of the following form (2)

g(z)=v,[H(z-,rh)-H(z--qh)]; 0<_z<-h,0<T,T<1,-r<ij ... (26)

;wr°a e '- ', - 1 2Tr e
F(w)= f(t) e„"`dt=- 2 + i ;a- . . . . . . . (27)

t° w t° 2 (2 2

in which f(t) =f, (t) +f2(t) . . . . . . . . . . . . . . . . . . . . . . . . . (28)

a
t, 0<-t<-to; f(t)=a, t>t°; f (t)= 0, t<0 ...... (29)

to
2Tr

f2(t) = ba sin - t; 0 :5 t :5 to ; f2(t) = 0, t, < t < 0, 0 < ^ < 1 . . . (30)
to

and H represents the Heaviside step function. These input functions describe

=

FIG. 3.-Dispersion Curves for h = 1 m, (3 = 1 m/s
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FIG. 4.-Progressing Waves: Frequency Amplitude Spectrum for Shallow Source
(T=0,q=0.2,(3=1 m/s,h=1 m)
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FIG. 5.-Locally Standing Waves : Frequency Amplitude Spectrum for Shallow Source
(T=0,i=0.2,(3=1 m/s,h=1 m)
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a simple faulting mechanism. In the present example, the shear wave velocity,

density, and the thickness of the layer are assumed to be of unit magnitude,

i.e., 0 = 1 m/s, p = I kg/m3, and h = 1 in. The parameters of the input

field are assumed to be a = 1 in, to = 1 s, = 0.2, and vo = 1 in. Consequently,
all the following results can be presented in dimensionless form. The frequency

spectrum V(z, x, w) is defined by

V(x, z, w) = Iv(x,z,w)I = e (v) + Im2(v) ................. (31)

The expansion coefficients b2,„_, in Eq. 22 are computed from

8vo (2m - 1)Tr(I - T) (2m - 1)Tr(2 - T - TI)
bzrn_1 = (-1)" sin sin

(2m - 1)Tr 4 4

M = 1, 2, ..., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (32)

allowing evaluation of the frequency spectra in closed form. Examples of the
frequency spectra for shallow source and progressing waves are presented in
Fig. 4. For locally standing waves, the spectra are depicted by Fig. 5.

ROTATION

Torsional excitation of structures by horizontally propagating seismic waves
is next examined in the simple framework of the model in Fig. 1. The torsional
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FIG. 6.-Progressing Waves : Rotation Amplitude Spectrum from Shallow Source
(T=0,q=0.2,(3=1 m/s,h=1 m)
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component of the rotation field r,(x, z, co) is determined by application of the
curl operator to the displacement field v (x, z, w). For antiplane-stain model, the
z-component of the rotation vector represents the torsional excitation. Therefore,
it follows from Eq. 22 that

/
av F(w) (2m - 1)7rz Q; 6.X

rz(x, z,w) = - = l b2m- I tm cos
ax h 2h

(2m - 1)Trz
CCb2m_, ^m cos

2h

e-'r . . . . . . . . . . . . . (33)

The rotation amplitude spectrum is then

4

R/VSl
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FIG. 7.-Progressing Waves: Ratio R/(fV) for Shallow Source (T = 0, 9 = 0.2,
0=1m/s,h=1m)
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FIG. 8.-Smoothed Values of R/(fl V) for Progressing Waves: Shallow Source (T
= 0, ri = 0.2); Deep Source (T = 0.7, i = 0.9)
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R(x, z,w) _ I r. (x,z, (o)I _ \/ Re2(r,) + Imz (r.) . . . . . . . . . . . . . . . (34)

The result for the z-component of the rotation spectrum and progressing waves
is exemplified by Fig. 6.

Rotation Versus Displacement Spectra .-It is of considerable engineering interest
to establish whether there exists a simple relation between the rotation and
translation amplitude spectra, since the question of how to calculate the rotation
spectra is the displacement spectrum is known often arises.

For the case of a shallow source and progressing waves, the ratio of rotation
versus displacement amplitude spectrum R/(flV) is shown in Fig. 7. Examples
of spectral ratios R / (fl V) smoothed along the dimensionless frequency axis
(4) are shown in Fig. 8. It appears from this figure that the ratio of smoothed

R/V

0 10

92

20

FIG. 9.-Smoothed Values of R/ V for Locally Standing Waves: Shallow Source (T
= 0, q = 0.2); Deep Source (T = 0.7, Tl = 0.9)

R/(SfV) is nearly constant for a wide frequency range. The results for deep
source, depicted by Fig. 8, suggest also small influence of source depth upon
this ratio. For shallow (deep) source and locally standing waves, the smoothed
R/ V spectra are presented in Fig. 9. These results suggest that for certain
frequency ranges, one can estimate the rotation spectrum amplitudes in terms
of the displacement spectrum amplitude (2) and known R / V ratios.

ENERGY DENSITY

Taking into account the geometry of the model and input field, the energy
density function at station x, z and at frequency w can be defined in the following
manner (2)
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1
2(2m - 1) Trz

e(x, z, W) p
(

m= ^
bzm-1 cos e'" (35)

2 2h

in which p = density of the layer. In other words, the total energy density
is a sum of energy densities of all modes present at that frequency (locally
standing and progressing). For chosen input functions g and F, the total energy
density is shown by Fig. 10. Since the energy density decreases with increasing
x, it can be seen from Fig. 10 that the contribution of locally standing waves
to the total energy density is of importance for distances x = 0(h) only. For

x/h > 1, their contribution becomes negligible and the energy density reduces

e

FIG. 10.-Energy Density for Deep Source (T = 0.7, n = 0 .9, h = 1 m , (3 = 1 m/s,
z = 0)

to that due to progressing waves only. The same conclusion follows for shallow

source input as well.

CONCLUSIONS

The exact, steady-state solution has been presented for the response of an
elastic layer perfectly bonded upon a rigid half space and subjected to a vertical
antiplane type displacement field in such a way as to simulate a simple model
of a strike-slip fault. The solution consists of progressing and locally standing

waves that decay exponentially with distance from the source.
Detailed comparison of the present analysis with that for the more general

multilayered medium (2) reveals that many characteristics of the near field wave
propagation are preserved by the simple model of Fig. 1: (1) The average ratio
of the spectrum amplitudes of progressing torsional excitation versus the product
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of displacement spectrum amplitudes and the frequency, remains constant for
a wide range of frequencies; and (2) the contribution of locally standing waves
to the total energy density spectrum is significant within a distance which is
of the order of the thickness of the layer.

The findings imply that for structures in the immediate vicinity of a strike-slip
fault, the contribution of locally standing waves to strong ground shaking must
be considered. The foregoing analysis also shows how the torsional excitation
can be approximated in terms of the displacement spectrum amplitudes, source
depth, and a simple layered model of the medium between the fault and the
building site.
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APPENDIX II.-NOTATION

The following symbols are used in this paper:

a,'r,'rl, to, vo, b =
b„ =

e
e (x, z, w)

F(w)

f *(n)
f (t) ,f (t)

f ( )
g (z)

H(•)
h

ImO

k =
n

Re(-)
I =

parameters of input functions;
expansion coefficients;
base of natural logarithm;
energy density;
frequency dependent part of input field;
finite Fourier sine transform off (z);
temporal part of input field;
Fourier sine transform off (x);
spatial part of input field;
Heaviside unit step function;
thickness of layer;
imaginary part of ();

;

wave number;
finite Fourier sine transform variable;
real part of (• );
time;

I
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V = frequency spectrum of v(w);
v' = input displacement field;
R = shear wave velocity of layer;
E = element of set;
K = dimensionless wave number;

= Fourier sine transform variable;
= poles in complex i;-plane;

p = layer density;
SZ = dimensionless circular frequency; and
w = circular frequency.

Superscripts
input field;
value being approached from above;
finite Fourier sine transform; and
Fourier sine transform.

621

Subscripts
m = the m th mode.
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ABSTRACT: Horizontally polarized shear waves in an elastic layer perfectly bonded to
a rigid half-space are considered. The layer is subjected to a steady-state horizontal
displacement field. The displacement spectrum is evaluated in closed form. It consists
of two types of waves: (1)Progressing waves; and (2)locally standing waves. The
average ratio of progressing torsional spectra versus the product of the displacement
spectra and frequency, remains constant for a wide range of frequencies. The same
ratio is strongly frequency-dependent for locally standing waves. The contribution of
locally standing waves to displacements is significant for distances from the source
which are, at most, an order of one thickness of the layer.
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