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SUMMARY
The analysis of dynamic soil-bridge interaction has been performed in three steps. These are:

1. The analysis of input motions.
2. The force-displacement relationships for the foundations.
3. The dynamic analysis of the structure itself, i.e. the bridge.
Based on the exact solution of the first two steps, the dynamic interaction of a simple two-dimensional bridge

model erected on an elastic half-space has been investigated for a single span case. The two-dimensional model
under study consists of an elastic shear girder bridge supported by two rigid abutments and rigid foundations
which have a circular cross-section and are welded to the half-space. It has been shown that the dynamic
interaction depends on:

1. The incidence angle of plane SH-waves.
2. The ratio of the rigidity of the girder and the soil.
3. The ratio of the girder mass to the mass of the rigid abutment-foundation system.
4. The span of the bridge.
The dynamic response of the girder and the effect of the radiative damping in the half-space on the interaction

of the girder have been studied.

INTRODUCTION

The problem of the dynamic interaction between buildings and the soil during earthquake excitation has
attracted the considerable interest of many investigators' However, such analyses have, so far, not been
extended to more complicated structures, such as bridges or large industrial buildings, where differential
motions of foundations might influence response in an important way.

There have been many cases reported in the literature in which bridges suffered damage during earth-
quakes.6, 7 These examples clearly indicate the need for detailed investigations of the dynamic soil-bridge
interaction to determine the significance of that interaction on the bridge response. The soil-bridge interaction
effect is considered important, for example, when the motion of an abutment or foundation is significantly
different from the motion of the ground in the absence of the bridge, the latter motion being usually referred
to as the free-field ground motion.

The general dynamic soil-structure interaction problem can be broken down into three parts.8 These are:
1. The determination of the input motion to the foundations (the contribution of the seismic waves) or

equivalently the determination of the driving forces.
2. The evaluation of the force-displacement relationship (the impedance functions or their reciprocal,

the compliance functions) for the foundations.
3. The solution of the equations of motion including both the foundations and the superstructure.
This approach has the advantage that once the solutions of the first two parts have been obtained for a

class of foundations, the results can be used to calculate the interaction response of different structures.
This is done by superimposing the results so that the equations of motion for the foundations are satisfied.
This method, of course, is possible only if the problem is linear.
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Luco and Contesse5 have studied the dynamic interaction, through the soil for two parallel infinite shear
walls placed on rigid foundations and for vertically incident SH-waves. In a similar study Wong and Trifunac9
have determined the driving forces induced by harmonic plane SH-waves and the impedance functions for a
class of embedded foundations with circular cross sections at different separation distances. We will use
these results in the present analysis of a two-dimensional superstructure (the girder), the substructure (the
two abutments) and the two foundations.

The model considered in this paper offers obvious analytical advantages and a simple and direct insight
into a complicated wave propagation phenomenon. However, this model represents a highly simplified
version of actual three-dimensional problem, in which in-plane as well as anti-plane incident waves are
present and where coupling between the horizontal, rocking, torsional and vertical motions of the structure
and the foundations take place.

THE MODEL, THE EXCITATION AND THE EXACT SOLUTION

The two-dimensional model studied in this paper is shown in Figure 1 (a). It consists of three structural
elements : the superstructure (the girder), the substructure (the abutments) and the foundations. These
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Figure 1. (a) Bridge, two foundations and the co-ordinate systems, (b) forces acting on the two rigid foundations

elements are assumed to be infinitely extended in the z-direction. Furthermore, the following assumptions are
made:

1. The soil, which is represented by the half-space, is elastic, isotropic and homogeneous. Its rigidity and
the velocity of shear waves are µs and (3S, respectively.

2. The two foundations are assumed to be rigid, semicircular in cross-section and welded to the half-space.
3. The abutments are also assumed to be rigid. They are welded to the foundations so they behave together

as a rigid body partially embedded in the soil.
4. The model for the girder is a shear beam, of span L and depth d, supported at the ends by the rigid

piers. The beam is isotropic and homogeneous; the rigidity and the velocity of the shear waves in the beam
are given by Pb and fib, respectively.
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The co-ordinate systems

1. For the superstructure, i.e. the girder, the origin of x and y co-ordinates is located at the left support
point as shown in Figure 1(a). The x-axis is defined along the span of the bridge, while the y-axis is in the
vertical direction.

2. For the two rigid abutment-foundation systems, the scattered waves from the two rigid foundations are
best represented by polar co-ordinates (r1, ^,) and (r2, q 2)' which have their origins at the centre of each
foundation . The cartesian co-ordinates (x', y') are located at the left foundation such that

^ xl ^ x rl cos o1 yl t f rl sin 01
x2 x-L r2cos^i2 ' Y2 r2slnc0 12

This choice of the (r1, 01) and (r2, 02) co-ordinate systems is identical to that used by Wong and Trifunac.9
As shown by several investigators,5, 9' 10 the interaction problem can be separated into three steps :

(i) Input motion or `driving forces'.
(ii) Impedance functions or `compliance functions'.

(iii) Dyanmic analysis of the structure (bridge).
The final results are then obtained by superposition. Some parts of these analyses are given in this paper

for the completeness of this presentation, as follows :

1. MOTION OF THE SOIL

(1)

109

We assume that the excitation is in the form of plane harmonic SH-waves with an amplitude equal to one and
with the angle of incidence 0, which is measured counterclockwise from the horizontal axis to the normal on
the plane wave front [Figure 1(a)]. This incident wave is given by

uz(x ,Y , t) = exp [iw(t -x'/cx-Y /c$)] (2)
where

P. P.
o' cy sin oc cos

(3)

and / = J(µ.,/ p) ... is the shear wave velocity in the soil, iLs is the shear modulus of the soil and p8 is the
density.

The resulting free-field motion, i.e. motion of the half-space in the absence of the bridge and its foundations,
becomes

{iwt
w co

uz+''(x', y', t) = 2 exp exp(- i x' cos o)1 cos ( sin B (4)
Al I As

where uz+' stands for the sum of incident, uz, and reflected, uz, waves from the half space boundary y' = 0.
This motion can be represented in terms of polar co-ordinates (r1, 01) and (r2, 02).9

The total displacement field, u2, in the half-space in the presence of the two rigid foundations is composed
of the free-field motion uz+'' and the scattered waves, uR and u2 , from the two foundations, i.e.

uz = uy+r+uR .^ u28 (5)

This total displacement, u2, must satisfy the Helmholtz equation in each of the (r1, q1) and (r2, c'2) co-ordinate
systems

v2 2

22+1 8uz+ z8 s+ksuz=0,j =1,2
8r,rj 8rj r! aOl

in which ks = w//3s is the wave number, and the two boundary conditions
(i) Stress-free surface boundary condition

0,0,Z = Y S a uZ = 0 at O? = - 1r, 0, j = 1, 2, rf ? Rj

(6)

(7)
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(ii) Harmonic displacement boundary condition

uz(Rj,cj,t) =Alexp (iwt), -7t,< !;50, j=1,2 (8)

where Al and A2 are the displacement amplitudes of the two foundations [Figure 1(b)]. Al and A2 are unknown
and depend on the soil-structure interaction of both foundations and the characteristics of the incoming
waves.

The three cases which are superposed in the analysis of this interaction problem are illustrated in Figure 2(a).
This figure represents a generalization of the solution method presented by Wong and Trifunac9 to the
soil-bridge interaction problem studied in this paper.

BOTH FOUNDATIONS ARE FIXED

FORCES EXERTED BY THE SOIL
ON THE TWO FOUNDATIONS

(a)

Figure 2. (a) Forces exerted by the soil on the two foundations, (b) a simplified discrete model

II. FORCES GENERATED BY THE SOIL AND COMPLIANCE FUNCTIONS

The forces exerted by the soil on the two foundations and caused by the incident waves and the motion of
the neighbouring foundations, as shown in Figure 1(b), are given by

(9)

where

aTZ(Rz, 0z) = Fc3 Lu.lT, R f i=1,2 (10)
Ori =,

Using the principle of superposition, the total soil forces can be expressed in terms of the `driving forces',
and the unknown displacements {A} premultiplied by the impedance matrix,

C Fs1)= [-F1l+ 1K11 K121

F - F2 1 K21 K22 J A2
Here the driving forces Fi and F2 are the forces exerted by the soil on the two foundations which are held
fixed during excitation by the incident waves uz. The driving forces depend on the properties of the founda-
tions and the soil and also on the nature of the seismic excitation. An element of the impedance matrix

I



DYNAMIC SOIL-BRIDGE INTERACTION 111

Ki; (i, j =1, 2) represents the force acting on the motionless ith foundation caused by the unit harmonic motion
of the jth foundation . The impedance matrix depends only on the characteristics of the foundations and soil
and on the frequency of the motion . Figure 2(a) illustrates the physical meaning of these force coefficients.

III. DYNAMIC ANALYSIS OF THE BRIDGE

A. Motion of the bridge

The displacements u and v of the two-dimensional bridge model are selected to be zero, while the displace-
ment w depends only on the co-ordinate x. This displacement must satisfy the equation of motion of an
undamped shear beam

a2w(x,t) 1 a2w(x,t) 0Sx<L

axe = P2 at2 (12)

in which Nb = J(µblPb) ... is the shear wave velocity in the beam , Pb is the shear modulus of the beam and
Pb is the density of the beam.

The boundary conditions for the beam are

W(0' t) Al
w L, t) A2

exp (icut) (13)

where A and A2 are the unknown complex displacements of the two foundations. The solution of equation
(12), compatible with the boundary conditions given by equation (13), is

w(x, t) = {[cos (kb x) - cot (kb L) sin (kb x)], [cosec (kb L) sin (kb x)]} Al exp (ia)t) (14)
A2

in which kb = u,/9b ... is the wave number in the shear beam. From equation (14) it is seen that the dis-
placement w(x, t) depends on the instantaneous values of the harmonic boundary conditions.

B. Forces exerted by the bridge

The end resisting forces, per unit length, acting on the two abutments [Figure 1(b)] are given by

F(t) r (0F(0 t) d t)
d aw(0, t)-(

F (t)

c ,,

x (LF(L t) -d t)

µb ax

daw-

(15)

2

where d is the depth of the s
By using equations (14) a

ax
a Z ,, Pb ax

hear beam and ab,z is the shear stress in the z-direction.
nd (15), and by introducing the expression

Mb = pbdL (16)

which corresponds to the mass of the beam per unit length in the z-direction, these support forces can be
written as

- cot M
cot (kbL) cue M cosec (kbL)

Mb (kbL) b (kbL)

C02 M
cosec (kbL) - w2 M cot (kbL) QMb

(kb L)
M
. (kb L) 2

exp (icut) (17)
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It is convenient to recall here that the undamped natural frequencies of the simply supported shear beam
are given by

-nrr 1bl nrr
9b, n 1 2 , 3 ...

n L ^ Pb) L b, ,

This corresponds to

The mode shapes are given by
kbL=nrr, n= 1,2,3,....

Wn(x) = sin
nLx, n =

1, 2, 3, ...

(18)

(19)

(20)

Dynamic soil-bridge-soil interaction

The unknown foundation displacement amplitudes A and A2 can now be determined from the balance of
forces exerted on each foundation. These forces are

1. Soil forces Fsl and F12, as given by equation (11).
2. Bridge end forces Fi(t) and F2(t), as given by equation (17).
3. Inertia forces of each rigid abutment-foundation system, with masses M11 and Mfg, and accelerations

_(O 2 Al exp (iwt) and - w2 A2 exp (iwt), as shown in Figure 1(b).
The balance of the forces for the two abutment-foundation systems is then

-w2 A,Mf1= - [ -Fl +K11A1 +K12A2+Fi(t)]
2

(21)

Introducing

-C0 A2Mfg = - 1 -F2+K21Al+K22A2 +F2(t)]

R2(
P82} - (

(22)R22Ms

which corresponds to the mass of the soil per unit length removed by the two foundations and by using
equations (17) and (21) there follows

ks R1(Mt1 Mb cot (kb L) I ks R1( Mb cosec (kb L) l

2 \Msl + 1IIs (kb L) ) - 11 L 2 \Msl (kbL)I ) - K121

ks R2 r (Mb cosec (kbL) l f ks R2 (Mi2 Mb cot (kbL))

2 \Ms2 (kb L) ) - K21J L 2 Ms2 + Ms2 (kbL) I - K22

where

and

Kll

1 Kl } = is
aks

Rl^ E12 }, { K

K
= 1Ls7Tks

R2^ K221

F* /'Ls 8 R2 F2

A, F*1

2^=^ 2)A

(23)

(24)

The foundation displacement amplitudes Al and A2 are uniquely determined by solving the two simultaneous,
complex and non-homogeneous equations (23).

Numerical examples presented in Figures 3 to 12 depend mainly on the angle of incident waves 0 and five
other dimensionless parameters.

1. r] = (w//3s) R1 = ks R1 = (2rr/As) R1, which is the dimensionless frequency which compares the wave-
length As of the incident wave to the width of the left foundation.
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2. M,,/Ml and Mfg/MS2, which are the ratios of the masses of the abutment-foundation systems to the
masses of the soil replaced by the foundation only. They are set equal in the examples considered in this paper

(i.e. M11/M81 = Mf2/M4 = MF/MS).
3. Mb/Msl and Mb/M82, which are the ratios of the mass of the bridge girder to the masses of the soil

replaced by its foundations. (In the figures these are denoted by MB/MS when R1= R2 and by MB/MS I and
MB/MS2 when R11 R2.)

4.

kbL_/3 L /3LR1

k3 R2 Pb R2 Pb R1 R2

this ratio reflects the relative stiffness of the bridge and the soil; it also describes the ratio of the span to the
radius of the foundation. Large values of s indicate a more flexible bridge with respect to the soil and/or
a longer span, while s = 0 implies a rigid structure composed of a rigid bridge girder, rigid abutments and

rigid foundations. In that case 01= 02.
5. R,/R2; this geometric parameter which reflects the relative width of the two foundations is also needed

unless R1= R2. For different types of soil and a typical reinforced concrete structure `bridge' with µ, y and (3

as shown in Table I and for selected ratios of L/R2 and R1/R2, the range of values for s is as shown in Table II.

Table I. Typical values of µ, y and 14 for reinforced concrete girder bridge and different `soils'

Different soils

Property
Superstructure

R.C. girder bridge I II III IV

µ, K/ft2 288,000 1,400 5,130 15,530 388,200
y, K/ft3 0.15 0.125 0.125 0.125 0.125
P, ft/s 7,000 600 1,150 2,000 10,000

948 13.17 6.87 3.95 0.79

Table II. The range of values for E

Different soils

kbL fl8 L
k8R2 Nb R2

I II III IV

0.39 0.73 1.27 6.33
0.78 1.46 2.54 12.66
1.17 2.19 3.81 18.99
0.20 0.37 0.64 3.27
0.39 0.73 1.27 6.33
0.59 1.10 1.91 9.80
0.13 0.24 0.42 2.11
025 0.46 0.84 4.22
0.38 0.73 1.26 6.33

L/R2 Rl/R2

5 1
10 1
15 1
5 2
10 2
15 2
5 3
10 3
15 3

p = shear modulus. y = weight per unit volume. P = shear wave speed, gb for the bridge and f3e for the soil.

INTERPRETATION OF THE INTERACTION

The two displacement amplitudes Al and A2 computed for the excitation corresponding to the incident plane
harmonic SH-waves have been illustrated in Figures 3 to 12. The displacement of the left foundation Ol is
represented by a dashed line, and the displacement of the right foundation A2 by a solid line. These two dis-

placement amplitudes have been plotted against the dimensionless frequency j.
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Different cases have been considered which correspond to the following parameters.
1. The mass ratios have been considered for four cases

MF MB
a. MS 2, 2MS

b. MS=4, MS=2

MFMB
c. _2, =4
MS MS

d MF MB MB 8
M 2,

S MS2 2' MS1

2. The following geometric size ratios were examined : L/R2 = 5, 10, for R1/R2 = 1, 2, respectively.
3. The relative stiffness ratio of the bridge girder and the soil, which is represented by the parameter e

(note: s is written as EPS in these graphs), has been assumed to have the values 1, 2, 3 and 4.
4. The angle of incidence, 0, of plane SH-waves has taken the values equal to 0, 45, 90, 135 and 180

degrees. (Note: In the case of R1 = R2, we show only 0, 45 and 90 degrees because of symmetry.)
The figures have been arranged so that the influence of the angle of incidence and the relative stiffness ratio

can be studied for the mass ratios and the geometric size ratios fixed in each figure. Each of these figures
consists of parts (a), (b), (c) and (d) which correspond to different values of S.

Some of the most important phenomena of the interaction of the bridge and the soil which may be noted
in these results are as follows.

1. As 8__>01 zl-_>12 [from equation (23)]. In that case, we have a rigid structure composed of three elements
(two foundations, two abutments and a girder) all acting as a rigid body. Figure 3(a) illustrates this case for
s small. When s increases, the differences between Al and 02 become more apparent. We note, however,
that in all cases these amplitudes approach the low frequency limit of I Ol I = I 02 1 = 2, which corresponds to
the displacement amplitude of the surface of the half-space for incident SH-waves with unit amplitude.

The amplitude Al may become larger than A2 due to the amplification effect caused by the scattering from
the right foundation. In the cases of s = 1.5 in Figure 3(d), for example, or for s = 2.0 in Figures 4(b) and 5(b),
the peaks of Al are considerably larger than 2 for small dimensionless frequencies.

2. In the case of 0 = 90 degrees, when R1 = R2, the two foundations are in phase and have the same
amplitude. These amplitudes become zero when the beam is excited at its odd frequencies, i.e. the symmetric
mode shapes. In that case

71 = m7/e, n = 1, 3, 5, ...

and the symmetric modes of the bridge are

Wn(x) = sin nirx/L, n= 1,3,5,...

(25)

(26)

Thus, when 0 = 90 degrees and R1 = R2, the symmetry of vibration reduces mathematically to a single
foundation problem.2'3 When incident waves have a frequency corresponding to a fixed base frequency of
this structure, the foundation(s) is(are) located at a node of the standing wave pattern and the structure above
and the soil below are moving 180 degrees out of phase.

3. The dip of the displacement amplitude curve A2, which occurs for a shallow angle of incidence 0 = 0,
45 degrees, is displaced towards the lower values of the dimensionless frequency r1, as the flexibility of the
bridge increases (Figures 4 and 7). If we compare Figues 4 and 6 and 7 and 9, we note that, for the same s and
the same L/R2, as the mass of the bridge increases, the dip moves again towards low values of -1, i.e. the
frequency decreases.

This behaviour can be explained qualitatively by the simplified model consisting of three masses and several
springs [shown in Figure 2(b)], where the spring constants k1, k2 and k12 depend upon the soil properties,
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while the spring constant k13 depends on the bridge stiffness. The displacements resulting from simple
excitation, shown in Figure 2(b), can be determined from the following matrix equation

- W2 m1+k1+k13+k12 -k12 -k13 Xl

-k12 -W2m2+k2+k13+k2 -k13 X2

- k13 - k13 - W2 m3 + 2k13 X3

where X1, X2 and X3 are the displacement amplitudes of the three masses. X2 = 0 when

k12(- 0)2m3+2k13)+k13 = 0

CO* = N [k13(2 + k13/k12)1

m3 J

(27)

(28)

This frequency depends on the absolute stiffness of the bridge k13 and the ratio of stiffness of the bridge
with respect to the soil underneath it k13/k12. As the stiffness of the bridge k13 or the stiffness ratio k13/k12
decrease, the frequency for which the dip occurs decreases (e.g. Figures 4, 6, 7 and 9). This frequency also
decreases when the mass of the bridge increases. The above model is, of course, only a simple one-dimensional
analogue, while our problem is a two-dimensional one involving propagation, reflection and scattering of
waves from the rigid foundations in the soil and inside the beam. Nevertheless, in spite of its one-dimensional
simplicity, the above model does allow one to obtain an approximate physical understanding of a more
complicated wave propagation problem.

4. In all cases which have been shown in the figures for the non-vertical incidence of waves and when
= mr/E, n =1, 2, 3, ... (i.e. when the frequency of the incident waves corresponds to the natural frequencies

of the girder), we find that I , = I A2 I . As was mentioned before, A = A2 for n = 1,3,5,... and Al = - A2
for n = 2,4,6,..., i.e. the two end displacements are 180 degrees out of phase. This observation gives us a
better idea about the phase difference between the two amplitudes , and A2, as shown, for example, in
Figure 10. In some cases, 01= A2 0 at r) = n7r/E, n = 1, 2, 3, 5, as in Figures 5(b), 7, 8 and 9(c) for the second
mode, Figure 7(c) for the first mode and Figure 8(c) for the third mode, for example.

5. The peak amplitudes of the displacements , and A2 may be relatively high in some cases (e.g. Figures
5 to 9). For the cases studied, these amplitudes are as much as four times greater than they would be if the
foundations did not interact with the soil. These peaks occur at frequencies which increase as the parameter
e increases for a constant span. Therefore, the more flexible the girder, the higher the frequency at which the
peak occurs. Increasing the span while holding 8 constant decreases the frequencies of these peaks. This
corresponds to increasing the rigidity of the bridge with respect to that of the soil since E = (13s/19b) (L/R2).

6. When the mass of the foundations increases with respect to that of the girder, the peak values of the
and A2 amplitudes increase moderately. This additional increase results from increasing the span, which

also decreases the significance of the interaction (e.g. Figures 5 and 8).
7. When the mass of the girder increases with respect to that of the foundation (e.g. Figures 6 and 9),

the peak amplitudes of A and A2 decrease appreciably. As the span increases, this effect becomes less pro-

nounced.
8. In general, as the span L increases, there is a greater degree of fluctuation in both, and A2 amplitudes.

For constant L, the fluctuations of , and A2 decrease as the angle of incidence 0 approaches 90 degrees,
since in that case the projected wavelength on the horizontal surface as = A /cos 0 becomes infinite.

9. When the sizes of the two foundations differ, more complicated interaction phenomena occur (Figures
11 and 12) :

(a) When the incident wave first hits the larger foundation (the left one), i.e. when 0 = 0 or 45 degrees, this
foundation acts as a shield for the right foundation. This shielding effect is most evident in Figures 11(a) and
(b) and 12(a), where the smaller foundation moves with nearly the same displacement as the larger one.
The additional amplification effects caused by the smaller foundation are negligible in all these cases because
of the massiveness of the larger foundation. The shielding effect decreases with an increase of the following

parameters :
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(b)

Figure 10 . Displacement amplitude at different points on the girder with (a) the symmetric mode shapes, (b) the first , second
and third mode shapes
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1. The flexibility of the girder.
2. The span (Figure 11).
3. The angle of incidence 8.
4. The ratio R2/R1 for the same span (Figures 11 and 12).
(b) When the incident wave first hits the smaller foundation (the right one), i.e. when 0 = 135 or 180

degrees, the left foundation acts as a barrier which reflects significant wave energy back towards the small

foundation while the shielding effect provided by the right foundation is negligible (Figures 11(b) and 12(b)).
The overall amplitudes of Ol and O2 are influenced by:

1. The flexibility of the girder.
2. The span and the size of the foundations.
3. The angle of incidence 0.
(c) The peak value of the displacement amplitudes Ol and A2 increases with the increase of the flexibility

of the superstructure and the increase of ratio R1/R2 [Figures 11(b) and 12(a), (b) and (c)].
(d) For both vertical and non-vertical incident waves, small amplitudes of I Al I and I O2 1 occur at 11= nrrls,

R1/R2 1, n = 1, 3, 5, ... as shown in Figures 11 and 12. Since R1 R2, the bridge system is not symmetric now
and, in general, we do not expect to find that I Al J = I 02 for all B and n _ (n7rle) (R1/R2).

RESPONSE OF THE BRIDGE

From the earthquake engineering point of view, one of the more important problems is to find which are the

critical sections of a structure and to estimate where the maximum displacements or the maximum stresses

may occur. With this in mind, and to illustrate the effects of soil-bridge interaction on the girder of the
single-span bridge studied in this paper, we examine in some detail the response of the midpoint and the two
quarter points (x/L = 0.25, 0.75), as shown in the three-dimensional Figure 10.

Using equation (14) for x = L/2, we calculate the displacement amplitude J w(L/2, t) I at the midpoint of the
span as

w(2 , t) = I cos (k2 L) - cot (kb L) sin (i)] Al + [cosec (kb L) sin (k2L)j 02

which reduces to

(012 O2) sec (k2L) (29)

When interaction is neglected, both Al and A2 would become 1 and I w(L/2, t) j would become infinite at the
natural frequencies of the shear beam, i.e. at kb L = nir, n = 1, 3, 5, ... (since there is a contribution only from
the symmetric modes for the midpoint). However, if interaction is not neglected, by using the results from the
above analysis the following can be said about the beam response.

1. When Al = A2 = 0 at -q = nor/E; n = 1, 3, 5, ... ; R1 = R2; i.e. in the case of vertical SH-waves where
B = 90 degrees, the response given by (29) remains finite and is characterized by relatively small peaks, as
shown, for example, in Figure 13. It can also be seen in this figure that when O 90 degrees the peaks, in
general, are much larger and the effect of small Al and A2 is less pronounced.

2. When Al and A2 have considerable amplitudes at q = nir/E, n = 1, 3, 5, ..., and in the case of non-
vertically incident SH-waves, the amplitude of the beam response is large at q = mrle, i.e. at the fundamental
resonant frequencies of the beam. It should be noted that the sharp peaks in Figure 13 have been plotted
only up to the amplitude equal to 40 to preserve the detail and resolution of the neighbouring smaller ampli-
tudes.

Other important characteristics of the results which can be shown in figures similar to Figure 13 can be
summarized as follows : In general, the peak values of I w(L/2, t) I increase with E, when 0 = 90 degrees, i.e.
for higher flexibility of the structure with respect to that of the soil and for the MB/MS fixed. The peak
response amplitudes decrease for the higher modes and for the same e. Increasing the foundation mass

I
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(a)

Figure 13. Displacement amplitude at the midpoint of the girder with (a) MF/MS = 2, MB/MS = 2, L/R2 = 5,
(b) MF/MS = 4, MB/MS = 2, L/R2 = 5, (c) MF/MS = 2, MB/MS = 4, L/R2 = 5
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[larger (MF/MS)] leads to more effective coupling of the bridge to the soil and thus less radiative damping,
while increasing the mass of the girder [larger (MB/MS)] leads to higher radiative damping when L is con-
stant. The increase of span L for a fixed value of (419, = L/ER2), which is equivalent to increasing the
rigidity of the girder with respect to that of the soil, also leads to more radiative damping.

CONCLUSIONS

A key step in the evaluation of the soil-structure interaction effects on the earthquake response of a structure
is in the computation of the force-displacement relationships for the foundation. Several such relation-
ships ,2, s, s ' s expressed in terms of impedance or compliance functions, are available in the literature.

Having obtained the impedance function for particular two-dimensional abutment conditions, represented
by rigid foundations with semicircular cross-sections, and having defined the input motion in terms of plane
SH-waves, the calculation of the response of the bridge girder depends on the stiffness, mass and damping
characteristics of the bridge relative to that of the soil. For some input frequencies the amplitude of the
foundation response has been found to be significantly larger than the free field surface displacement ampli-
tude which could be obtained for the same excitation in the absence of a bridge or its abutments.

The excitation of different modes of vibration of the two-dimensional bridge girder is related to the nature
of the foundation movement for different angles of incident SH-waves and, in particular, depends on the
relative phase of motion for two bridge abutments. When two abutments move in phase, there is a tendency

to excite symmetric modes of girder vibration; while when they are moving out of phase, the antisymmetric

modes are excited more effectively, The simplest type of the two-dimensional soil-bridge interaction occurs
for the vertical incidence of SH-waves and for the symmetric bridge and its abutments. In that case, for the

frequencies that correspond to the symmetric modes of girder vibration, the two abutments do not move and
the efficiency of radiation damping, which results from the wave scattering from the two foundations, is
maximum. In all other cases, when the angle of incident waves is not vertical, or when the bridge girder is not
symmetric and/or when the abutments are different, this simplicity is lost and the efficiency of radiative damp-
ing is significantly reduced. In general , when the angle of incident SH-waves is not vertical, a large response
of the bridge is obtained at the fixed base natural frequencies of the bridge.

When the bridge and its abutments are symmetric, the torsional motion of the whole bridge does not seem
to be excited appreciably, at least not for the mass ratios and the geometries studied in this paper. However,
this tendency is completely reversed when the bridge abutments are not the same (i.e. R1 R2 and/or
MSI 0 MS2). Non-symmetry of mass distributions enhances the overall torsional response, especially for
horizontally incident SH-waves. Other related phenomena, such as shielding, amplification by the wave
scattered from the other foundation and the influence of the standing wave pattern on the excitation of two
bridge abutments, are all accentuated and made more complex by the non-symmetry of the two abutments.
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