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INTRODUCTION

The vibration of a circular underground tunnel excited by SH-waves is
investigated in this paper. The exact method of solution involves series expansion
of incident and reflected SH-waves in terms of cylindrical wave functions. The
solution depends on the material properties of the tunnel and the surrounding
medium, on the thickness of the tunnel walls, its depth below the ground surface,
and the angle of incident SH-waves. The model response has been characterized
by the Fourier amplitudes for steady-state harmonic excitation with unit amplitude.
The results thus represent the transfer function amplitudes. This method can
be employed to find the exact transient response of circular tunnels subjected
to arbitrary transient inputs through Fourier synthesis and for known incident
excitation.

The current practice in analyzing the response of underground tunnels often
involves an approximate representation of the semi-infinite half space by a
finite body surrounding the tunnel (4). Such approximations typically violate
the wave propagation aspects of the exact problem and should be tested and
verified by comparison with the available exact solutions. The example of a
circular tunnel analyzed in this paper can be used for construction and verification
of approximate numerical techniques.

The resuits in this paper show that considerable fluctuations in response
amplitudes on ground surface and in the vicinity of the tunnel are possible
over short distances. These amplitude fluctuations increase as the tunnel depth
decreases and appear to be caused by wave interference between the tunnel
wells and the stress-free ground surface. The analysis of stress amplitudes along
the tunnel’s circumference shows large fluctuations that are governed by the
angle of incidence of SH-waves.

Note.—Discussion open until January 1, 1980. To extend the closing date one month,
a written request must be filed with the Editor of Technical Publications, ASCE. This
paper is part of the copyrighted Journal of the Engineering Mechanics Division, Proceedings
of the American Society of Civil Engineers, Vol. 105, No. EM4, August, 1979. Manuscript
was submitted for review for possible publication on December 20, 1978.
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Moboet, Exciration, anp SoLuTion oF PROBLEM

The cross section of the two-dimensional model studied in this paper is shown
in Fig. 1. It represents a half space in which a circular cylindrical tunnel of
outer radius a is situated. The wall of the tunnel is of thickness fa, in which
0 < t < 1, the inner radius being b = (1 — #)a. The axis of the cylinder
is at a depth, D, below the ground surface. The material properties of the
elastic isotropic homogeneous half space are characterized by the rigidity, w,,
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FIG. 2—Mathematical Model

and velocity of shear waves, B,, while that of the tunnel wall are p, and
B,. The two coordinate systems are introduced as: Cartesian coordinate system
(x,,y,) and polar coordinate system (r,,0,) having common origin at the center
of the tunnel (Fig. 1).

The excitation of the half space, w'’, is assumed to consist of an infinite
train of plane SH-waves with frequency w and particle motion in the z direction
(Fig. 1) in the half space (y, = D). It is represented by
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wO=w®(r,0)=expiflwt—kr,cos®, —v) . . . . .. ... ()

in which k = w/B. This corresponds to a wave with incidence angle v of
amplitude 1, and wavelength A = 2w /k.

The incident waves, w'’, are reflected from the plane free surface (y, =
D), and scattered and diffracted by the outer surface of the tunnel (r, = A4).
The resultant total displacement field, w, is then a superposition of the incident,
reflected, and diffracted waves. Waves are also refracted into the linings of
the tunnel. This motion is denoted by w'’. Both w> and w” must satisfy

the differential equation

in which w = w and B = B, in the elastic half space; and w = w"” and

B = B, in the elastic lining of the tunnel.
The boundary conditions are, for traction free at y, = D, the free surface:

aw®
G, = WMo =0 . e 3)
ay,

for continuity of displacement at r, = a:

w =w 4)

for continuity of stress at r, = a:
aw® aw'”

Ko S T e e e e e e e e e e e e %)
ar, ar,

for traction free at r, = b, the inner radius of the tunnel:

aw(f)

o, = =0 . e 6
23! ar, 6)

To solve the problem, we consider an unbounded medium and suppose there
is another cylindrical tunnel of radius a with axis at (x,,y,) = (0,2D) (Fig.
2). One can then introduce two additional coordinate systems: the Cartesian
coordinate system (x,,y,) and the polar coordinate system (r,,8,), having a
common origin at the center of the new tunnel as shown in Fig. 2.

Let there be another incident plane SH-wave, w$’, given by
@ _

w=wd (r,,0,)=expifwt —krycos (@, — )] . . . . ... '6)

with respect to the coordinate system (r,,9,).
We assume the waves w{’ and w{’ that are scattered from and diffracted

around the bottom and top tunnels to be represented, respectively, by

w©

w=w{(r,0,) = >, HY (kr,)A, cosmb, + B, sinmb,) exp (iwt)  (8)

m=0

Wi =W (ry,0,) = > HS (kr,)A,, cos mb, + B, sinmb,) exp (iwt)  (9)

m=0
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relative to their respective coordinate systems. We will omit the time factor
exp (iwt) from now on. The Hankel functions of the second kind H? () are
chosen because they correspond to outgoing cylindrical waves.

In the unbounded medium, the derivatives with respect to y, of w'” + w?,
and wi” + w{’ each vanish at y, = D because of the symmetry of their
representation with respect to y, = y, = D. Thus, in the half space y, =
D, the sum of the displacement fields, w{’ + w{’ and w? + w{’, together
satisfies the wave equation, Eq. 2, as well as the traction-free condition (Eq.
3) at y, = D. The resulting displacement field, in the elastic half space, w®,
is

wO=w® w4 wO W (10)

The resulting displacement field in the elastic lining of the tunnel, w*”, satisfying
the wave equation, Eq. 2, can be written as

c + [C:)H:)(klrl) + C:)Hg)(klrl)] cos mb,
m=0 [D:)H(r;)(klrl)"‘Dg)H(:v)(klrl)] sin m6,

in which k, = w/B,, H"(-) and H®(-) being the Hankel functions of the
first and second kind, respectively. The values w® and w'” must satisfy the
boundary conditions in Eqs. 4, 5, and 6.

Applying Eq. 6 to w'” at r, = b, the inner radius

w? =wP(r,.,0,) =

(an

z (CPH, (kyr) + COHL” (k,7,)] cos mb,
S e o _ at r,=b.... (12)
= [D,)H, (k,r)+ D, H, (k,r)l sinmb =0 .
H'® (k,r)
or CP=-CO———— | L (13)
Hm (klrl) ry=»
H Pk r
and DV = —D‘j’%)— .................... (14)
H,, (k,r) ri=b

in which prime in H/ (-) denotes differentiation with respect to argument.
By eliminating CY and D in Eq. 11

w? =" G, (k,;rXCP cosmb, + DY sinmb,) ... ... ... (15)

m =0
in which for b > 0: G (k,r,)= HP (k,r))
H :n( ? kyry)
H :n( ! kyry)
For the case b = 0, the analysis applies with G, (k,r,) = J,.(k,r)).
Boundary conditions 4 and 5 correspond to the continuity of displacement
and stress at the outer radius r, = a. To apply conditions 4 and 5, we first

transform w¢’ (Eq. 7) and w”’ (Eq. 9) to the (r,,8,) coordinates. Eq. 9 can
be rewritten as

r=b

w=wd(r,,0,) =exp [—i2kD cosy + ikr,cos(y +0,)] .. ... ... Q17

For Eq. 9, we use the Addition theorem (1,2,3)
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cos nb > cos mo
H‘:’(krz)< _ 2) =3 Jm(krl)H;?m(sz)< . ‘) ...... (18)
sin n, o sin mo,
cos no d P (2kD) cos m@
H‘f’(krz)< . ) = Jm(krl)< 21Dy e )
sin n9, forgur P, . (2kD) sinm9,
B=0, 1,2, 0 o (19)
em
in which P! (2kD) = > [H®, kD) H? (kD) . ........ 20)
and ¢ =1,¢€,=2 for m>1;, n,m=0,1,2,... . .......... (21)

Eq. 9 can then be rewritten as

WS = w(r,,0) = > J,(kr XA} cosmb, + Bisinm8,) . .. ... .. 22)

=0

in which A* = 2 Pl (kD) A ;

n=0

and BA=> P, QkD)B,; m=0,1,2, ... .............. (23)
n=0
Next, w!” and w’ are expressed in terms of Bessel’s functions, so that

©

w=w(,,0,)= 2 €,,(=i)"J (kr,)(cos mvy cos m8,

m=0
+sinmysinmO,) . ... 24)
wy'=w3(r,,8,)

] i - cos m-y cos m9,
= exp (=i2kDcosy) D €,i"J,, (kr)| - omvsinme ) (25)
— Y 1

m=0

Using Egs. 8, 11, 22, 24, 25 and boundary conditions 4 and 5 gives, at kr,
= ka

A H®
% +AX+e€, [(—i)" + exp(—i2kD cosvy)i™] cos my

m

A H(z),

m
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Simplifying Eqs. 26 and 27 gives

CO=R, (ka)A, .. ...............

H(Z) H(2)'
. w T
inwhich R, (k@) =—""—"""— C
G B Gm
‘Im IJ‘O ‘]:n ry=a
H®-R,G, =
and ——— Am+2P;,,An
Jm ry=a h=0

= —¢,, [(=i)" + exp (—i2kD cosy) i™] cos my ;

Similarly, we have for B,

D® =R, (ka) B,,

Amplitude

EM4
.............. 28)
.............. (29)
m=0,1,2,... .... Q0
.............. 31
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FIG. 3.—Surface Displacement Amplitudes for n
D/a=5,t=01,and n,/p, =035

0.5, 1.0, 1.5, and 2.0 and for
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H? -R,G >
— B,+ > P,B,
Jm rl=a Z
= —¢, [(~i)" —exp(—i2kDcosvy)i™}sinmy; m=0,1,2,........ (32)

Eqgs. 30 and 32 each constitute an infinite matrix for the unknown coefficients
A,,B, m=20,1,2, .., (B, =0). Such a matrix equation of infinite order
can be approximated by one of finite order. The truncated series than represents
low frequency position of the exact solution.
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-3 0 33 0 3
x/a x/a

FIG. 4.—Surface Displacement Amplitudes for y = 0.5, 1.0, 1.5, and 2.0 and for
D/a=5,t=01and pn,/p, -3

For the case p, = 0, the case of a cavity of radius @ in an elastic half
space, the term, H? — R, G, /J,, in Egs. 30 and 32 reduces to H® /J’
and Eqs. 30 and 32 reduce to equations for the case of a cavity first derived
in Ref. 1.

Surrace DisPLACEMENT AND STRESS AMPLITUDES

For the seismological and earthquake engineering applications, a useful aspect
of the preceding analysis is the description of the displacement amplitudes along
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the surface of the half space above and near the tunnel, and displacement
and stress amplitudes on the surface of the tunnel itself.

For the plane SH-wave excitation with amplitude 1, the resulting motion can
be characterized by the modulus, or displacement amplitude

displacement amplitude = |{w| = [Re*(w’) + Im*(w)] /> . . . ... ... (33)

In the absence of the tunnel, the modulus of ground displacement in the
uniform half space is equal to 2. In the presence of the tunnel, waves are

Amplitude

Displacement

FIG. 5.—Surface Displacement Amplitudes for n = 0.5, 1.0, 1.5, and 2.0 and for
D/a=15,t=01,and p,/p, = 0.35

scattered and diffracted around the tunnel, and the resulting modulus may depart

significantly from 2.
Similarly, the resultant stress of interest, o,,, on the surface of the tunnel

can be characterized by the normalized stress amplitude, o*, given by
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aw’ aw’
- W, |—
% 6rl ry=a arl ry=a
o* = e (34)
k Mok

in which pok = p,0/B = pe|dw’/ar| corresponds to the stress amplitude

Amplitude

Disptacement

FIG. 6.—Surface Displacement Amplitudes for n = 0.5, 1.0, 1.5, and 2.0 and for
D/a=15,t=01andp,/p,=3

of the input SH-wave. The presence and the proximity of the half-space boundary
will significantly affect the displacement and stress amplitudes on the surface
of the tunnel.

Figs. 3 and 4 present examples of displacement amplitudes plotted versus
x/a on the surface (y, = D) and for q = 0.5, 1.0, 1.5, and 2.0; D/a = 0.5;
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1.5 and p,/p, = 0.36

T
=2
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FIG. 7.—Surface Displacement Amplitudes versus Frequency at x/a = —2, 0, and 2 and for ¢
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FIG. 8 —Surface Displacement Amplitudes Versus Frequency at x/a = —2, 0, and 2 and for r = 0.1, D/a = 1.5, and [TRYATIN
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t =0.1; and p,/p, = 0.35 and 3.0. These examples correspond to a deep
tunnel of rigidity which is one-third and three times the rigidity of the surrounding
elastichalf space. For vertical incidence of SH-waves, y = 0, surface displacement
amplitudes are symmetric with respect to x/a = 0. As v increases towards
90° the complexity of motion increases more for x/a < 0 than for x/a >

5 T T
. D/6=15
7:05 0 t=0.!
' py/ps035
ok 1t Y

—_— 0

Amplitude

Displacement

FIG. 9.—Displacement Amplitudes of Tunnel Wall for = 0.5, 1.0, 1.5, and 2.0 and
forD/a=15and p,/p, = 0.35

0 because of the interference of incident and the waves scattered from the
tunnel. The displacement amplitudes in these figures oscillate about the mean
level equal to 2. The shadow zone behind the tunnel is only weakly observed,
eg., for vy = 30, n = 1.0, and p,/p, = 0.35. For u,/pn, the rigid tunnel
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is more efficient in transmitting the incident wave energy to medium behind
the tunnel. Consequently, this shadow zone essentially disappears for p.,/p,
= 3 in Fig. 4. In general, the rigidity of the tunnel appears to play a secondary
role in influencing the surface displacement amplitudes when D/a = 5.

Figs. 5 and 6 present the corresponding examples except for D/a = 1.5,
i.e., a shallow tunnel. The shadow zone for y = 1.0 and vy = 0° and 30°
now becomes more prominent for w,/pn, = 0.35. However, for p,/pn, = 3,
as in the foregoing example, the stiff tunnel (Fig. 6) essentially eliminates this

Amplitude

» O

Displacement

FIG. 10.—Displacement Amplitudes of Tunnel Wall for v = 0.5, 1.0, 1.5, and 2.0
andforD/a=15,¢t=01,and p,/u, = 3.0

shadow zone by driving the medium between y, = D and r, = a with energy
generated by incident waves on the bottom and left walls of the tunnel. For
larger values of m (shorter incident waves) and for larger v (near 90) the complexity
of interference patterns in Figs. 5 and 6 increases considerably relative to the
corresponding examples in Figs. 3 and 4. The shallow tunnel (D/a = 1.5) now
acts as a more efficient shallow barrier that scatters most of the incident SH-wave
energy back towards x/a < 0. As a result surface displacement amplitudes
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display rapid fluctuations between 0 and 4 and suggest strong participation of
standing wave patterns in the total ground motion. Figs. 7 and § show the
transfer function spectral amplitudes plotted versus wa/mp at x/a = -2, 0,
and 2 for ¢t = 0.1, D/a = 1.5, and for p,/p, = 0.35 and 3, respectively.

20 T ] T T
mn=05 0/a=15 n=10 y
i/po=035 —
1+0. P T
P -—- 60
1.5 r 900 ]

Amplitude

Stress
o
?
1
T
i

FIG. 11.—Normalized Stress Amplitudes at Outer Tunnel Surface for y = 0.5, 1.0,
1.5, and 2.0 and for D/a =1.5, n,/p, = 0.35, and r = 0.1

As already seen in Figs. 3, 4, 5, and 6, for x/a < 0, displacement amplitudes
display larger and more abrupt fluctuations than for x/a > 0.
Figs. 9, 10, 11, and 12 show the changes of displacement amplitudes and
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normalized stress amplitudes with respect to 6, for D/a = 1.5, p,/p, = 0.35
and 3, ¢t = 0.1, and m = 0.5, 1.0, 1.5, and 2.0. It is seen that the more flexible
tunnel experiences larger and more rapidly fluctuating displacements, but is
subjected to smaller stresses than the more rigid canyon (Figs. 10 and 12),

|12 B T . T
=05 n-10 0/a-15
- o 1=0.
IOL i 4t L i /pe3
Y Lo ,

Amplitude

Stress

FIG. 12.—Normalized Stress Amplitudes at Outer Tunnel Surface for = 0.5, 1.0,
1.5, and 2.0 and for D/a = 1.5, n,/pn, = 3, and ¢ = 0.1

for w,/m, = 3. For greater p, the tunnel wall is more efficient in averaging
displacement amplitudes along its circumference but at the same time, “‘attracts”
higher stresses.
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CONCLUSIONS

Certain aspects of the exact solution of the vibrations of an elastic tunnel
embedded in elastic half space and subjected to incident plane SH-waves have
been presented herein. The practical engineering uses of the theory presented
in this work are, of course, severely limited by the simplicity of the geometrical
characteristics of the model considered. The physical insights into the nature
of wave scattering, diffraction, and interference in this problem should, however,
be of considerable value for the development of improved approximate solution
techniques. For proper development and testing of approximate solution methods,
it is necessary to consider all physical phenomena present in a problem of
this type and to have an exact solution to critically compare with an approximate
representation. Different mathematical and physical approximations are often
analogous to adding or deleting certain spurious wave sources and unless it
is possible to compare results with an exact representation, it is difficult to
evaluate such approximate methods. The examples presented in this paper show
that the scattered field from the tunnel does not attenuate quickly (~1 /\/_r)
with distance away from its axis. This means that in those approximate
representations, which involve finite element or finite difference ‘‘box’’ sur-
rounding the tunnel, particular care must be taken to eliminate the back scattering,
of these waves by the boundaries of the box.
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AppenDIX Il.—NotaTion

The following symbols are used in this paper:

A4,.,B,,C,,D, = complex coefficients;
a,b = outer and inner radii of tunnel;
D = depth of axis of cylinder below ground surface;

HY ()L HD()
In()

m

Hankel functions of first and second kind of order m;
Bessel functions of first kind of order m;
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wave number in soil;

wave number in the tunnel;

radial distances in polar coordinates;
ratio of thickness of tunnel’s lining and outer radius;
refracted displacement in tunnel’s lining;
displacement due to incident SH-waves;
displacement due to scatter SH-waves;
resultant total displacement in soil;
Cartesian coordinate systems;

shear wave velocity in soil;

shear wave velocity in tunnel;

€ =1,¢,=2form> I

angle of incidence of SH-waves;

ratio of diameter of tunnel, 2a and \, wavelength of incident
SH-waves;

azimuth in polar coordinates;

wavelength of incident SH-waves;
rigidity of soil;

rigidity of tunnel,

normalized stress amplitude; and

angular frequency.
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demonstrated to be dependent upon the following parameters: the angle of incidence, !
ratio of the tunnel thickness to its diameter, ratio of the shear moduli of its wall to |
that of its surroundings, and the ratio of its depth to its diameter. The incidence angle, '
, determines the overall trends of the amplitudes. Higher frequency incident waves !
lead to greater complexity of the computed amplitudes. Stiffer tunnel leads to higher !
stresses on the outer tunnel surface. Perturbations of surface displacement amplitudes, i
which result from wave interference between tunnel and stress-free half-space surface, i
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