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TWO-DIMENSIONAL, ANTIPLANE, BUILDING-SOIL-BUILDING
INTERACTION FOR TWO OR MORE BUILDINGS AND
FOR INCIDENT PLANE SH WAVES

By H. L. WoNG anD M. D. TRIFUNAC

ABSTRACT

Two-dimensional SH-type vibration of several shear walls erected on an
elastic, homogeneous, half-space has been studied. The choice of the cylindrical
coordinate system, suitable for analysis of rigid foundations with semi-circular
cross section, has lead to the exact infinite series solution, which is ideal for the
analysis of the physical nature of this problem and its dependence on several key
parameters.

It has been shown that the presence of neighboring buildings may change the
nature of the single soil-structure interaction problem appreciably and that
scattering, diffraction, and interference of waves from and around several founda-
tions with the incident SH waves can lead to significant shielding, as well as
amplification of input motion for any of the buildings in a group. The effects of
relative size of two, three and several foundations and their separation distances
have been studied and presented in some detail.

INTRODUCTION

Many important buildings are located in metropolitan areas where they are surrounded
by numerous other structures at small and large distances. The published analyses which
consider soil-structure interaction, however, mostly consist of just one building or one
foundation on top of a half-space (e.g., Luco and Westmann, 1971), while the problem
of interaction of many buildings has, so far, not been studied. The interaction of two
foundations has been explored analytically by Warburton ez al. (1971) and experimentally
by MacCalden (1969). Their models consisted of two rigid circular foundations placed on
top of an elastic half-space. For antiplane vibrations, Luco and Contesse (1973) studied
the interaction of two embedded foundations with semi-circular cross sections excited by
vertically incident harmonic SH waves. Liang (1974) solved the related plain strain
problem using the finite element approach. Interaction of three buildings in a three-
dimensional setting has been studied by Lee and Wesley (1973).

The study of Luco and Contesse (1973) indicated that additional interaction effects
caused by the presence of another structure may be important at low frequencies and near
the fixed-based natural frequencies of the neighboring structure. However, some additional
effects involving nonvertically incident SH-waves were not considered. In that case, the
interaction will include the effect of shielding for the shear wall in the rear and amplifica-
tion or deamplification for the shear wall in the front.

The purpose of this paper is, therefore, to investigate further the significance of the
angle of incidence, the effect of the relative size and natural frequencies of neighboring
structures, and the influence the separation distance may have on the interaction of two
or more shear walls. These additional effects could become quite important at certain
frequencies, and there may exist noticeable increases in.the amplitude of foundation
response caused by building-soil-building interaction.
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The study of the interaction of two shear walls has been extended to cover the cases
where many semi-circular foundations are present (Figure 1). The specially chosen
geometry of the boundaries involved allows the boundary-value problem to be solved
exactly by the method of separation of variables.

Numerical results of the exact solution indicate that the spacing between foundations
can have a prominent effect on the response amplitudes. For smaller structures, new
“natural frequencies” are being created by interference of the waves scattered from its
larger neighbors. These “natural frequencies” are highly dependent upon the spacings of
two or more foundations.

THE MODEL AND THE COORDINATE SYSTEM

The scattered waves from the semi-cylindrical rigid foundations, p = 1,2,..., N,
welded to the half-space (¥, < 0), are conveniently represented by polar coordinates
(r,, ¢,) which have their origins at the center of each foundation (Figure 1). Having
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Fic. 1. The arrangement of structures and the coordinate systems,

chosen the coordinates for the first foundation (x;, y,) or (r;, ¢,) as the reference, the
coordinates of the other foundations located at distances d,, may be expressed in terms
of (x,, y,) by the transformation formulas
X, = X1 =duy where P '® C,Os ¢", and d;; =0. (1)
yp=y1 ypzrp51n¢p
The model in Figure | clearly represents an extension of the models studied by Luco (1969)
and Trifunac (1972).

INCIDENT GROUND MOTION

We assume that the excitation consists of harmonic plane SH waves with an amplitude
of 1 and the angle of incidence, 6, which is measured counterclockwise from the x-axis to
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the normal of the plane wave front (Figure 1). The resulting free-field motion, #'*", in
the half-space without the foundations then consists of the incident plane wave, u’, plus
the reflected plane wave, u", from the free surface. The free-field motion #'*” given in the
(x,, y,) coordinate system is then

W (xy, 74) = 2 exp (o) {exp [—1 (] Px, cos 0T} cos (wy, [Bsin0) ()

where f = y/m is the shear-wave velocity in the soil. Using the transformation for-
mulas (1), the expression (2) may be written in the (x,, y,) coordinate system as

ui+’(xp, V,) = 2 exp (iwt) {exp [ —i(wd; ,/p) cos 01} {exp [ —i (w/p) x, cos O]}
X cos (wy,/B sin 8). (3)

By omitting the time factor exp(iwt) for convenience in the remainder of this paper, the
motion u'*"(x,, ¥,) may be represented by a series of circular cylindrical functions in the
(rp, 0,) coordinates (Mow and Pao, 1971; Morse and Feshbach, 1953)

u't'(r,, ¢,) = 2exp [—i(wd, ,/p) cos 0] [ i i"s,J,(Kr,) cos m¢, cos m@] 4
m=0

wheree, = lande, = 2form # 0.

FORMULATION OF THE PROBLEM

The total displacement field, », in the half-space and in the vicinity of the foundations
is composed of the “free-field”” motion ' *" and the reflected waves

u;R,i=1,2,..., Nfromeach of the N foundations
. N
u=utr+3y uk (5)
=1

The time-independent part of u exp(iwt) must satisfy the Helmholtz equation in each of
the (r,, ¢,) coordinate systems

2u

. af,,z_ +K%u =0 (6)
14

0%u 1 ou 1
‘:4._2 — + —_—
er, rpor, I,
where K = w/f is the wave number. In addition to equation (6), boundary conditions
must be satisfied in each of the (r,, ¢,) coordinates. These conditions are: (a) the stress-

free surface condition for the half-space

au = -7
o= L% _ g at O and r,¢R, (7
r, ¢, ¢,=0
where R is the area occupied by the foundations, and (b) the continuous displacement
condition at the interface between the foundations and the soil

Ay —n< ¢, <0, (8)

ul"P=ap = By

where A, is the displacement of the pth foundation. The A,’s depend on the soil-structure
interaction of each of the N structures, the vibration of the other foundations, and the
direction of the incoming waves 6.

The scattered waves from the jth foundation are assumed to be of the form

uR = ZO A7 H,P(Kr;) cos ng;, j=12,...,N. (9
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The boundary conditions (7) are then automatically satisfied by the total displacement
field u, since the free-field motion «’ " already satisfies the same condition. Also, by using
only the Hankel function of the second kind H,*(Kr;), the scattered waves are of the
divergent type.

In the boundary conditions (8) the N values of A; are not yet known. However, by
using the principle of superposition, the general form of the solutions for the scattered
waves, u;%, from N foundations may be separated into N+ 1 parts to simplify the treat-
ment of the boundary conditions. The determination of the unknown A;’s may then be
postponed until the total interaction involving the N structures, N foundations, and the
soil has been considered.

The scattered waves u jR can be separated as follows

N

uf = w4 3 wiA, (10)
=1
where W,", I=1,2,..., N+1, all satisfy the Helmholtz equation (6). By substituting
(10) into (5), we obtain
. N N
u(ry, @) = u't(r,, ¢ )+ {WJN+1(rp, o)+ > Wi, d),,)Az}- (1)
j=1 =1

This expression will satisfy the boundary conditions (8), u(r,, ¢,) = A, atr, = a,, if we
set the boundary conditions for the N+ [ problems into two categories

The (N + I)th problem

N
Y, Wy, ) +u Ty, $,) = 0 at r, =a, (12)

j=1
The solution WjN +1 for this case describes the scattered waves for the incident waves
u'*t" with all of the N foundations held fixed.

First N problems
Forl/=12,...,N
N
Azl le(rpa ¢p) = 5111 at r, = a,. (13)
i=
The physical interpretation of the solutions of these N problems is that they describe

the scattered wave fields when the /th foundation is moved with a displacement amplitude
of I while the other foundations are held fixed.

THE SOLUTION OF WAVE-SCATTERING IN THE SOIL
Having formulated the problem, we now consider the determination of the unknown
coefficients 4,”. We begin by noting that since ;% was divided into (N +1) parts, 4, can
also be divided and represented by
N
A =N 4 Y C A (17
=1
where C, 7,1 = 1,2, ..., N+1 are the coefficients of the solutions,

N
Wt = ZO C,"'H,P(Kr;) cos ng;. (13)

To obtain the coefficients C,”', consider the following problems
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The solution for WN+1
From (17), the scattered wave from the jth foundation while it is held fixed is

N
Wy, ) =3, CPVYUH S Kr;) cos m;.
n=0
But the boundary conditions (13) require that WjN+ Lji=1,2,..., N, be transformed

into the (r,, ¢,) coordinates. Therefore, the addition theorem may be used to transform
the Bessel series from coordinates (rjs #,),J # p, to (r,, ¢,). Using the coordinate systems
as defined in Figure I, the transformation to the pth foundation from the right side, j > p is

H,P(Kr;)cos ng; = (—1) { i (el 2K, (Kd,)J,(Kr,) cos m¢, (19)
m=0 i
and from the left side, j < p is
H,2(Kr)) cos ng; = [ i (— D)™(en/2K,"(Kd,)J,(Kr,) cos m¢p— (20)
where " i
K,"(Kd,;) = H{Z (Kd,))+(—1)"H?,(Kd,)). @21)

Equations (19), (20), and (21) are rearrangements of those given in Abramowitz and
Stegun (1970). The transformations are not symmetrical because of the particular way in
which the angles are defined in Figure 1.

With equations (19) to (21), the boundary conditions (13) for the (N+ 1)th problem
may now be applied at (r,, ¢,). The expressions for p = 1, 2, ..., N, which involve the
unknowns C,»"*1 are

0= [2 Y i"e,J.(Ka,) cos mHjl exp [—i(w/B)d;,cos0] + 3 C,»"*'H,P(Ka,)cosmg,

m=0 m=0

r—1 oo w0
+(1-96,,) Z |: Z CiN+1 z (— l)m(em/Z)Km"(dej)Jm(Kap) cos m(ﬁpjl
j=1]n=0

= m=0

N 0 -5}

+(1=6,4) > l: Y ClN (- l)"[ Y (el DK, "(Kd,))J,(Ka,) cos mqﬁp]:] . (22)

j=p+1ln=0 m=0

Using the orthogonal properties of the cosine functions, equation (22) may be separated
to yield an infinite number of simultaneous equations as follows:
For the harmoniccos mé,,j = 1,2,.. ., N;m =0, 1,2, . ..

polr @ A 2\/H,P(Ka)
_ _ 1y BN+l n ; N+ f =y m M 77ps
a 5,;1);::1 I:ngo( D Ky (dej)il TG (8 >< Ja(Ka,) )

n

N oo
+(1=0,8) Y l:Z (-*U"C,,j’N“Km"(dej)i\ = —4i" cos me” @/P) dipcost

j=p+if n=0

p=12..,NNm=0,1,2,... (23)

The first term on the left side of equation (23) represents the contribution of scattered
waves from the foundations 1 through p—1, i.e., the foundations to the left of the pth
foundation, while the third term represents the contributions from foundations p+ 1
through N, on the right side. As one would expect, these contributions to the interaction
would be small if the parameter d,; is large compared to a,,,. In such cases, the second
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term dominates the left side of (23) because |H,P(Ka,)| > |K,"(Kd,;)J,(Ka,)| for d,; >
a,. Therefore, neglecting the small term contributions, the problem reduces to the solution
for a single foundation model.

After some manipulations, an infinite matrix results from equation (23)

AxN+1 — pN+1 (24)
where
xN+1 — {COI,N+ 1_ . COP’N+1. . CON,N+IIC1 1,N+ 1. . Clp,N+]‘ . CIN,N+II L.
]C LN+l pNEL C,,N'N+’| .. .}T
or as written in indicial form
XNag+p) = ey (25)
B\t = — {4i*exp [—i (w/B) d, cos 0] cos 56} (26)
2 HP(Ka,) (= 1Y’KJ(Kd,,), if p<r

@7

A = - 6.0 + (l -0 )
(Nxs+r),(Nxq+p) S i r
awr E Jq(Kap) P p

] (— 1)'KAKd,,), if p>r
Numerically, the infinite matrix equation (24) cannot be solved. Therefore, it is necessary
to reduce it, if possible, to one of finite dimensions by taking advantage of certain prop-
erties of its coefficients.

For low frequencies, i.e., long incident waves, only lower order harmonics in the series
(17) are required to describe the displacement field. Therefore, the coefficients, C,/*N*1,
decrease rapidly, and the coefficients for large n do not affect those for small n appreciably.
Hence, the infinite matrix may be reduced to one with finite dimensions. However, more
terms in the infinite series are required when the frequency of excitation is large or when
the size of the foundations differ greatly from each other. In the former case, high har-
monics are required to describe the rapid changes of surface displacements caused by the
short waves; while in the latter case, high harmonics are required to describe the sharp
variation on the interface of the large foundations because of the short waves radiated by
their smaller neighbors.

As an example, the number of terms used to calculate the coefficients for a two-body
system with equal size foundations is approximately

NUMBER OF TERMS =~ 5+ 2(Ka).

Four-place accuracy of the series solution has been achieved by comparing it with the
series that had one additional term.

The solutions for Wj’,l =12,..,N
For these cases, the solutions are written in the form

N
W= ZO Cnf”H,_,(Z)(Krj) cos me;. (28)

The “boundary condition” for (28) is given by the expression (12) and it is nearly the same
as (13) except that —u'*” is replaced by é,,. Hence, the harmonic separation of this bound-
ary condition gives

I . 2\/H, (2)(Ka)
me jlpsn DLALE Qi | Rt &
(1—5,,1)1_21 [ngo(—l) C/'K, (dej)] +C <gm>< J,(Ka,) >

: N «© . 25’"0
+(1=6,8) > [Z (—1)"C,,”N+1Km"(dej):| = (29)

j=p+1]l n=0 B J_O(Kal)
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Since (29) is of the same form as (23), the matrix A in the expression Ax' = b’ remains
the same. Here, the first and third terms of (29) are the contributions from the neighbor-
ing fixed foundations, while the pth is being displaced with a unit amplitude. Again, for
the case where d,; > a,, the matrix 4 becomes nearly diagonal, and the solution of the
problem becomes that of a single foundation.

To complete the rearrangement of (29) in matrix form, define the vectors x’ and b’ as

Xosgr = (€'} (30)
béNxs-%r) = 25[r/JO(Kar) g (3 l)

Since the matrix A4 is the same as that of equation (27), the same criterion, discussed
above, can be used to choose the size of the “finite’” matrix.

MOTION OF THE FOUNDATIONS

The foundation displacements A; can now be determined by balancing the forces
exerted on the jth foundation: (1) £}, the force generated by the soil and caused by the
incident waves and the motion of the neighboring foundations; (2) f;¥, the shear force
created by the base of the structure; (3) the inertia force of the rigid foundation with mass
(M,); whose acceleration is —w?A; exp(iwr).

The force balance for the pth foundation then becomes

—0?A M), = —(f,+S,Y)  p=1,2..,N. (32

With the expression for the stresses at the pth foundation as

u a1 < Mol o 1
O, = U T = U= u +"(rp’ d)p)+ Z Wj + + Z W] vAl , (33)
or, or, =1 =1

the soil force f,° is expressed as

fps = _j(ln Opy rp=dp apd¢p' (34)

Integration from — 7 to 0 eliminates all harmonics except the zeroth. It is convenient to
define f,° as

N
Iy = MTCS}J"'“T[I; LAY (35)

where unS, is the force exerted by the soil on the pth foundation, while all foundations
are held fixed. S, may be expressed in terms of the coefficients C,/"* ! as follows

S, = Ka,J(Ka,) {2 exp[~i(w/B)]d;, cos

H,®(Ka,) p_l o
FCPNHE P L (1-6,,) C, N H(Kd,)
° J,(Ka,) & ; ngo P
N o] .
+(1=6,») Y 3 (—1)”C,,J’N+1H,,(2)(dej)}. (36a)
j=p+1a=0

The matrix K, represents the force exerted on the pth foundation, while only the /th
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foundation is moved with a unit displacement,

H, (K LA
K, = Ka,J (Ka,) {CO”*‘ " (Kay) +(1=6,0)Y ¥ C/'H, P (Ka,)
Jl(Kap) j=1n=0
N ©
+(1=6,0) Y ¥ (——I)"C,,“H,,(Z)(Kap)}. (36b)
j=p+1 =0

To compute the force fpw, elastic shear walls with no damping are assumed to be
the structures of interest in this problem. The shear walls satisfy the one-dimensional
wave equation, and the base shear force of the walls subjected to a base-displacement
of A, exp (iwt)is then (Luco, 1969)

Y = —wi(M,), r”(m”] A, (37

where (K,), is the building’s wave number, 4, is the height, and (A,),, is the mass of the
pth wall,

Substituting (35), (36), and (37) into (32), the force balance of all contributing forees is
then

tan (K h) N
0*A (M), = —wz(Mb)pI: (b”:| A, +un {SP-F Y Kp,A,}
=1

(Kbh)p
p=1,2...,N. (3%)

Dividing (38) by unKa, and introducing the parameter (M), = %pnapz, which is the mass
per unit length of the soil replaced by the pth foundation, (38) becomes

(Ka,)*[ (M, M\ tan (K,h), ¥
o —= — ] ——2Z A, — KA =S
2 MS P * Ms p (Kbh) b lzl P ?
p=12..,N. (39

Equations (39) constitute N equations for the N unknowns, A,. Hence, the foundation
displacements A, are uniquely determined by solving this set of simultaneous equations.

THE NATURE OF THE INTERACTIONS

The interactions of two or more structures are now considered by studying the nu-
merical results presented in the figures which follow. The results shown in these figures
depend mainly on the angle of the incident wave, 0, and four other dimensionless para-
meters:

1. wa,/p = Ka, = n,, the dimensionless frequency which compares the wavelength
of the incident wave to the size of the pth foundation. To describe a system of founda-
tions with different sizes, the maximum radius will be chosen as the reference, and the
parameter wa.,,/B will be used in plotting the figures. (The abbreviation of WA/B
is used in place of way,,/f in the figures.)

2. (M,),/(My),, the ratio of the mass of the foundation to the mass of the soil replaced
by the foundation. For all the cases studied in this paper, this ratio has been equated
to 1.

3. (M,),/(Ms),, the ratio of the mass of the pth shear wall to the mass of the soil
replaced by the pth foundation.

4. &, = (K,h),/Ka,. This ratio describes the flexibility and the relative height of a shear
wall. Larger values of ¢ indicate taller and/or more flexible walls, while ¢ = 0 implies
a rigid structure or one with all its weight (4, = 0) located at the base.



SOIL-STRUCTURE INTERACTION FOR TWO OR MORE BUILDINGS 1871

One of the interesting results that can be derived from the solution of equations (39)
is represented by the displacements A, of the foundations. In the figures that follow,
amplitudes 'Ap’ have been plotted versus the dimensionless frequency WA/B (A = a.y)
and are identified by a dashed line or a solid line. All of these amplitudes approach the
low-frequency limit of [Ap] = 2 (the displacement amplitude of the surface of half-space
due to an incident SH-wave with amplitude 1) as WA/B — 0.

Another characteristic of the foundation displacement A, is that it becomes zero when
the flexible pth shear wall is being excited at its fixed-base natural frequencies, (Kyh), =
(2n+Dmj2,n = 0, 1,2, ..., or by using relation (40), A is zero at

wamax _ (2n + I)TE (amax>

B 2, \a

A, has no finite zeroes if ¢, = 0. The occurrence of the zeroes of A, has been explained by
Luco (1969) and Trifunac (1972). It is that during the steady excitation of incident plane
SH waves at the resonant frequencies of equation (41), the foundations behave as a node
in a standing wave pattern.

The envelope of the response for a single wall placed on a half-space, |Ae|p, is plotted
on the same graph as the foundation displacements ]Api. This envelope, |Aeip, provides
an upper limit for the response of the pth foundation if it is the only structure on the
half-space, so it may be used to indicate the strength of the additional interaction effects
caused by the presence of other structures. These envelopes resemble a hyperbola and are
described by the equation (Trifunac, 1972)

Jo(Ka,)H ‘P (Ka,) JoX(Ka,)+ Yo% (Ka,) @)
HyP(Ka,) Yo(Ka,)J (Ka,)— Y (Ka,)J(Ka,) |

(4D

p

IA6|p = ,:JI(Kap)_

These envelopes have been plotted with the same type of lines as 'API in the subsequent
figures.

INTERACTION OF TWO WALLS

Displacements, A, during the steady interaction between the two walls are illustrated
in Figures 2, 3, and 4; they are designated by “DELTA”. Each of these figures consists of
parts (a), (b), and (c¢) which present the effects of different separation distances; each part
also includes 5 graphs which correspond to the angles of incidence 8 = 0°, 45°, 90°, 135°,
and 180°. (Note: 0 is written as THETA in these graphs.) These figures have been arranged
so that the influence of the angle of incidence and the separation distance can be studied
together.

For the two cases shown in Figures 2 and 3, the values of ¢, are taken to be zero so that
the interaction effects of only the foundations can be more clearly shown. In this way the
complications intraduced by the tall vibrating walls are eliminated.

An interesting interaction phenomenon occurs when the incident wave travels with a
shallow angle of incidence. The wall in front acts as a shield for the wall behind, but the
latter may amplify the excitation for the former. This shielding effect is most evident in
Figure 3 where the size of wall 1 is 5 times that of wall 2. (The numbering system used
here is the same as that used in Figure 1.)

Forincident wave angles, THETA = 0° or 45°, and smali wall separation distances, the
smaller wall 2 moves with nearly the same displacement as the larger wall 1. The additional
amplification effects caused by the smaller wall are negligible in this case because of the
massiveness of the larger wall. The situation is reversed, however, when the waves are
coming at an angle THETA = 135° or 180°. Now the “front wall”” is much smaller than
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F1G. 2. The foundation displacement of two identical structures.
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FIG. 4. The foundation displacements of two structures with foundation-size ratio of 3 to
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the “"back wall™"; here, the “front wall”” means the first wall to be hit by the incident waves.
In this case, the shielding effect provided by the “front wall™ is negligible, while the ampli-
fying effect caused by the “*back wall” is overwhelming.

For the cases where the ““front wall” is of comparable size or much smaller than the
“back wall”, the response of the front foundation dips down to a small value of A before
it rises to a level exceeding the envelope curve of equation (42) at some higher frequency.
This dip in foundation response amplitude for the front wall is greater when this founda-
tion ts smaller than the back foundation. The response is nearly zero at this point for the
case described in Figure 3.

This phenomenon can be explained by the standing waves generated by the inter-
ference of the incident and the reflected wave from the larger back wall. For certain fre-
quencies and/or distances, the smaller wall may be situated on a node and experience
pure torsional excitation. This behavior can also be explained qualitatively by a vibration
absorber example. Consider the following simplified model of the two-foundation system.
The spring constants k,, k,, and k,, depend upon the soil properties and, hence, are

ko Mo Kiz m k gt
XZ X]

F1G. 5. A simplified model of the two-structure system.

highly frequency-dependent because of the geometrical configuration of the foundations.
The displacements resulting from simple harmonic excitation are

f kl(kz'f‘klz“wzmz) .
fxl iy — exp (iwt)
|
ﬁ k k
i — 1712 it
ILXZ A exp (iwt)
where
A= (kl+k12"‘wzml)(kz‘*‘klz_wzmz)_k%r (43)

Note that if k,+k,, = w,2m, or w, = (k,+k,,)""*/m,, the response of m,, x,
becomes zero and x, = —k/k, exp (iwr). Hence, m, is stationary at w = w,, while
m, is moving in an opposite direction from the excitation; so the forces on either side of
m, eliminate each other, and m, is located on a node of a “standing wave’ pattern. The
system in Figure 5 is, of course, far too simplified to describe the phenomenon of the
interactions in detail because the scattering from the foundations introduces “damping”
into the system and the wave propagation is two-dimensional. However, the intuitive
physical explanation of this interaction problem is well represented by this model.

The spring constant k ; , can be visualized as the soil joiring the two foundations, so that
as the separation becomes large, the interaction is weaker, and k,, — 0 as d,, — .
The frequency w, becomes smaller and the dip occurs at lower frequencies for larger
separations.

The troughs and the crests in the response of A, for the front foundation may be better
visualized by studying Figures 6, 7, and 8, where the amplitudes of surface displacements
in the vicinity of the two foundations are plotted against the dimensionless frequency, g,
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and the dimensionless distance x/a. The definition of dimensionless parameters used in
these figures are identical to those discussed previously.

The foundation size ratio for all cases presented in Figures 6, 7, and 8 is 2 to 1. Figure 6
illustrates the scattered wave patterns around the two foundations for THETA = [35°
and 180°, both of which have rigid walls, i.e., for ¢ = 0. Figure 7 illustrates the effect of
vertically incident waves in part (a), and the effect of horizontally incident waves in part
(b): both shear walls considered here are flexible and tall. The surface displacement plots
of Figure 8 show the weaker interaction with a larger separation distance.

In Figure 6b, the phenomenon described by a simple model in Figure 5 can be observed.
The first trough of the response A, of the smaller foundation occurs at wA/f = 0.4. At
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F1G. 8. The ground-surface displacement around two structures. Foundation-size ratio is 2 to 1, separation
distance is 8.

that frequency, both foundations are moving in phase with foundation 1 and have large
amplitudes. Not far to the right of foundation 2, there is a point with small displacement.
This is where the displacements on either side change direction and, hence, the point
pivots the movement of both walls. If the foundation size ratio is much greater than 2 to
1, e.g., 5to 1, the presence of the smaller foundation can almost be ignored when study-
ing the response of large foundations. Also, for a certain wavelength of incident waves,
the motion of the smaller foundation may be located on a node of a standing wave
pattern and remain stationary.

The crest of the response A,, which follows the trough, occurs at wA/8 = 1.0 in
Figure 6b, and is created by the amplifying effect of wall 1. At this particular frequency,
the two walls are nearly 180° out of phase, and the ‘‘node” is now located between the two
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foundations. Because of the rapid change of phase in the vicinity of a “node”, the ground
motion at that point is essentially torsional. When the frequencies are higher than
wA/f = 1.5, or when the wavelength of the incident wave becomes smaller than the
separation distance, the interaction effects gradually disappear and the response of the
foundations most likely does not exceed appreciably the envelopes for the response of a
single foundation.

It is clear from the above discussion that the presence of two shear walls increases the
complexity of response of each foundation and that the interference of waves scaitered
from the two foundations may lead to appreciable amplification of their base motions,
A,. It is beyond the scope of this paper to analyze in detail these amplifications caused by
the building-soil-building interaction effects, but the general trends may nevertheless be
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FiG. 9. The effect of separation distance on the amplifying effect of two-structure interaction.

extracted from several cases considered. These amplifications determined for three
foundation-size ratios are presented in Figure 9 and are plotted versus the separation
distance, d, , . Some of these results have been extracted from Figures 2 and 3.

The two sets of points in Figure 9 show the differences caused by the angle of incidence.
Since wall 2 is smaller, the amplifying effects occur for 0 > 90°, e.g., ¢ = 135° and 180°.
Because the waves scattered from the two foundations are of cylindrical type, one would
expect that the peak amplitude [A ,| of small foundations would be related to its envelope
[A,| by (JAs|/|APmax—1 & const./d{5? when d, is larger compared to a;+a,. This is
simply stating that |A,| is entirely due to scattered, u*, waves. Diffraction and inter-
ference effects for d,, small may alter this trend appreciably and in the limit for d,, —
a;+a,, we have (JA,|/|A.)max—1 — 0. It appears that the few points plotted in Figure 9
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may be explained by these trends. It is clear, however, that the continuous representation
of (|A3)/|Ac)max—1 versus d,, should have numerous peaks and troughs which are
caused by the interference of scattered field with the incident plane SH-waves. It is this
interference that causcs the apparent scatter of the few randomly selected points in
Figure 9.

INTERACTION OF MANY WALLS

The interaction which involves many foundations clearly becomes more complex as
the number of foundations increases, but the solution presented in this paper should
provide a simplified two-dimensional picture of what might occur in the densely con-
structed metropolitan areas where elongated buildings have been erected parallel to each
other.

In Figures 10 and 11, foundation response |A,| for three foundations with rigid walls
have been presented. Figure {0 shows a case where one small wall is placed between two
Jarger walls of 3 times its size, and ¢, = O for all three walls.

For the foundation response shown in Figure 10a, the two large outside walls behave
the same way as though the smaller middle wall is absent. This conclusion results from
comparison of [A,| and [A,] with |A | and |A,| of Figure 2a where the response of two
identical walls has been presented. However, at WA/B = 1.8, A, and A; are slightly
altered and the response of the wall 2 is strongly excited for d,, = 5and d,; = 10. In
Figure 10b, the peak at WA/B =~ 1.8 has been translated to WA4/B =~ 0.85, indicating
that the “‘resonant frequency’” of the small wall is highly dependent on the distance to the
larger walls. For the case in Figure 9c, the separation distance is large so that the building-
soil-building interaction effects cease to be prominent.

The interaction of three walls as described above can again be visualized by using a
simptlified model of springs ard masses. Since the relative motions of the large outside
walls are relatively small, the excitation can be considered to be such that m, and m; are
moving with displacement exp(iwt) as shown in Figure [2. The “resonant frequency”
of m, is therefore

(kyytky3) 2 m,. (44)

When excited at that particular frequency, the motion of m, would become unbounded.
But again, in the two-dimensional model, scattering of waves from the semi-cylindrical
foundations reduces the response amplitude. As the separation distances &, , and 4, ,
increase, the ““spring constants” k| , and &, ; decrease, and by equation (44), the “resonant
frequency” also decreases. Therefore, the simplified model shown in Figure 12 quantita-
tively explains the translation of the peaks shown in Figure 10a and 10b when d, , and 4, ,
become large.

Another case of interest is when a large wall is surrounded by smaller walls. Figure 11
presents such an example for three walls with the middle wall three times larger than the
two outside walls. The distances d,, and d, 5 are the same as those used in Figure 10.
Now the middle wall “drives™ the outside walls because of its weight and size, and a
totally different situation arises. As may be seen in Figure 11, the response of the large
middle wall is not greatly affected by the smaller outside walls. But the smaller walls be-
have as if they were interacting with the large wall alone, i.e., one small wall contributes
very little to the behavior of the other small wall. For horizontally incident waves, the
response of the front wall is being amplified, while the back wall is being shielded. The
large middle wall moves as if the other two are absent.

As indicated by the above analysis, the weight and size of the structure plays an
important role in the interaction process. This suggests that the smaller structures in a
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densely constructed area will probably receive the heavy ‘““bombardment” of scattered
waves from larger buildings.

Large amplitudes of response can also arise when many buildings of comparable size
are closely grouped. Figure 13 presents an arrangement of five identical foundations, all
of which support a rigid wall. In this particular case, we find that the amplitude |A,| can
exceed the single foundation envelope given by equation (42) by more than 200 per cent.
We expect, however, that such building-to-building interaction effects will not be so
prominent in three dimensions, because the geometrical radiative scattering of waves
causes the “radiation damping’ of the whole system to increase.

THE MEASUREMENT OF EARTHQUAKE MOTIONS

In earthquake engineering, the measurement of the base motion of structures as well as
the free-field motion is of interest. Considering the interaction effects discussed in the
previous sections, the true measurement of the free-field motions might be difficult to
realize. As shown by the surface displacement plots (of Figures 6, 7, and 8), the amplitude
of surface motion is greatly altered from the free-field amplitude of 2. At some points,
the displacements are near zero, while they are close to 4 at other locations. These rapid
changes of displacement amplitudes are most evident for higher frequencies. The ampli-

e*“”I m) Kiz mp ko3 msz le“‘”

| ! |

X X3

F1G. 12. A simplified model of the three-structure system.

fication of the surface displacement can be quite large even when caused by interaction at
large distances, as shown, for example, in Figure 8.

An accelerogram recorded at the base of a structure may also be frequency filtered by
the effects from neighboring large structures or structures of comparable size. As pointed
out by Luco (1969), such records may be filtered around the natural frequencies of the
structure. From the discussion of the interaction of many foundations, it now appears
that it is possible to have *“‘resonant frequencies” caused by the specific arrangement of
the surrounding buildings. This suggests that the “resonant frequency” of a large struc-
ture may also be recorded in surrounding smaller structures as it dominates the behavior
of the others. This effect can be observed in Figure 4, where the parameters are a; = 3,
a, = 1,&, = 2and ¢, = 2. By using equation (41), the response curve IAI\ should go to
7610 at wa,,/f = 32n+ )nfd, n = 0,1,2,.... In Figures 4a and 4b, the curve |A,]
also dips down to an amplitude of almost zero at the resonant frequency of the wall 1.
When the large structure acts as a shield for the small structure, as in the case of 6 = 0°
and 45° in Figure 4, the small structure moves with nearly the identical displacements as
that of the large structure. Of course, this behavior begins to change when the wavelength
of the incident wave is less than that of the separation distance.

CONCLUSIONS

The antiplane response of a two-dimensional semi-cylindrical foundation is more com-



SOIL-STRUCTURE INTERACTION

(O) WALL RRADIUS D MB/MS EPS

@aEw N e
Moo wo
[SIEVIIFNITNY

THETR= O

/DELTR/
3.

2

FOR TWO OR MORE BUILDINGS

- THETA= 90

/DELTR/

2
WR/B

THETAR=135

/DELTA/
2 3 4 5
T

mF THETR= US

/DELTR/

2
HWA/B
THETA=180

5
T

/DELTR/

(b) WALL RADIUS D MB/MS EPS

4
21
28

e w N -
[SENENESENY

THETR= O

THETA= S0

o

1

2
WR/B
THETA=135S

2
WA/B
THETA= 45

/OELTR/
2

1

0

2
WA/B
THETR=180

(C) WALL RRDIUS D MB/MS EPS
1 1 Q 2 1
2 1 12 2 1
3 1 24 2 1
4 1 36 2 1
B 1 ug 2 1

JOELTR/
2

1

o

THETA= 90

1

=U

2
WA/B
THETA=135

2
WR/B
THETA= 4S

3
1

/OELTR/
2

THETR=180

G. 13. The foundation displacements of five

identical and equally spaced structures.

1883



1884 H. L. WONG AND M. D. TRIFUNAC

plicated and more unpredictable if many other foundations are present in the area. For
selected frequencies the amplitude of the foundation response might differ from the
theoretical prediction by 200 per cent or more if the multifoundation interaction effects
are left out.

The structure-soil-structure interaction is especially prominent if the structure of
interest is smaller and lighter than its neighbors; in which case, the following may occur:

1. If a small structure is located in front of one or more larger structures, while sub-
jected to a horizontally incident plane SH wave, the motion of the foundation could be
vastly changed from one frequency to another. These changes are mainly caused by the
standing wave pattern created by the larger foundations behind. Also, if the smaller
foundation is located at a node of a standing wave pattern, torsional type motion may
occur.

2. If a small structure is located behind one or more larger structures, most of the
incident wave energy may be scattered and the small structure will tend to move along
with the same displacement as the larger one in front.

3. If a small structure is located between the two or many structures, resonating pheno-
mena may occur if the waves scattered from the neighboring structures interfere con-
structively. The frequency of this resonance depends on the spacing and the arrangements
of the entire system.

The interaction between buildings of comparable sizes may also cause the amplitude
of response to become quite large for certain frequencies. These amplitudes also depend on
the spatial arrangement of the buildings.

All of the above effects cause the foundation motion to be frequency filtered. Therefore,
the motion observed at the base of a long structure could be quite different from the
“free-field ground motion”. The scattering of waves in the vicinity of the foundations can
also alter the “free-field motion” appreciably.
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