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INTRODUCTION

In the search for different wave propagation phenomena, which might prove
effective in reducing the adverse effects associated with seismic excitation of
structures, several researchers have investigated the possibility of placing
structures in the shadow zones that are created by some canyon-like surface
topographic features. In 1962, Barkan (3) reviewed this problem and concluded
that such topographic features seem to be useless from the practical point of
view. In 1968, Woods (14) examined this problem from an experimental point
of view, and in 1971 Brown (4), who studied several theoretical results, which
had been derived for surface Love (2,5) waves and Rayleigh (8,9) waves, concluded
that when the shear wave velocity of the ground material is low, the shielding
effect created by a trench may be important. A numerical procedure applicable
to two-dimensional antiplane vibrations in a layer placed over a rigid half space
and in the presence of a trench has been presented by Lysmer and Waas (7).
They found that the presence of a trench can decrease as well as increase
the amplitudes of foundation motion and that this amplitude dependence is
highly frequency dependent.

Several exact solutions for simple (11,12)and irregular (13) trench cross sections
are now available in the literature for excitation consisting of plane SH-waves,
but no exact solution has yet been presented for the trench-soil-foundation
structure interaction. The purpose of this paper is therefore to present such
a solution for a model which is capable of illustrating some characteristics of
wave scattering and diffraction around a semicylindrical trench near which is
a structure erected on a rigid semicylindrical foundation. Though the geometry
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of this model is far too simple to be of sfgnificance in real applications, it
is believed that its investigation should help in clarifying to what extent similar
geometries may act as shields against incident plane SH-waves. Finally, it appears
that the availability of such an exact solution may prove to be useful for the
checking of finite element, finite difference, and other approximate schemes
that can be developed to handle irregular geometries.

Mooet, Inrut Momon, AND SotuTion oF ProsLEm

Consider the model shown in Fig. 1. It consists of a semicircular cylindrical
foundation with radius a,, which is placed to the right of a semicircular canyon
with radius a,. The rigid foundation is assumed to be welded to the underlying
half space which is characterized by the shear wave velocity, B, and the rigidity,
[T
Since the wave scattering objects are assumed to be of semicircular cross
sections, it is convenient to define two polar coordinates, (r,,¢,) and (r,, ¢,),
with their origins located at the centers of the canyon and the foundation,

D ———ed
Y2

Y

SH
FIG. 1.—Canyon, Shear Wall, Foundation, and Soil
respectively. The two origins are separated by a distance, D, which must be

greater than a, + a,.
The boundary conditions for this problem are:

Ol e = 0 e 6]
Orlmay =0 o e )
and w,+w,+witwr| =A™t L 3)

in which w, and w, are the scattered waves from the canyon and the foundation,
respectively; wi = the incident wave; w" = the reflected wave from the half-space
boundary; and A = the displacement amplitude of the rigid foundation.

These antiplane displacements, w, satisfy the Helmholtz equation in polar
coordinates
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in which k = o/ = the wave number in the soil medium.
The incident plane SH-wave wi is

wi= givt[e-HeBxgcosb+ypsind)] &)

Since x, = x, + D, the incident wave expressed in terms of (x,,y,) is

W'.(X| , )’1 = eiu’;l e—i(m/B)Dcose [e-i(m/B)(x,cose +ysino)]

Thus, there is a phase shift between the two locations which is equal to
e i/B)Dcoss  The wave reflected from the half-space surface, w", has the same
form as wf except that 0 is replaced by —8.

Because of the geometry selected for this model (Fig. 1), it is convenient
to express wi and w’ in polar coordinates. The plane wave expansion is made
in terms of Bessel and harmonic functions. At (r,, $,), this expansion is

wid wr=2 2 imE, J, (kr,)cos md,cosmé . ... ..... ... . ... @)
=0

in which E, = 1, E_ = 2 for m # 1. The analogous expression for (r ,d,)
can be obtained by comparing Egs. 5 and 6. :

The unknown in this problem is A, the displacement amplitude of the rigid
foundation. It depends on the equilibrium of forces exerted on the foundation
by the superstructure, on the incident wave, and the inertia force of the foundation
itself. The corresponding unknown inhomogeneous boundary condition, Eq. 3,
can be separated into two parts, which can be formulated as follows:

Problem A: wi+ wi+ wi+ wr =0 .. e (8a)

r=az

and Problem B: (w? + w§)] =lef . .. (8b)

r=az

The boundary condition in Eq. 3 can then be retrieved by adding Eq. 8a and
A times Eq. 8b and by defining

w=wrt+wBA; i=1,2.. . ... )

The new boundary conditions, Eqs. 8a and 8b, do not involve any unknowns,
and problems A and B can now be solved.

Problem A—Contribution from Incident Wave.—The physical interpretation
of the boundary condition in Eq. 8a is that the rigid foundation is held fixed
while subjected to incident seismic waves w'and w’. The resulting force, which
is exerted on the foundation by the soil, is called the ‘‘driving force.” It is
the primary source of excitation in this problem.

We assume that the scattered waves have the form

wi(r,,d,) = 2 cA H® (kr,) cos nd,
N (10)
wi(r,,d,) = 2 fA H® (kr,) cos nd
2 2>Y2 n n 2 2
n=0

in which ¢4 and f2 are the unknown coefficients. The cosine functions are
chosen because they satisfy the boundary condition in Eq. ! automatically,
i.e., owp/od 1y, 0. = 0 and 3w$/3d,l,,.0 -, = 0. The Hankel function
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of the second kind, H® (kr,), is chosen because it corrésponds to the outgoing
wave at infinity and it satisfies the scalar wave equation in polar coordinates.

Since the scattered waves, wf and w#, are expressed in their respective
coordinates, the series must be transformed to the (r,, &,) coordinates to satisfy
the boundary condition in Eq. 2 and to the (r,, ¢,) coordinates to satisfy boundary
condition in Eq. 8a. This can be done by employing the Addition Theorem
(n

od E,
H® (kr,) cos nd, = (-1)m"— K" (kD) J, (kr,) cos md
2 m m 2 2
m=0
... (D

20 Em
H® (kr;) cos ng, = (=D > K" (kD) J, (kr,) cos méd,
=0

in which K" (kD) = H® (kD) + (-1)™ H® ,(kD); E, = I; E,_ =2for m
# 1; and k = the wave number. Transforming w% to the (r;,,) coordinates
and imposing the boundary condition in Eq. 2 gives
—2gitw/B)Dcost 2 imE, [J, (kr )], .., cos mé | cos m8
m =0
= 2 c::.[H‘,,f)(kr,)]l,l:al cos mo, + 2 fa=nn
m=0 n=0
o Em
> = K2 (kDY (kr )1, 0, €OS M, oo oo e (12)

m=0

Similarly, the boundary condition in Eq. 8a gives

-2 2 imE_[J,(ka,)] cos mb,cos mé = E fAaHP(ka,)cos mé,
m=0 m=0

+ S cA i (—1)"'E—"'K" (kDY J (ka,)cos md, . . . v i (13)
& n ~ 2 m m 2 2

Since the cosine functions are orthogonal, Egs. 12 and 13 can be separated
into two equations for each harmonic cos md;:

R [ka, H®_ (ka,) — mH®? (ka,) ]
"L ka,J,_ (ka)) — mJ, (ka))

+E, > fA(=1D"Kp (kD)

n=0

= —4F [mel@/PIDo cosmB L L. L (14)

H® (ka,) o
2fA) ——— | + (—1)"'2 E, cAK" (kD) = —4E, i™ cos mo;

I (kay) =0
m=0,1,2, .. . . e (15)
Egs. 14 and 15 constitute an infinite matrix for the unknown coefficients, ¢/,
fA, m=0,1,2, ... These equations can be rearranged into a matrix form

M2 = PA o o e e (16)
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inwhich {gA}T = {cf, fo,cr O, L cA A oo oo an
A = —4E_i™cos m@ it /BIDcosd

Pames m S (18)

Pomes = —4E_ i™ cos mo

ka, H®_, (ka,) — mH® (ka,) ]

and M,, ., .. =2
2l and [ ka,J,_,(ka,) — mJ_(ka,)

M 2[Hg)(kaz)]s M (-D"E_ K" (kD)
2m+2,2n+2 Jm(kaz) mn* 2m+1,2n+2 m > m ’
Mypirgns = (=D™E K" (kD); m,n=0,1,2, ... ........... 19)

The infinite matrix, Eq. 16, can be solved approximately by considering a finite
system which closely approximates it. The number of coefficients required to
give accurate results depends on the ratio, a, /a,. If a, >> a,, the number
of harmonics required to expand the displacement distribution around a, is
large because the scattered wave from the foundation has become almost a
point source. For small values of k and a, /a,, the coefficients, ¢ and fa.
decrease rapidly; only a small matrix will give results that are accurate to within
a few percent at the lower frequencies.

When the coefficients, ¢2 and f4, are determined, the “*driving force,” F¥,
induced by the incident SH waves can be expressed as

O I(wi+ wr+ u;f + w$)
F:‘ = +p azd¢2
= ar, r=az N L (20)
H®(ka,) =
F* = —pwka, J, (ka ){fo"——--———-+ cAHD (kD) + 2
R A AN E

in which the infinite sum of c¢# represents the contribution from the canyon.
Therefore, as D — =, the effect of the canyon becomes negligible because
the amplitude of H® (kD) decays as D~!/2 for large D.

Problem B—Impedance of Foundation-Soit System.—The physical interpretation
of the boundary condition in Eq. 8b is that the rigid foundation is forced to
move harmonically with maximum displacement amplitude equal to one. The
force resisting this motion is the foundation impedance. Assuming that

x

wh(r,¢,) = cE HP(kr\) cos nd,
n=0 (21)

ES

and wP(ry,d,) = f2 HP(kr,) cos no,

n=0

and substituting Eqgs. 21 into the boundary condition, Eq. 8, we have

ka, HY. (ka,) ~ mH & - |
2(:5][ a, ! G,) m ( a')]+EMZf',’.(*1)"K:.'.(kD)=O 22)
ka,J,_ (ka))— mlJ_ (ka,) L
H®(ka,) > 2%
28 [—-——] + (=" S E,_ c¢PKn(kD) = —— . ... ..... (23)
-’m(kaz) Zo Jm(kaz)
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In matrix form, Eqs. 22 and 23 become Mq® = p?®, in which q2 ,, = cB;
A3mez = f23 P50 =0; and pB =28  /J (ka,); m,n=0,1,2, ... Matrix
M is identical to that of Eqs. 19. The impedance, K., is then

0
d
Ks = +“’f :3— (W'Ii + wza)ln=az a, d‘bz

Ty
....... (24)
K, = —pmka,J, (ka,) [fg AP (kay) | i cBH® (kD)]
J, (ka,) n=0 o

The infinite sum represents the contribution from the existence of the canyon.
As in Egs. 20, when D — =, this contribution becomes negligible and the
impedance reduces to the result for a rigid foundation embedded in an infinite
half space (6).

INTeracTion EauaTion FOR A

For simplicity, we assume that the building is represented by a linear elastic
shear-beam whose modulus of rigidity is w, and shear wave velocity is B,-
For this system, when excited by the harmonic base motion, Aef“!, the base
shear, i.e., the force the building exerts on the foundation per unit length,
is (6) '

tan (k, h) :IA
k,h

in which k, = w/B,; M, =(n,/B%)2a,h; and h = the height of the building
(shown as H in Fig. 1). Introducing M, = (./B?)}(w a2 /2), which is the mass
of the soil replaced by the circular foundation, and writing the dynamic equation
of equilibrium for the foundation mass, M,

(M AY+ K A=F*—F, . ... ... ..., (26)

F, = +sz,,[

there follows

H®(k ) >
=J, (ka,) [f;;‘-}—'—i—ai + 2 cAHD (kD) + 2]
A= R VL @n

 ka, (M, M, tank,h H®(ka,) &
it} <~—‘1 +— ——"—> ~ J,(kay) [fg—‘—' +> ch:?(kD)]
2 M M k,h J,(ka,) n=0

5 5
Derenpence oF A oN DirrereNnt MobeL PARAMETERS

To investigate the characteristics of response of a rigid foundation and shear
wall structure system, the amplitude of the foundation motion |A| has been
plotted versus the dimensionless frequencies, wa, /B and wa, /B (Figs. 2, 3,
4, and 5). Without any loss of generality, the foundation radius, a,, is set
equal to 1, while a, is varied to show the effects the canyon size may have
on the response amplitudes. Since the presence of the canyon causes |A] to
be 6-dependent, the five cases in which 8 = 0°, 45°, 90°, 135°; and 180° have
been studied.
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FIG. 2. Foundation Motion |A| as Function of Dimensionless Frequency; M /M, = 1, M,/M, =0, ¢ = 0, D* = 1; (a) a,/a,
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Figs. 2 and 3 show the response of a rigid foundation without a superstructure
for the foundation density equal to that of the soil medium, i.e., M,/ M, =
1. This arrangement was made so that the effect of the canyon can be studied
without the interaction with the superstructure. In each of these figures, the
cases in which a, = 1, 3, 5, and « are shown in parts (a), (b), (¢), and {d),
respectively. Also plotted on these graphs, for comparison, is the case in which
a, = 0, i.e., the half-space solution without a canyon (10). This response curve
is represented by the dast-dot line. Since different sizes of canyons are dealt
with, it is convenient to select the distance so that D* = D — (a, + a,) is
a constant for all (a), (b), (c), and (d) parts of each figure: D* is the distance
between the two nearest edges of the foundation and the canyon. In Fig. 2,
D* = 1; while in Fig. 3, D* = 5.

While examining Figs. 2 and 3, one of the most important questions one
may ask is whether there are any significant shielding effects for foundation
motion that may result from the existence of the canyon. To answer this question,
consider first the horizontally incident waves for 8 = 0°. The foundation response
|A] is then as represented by a fine dashed line. As shown in these figures.,
this response is very similar to that of the half-space solution when a, = L
In fact, the results are nearly identical up to wa, /B = 0.5. Physically, this
means that the low frequency waves which have long wavelengths are not greatly
altered by small scattering objects. To scatter away some of these longer waves,
the size of the canyon must be increased, as is clearly shown by parts (b)
and (c) in the figures. The shielding by the canyon with a, = § is effective
for wa, /B down to 0.25; for wa,/B > 0.75, the amplitude is reduced nearly
50%. Therefore, a canyon in front of a foundation does scatter a certain fraction
of the horizontally incident wave energy, which corresponds to the wavelengths
less than the width of the canyon. However, some consequences caused by
nonhorizontally incident waves must also be considered carefully.

For incident waves with 6 # 0° the shadow zone behind the canyon
approximately extends up to its projection onto the half-space surface. Therefore,
the shielding diminishes if the structure is moved further away from the canyon.
For example, consider the case when 8 = 45° and D* = 1 in Fig. 2; the foundation
is shielded for a, = 3 and 5, but the foundation is already out of the shadow
area if a, = 1. If the distance, D*, is increased to 5, the foundation is no
longer protected for incident angles greater than 45°. In fact, the response
amplitude may exceed that of the half-space solution for certain frequencies
because part of the energy is trapped in between the two scatterers and the
wave amplitudes may interfere constructively.

The nature of response rapidly changes as the incident angle increases. For
8 > 90°, the canyon plays a role of a wave source as part of the incident
waves are reflected and focused back towards the foundations. As shown by
Figs. 2 and 3, the response amplitude can increase by more than 50% over
the half-space solution. Of course, this amplification is less pronounced if the
canyon is further away, because in that case the amplitude of the reflected
wave goes down as 1/V'D. Using the same reasoning as before, the longer
waves are not reflected by the smaller canyon, therefore, the amplitude equal
to 2 for low frequencies. With the presence of a canyon, the longer waves
are also partially reflected, while all waves are reflected for the limiting case,
a, = = [Figs. 2(d) and 3(d)]. For a, = =, the half space has become the
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quarter space and the free surface amplitude becomes 4 for a unit input excitation.

The massiveness of the building and foundation system (M, /M, large) may
lead to more than average contribution from inertial forces in Eq. 27. For
low-frequency, the |A| versus wa, /B curve may then resemble the steady-state
response of a single degree-of-freedom oscillator with viscous damping (10).
When the canyon is located in the immediate vicinity of the rigid foundation,
the shapes of |A | curves become similar to those that correspond to the half-space
solution (10) for a, = 0.

As the distance between the foundation and the canyon increases, there is
a better chance for the waves scattered from the canyon and the foundation
to interfere. This introduces numerous local peaks and troughs that are superim-
posed on the overall trends of |A] curves.

Figs. 4 and 5 show examples of interaction when the shear wall is flexible
(e # 0). The zeros of |A] at wa,/B = [2n + 1)/2](w/€) for n = 0,1,2, ...
correspond to the natural frequencies of the shear wall (10). At these frequencies
the base shear force per unit length is canceled by the input driving forces
and the foundation does not move. From Eq. 27, it is seen that the frequency
spacing and the dimensionless frequencies, wa, /8, in which |A| = 0, are not
affected by the existence of the canyon. However, since the existence of the
canyon does influence the shape of |A] curves, the relative response of the
shear wall (10) is affected by the existence of the canyon. Figs. 4 and 5 show
the effect of separation distance D and indicate that as D increases the number
of local peaks and troughs superimposed on the overall trends of |A| curves
increases and becomes more complicated.

When the angle of incident SH-waves is greater than 90°, a significant amount
of wave energy may be reflected from the canyon and can excite the foundation
to vibrate with amplitudes that may be even greater than those for a uniform
half space. To show how large these amplitudes may be for the model parameters
studied in Figs. 4and 5, the envelope of |A| curves for the soil-structure interaction
in the uniform half space (10) has also been plotted in these figures by a heavy
full line and careful comparison of this envelope with the curves computed
from Eq. 27 shows that for small values of wa,/B, amplitudes of |A]| for all
angles of incidence may be larger in the presence than in the absence of a
canyon. This occurs for small values of D and apparently results from the
reduced effective spring constant of the half space when the canyon is present.
Removal of a portion of the half space by the canyon reduces its impedance
and increases the driving forces for low frequencies. This because the existence
of a canyon creates scattered waves that add to the driving forces. These same
scattered waves bring back a fraction of energy radiated from the rigid foundation
and thus decrease the amount of radiative damping relative to that for the
uniform half-space solution. Consequently, for low values of wa, /B and for
small D, amplitudes of |A| computed from Eq. 27 can be larger than those
in the absence of a canyon even for 6 = 0°. When wa, /B and D increase,
this effect is reduced and the amplitudes of |A| from Eq. 27 appear to be
closer to the half-space solution. Also, for larger wa, /B the shielding (for 8 = 0°)
and the amplifying effects (8 = 180°) created by the canyon seem to be more
pronounced for intermediate values of D, while for large values of D diffraction
(for 8 = 0°) and reflection (for 8 = 180°) from the canyon make the values
of |A| from Eq. 27 approach the solution in the uniform half space (10).
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ConcLusions

The foregoing analysis suggests that for the two-dimensional wave propagation
problem consisting of a canyon and a shear wall erected on a rigid semicircular
foundation which are excited to vibrate by incident plane SH-waves, the shielding
effects of a canyon on the response of a shear wall are not significant. For
certain directions of wave incidence, for large canyon dimensions, high frequen-
cies, and for small velocity of shear waves in the half space, the shielding
effect of a canyon may indeed be quite significant. However, for realistic values
of these parametérs and because the waves do not necessarily always arrive
from one direction, the presence of a canyon near a foundation of a large
and long building may also amplify the amplitudes of shear wall response relative
to the motions that would occur in the absence of a canyon. Although the
results based on this study of a simple mathematical mode! cannot be generalized
to apply to other, or perhaps even similar geometries, it appears that our results,
as well as the results of some previous investigators (3,7,14), suggest that the
shielding of structures by canyons or trenches may be useless for many practical
applications.
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Arrenoix ll.—Notanion

The following symbols are used in this paper:

a,
a,

A B
Cn

ne

[o

i

]

It

il

i

I

]

I

]

i

il

radius of canyon;

radius of foundation;

expansion coefficients for scattered waves from canyon;
distance between origins of two coordinate systems (x,,y,) and
(x5, 5,);

distance between two nearest edges of canyon and foundation;
external force: force exerted on foundation by shear building;
driving force: force induced by incident wave onto foundation;
expansion coefficients for scattered waves from foundation;
Hankel function of second kind, nth order and with argument
kr;

height of shear wall;

Bessel function of mth order with argument kr;

linear combination of Hankel functions = H@ (kD) + (-D™
HQ . (kD);

impedance function of foundation-soil-canyon system;

/B = wave number of soil medium;

masses of foundation and shear building, respectively;

radial coordinate for the jth polar coordinate system;
displacement field of incident plan SH-wave;

reflection of plane wave from half-space surface;

scattered waves from canyon;

scattered waves from foundation;

scattered waves from canyon for problems A and B, respectively;
scattered waves from foundation for problem A and B, respectively;
shear wave velocity in soil and in building, respectively;

motion of foundation induced by combined loading;
E,=1,form=1and E_ = 2, otherwise;

k, h/ka, = measure of relative stiffness and height of shear wall;
incident angle of plane SH-wave;

shear moduli of soil and shear building, respectively;

shear stresses in z direction;

angular coordinate for jth polar coordinate system; and

angular frequency,
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