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TWO-DIMENSIONAL,  ANTIPLANE,  B U I L D I N G - S O I L - B U I L D I N G  
I N T E R A C T I O N  FOR TWO OR MORE BUILDINGS AND 

FOR I N C I D E N T  PLANE S H  WAVES 

BY H. L. WONG AND M. D. TRIFUNAC 

ABSTRACT 

Two-dimensional SH-type vibration of several shear walls erected on an 
elastic, homogeneous, half-space has been studied. The choice of the cylindrical 
coordinate system, suitable for analysis of rigid foundations with semi-circular 
cross section, has lead to the exact infinite series solution, which is ideal for the 
analysis of the physical nature of this problem and its dependence on several key 
parameters. 

It  has been shown that the presence of neighboring buildings may change the 
nature of the single soil-structure interaction problem appreciably and that 
scattering, diffraction, and interference of waves from and around several founda- 
tions with the incident S H  waves can lead to significant shielding, as well as 
amplification of input motion for any of the buildings in a group. The effects of 
relative size of two, three and several foundations and their separation distances 
have been studied and presented in some detail. 

I N T R O D U C T I O N  

Many important buildings are located in metropolitan areas where they are surrounded 
by numerous other structures at small and large distances. The published analyses which 
consider soil-structure interaction, however, mostly consist of  just one building or one 
foundation on top of a half-space (e.g., Luco and Westmann, 1971), while the problem 
of interaction of many buildings has, so far, not been studied. The interaction of two 
foundations has been explored analytically by Warburton et al. (1971) and experimentally 
by MacCalden (1969). Their mcdels consisted of two rigid circular foundations placed on 
top of an elastic half-space. For antiplane vibrations, Luco and Contesse (1973) studied 
the interaction of two embedded foundations with semi-circular cross sections excited by 
vertically incident harmonic S H  waves. Liang (1974) solved the related plain strain 
problem using the finite element approach. Interaction of three buildings in a three- 
dimensional setting has been studied by Lee and Wesley (1973). 

The study of Luco and Contesse (1973) indicated that additional interaction effects 
caused by the presence of another structure may be important at low frequencies and near 
the fixed-based natural frequencies of the neighboring structure. However, some additional 
effects involving nonvertically incident SH-waves were not considered. In that case, the 
interaction will include the effect of shielding for the shear wall in the rear and amplifica- 
tion or deamplification for the shear wall in the front. 

The purpose of this paper is, therefore, to investigate further the significance of the 
angle of incidence, the effect of the relative size and natural frequencies of neighboring 
structures, and the influence the separation distance may have on the interaction of two 
or more shear walls. These additional effects could become quite important at certain 
frequencies, and there may exist noticeable increases in the amplitude of foundation 
response caused by building-soil-building interaction. 
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The study of the interaction of two shear walls has been extended to cover the cases 
where many semi-circular foundations are present (Figure 1). The specially chosen 
geometry of the boundaries involved allows the boundary-value problem to be solved 
exactly by the method of separation of variables. 

Numerical results of the exact solution indicate that the spacing between foundations 
can have a prominent effect on the response amplitudes. For smaller structures, new 
"natural frequencies" are being created by interference of the waves scattered from its 
larger neighbors. These "natural frequencies" are highly dependent upon the spacings of 
two or more foundations. 

THE MODEL AND THE COORDINATE SYSTEM 

The scattered waves from the semi-cylindrical rigid foundations, p = I, 2 . . . . .  N, 
welded to the half-space (y~ __< 0), are conveniently represented by polar coordinates 
(rp,  flop) which have their origins at the center of each foundation (Figure 1). Having 

Yl 

I- dl N // 
d,p ,~, 

r I r2 ~ rp FN 

I~ .~ . - A ~  a . . . .  - 

S ~ H  "w u r 

FIG. 1. The arrangement of structures and the coordinate systems. 

chosen the coordinates for the first foundation (x 1, Y0 or  ( r l ,  fll) as the reference, the 
coordinates of the other foundations located at distances dip  m a y  be expressed in terms 
o f ( x l ,  Yl)  by the transformation formulas 

x v = x l - d l v  where x v = r p c o s f l v  and d l l  = 0 .  (1) 
Yp = Y l Yv  = rp sin flp ' 

The model in Figure 1 clearly represents an extension of the models studied by Luco (1969) 
and Trifunac (1972). 

INCIDENT GROUND MOTION 

We assume that the excitation consists of harmonic plane S H  waves with an amplitude 
of  1 and the angle of incidence, 0, which is measured counterclockwise from the x-axis to 
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the normal  of  the plane wave front  (Figure 1). The resulting free-field mot ion,  u ~+~, in 
the half-space without the foundat ions  then consists of  the incident plane wave, u', plus 
the reflected plane wave, u r, f rom the free surface. The free-field mot ion  u ~+~ given in the 
(x~, y ~) coordinate  system is then 

u' +~(x 1 , y l )  = 2 exp (icot) {exp [ - i  (co~ fl)x l cos 0]} cos (ooyj/fi sin 0) (2) 

where fl = vq~/P is the shear-wave velocity in the soil. Using the t ransformat ion  for- 
mulas (1), the expression (2) may be written in the (Xp, yp) coordinate  system as 

u'+~(xp, yp) = 2 exp (ioot) {exp [-i(o~dlp/fl ) cos 0]} {exp [ - i  (o9/fi) xp cos 0]} 

x cos (~Oyp/fl sin 0). (3) 

By omitt ing the time factor  exp(icot) for  convenience in the remainder  of  this paper,  the 
mot ion u~+~(xp, yp) may be represented by a series of  circular cylindrical functions in the 
(rp, Op) coordinates (Mow and Pao, 1971 ; Morse  and Feshbach,  1953) 

ui+~(rp, qSp) = 2 exp [-i(o)dlv/fl ) cos 0] i%md~(Krp) cos mqSp cos mO (4) 
!__m = 0  

whereeo = l a n d e  m = 2 f o r m - ¢  0. 

F O R M U L A T I O N  OF THE PROBLEM 

The total displacement field, u, in the half-space and in the vicinity of  the foundat ions 
is composed  of  the "flee-field" mot ion  u i+r and the reflected waves 

ul a, i = 1, 2 . . . . .  N f r o m  each of  the N foundat ions  

N 
u = u ' + ' +  y~ u~ R. (5) 

i = 1  

The t ime-independent  par t  of  u exp( iot )  must  satisfy the Helmhol tz  equat ion in each of  
the (rp q~p) coordinate  systems 

&2u 1 ~u 1 ~2u 
~rp~ + - w-  + . . . . .  +K2u = 0 (6) rp crp rp2 ~q~p2 

where K = o2/fl is the wave number• In addition to equat ion (6), boundary  conditions 
must  be satisfied in each of  the (rp, qbp) coordinates.  These conditions are: (a) the stress- 
free surface condition for the half-space 

p ~u qSp = - rc 
- 0  at and r p c R ,  (7) O'0z ~ 

rp 6qSp qSp = 0 

where R is the area occupied by the foundations,  and (b) the continuous displacement 
condition at the interface between the foundat ions  and the soil 

,,[r,=°p = %,; - ~  _-< G --< o,  (8) 

where Ap is the displacement of  the pth  foundation.  The Av's depend on the soil-structure 
interaction of  each of  the N structures, the vibrat ion of  the other foundat ions,  and the 
direction of  the incoming waves 0. 

The scattered waves f rom the j th  foundat ion are assumed to be of  the fo rm 

uj R = ~ AjH,(2)(Krj) cos nqS~, j = 1, 2 . . . . .  N .  (9) 
n = O  
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The boundary conditions (7) are then automatically satisfied by the total displacement 
field u, since the free-field motion u t+r already satisfies the same condition. Also, by using 
only the Hankel function of the second kind Hn~2~(Krj), the scattered waves are of the 
divergent type. 

In the boundary conditions (8) the N values of Aj are not yet known. However, by 
using the principle of superposition, the general form of the solutions for the scattered 
waves, uj R, from N foundations may be separated into N +  1 parts to simplify the treat- 
ment of  the boundary conditions. The determination of the unknown Aj's may then be 
postponed until the total interaction involving the N structures, N foundations, and the 
soil has been considered. 

The scattered waves u~ g can be separated as follows 

N 
ujR ~- wiN+ 1]_ ~ .wjlAI,  (10)  

/=1 

where Wi t, l = 1, 2 . . . . .  N +  1, all satisfy the Helmholtz equation (6). By substituting 
(10) into (5), we obtain 

This expression will satisfy the boundary conditions (8), u(rp, qSp) = Ap at rp = ap, if we 
set the boundary conditions for the N +  1 problems into two categories 

The (N + 1)th problem 
N 
2 WJ N+ l (rp , Op)+ui+r(rp ' q~p) = 0 a t  rp = ap. (12)  

j = l  

The solution Wj. N+ 1 for this case describes the scattered waves for the incident waves 
u t+r with all of the N foundations held fixed. 

First N problems 

F o r / =  1,2 . . . .  , N  
N 

W/(rp,  d?p ) = 3tp at rp = ap. (13) 
j = l  

The physical interpretation of the solutions of these N problems is that they describe 
the scattered wave fields when the lth foundation is moved with a displacement amplitude 
of 1 while the other foundations are held fixed. 

THE SOLUTION OF WAvE-SCATTERING IN THE SOIL 

Having formulated the problem, we now consider the determination of the unknown 
coefficients An i. We begin by noting that since uj R was divided into ( N +  1) parts, A, j can 
also be divided and represented by 

N 
An j = CnJ,N + 1 .~_ 2 CnJ'l Al (17) 

z=l 

where Cn j't, l = 1, 2 , . . . ,  N +  1 are the coefficients of the solutions, 

N 
Wjt = ~ C.J'tH.(2)(Krj) cos n~bj. (18) 

n=O 

To obtain the coefficients Cn J'l, consider the following problems 
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The solution for Wj N + 1 

From (17), the scattered wave from the j th  foundation while it is held fixed is 

N 
WJ N+ l(l'J ' ~)J) = 2 cnJ'N+ 1Hn(2)(Krj) c o s  mqS]. 

n=0 

But the boundary conditions (13) require that Wa N+ 1, j = 1, 2 . . . .  , N, be transformed 
into the (rp, ~p) coordinates. Therefore, the addition theorem may be used to transform 
the Bessel series from coordinates (r j, ~)j), j # p, to  (rp, ~)p). Using the coordinate systems 
as defined in Figure 1, the transformation to thepth foundation from the right side,j > p is 

1 H,,(2I(Krj) cos n(oj = ( -  1)" n Kdpj)Jm(Krv) cos mq~p (19) 

and from the left side, j < p is 

H.(2'(Kr,)cosnO,=I,~=o(-l)"(e. , /2)Km"(Kdp,)J, . (Krp)cosm(Op] (20) 

where 

K,,"(Kd;]) = H~Z),,(Kdpj) + ( -  l)mH(2_)m(Kdp] ) . (21) 

Equations (19), (20), and (21) are rearrangements of those given in Abramowitz and 
Stegun (1970). The transformations are not symmetrical because of the particular way in 
which the angles are defined in Figure 1. 

With equations (19) to (21), the boundary conditions (13) for the (N+ l)th problem 
may now be applied at (rp, ~bp). The expressions for p = l, 2, . . ,, N, which involve the 
unknowns Cm p'N+ 1 are 

E2 1 0 = 2 ' cosm0 exp[ - i (oo / f l )d lpcosO ] + CmP,N+lHm(2}(Kap)cosm(ap 
m=0 

1 +(1 - d e , )  2 ', 1 ( -  1)m(e,./2)K,."(gdp])Jm(Kap) cos mop 
j = l  n m=O 

I2 11 + ( l  --6pN ) 2 CnJ,N+ I(__ l)n COS m~)p . (22) 
j = p + l  n=0 

Using the orthogonal properties of the cosine functions, equation (22) may be separated 
to yield an infinite number of simultaneous equations as follows: 

For the harmoniccos rn~ v , j = 1, 2 . . . . .  N; rn = O, l, 2 , . . .  

° = o  >m/\ 

+ ( 1 - 3 ; s  ) • 2 ( -  1)~C, j'N+ 1Km~(Kdpj) = - 4 i "  cos rnOe -i(°'/p)d'pc°s° 
j=p+l[n=O 

p = 1,2 . . . . .  N ; m  = 0 , 1 , 2 , . . .  (23) 

The first term on the left side of equation (23) represents the contribution of scattered 
waves from the foundations 1 through p -  1, i.e., the foundations to the left of the pth 
foundation, while the third term represents the contributions from foundations p +  1 
through N, on the right side. As one would expect, these contributions to the interaction 
would be small if the parameter @j is large compared to a,,ax- In such cases, the second 
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term dominates the left side of (23) because !gm(2)(Kap)[ >~ ]g,n"(Kdpj)Jrn(Kap) [ for dpj >> 
ap. Therefore, neglecting the small term contributions, the problem reduces to the solution 
for a single foundation model. 

After some manipulations, an infinite matrix results from equation (23) 

AxU+ 1 = bN+ 1 (24) 

where 

xN+~ = {Col,U+ 1.. .  C j , N + I . . ,  CoN,N+11C11,~+ , . . .  Cl,,N+1...  CI~,N+I] . . .  

CmP,N+'... C N,N+ 11...}T 
or as written in indicial form 

.X, N + I  = {Cq p,N+I} (25) (Nxq+p) 
bU+l = - {47 exp [-i(~o/fl) dtr cos 0] cos s0} (26) (Nxs+r) 

2 Hq(Z)(Kap) ( -  l)~K,q(Kdp~), if p < r (27) 
A(Nxs+r)'(Nxq+p) -- gq Jq(Kap) tSsq(~prOt-(l--tSPr) (--l)°Ksq(Kdrp), if p > r 

Numerically, the infinite matrix equation (24) cannot be solved. Therefore, it is necessary 
to reduce it, if possible, to one of finite dimensions by taking advantage of certain prop- 
erties of its coefficients. 

For low frequencies, i.e., long incident waves, only lower order harmonics in the series 
(17) are required to describe the displacement field. Therefore, the coefficients, C, -i'u+ 2 
decrease rapidly, and the coefficients for large n do not affect those for small n appreciably. 
Hence, the infinite matrix may be reduced to one with finite dimensions. However, more 
terms in the infinite series are required when the frequency of excitation is large or when 
the size of  the foundations differ greatly from each other. In the former case, high har- 
monics are required to describe the rapid changes of surface displacements caused by the 
short waves; while in the latter case, high harmonics are required to describe the sharp 
variation on the interface of the large foundations because of the short waves radiated by 
their smaller neighbors. 

As an example, the number of  terms used to calculate the coefficients for a two-body 
system with equal size foundations is approximately 

NUMBER OF TERMS -~ 5+2(Ka) .  

Four-place accuracy of the series solution has been achieved by comparing it with the 
series that had one additional term. 

The solutions for Wj l, l = 1, 2 . . . . .  N 

For these cases, the solutions are written in the form 
N 

Wj z = ~ C,J"H,(2)(Krj) cos mqSi. (28) 
n=O 

The "boundary condition" for (28) is given by the expression (12) and it is nearly the same 
as (!3) except that - u i+r is replaced by alp. Hence, the harmonic separation of this bound- 
ary condition gives 

1 (1--~SPl)j21"= n~--O (-1)mcnj'tKmn(KdM) q-Cm"t ( 2  ~(Hm(2)(Kap)~\gra/l\ Jm(Kap ) /I 

+(1-apN) Z - 1)"c. ;,N+ ~Km"(Kdpj = 1 o ( - (29) 
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Since (29) is of the same form as (23), the matrix A in the expression Ax t = b ~ remains 
the same. Here, the first and third terms of (29) are the contributions from the neighbor- 
ing fixed foundations, while the pth is being displaced with a unit amplitude. Again, for 
the case where dpj >> ao, the matrix A becomes nearly diagonal, and the solution of the 
problem becomes that of a single foundation. 

To complete the rearrangement of (29) in matrix form, define the vectors x z and b t as 

xlNxq+ v } = { Cq °' '} (30) 

bl(Nxs+r) = 26 t r / Jo (  K a , )  . (31) 

Since the matrix A is the same as that of equation (27), the same criterion, discussed 
above, can be used to choose the size of the "finite" matrix. 

M O T I O N  OF THE FOUNDATIONS 

The foundation displacements Aj can now be determined by balancing the forces 
exerted on the j th  foundation: (1)f/s, the force generated by the soil and caused by the 
incident waves and the motion of the neighboring foundations; (2) f i w ,  the shear force 
created by the base of the structure; (3) the inertia force of the rigid foundation with mass 
( M o ) j  whose acceleration is - ~ o 2 A j  exp(imt). 

The force balance for the pth foundation then becvmes 

_coZAp(Mo)o = _(fo~+fpw) p = 1, 2 . . . . .  N. (32) 

With the expression for the stresses at thepth foundation as 

~U rp + J , % = P z -  = P ui+r( 4 ) )  ~ + 1 +  WS ,5  l 
cro aro L ' " .=1 ,= 1 

(33) 

the soil forcefp s is expressed as 

fpS = _ S o  arzIr~=op a j 4 ) v .  (34) 

Integration from -zr  to 0 eliminates all harmonics except the zeroth. It is convenient to 
definefo s as 

N 

fo  s = ,urcSp+ prr 2 Kpt A, (35) 
/=1 

where p~Sp is the force exerted by the soil on the pth foundation, while all foundations 
are held fixed. S o may be expressed in terms of the coefficients C,, j'N+ 1 as follows 

S o = KapJ l (Kap)  {2 e x p [ - i ( o / f l ) ] d l p  cos 0 

+ CoP,U+ i HI(2)(Kap)  v -  t o~ 
+(1-6v,) y ~ c. j,'+ IH.(2~(Kdoj) 

J 1 (Kao) j = 1 n = o 

+(1 -6pu )  ~ ~ ( - l ) " c , , J ' U + l H , , ( 2 ) ( K d p j )  . (36a) 
j = p + l  n=0  

The matrix Kpt represents the force exerted on the pth foundation, while only the /th 
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foundation is moved with a unit displacement, 

= KapJl(Kap) ~Co p'l HI(2)(Kap) v-~ Jl(Ka, ) + ( l - a p t  ) ~ ~ cj'lH,(Z)(Kap) 
j = l  n=O 

} +(l--6pN ) ~ ~ (-- 1)"C.J'ZH.(2)(Kap) . (36b) 
j = p + l  n=O 

To compute the force fpw, elastic shear walls with no damping are assumed to be 
the structures of interest in this problem. The shear walls satisfy the one-dimensional 
wave equation, and the base shear force of the walls subjected to a base-displacement 
of Ap exp (ieot) is then (kuco, 1969) 

(37) 

where (Kb)p is the building's wave number, h e is the height, and (Mb)p is the mass of the 
pth wall. 

Substituting (35), (36), and (37) into (32), the force balance of all contributing forces is 
then 

Ftan(Kbh)PlA {Spq-l~__lKplAi} 
= 1 J 

p = 1,2 . . . . .  N. (38) 

Dividing (38) by pnKap and introducing the parameter (Ms) p = ½pz~ap z, which is the mass 
per unit length of the soil replaced by thepth foundation, (38) becomes 

(Kap)! r ( M o ]  (Mb) tan(Kbh)p] N 
2 / \ < / .  + < .  ik>7; j A . -  =E g,/,, = s. 

p = 1 , 2 , . . . , N .  (39) 

Equations (39) constitute N equations for the N unknowns, Ap. Hence, the foundation 
displacements Ap are uniquely determined by solving this set of simultaneous equations. 

THE NATURE OF THE INTERACTIONS 

The interactions of two or more structures are now considered by studying the nu- 
merical results presented in the figures which follow. The results shown in these figures 
depend mainly on the angle of the incident wave, 0, and four other dimensionless para- 
meters: 

1. ~av/fl = Kap = rlp , the dimensionless frequency which compares the wavelength 
of the incident wave to the size of thepth  foundation. To describe a system of founda- 
tions with different sizes, the maximum radius will be chosen as the reference, and the 
parameter ~amax/fl will be used in plotting the figures. (The abbreviation of WA/B 
is used in place ofogamet×/fl in the figures.) 

2. (Mo)p/(Ms)p, the ratio of the mass of the foundation to the mass of the soil replaced 
by the foundation. For all the cases studied in this paper, this ratio has been equated 
to 1. 

3. (Mb)p/(Ms)p, the ratio of the mass of the pth shear wall to the mass of the soil 
replaced by the pth foundation. 

4. ep = (Kbh)p/Kap. This ratio describes the flexibility and the relative height of a shear 
wall. Larger values o f t  indicate taller and/or more flexible walls, while e = 0 implies 
a rigid structure or one with all its weight (hp = 0) located at the base. 
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One of the interesting results that can be derived from the solution of equations (39) 
is represented by the displacements Ap of the foundations. In the figures that follow, 
amplitudes lap[ have been plotted versus the dimensionless frequency WA/B (A - am,x) 
and are identified by a dashed line or a solid line. All of these amplitudes approach the 
low-frequency limit of I@] = 2 (the displacement amplitude of the surface of half-space 
due to an incident SH-wave with amplitude 1) as WA/B ---, O. 

Another characteristic of  the foundation displacement Ap is that it becomes zero when 
the flexible pth shear wall is being excited at its fixed-base natural frequencies, (Kah)p = 
(2n + l )7T/2, n = 0, 1, 2 . . . . .  or by using relation (40), Ap is zero at 

~oa~_~ = (2n+ 1)! ( a m ~  (41) 
/3 2% \ ap / "  

Ap has no finite zeroes ifep = 0. The occurrence of the zeroes of  Ap has been explained by 
Luco (1969) and Trifunac (1972). It is that during the steady excitation of incident plane 
SH waves at the resonant frequencies of  equation (41), the foundations behave as a node 
in a standing wave pattern. 

The envelope of the response for a single wall placed on a half-space, Ae p, is plotted 
on the same graph as the foundation displacements ]Ap[. This envelope, ]Ae[., provides 
an upper limit for the response of the pth foundation if it is the only structure on the 
half-space, so it may be used to indicate the strength of the additional interaction effects 
caused by the presence of other structures. These envelopes resemble a hyperbola and are 
described by the equation (Trifunac, 1972) 

]Ae[ p = J1(Kap)- J°(Kap-)-H-l-- (~ P)l~ J°2(Kap)+ 
Ho(2)(Kap) _][_Yo(Kap)Jl(Kap) - Yl(Kap)Jo(Kaflj. (42) 

These envelopes have been plotted with the same type of lines as lAp[ in the subsequent 
figures. 

INTERACTION OF TWO WALLS 

Displacements, Ap, during the steady interaction between the two walls are illustrated 
in Figures 2, 3, and 4; they are designated by "DELTA".  Each of these figures consists of 
parts (a), (b), and (c) which present the effects of different separation distances; each part 
also includes 5 graphs which correspond to the angles of incidence 0 = 0 °, 45 °, 90 °, 135 °, 
and 180 °. (Note: 0 is written as THETA in these graphs.) These figures have been arranged 
so that the influence of the angle of incidence and the separation distance can be studied 
together. 

For the two cases shown in Figures 2 and 3, the values of ep are taken to be zero so that 
the interaction effects of only the foundations can be more clearly shown. In this way the 
complications introduced by the tall vibrating walls are eliminated. 

An interesting interaction phenomenon occurs when the incident wave travels with a 
shallow angle of incidence. The wall in front acts as a shield for the wall behind, but the 
latter may amplify the excitation for the former. This shielding effect is most evident in 
Figure 3 where the size of  wall 1 is 5 times that of wall 2. (The numbering system used 
here is the same as that used in Figure 1.) 

For incident wave angles, THETA = 0 ° or 45 °, and small wall separation distances, the 
smaller wall 2 moves with nearly the same displacement as the larger wall 1. The additional 
amplification effects caused by the smaller wall are negligible in this case because of the 
massiveness of the larger wall. The situation is reversed, however, when the waves are 
coming at an angle THETA = 135 ° or 180 °. Now the "front wall" is much smaller than 
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FIG. 2. The foundation displacement of two identical structures. 
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the "back wall"; here, the "'front wall" means the first wall to be hit by the incident waves. 
In this case, the shielding effect provided by the "front wall" is negligible, while the ampli- 
lying effect caused by the "back wall" is overwhelming. 

For the cases where the "'front wall" is of comparable size or much smaller than the 
"'back wall", the response of the front foundation dips down to a small value of A before 
it rises to a level exceeding the envelope curve of equation (42) at some higher frequency. 
This dip in foundation response amplitude for the front wall is greater when this founda- 
tion is smaller than the back foundation. The response is nearly zero at this point for the 
case described in Figure 3. 

This phenomenon can be explained by the standing waves generated by the inter- 
ference of the incident and the reflected wave from the larger back wall. For certain fre- 
quencies and/or distances, the smaller wall may be situated on a node and experience 
pure torsional excitation. This behavior can also be explained qualitatively by a vibration 
absorber example. Consider the following simplified model of the two-foundation system. 
The spring constants k , ,  k 2, and k12 depend upon the soil properties and, hence, are 

kl 2 

X 2 XI 

kl Ieiw t 

FiG. 5. A simplified model  of the two-structure system. 

highly frequency-dependent because of the geometrical configuration of the foundations. 
The displacements resulting from simple harmonic excitation are 

r kl(k2+k12-092m2) 
E x 1 = exp (kot) 
t A 

t k l k l  
]x 2 _ 2 exp (icot) 
L zX 

where 

A = (k 1 +k l x -~o2mj ) ( k2+k l z -o~2m2) -k22 .  (43) 

Note that if kz+k12 = m,Zm 1 or ~ ,  = (kz+k12)l/Z/m2, the response of ml ,  xl 
becomes zero and x2 = - k l / k l 2  exp (imt). Hence, m~ is stationary at m = ~o,, while 
m 2 is moving in an opposite direction from the excitation; so the forces on either side of 
m ~ eliminate each other, and m 1 is located on a node of a "standing wave" pattern. The 
system in Figure 5 is, of course, far too simplified to describe the phenomenon of the 
interactions in detail because the scattering from the foundations introduces "damping" 
into the system and the wave propagation is two-dimensional. However, the intuitive 
physical explanation of this interaction problem is well represented by this model. 

The spring constant k 12 can be visualized as the soil joining the two foundations, so that 
as the separation becomes large, the interaction is weaker, and k 1 2  --+ 0 as d~2 --+ m. 
The frequency co. becomes smaller and the dip occurs at lower frequencies for larger 
separations. 

The troughs and the crests in the response of Ap for the front foundation may be better 
visualized by studying Figures 6, 7, and 8, where the amplitudes of surface displacements 
in the vicinity of the two foundations are plotted against the dimensionless frequency, r/, 
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and the dimensionless distance x/a. The definition o f  dimensionless parameters used in 
these figures are identical to those discussed previously. 

The foundat ion size ratio for all cases presented in Figures 6, 7, and 8 is 2 to I. Figure 6 
illustrates the scattered wave patterns around the two foundations for T H E T A  = 135 ° 
and 180 °, both of  which have rigid walls, i.e., for ~ = 0. Figure 7 illustrates the effect o f  
vertically incident waves in part (a), and the effect of  horizontally incident waves in part 
(b); both shear walls considered here are flexible and tall. The surface displacement plots 
of  Figure 8 show the weaker interaction with a larger separation distance. 

In Figure 6b, the phenomenon described by a simple model in Figure 5 can be observed. 
The first t rough of  the response A2 of  the smaller foundation occurs at coA/~ ~ 0.4. At 

(hi 

~4 

J ~  

~ E  

O 
12 -I0 8 6 -4 -2 0 2 4 12 I0 =8 -6 -4 -2 0 2 

X2 
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FIG. 8. The ground-surface displacement around two structures. Foundation-size ratio is 2 to 1, separation 
distance is 8. 

that frequency, both foundations are moving in phase with foundation 1 and have large 
amplitudes. Not  far to the right of  foundat ion 2, there is a point with small displacement. 
This is where the displacements on either side change direction and, hence, the point 
pivots the movement  of  both walls. If the foundat ion size ratio is much greater than 2 to 
1, e.g., 5 to 1, the presence of  the smaller foundation can almost be ignored when study- 
ing the response of  large foundations.  Also, for a certain wavelength of  incident waves, 
the motion of  the smaller foundat ion may be located on a node of  a standing wave 
pattern and remain stationary. 

The crest of  the response A2, which follows the trough, occurs at oA/fl  ~ 1.0 in 
Figure 6b, and is created by the amplifying effect of  wall 1. At this particular frequency, 
the two walls are nearly 180 ° out of  phase, and the "node"  is now located between the two 
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foundations. Because of  the rapid change of  phase in the vicinity of  a "node", the ground 
motion at that point is essentially torsional. When the frequencies are higher than 
coA/fi _~ 1.5, or when the wavelength of  the incident wave becomes smaller than the 
separation distance, the interaction effects gradually disappear and the response of  the 
foundations most likely does not exceed appreciably the envelopes for the response of a 
single foundation. 

It is clear from the above discussion that the presence of  two shear walls increases the 
complexity of  response of  each foundation and that the interference of  waves scattered 
from the two foundations may lead to appreciable amplification of  their base motions, 
Ap. It is beyond the scope of  this paper to analyze in detail these amplifications caused by 
the building-soil-building interaction effects, but the general trends may nevertheless be 
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FIG. 9. The effect of separation distance on the amplifying effect of two-structure interaction. 

extracted from several cases considered. These  amplifications determined for three 
foundation-size ratios are presented in Figure 9 and are plotted versus the separation 
distance, dl 2. Some of  these results have been extracted from Figures 2 and 3. 

The two sets of  points in Figure 9 show the differences caused by the angle of  incidence. 
Since wall 2 is smaller, the amplifying effects occur for 0 > 90 °, e.g., 0 = 135 ° and 180 °. 
Because the waves scattered from the two foundations are of  cylindrical type, one would 
expect that the peak amplitude IA2[ of  small foundations would be related to its envelope 
JAe] by (]A2i/iAei)max--1 ~ const./d~/2 when dl2 is larger compared to al  + a 2 .  This is 
simply stating that ]Ael is entirely due to scattered, u R, waves. Diffraction and inter- 
ference effects for dl 2 small may alter this trend appreciably and in the limit for d 12 -* 
,~1 + a 2 ,  we have ( la2 l / l ae l )~a . -1  ~ 0. It appears that the few points plotted in Figure 9 
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may be explained by these trends. It is clear, however, that the continuous representation 
Of (IA2[/IAel) .... - 1  versus d12 should have numerous peaks and troughs which are 
caused by the interference of scattered field with the incident plane SH-waves. It is this 
interference that causc; the apparent scatter of the few randomly selected points in 
Figure 9. 

INTERACTION OF MANY WALLS 

The interaction which involves many foundations clearly becomes more complex as 
the number of foundations increases, but the solution presented in this paper should 
provide a simplified two-dimensional picture of what might occur in the densely con- 
structed metropolitan areas where elongated buildings have been erected parallel to each 
other. 

In Figures 10 and 11, foundation response IApl for three foundations with rigid walls 
have been presented. Figure 10 shows a case where one small wall is placed between two 
larger walls of 3 times its size, and sp = 0 for all three walls. 

For the foundation response shown in Figure 10a, the two large outside walls behave 
the same way as though the smaller middle wall is absent. This conclusion results from 
comparison of IA1] and [A31 with IA,[ and [A2t of Figure 2a where the response of two 
identical walls has been presented. However, at W A / B  ~- 1.8, A1 and zX 3 are slightly 
altered and the response of the wall 2 is strongly excited for dl2 = 5 and dl~ = 10. In 
Figure 10b, the peak at W A / B  "~ 1.8 has been translated to W A / B  ~ 0.85, indicating 
that the "resonant frequency" of the small wall is highly dependent on the distance to the 
larger walls. For the case in Figure 9c, the separation distance is large so that the building- 
soil-building interaction effects cease to be prominent. 

The interaction of three walls as described above can again be visualized by using a 
simplified model of springs arid masses. Since the relative motions of the large outside 
walls are relatively small, the excitation can be considered to be such that m i and m3 are 
moving with displacement exp(i~ot) as shown in Figure 12. The "resonant frequency" 
of m2 is therefore 

(k 12 -~- k23) 1/2/m2. (44) 

When excited at that particular frequency, the motion of m 2 would become unbounded. 
But again, in the two-dimensional model, scattering of waves from the semi-cylindrical 
foundations reduces the response amplitude. As the separation distances d 12 and d~ 3 
increase,the"spring constants"k~ 2 and k 23 decrease, and by equation (44), the "resonant 
frequency" also decreases. Therefore, the simplified model shown in Figure 12 quantita- 
tively explains the translation of the peaks shown in Figure 10a and 10b when d 12 and dl s 
become large. 

Another case of  interest is when a large wall is surrounded by smaller wails. Figure 11 
presents such an example for three walls with the middle wall three times larger than the 
two outside walls. The distances d12 and d13 are the same as those used in Figure 10. 
Now the middle wall "drives" the outside walls because of its weight and size, and a 
totally different situation arises. As may be seen in Figure 11, the response of the large 
middle wall is not greatly affected by the smaller outside walls. But the smaller walls be- 
have as if they were interacting with the large wall alone, i.e., one small wall contributes 
very little to the behavior of the other small wall. For horizontally incident waves, the 
response of the front wall is being amplified, while the back wall is being shielded. The 
large middle wall moves as if the other two are absent. 

As indicated by the above analysis, the weight and size of  the structure plays an 
important role in the interaction process. This suggests that the smaller structures in a 
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densely constructed area will probably receive the heavy "bombardment"  of  scattered 
waves from larger buildings. 

Large amplitudes of  response can also arise when many buildings of comparable size 
are closely grouped. Figure 13 presents an arrangement of five identical foundations, all 
of which support a rigid wall. In this particular case, we find that the amplitude lap[ can 
exceed the single foundation envelope given by equation (42) by more than 200 per cent. 
We expect, however, that such building-to-building interaction effects will not be so 
prominent in three dimensions, because the geometrical radiative scattering of waves 
causes the "radiation damping" of the whole system to increase. 

THE MEASUREMENT OF EARTHQUAKE MOTIONS 

In earthquake engineering, the measurement of the base motion of structures as well as 
the free-field motion is of interest. Considering the interaction effects discussed in the 
previous sections, the true measurement of the free-field motions might be difficult to 
realize. As shown by the surface displacement plots (of Figures 6, 7, and 8), the amplitude 
of surface motion is greatly altered from the free-field amplitude of 2. At some points, 
the displacements are near zero, while they are close to 4 at other locations. These rapid 
changes of displacement amplitudes are most evident for higher frequencies. The ampli- 

ei~tI ~ k12 ~ k25 

×1 

~ Ie i~t 

X3 

FIG, 12. A simplified model  of  the three-structure system. 

fication of the surface displacement can be quite large even when caused by interaction at 
large distances, as shown, for example, in Figure 8. 

An accelerogram recorded at the base of a structure may also be frequency filtered by 
the effects from neighboring large structures or structures of comparable size. As pointed 
out by Luco (1969), such records "may be filtered around the natural frequencies of  the 
structure. From the discussion of the interaction of many foundations, it now appears 
that it is possible to have "resonant frequencies" caused by the specific arrangement of 
the surrounding buildings. This suggests that the "resonant frequency" of a large struc- 
ture may also be recorded in surrounding smaller structures as it dominates the behavior 
of the others. This effect can be observed in Figure 4, where the parameters are a~ = 3, 
a 2 = I, e 1 = 2 and e2 = 2. By using equation (41), the response curve IAI] should go to 
zero a t  COamax/fl = 3(2n+ l)n/4, n = 0, 1, 2 . . . . .  In Figures 4a and 4b, the curve ]A2] 
also dips down to an amplitude of almost zero at the resonant frequency of the wall 1. 
When the large structure acts as a shield for the small structure, as in the case of 0 = 0 ° 
and 45 ° in Figure 4, the small structure moves with nearly the identical displacements as 
that of the large structure. Of course, this behavior begins to change when the wavelength 
of the incident wave is less than that of  the separation distance. 

CONCLUSIONS 

The antiplane response of a two-dimensional semi-cylindrical foundation is more corn- 



SOIL-STRUCTURE INTERACTION FOR T W O  OR MORE BUILDINGS 1883 

(CI) R4~LL ~RDIUS O MB/MS EPS 

o~ THETR= 90 

. . . . .  £ 1 0 2 1 

- - -  2 1 3 2 1 
..... 3 1 s 2 l 

q 1 9 2 ] 
5 1 12 2 ] 

I 
o i 2 3 u 

RR2/6 a ~ o l 2 3 

THETR= qS THETR=180 

W B W B 

(b) WRLL RRDIU5 0 MB/MS EPS = 

t 1 0 2 1 

. . . . . . . . . .  2 1 7 2 1 

3 1 Iq 2 1 
q 1 21 2 1 
5 I 28 2 I 

~ ~  THETA= 0 ~ I~RCBHETR= 135 

: 
0 i 2 3 a 0 1 2 3 

WRIB = WRI8 

I F 

WR/B WR B 

(C) RRLL RRI]]US O MB/FI5 EPS 

2 1 12 2 1 

3 ] 2 q  2 1 

a ] 36 2 I 

5 1 q8 2 l 

I 
0 k 2 3 

0 i 2 ~ ~ 0 [ 2 3 

WR/B = ~ WRI8 

i 2 3 u o l 2 3 
WR/B WQIB 

:G. 13. The  founda t ion  displacements  o f  five identical and equally spaced structures.  



1884 H. L. WONG AND M. D. TRIFUNAC 

pl icated and  more  unpredic table  if  many  other  foundat ions  are present  in the area. F o r  
selected frequencies the ampl i tude  of  the founda t ion  response might  differ f rom the 
theoret ical  predic t ion  by 200 per  cent or  more  if the mul t i founda t ion  interact ion effects 
are left out. 

The s t ructure-soi l -s t ructure interact ion is especially p rominen t  if  the structure of  
interest  is smaller  and  l ighter  than its neighbors ;  in which case, the fol lowing may occur:  

1. I f  a small  s t ructure is located in front  of  one or  more  larger structures,  while sub- 
jected to a hor izon ta l ly  incident  plane S H  wave, the mot ion  o f  the founda t ion  could  be 
vastly changed from one frequency to another .  These changes are mainly  caused by the 
s tanding wave pa t te rn  created by the larger  foundat ions  behind. Also,  if  the smal ler  
founda t ion  is located at  a node of  a s tanding wave pat tern ,  tors ional  type mot ion  may  
occur.  

2. If  a small s tructure is loca ted  behind  one or  more  larger  structures,  most  of  the 
incident  wave energy may  be scattered and  the small structure will tend to move a long 
with the same displacement  as the larger  one in front.  

3. If  a small  s tructure is located between the two or  many  structures,  resonat ing pheno-  
mena may  occur if  the waves scattered f rom the neighbor ing structures interfere con- 
structively. The frequency of  this resonance depends  on the spacing and the ar rangements  
o f  the entire system. 

The in teract ion between buildings of  comparab le  sizes may  also cause the ampl i tude  
o f  response to become quite large for  certain frequencies. These ampl i tudes  also depend  on 
the spat ial  a r rangement  o f  the buildings.  

All  of  the above  effects cause the founda t ion  mot ion  to be frequency filtered. Therefore,  
the mot ion  observed at  the base of  a long structure could  be quite different f rom the 
"free-field g round  mot ion" .  The scattering of  waves in the vicinity of  the founda t ions  can 
also al ter  the "free-field m o t i o n "  appreciably .  
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