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SCATTERING OF PLANE SH WAVES
BY A SEMI-ELLIPTICAL CANYON

H. L. WONG* AND M. D. TRIFUNACT
California Institute of Technology, Pasadena, California, U.S.A.

SUMMARY

In this paper we analyse the two-dimensional scattering and diffraction of plane SH waves by a semi-elliptical
canyon. The exact series solution of the problem, for general angle of incidence of the plane SH waves, has been
used to examine the dependence of surface amplifications inside and near the canyon. The nature of ground
motion has been found to depend on two key parameters:

(a) The angle of incidence.

(b) The ratio of the canyon width to the wave length of incident SH waves.

For short incident waves surface displacement amplitudes change rapidly from one point to another, while for
the long waves and shallow canyons displacement amplitudes display only minor departure from the uniform
half-space amplification of 2. For shallow canyons and long incident waves, the angle of incidence introduces only
minor changes into the overall behaviour of surface amplitudes. For deep canyons and nearly grazing incidences,
a prominent shadow zone is realized behind the canyon.

INTRODUCTION

The purpose of this paper is to add the exact solution of the problem of scattering and diffraction of plane
SH waves by a semi-elliptical canyon to the limited collection of exact or approximate solutions with the
effects of surface topography on elastic wave propagation.’”” Though limited by its two-dimensional nature
and simple plane SH wave excitation, this problem is better suited for approximate evaluation of the
amplification effects near topographic features that can be approximated by an ellipse than the solution one
of us recently presented for the canyon of semi-circular cross-section.?

The effects of surface topography on amplification and attenuation of strong earthquake ground motion
will no doubt receive more attention in earthquake engineering research when sophisticated finite element
and finite difference codes become available for use on a routine basis. However, for the development of such
codes and other approximate solutions, it is essential to have available various exact solutions so that the
approximate methods can be critically tested and evaluated. The solution obtained in this paper can also be
used to evaluate the shielding effects of a trench.

THE MODEL

The two-dimensional model to be analysed is shown in Figure 1. It consists of an elastic homogeneous
half-space (y < 0 for a shallow canyon or x > 0 for a deep canyon) from which one half of a cylinder of elliptical
cross-section has been removed. The half-width of the canyon, 4, will be used to normalize the dimensionless
frequencies. Another parameter of length, g, the half-focal length of the ellipse, will be used to vary the
depth of the cavity.
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Figure 1. Semi-elliptical canyon, the surrounding half-space and the co-ordinate system

The cartesian co-ordinate system x —y is transformed into the elliptical co-ordinates & — 7 for convenience.
The co-ordinate transformation relating rectangular and elliptical co-ordinates is

x=acoshécosn | O0<é<ow
y =asinh ¢sing 027

where ¢ is the ‘radial co-ordinate’ and 7 is the ‘angular co-ordinate’.

Excitation

We shall assume that the excitation of the half space u¢ consists of an infinite train of plane SH waves
with frequency w, with non-zero motion in the z (out-of-plane) direction only and the angle of incidence

(Figure 1)
i = ol =X -2
ul = exp [ tw(t P

where ¢, and ¢, are the phase velocities along the x and y co-ordinates (c, = B/cos 6, ¢, = B/sin 0).

Solution of the problem for shallow canyon
The two-dimensional Helmholtz equation in cartesian co-ordinates for a displacement field

s A
a—x2'+-a—j}?+K lll—o

becomes

&2y 32¢, . 9 2 .
6_§2+5n_2+a K3(cosh? §—cos?n)h =0 0
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for the elliptical co-ordinates. The solution of (1) is readily obtained by the method of separation of variables
with

$(é,m) =Z(&)H(n)

Equation (1) then separates into the two ordinary differential equations:

‘fTI:+(b—2qcos 2)H=0 (2)
and
‘%f_(b_zqcosh 262 =0 (2b)
where
q= %tﬁK2 = ‘l‘ a;;uz

b is the characteristic number of the equations, K is the wave number and 8 is the shear-wave velocity. The
solutions of equation (2a) are Mathieu functions. They depend on both b and g and may be expanded into
Fourier series as follows:

«

ceyn(n,9) = X AE™ (q) cos 2ry

r=0

=]
Sepmya(n,9) = EoBé‘:‘.m"'Z’ (g)sin2ry
=
Ceymi1(m,q) = EOAng V(g)cos(2r+ 1)y
=

Seam1(m,q) = X BRIV (g)sin 2r + 1)

The solutions of equation (2b) are called radial Mathieu functions, and the ones of interest for this problem
are Mc{l), Mcil) .\, Mc() and Mc® . These reduce to the Bessel functions and Hankel functions of the
first kind as g approaches 0. For numerical calculations, the radial functions may be expressed in series of
Bessel functions.

Mol = s (=17 A8 1) )

Mcgp = :ﬁé% ré()( = 1)rm AZRED [ (1) T (2) () 1 (1))
Ml = s S = 17 A, o) HD (i)

M, c;?r)wl = ‘1@ g:o = 1rtm Agﬁr v ) H ;210’«2) +Jra(p) H il) (12)]

where p, = \/(g)exp(— &) and p, = \/(g)exp(£). Further details on the theory of Mathieu functions are
available in literature on special functions®® and will not be presented here.
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The representation of the plane wave exp (iwt) u = exp [iK(x cos 6+ ysin )] may be given by the series of
Mathieu functions, dropping exp (fw?) dependence, as

ul =2 X" cey(n,q) Mcy) (£,9) ce,(6,9)

mn=0

+2 X imse,(n,q) Ms{P (€, 9) se, (0,9)
1

m=

where the angle 6 is measured from the positive x-axis to the wave front normal. The half-space problem
can then be solved by superposing another plane wave, 7, travelling with an angle — 8 and the wave motion
in the absence of the canyon becomes

wit i =4 Y i ce,(n,q) McD (£,q) ce,(6,9) )
m=0

The wave reflected from the elliptic canyon must satisfy equations (2) and the following boundary con-
ditions:

dH(n) _

(i) dif) —0 até=é (4b)

Satisfying equations (2) and (4a), we have the outgoing wave solution for the wave reflected from the elliptical
canyon as

uf = Zo[azm MCé%(f, C]) Ce‘zm(n, q) -+ b2m+1 MC;?)Z-H(& q) Ce2m+1(7la q)] (5)
m=
The total solution u, which is the sum of equations (3) and (5), must satisfy the boundary condition (4b).

The coefficients a,,, and b,,,., then become

CeZm(B’ Q) Mcé}y)f (g(), ‘I)
MCé%’ (507 q)

Gy = 4(— D"

(6)
Cly1(6,9) Mcéﬁ%l(gm q)
Mc;%’q_l(go’ Q)

where ¢, on the radial Mathieu functions designates differentiation with respect to &. The exact solution is
therefore

bymi1 = 4i(— by

< m MC(%’(S ,Q)
= 4] £ (- 17 cun.0) cemn6) | MEE )~ oD MR 6|
. o Mc(l), (g 6])
_1ym (1) _ 2m+1\50s (3)
+4z{m§0< )" cegpra(1:) eannn(6:0) [Mczmﬂ(f,q) ————Mcé?’)m(gmq)Mcmﬂ(f,q)]}. ™

Solution of the problem for a deep canyon
In the case we have just considered, the major axis of the ellipse lies on the x-axis, and the deepest canyon

to which the above solution applies is limited to that of a semi-circle. For a solution of a deeper canyon,
the major axis must be rotated by /2, counter clockwise, so that the half-space is defined by x>0.
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With

exp[iK(xcos 6+ ysin 6)] = 2 3 i™ ce,,(,q) Mc® (£,9) ce,,(6,9)
m=0

+2 Eoi ™ se,(n,q) MsL (€,q) se,(0,9)
e

the incident wave is now defined by the angle 7 — @ relative to the x-axis, while the angle of the reflected
wave is 6. The sum of incident and reflected waves gives the solution for the infinite half-space
Since cos (mm—mb) = (— 1) cosmf and sin (mm —mb) = (— 1y**sinm0, this solution is

u; + ll; = 4m§0( - l)m Ce2m(7)5 q) Mc;});( é-’ ‘I) C€2m(0, q)

+4 ;01'( = D)™ ey 11(0,9) M3 11 (§,9) s€312(0,9). ®)

The boundary conditions now become

(i) 9%(;7—) atn=2-3 (9a)
(i) di—f) at = ¢, (9b)

satisfying the wave equation (2) and boundary condition (9a), we have the outgoing wave solution for the
wave reflected from the elliptical valley as

uf = Z_OczmMcé?,),(f,Q) ey (n,9) + §0d2m+1Msfz?,’m(f,q)sezmﬂ(mq) (10)

Substitution of equations (8) and (10) into the boundary condition (9b) yields
cean(0,9) MciDA(€o,q)

Com = 4(—1ymtt

Mcé%’(foﬂ)
(11)
. sepm11(0, ) Msi 1 (§0,9)
d — 41(_ 1)m+1 2m+1 2m+1\50°
amt Ms$1(60,9)
The exact solution for the deep canyon is then
2 Mc ()
— —1m 9 M (1) — 2m \ 50 (3)
=4 3 (<1 cen(1.0)cen(0.9) | M6 )~ 7o 2D R )|
(= Ms(l), R
4] 5 (17 s i) seuna(o) [ M52 6.0~ E B s o) | a2
m=0 am+1\S0 4

SURFACE DISPLACEMENTS

From the earthquake engineering or seismological viewpoints the most important aspect of the foregoing
analysis is the description of the surface displacement amplitudes in and around the elliptically shaped canyon.
Regardless whether one has to find the possible amplification effects due to the local topography in evaluating
the seismic safety of a nuclear power plant or to correct the spectra of a recorded seismogram, the answer
to the problem will lie in the precise description of the amplitudes and phases of surface ground motions
for incident waves with unit amplitudes, i.e. in the space-dependent transfer function.
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For the excitation # = exp [~ iw(t—x/c,—y/c,)] whose amplitude is 1 and whose phase changes linearly
with x, the modulus of surface displacements in the uniform half-space is equal to 2. In the presence of a
canyon the incident waves scatter and diffract around the canyon. The scattered and diffracted waves, uZ,
interfere with the incident, u!, and the reflected, 7, motions and the resulting modulus of surface wave
amplitudes may significantly depart from 2. To study these changes we characterize the motions by

amplitude= [Re(u) + Im?(u)]} (13)

and ,
phase= tan—[Im(x)/Re(u)] (14)
where u = ul+ul+ul. Both quantities depend on the shape of the elliptical canyon, frequency w, velocity

B and incident angle 8 of incident SH waves and on the canyon width 24.
To simplify the description of the problem, we define the dimensionless parameter

ETA = 24/A (15)
which represents the dimensionless ratio of the canyon width to the wavelength of incident SH waves. Since
g=1aK? (16)
we have
24
— gt
ETA=¢ — (17

Furthermore, because ETA = 24/BT = Aw/nf3, ETA can also be thought of as dimensionless frequency.
In the absence of the canyon the phase angle given by (14) would be the linear function of x,

phase =-—%cos B-Aff (18)
For 8 decreasing towards the grazing incidence (8 = 0) and increasing wA/B, the negative slope of the phase
with respect to the positive x/4 axis would increase.

Figures 2 to 6 illustrate typical characteristics of amplitudes and phases of surface displacements for
depth to width ratio of the canyon equal to 0-05, 0-15, 0-35, 0-71 and 1. These have been derived from the
ratios of minor to major axes of an ellipse equal to 0-1, 0-3 and 0-7 for shallow cases in Figures 2, 3 and 4,
and to 0-7 and 0-5 for deep canyon cases in Figures 5 and 6. Each figure presents amplitudes and phases for
four values of dimensionless frequency ETA = 0-5, 1-0, 1-5 and 2-0. These we believe cover the most
probable band of dimensionless frequencies that are likely to be encountered in earthquake engineering and
strong-motion seismology applications. The phase diagrams have been shifted arbitrarily to have common
zero phase for x/A = 0. This is in agreement with the convention used in the analysis of SH-wave scattering
from a semi-circular canyon’ and should prove convenient for relative comparison with the results in this
paper.

In the mathematical formulation of the shallow canyon problem, the incidence angle & has been measured
as positive in the counter-clockwise direction from the positive x-axis to the positive normal of the plane
incident wave (Figure 1). In the corresponding solution for the deep canyon, we found it convenient to
rotate the co-ordinate system so as to keep the significant part of the mathematical formulation for the
shallow case unchanged. To ease relative comparison of results in Figures 2 to 6 we decided, however, to
present the two deep canyon cases in Figures 5 and 6 using the same co-ordinate system and the same
convention for measuring @ as for Figures 2 to 4. Thus, for all figures § = 0 corresponds to the grazing
incidence and 6 = 90° to the vertical incidence.

Computation of the Mathieu functions represents a time-consuming and costly effort, since each function
has to be evaluated by means of Bessel or sine and cosine series. Furthermore, the needed number of terms
in the series representations (7) and (12) increases with increasing | x| and ¢ (i.e. increasing ETA). To cut
this computational effort we used the constant number of terms for both series in (7) and (12) and approxi-
mately tested the accuracy of the finite sum by comparing the series with N and N+1 terms. For higher
values of ETA we restricted the computation of amplitudes and phases to x/4 = 2-5 or 2-0 only. The resulting
typical accuracy of all amplitudes and phases presented in Figures 2-6 is better than 1 per cent.
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Figure 2. Surface displacement amplitudes and phases for incident SH waves. Canyon depth to width ratio is 0-05
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Figure 3. Surface displacement amplitudes and phases for incident SH waves. Canyon depth to width ratio is 0-15
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Figure 5. Surface displacement amplitudes
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Figure 2 shows the displacement amplitudes and phases for depth to width ratio of the canyon equal to
0-05. It is seen that the displacement amplitudes only slightly depart from the uniform half-space amplitudes
equal to 2 and that the phases are quite close to the straight lines given by equation (18). All this points to
the fact that this shallow canyon introduces only minor changes into the surface motions experienced by the
uniform half-space. Even the shortest incident waves considered here (ETA = 2-0, Figure 2) do not feel the
shallow canyon significantly, since their wavelength is ten times the canyon depth.

Figures 3 to 6 show progressively more complicated patterns of ground displacement amplitudes and
phases. For deeper canyons a progressively stronger shadow zone is formed behind the canyon (x/4>1).
The standing wave pattern, resulting from the interference of incident and waves reflected from the canyon,
is superimposed on the overall wave propagation to the right, and becomes more prominent as the height
of the canyon wall at x/4 = — 1 becomes deeper. With increasing ETA and for deeper canyons we observe
more prominent and more abrupt jumps of magnitude = in the phase diagrams. These jumps are most
prominent at places where displacement amplitudes become very small or equal to zero. The physical
meaning of these jumps is that the motion of the two points on the opposite side of the jump is 180° out of
phase, i.e. that the points where a jump occurs experience predominantly torsional vibrations. The motion
at these points is typically small or zero, since the displacement amplitudes go through their local minima
there (Figures 3 to 6). In spite of the fact that different phase diagrams show varying degrees of abrupt or
gradual jumps, they all have the same average trends which, in the limit when | x/4 | - co, tend to the linear
phase relationship given by equation (18). This means that the overall wave motion remains the same as that
for the half-space, i.e. from ‘left’ to ‘right’ in Figures 2 to 6. Since the canyon shape is symmetric, for
vertical incidence of plane SH waves (THETA = 90), both displacement amplitudes and phases are symmetric.

The maximum possible amplitude of surface displacements is equal to 4 and for the incident wave propa-
gation in the positive x direction it occurs at x/4 = — 1. It can be explained by the analogous quarter-space
problem excited by plane SH waves and the twofold amplification analogous to the half-space amplification
equal to 2.7

Since this paper presents merely a generalization of the SH-wave propagation near and around the canyon
with semi-circular cross-section?, we shall not repeat here the discussion dealing with the typical spectra and
with the possible applications of the above results. Rather, we refer the reader to our previous paper’ for
these and other related considerations.

CONCLUSIONS

Some of the principal results that emerge from the foregoing analysis may be summarized as follows:

1. The amplification of surface displacements is always less than or equal to 2 (surface displacement
amplitudeisless than or equal to 4), since the most acute angle in the canyon cross-section is equal to 90°.7

2. The amplitudes and the patterns of surface displacements depend significantly on the direction of
incident SH waves. For acute and grazing angles of incidence, a strong shadow zone may be developed
behind the canyon. For the same excitation nearby standing wave motion may be set up in front of the
canyon. This standing wave motion results from the interference of incident and waves reflected from
the canyon wall.

3. The principal role of the canyon depth is that it determines the extent to which the above-mentioned
amplification, standing wave pattern and the shadow zone are developed. For deeper canyons these
effects increase.

4. A deep canyon or a trench could be used to shield against the incident waves with shallow or grazing
angles of incidence. To obtain a reduction of about 50 per cent the depth of canyon would have to be
of the order of the incident wave length.
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