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INTERACTION OF A SHEAR WALL WITH THE SOIL FOR INCIDENT PLANE 
S H  WAVES: ELLIPTICAL RIGID FOUNDATION 

BY H .  L.  W O N G  AND M .  D .  TRIFUNAC 

ABSTRACT 

The closed-form solution of the dynamic interaction of an elastic shear wall 
and the elastic homogeneous half-space, previously known only for the rigid 
foundation with circular cross section, has been generalized to apply for the 
foundation with elliptical cross section. It is shown that the interaction equation 
depends on the incidence angle of plane S H  waves and that this dependence 
gradually disappears as the elliptical cross section approaches the circular one. 
The effectiveness with which the rigid foundation can scatter the incident energy 
has been found to increase with the depth of the foundation. 

INTRODUCTION 

In spite of the fact that numerous structures have one or more stories below the ground 
level and that the foundation is in practically allcases well below the surface, only a few, 
simple soil-structure interaction cases having deep foundation have been reported so far 
in the literature (e.g., Luco, 1969; Novak, 1973; Tajimi, 1969; Trifunac, 1972; Thau, 
1971). In most other studies of soil-structure interaction, the building foundation, often 
assumed to be a rigid plate, is bonded to the surface of the elastic half-space (e.g., 
Richart, et al., 1970; Oien, 1971; Luco and Westman, 1971). Although such geometry 
often significantly reduces the mathematical effort required for the formulation and 
solution of the problem, it may lead to unpredictable modifications of the final results, 
since the scattering and diffraction effected by the deep foundation are essentially elimi- 
nated by the very nature of the assumed model. 

The purpose of this paper is, therefore, to study the effects that the depth of foundation 
may have on the overall soil-structure interaction problem and the extent to which these 
effects may depend on the direction of incident waves. 

THE MODEL 

The model studied here represents a logical extension of the model considered by Luco 
(1969) and Trifunac (1972). It consists of an infinitely long elastic shear wall of height H 
and thickness 2A or 2b, depending on whether we analyze the shallow (Figure la) or the 
deep (Figure lb) foundation case, respectively. The rigidity and the velocity of shear 
waves in the isotropic and homogeneous wall are given by/~b and fib. This wall is erected 
on arlgid, infinitely long foundation beam, whose cross section corresponds to one half of 
an ellipse and whose major and minor axis dimensions are ,4 and b. The elastic and homo- 
geneous half-space, which is assumed to be welded to the rigid foundation, is character- 
ized by the rigidity/~ and the velocity of shear waves ft.. 

INCIDENT GROUND MOTION 

. We assume the excitation to consist of plane S H  waves with incident angle 0, which is 

1825 



1826 H. L. WONG AND M. D. TRIFUNAC 

measured positive in the counterclockwise direction from the positive x axis to the normal 
on the incident plane wave front (Figure 1 a). Assuming the incident motion to be 

Uz' = exp -i¢o t (1) 
Cx 

~- A_.~r_,_~ S.A~_OW FOUNDAT,ON 

-SCATTERING FROM FOUNDATION- u~ 

• REFLECTED SH WAVE - u r 
u, ~ - INCIDEN 

(a) 

x J 

t~ b . .~-b~ DEEP FOUNDAT,ON 

T.IL 
/ r  sc'TTE 'N° F°°N°AT'°N-u: 

V " ~  THETA / 

U~- INCIDENT ~H W•'E " 0  ~ ¢,.....~ 0 J- REFLECTED SH WAVE - U: 

(b) 

FIC. 1. Shear wall, foundation and soil. 

where 

cx = fi/cos 0 and % = fi/sin 0, (2) 

the resulting "free-field" motion, i.e. motion of the half-Space in the absence of the 
structure and its foundation becomes 
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uz ;)l cos   
where u~" is the wave reflected from the half-space boundary at y = 0 (Figure la). For  the 
rotated x, y coordinate system in Figure lb the above results apply, provided n - 0  is 
substituted for 0 in (2). 

WAVE MOTION IN THE HALF-SPACE 

The Helmholtz equation in cartesian coordinates for the S H  waves, u~, in y < 0 
(Figure la) is 

~2/,/z O2/d z 
~x 2 + a)~ +k2u~ = 0, (4) 

where 
k = collJ.  (5) 

To transform this equation into the elliptic coordinates, we let 

x = a c o s h ¢ c o s r # ,  0 < ~ < oo 

y -- a sinh ~ cos q, 0 < rl < 2z~ (6) 

where a is the distance between the origin and the focus of  an ellipse ~ = ~o- We then 
obtain 

~2b/z O2b/z 
- ~  + ~y/~ + a Z k Z [ c o s h  2 p - c o s  2 0 ] u  z = 0. (7) 

Letting 
u~ = H(tl)Z(~ ) (8) 

there follows 
d2H 
dq  2 + ( p - 2 q  cos 21/)H = 0 (9) 

d2Z 
d~ 2 - ( p -  2q cosh 2~)Z -- 0 (10) 

where 
q = ¼a2k 2. (11) 

Equation (9) is called the Mathieu's equation, while (10) is called the modified Mathieu's 
equation, since for ~ = - iq it reduces to (9). p is the characteristic value. 

The periodic solutions of (9) are 

C e z m ( ? l ,  q), Sezm + 2(/7, q) (periodic with period 70 
and 

cezm+ l(rh q), Sezm + I(V], q) (periodic with period 2~). 

Solutions of  the modified equation (10) are: MeZzO, M s ~ +  2, M e ~ + ,  and Ms,l,,)+ 1. 
These become Bessel functions when q ~ 0. Also, we have, M e ~ ,  M s ~ +  2, ~,~t2) av, t~2m + 1 
Ms[~+ 1 which become Neumann functions Y2~ as q -~ 0. A linear combination of the 
above functions is also a solution 

Mct2~ = i a / ' ) ±  ;~ . t2 )  
,,, F 2 m  T i , v l  F 2 m  

M ~ 4 )  Met  l) _ iMc~22)., "~2m = 2 m  

As q ~ O, Mc~z~ ~ Hankel function of the first kind and Mc(2~ ~ Hankel function of the 
second kind (Abramovitz and Stegun, 1970; Meixner, 1954). 
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Consider now the case of  a shallow foundation, the solution of the half-space problem 
excited by the plane SH-waves u,i+ u: [given by (3)] can then be expressed in an infinite 
series of  Mathieu functions as follows 

u,i+u: = 4 ~ (-l)mce2m(11, q)Md2~(~, q)ce2m(O, q) 
m = 0  

+4i  ~ (-- 1)mce2m+ 1(11, tt) (12) q)Mc2m+ 1(4, q)ce2m+ ~(0, q). 
m = 0  

The wave scattered from and diffracted around the foundation, Uz R, can be written in 
the form 

Uz R ~ (3) (3) (13) = {a2mMc2m(~, q)Ce2m(11, q)+b2~+ 1Mc2m+ 1(4, q)ce2m+ 1(11, q)} 
m = 0  

where azm and b2~+ 1 are constants and it satisfies the boundary conditions 

~Uz R 
= 0 at 11 = 0 ,  - n ,  ( 1 4 )  

and 
uz R ~ 0 as 4 ~ oo. 

The boundary condition at the foundation-soil interface is 

Uz = Ae - i° ' '  at 4 = 40, (15) 

where A is the amplitude of motion of  the rigid foundation. Using (12) and (13) to 
express u z = uz ~ + u :  + uz R and matching it with (15) at 4 = 4o gives 

A = ~ [4 ( -  1)mCe2m(11, q)Mct2~(~o, q)ce2m(O, q)+ 
m = O  

M,~ 1 ) +4(- 1)raiCe2m+ 1(11, q) ~ 2 m +  1(40, q)Ce2m+ 1( 0, q)]+ 

+ ~ (3) [a 2mMc zm( ~O, q)ce 2m(11, q) 
m = 0  

+b2m+ I Mct23m)+ l(~o, q)ce2,,+ 1(11, q)]- (16) 

To use the orthogonality properties of  ce,,(11, q) we express A as A. 1 in a series of  
Mathieu functions. Letting 

1 = ~ (~2mCe2m+fl2m+ lCe2m+ 1 +f2mSe2m+g2m+ 1Se2m+ 1), 
m = 0  

where 

= - Ce2md11 = 2 2 ~ J o  Ce2mdq ~ 2A2m O~ 2m ~ 0 

1 12~ 
flEm+l lrJO Ce2m +1d11 0 

1 12~ 
= - Se2md11 = 0 f2m 7~ j 0 

I f  2~ g2m+ 1 = Se2m+ td11 = O, 
0 
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there follows 

A = A2 ~ .42mCezm(rl, q). (17) 
m=O 

As q --* 0, i.e, as the ellipse approaches a circle 

x/2 ~¢/2 . A 2 ,  " Ao° ~ - ~  ; c e o - ~ - ,  --~0 

m e 0  
and 

A = A .  

Thus, all higher harmonics are lost when q ~ 0. 
By the orthogonality of Mathieu functions, equation (16) may be written as 

2AA2o m = 4 ( -  1)mMc~(4o,  q)ce2m(O, q)+a2,"Mc(2~(4o, q) 

0 = 4 i ( -  1)mce2m+ 1(0, q)Mc(21,")+ 1(4o, q)+b2m+ 1 ~rahAr~(a)~2m + 1(40, q ) '  (18) 

Equation (18) then gives 
2A o 2 m A - 4 ( -  1)," Mct21~(4 o, q)cezm(O, q) 

a 2," = MeZzO(40 ' q) 

4 i ( -  iv. ~t~tl) • J . . . .  2,.+ 1(4o, q)ce2,.+ 1(0, q) 
bE,, = -- MCtE3,")+ ~(4o, q) (19) 

We note that all az,. are dependent on A and A o 2,", in contrast to the case for the founda- 
tion with circular cross section, where only the corresponding ao depends on A (Trifunac, 
1972). 

MOTION OF THE SHEAR WALL 

Although this part of the present analysis is identical to the corresponding portions of 
the previous papers by Luco (1969) and Trifunac (1972), we outline the principal steps 
of the derivation for completeness in this presentation. 

With the differential equation of motion of  a one-dimensional shear wall 

~2U z 1 t~Euz 
~X,2 fib 2 ~t  2 , 0 ~ X' ~ H (20) 

and the boundary conditions 

aUz 
(Txz = ~ b ~ x -  t = 0 at x' = H (21) 

uz = Ae-i'°t at x'  = 0 (22) 

the displacement Uz of the shear wall is given by 

uz = Ae- lOt[cos kbX' + tan kbH sin kbX' ] (23) 
where 

kb = og/~b. (24) 

The base shear force per unit length of the wallf~ b is (Luco, 1969) 

fz  b = --cO2Mb \ kb H .] Ae-;,or (25) 
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where 
Mb = pb2aH. (26) 

The natural frequencies of a shear wall on the rigid foundation are given by 

k b H =  (2n+l )  ~; n = 1,2,3 .... (27) 

INTERACTION 

The movement Ae- ~o. of the foundation may be determined by writing the equation 
of motion for a rigid foundation 

_ o92MoAe- i,~, = _ (f~ +fz b) (28) 

where M o is the mass per unit length of the foundation. Theffl is given by 

ffl  = -- I ° .  a¢~ 1¢=¢o ds, (29) 
where 

A 
ds - (cosh 2 ~o-COS 2 tl)t/2d~l, (30) 

cosh 4o 
and 

so that 

Now 

/~ ~u~ 
°~l¢=~° = A t3~ {e=~° (31) 

_ _ _ _  (cosh 2 40__COS 2 71) 112 
c o s h  ~o 

f 0  ~//z f f l  = - I~ ~ [~=¢odq • (32) 

p ~ -  1¢=~o = # ~ [az,,,Mc(23)'(4o, q ) + 4 ( -  1)"Ce2m(O, q)Mc(2'(4o, q)lce2mOh q) 
m=O 

+ ~ rb L a . , + t  . . . .  z . , + l ( 4 0 , q )  
h,,f,~(3) ~ 

m=0 

+ 4 ( -  l)"icez.,+ 1(0, (1), t q)Mc2m+ 1(~o, q)]ce 2,.+ l(q, q) 

with "," indicating the derivative with respect to 4. Using the integrals 

I ° .  ~ , , ( , 7 ,  q)d,~ = ~Ag ~' 

5o. ce2,.+ 101, q)dtl = 0 
(32) becomes 

fz s _-_ [a2mMc2m (¢o, q)+ 4 ( -  1)mce2m(O, q)McC2~)'(4o, q)]A o2"}. 
m=O 

The substitution of (25) and (36) into (28) yields 

(3), fin ~ (a2mMc2m (40,q)+4(--l)mCe2m(O, "AMc(1)'r'e'tlI 2m t'~o, q)}Ao 2" 
m=O 

(33) 

(34) 

(35) 

(36) 

. . .  / 'tan kbH'~   o+M t 
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Rearranging the parameters so that 

Wc 1 1 

where 

c°2[ . . .  ['tankbH'~- 1 - k2bA [Mo _M~ (tankd-I]l' 
t )j  + Ms M, \ kbH ] ]  

(38) 

nab 
m~ ~ (39) 

p 2  

is the weight of soil replaced by the foundation and A and b are the major and minor axes 
of an ellipse, and by using (19), we get the final expression for A 

(a),(~o, q) 1 4(-l)"Ao2"ce2,.(O, q) [Mci; .  Md2(~o, q)-Mc~2'(~o, q) 
~=o L Mci~ ~o '  q) . 

A = kebA 
2 I M°~ + ~M~{tankbH~l\ k ~  /IJ + ,.=o ~ 2tA ~" 02m~ZlJ/~-i_VMc(a)'t'~l..~z,.tso,q)2m t~o,q)] 

In the limit when q ~ 0, i.e., when the ellipse approaches the circle, we have 

Mc~2~(~o, q) ~ J2,,(kA) 

Mc~(~o, q) ~ H~z~(kA). 

Also for 

and 

m ~ 0 ce2,.(O, q) ~ cos 2toO 

q ~ O  

1 
m -- 0 ce°(O' q) --+ ~/-2 ~ A°° 

q ~ O  

{~oO - i 
Ao  TM ~ V'2' m = 0 

, m - ~ 0 .  
Thus, when q ~ 0, A tends to 

Jo(kA) Hi(l)(kA) 
2[J l (kA)-  Ho(1)(kA ) 

Aq~o - ' ~  kA (Mo Mb tankbH'] H,(')(kA) (40) 

2 ,Mss + Ms koH / H2(1)(kA) 

and the 0 dependence of A is lost (Trifunac, 1972). For large q the 0 dependence of A 
becomes important, especially when b/A is small. 

To characterize the problem in terms of dimensionless parameters we define 

kbH flH 
e = kA flbA" (41) 

It is seen that the flexible, slender and/or tall shear beams will be described by large values 
ofe. 

In the above analysis, the coordinate system and the shallow foundation case shown in 
Figure l(a) have been selected as an example. However, Mutatis mutandis it is readily seen 
that the same results hold for the deep foundation case, shown in Figure l(b), provided 
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- 0 is substituted for 0 in (2) and in the subsequent equations. Thus, with the angles of  
incident waves as defined in Figures l(a) and l(b), the same solution can be used to study 
the corresponding vibrations of  the shallow and deep foundations that have the same 
b/A ratios. The same parameter e applies to both shallow and deep foundations. 

Figures 2 through 6 show the amplitude of foundation motion IAI plotted versus 
o~A/fl, and for the angle of incident SH-waves " T H E T A "  equal to r e - 0  for a shallow 
foundation (Figure la) and corresponding to 0 for the deep foundation (Figure lb). I t  
is seen that  for ogA/fl = 0, all curves tend to 2 which is the amplification at the half-space 
boundary. Each figure presents [a I for the four axis ratios b/A equal to 0.05, 0.30, 0.70, 
and 0.99. The small axis ratio b/A represents either a shallow foundation (Figure la) or 
very deep foundation (Figure lb), while the ratio b/A = 1 corresponds to the semi- 
circular cross section. Since the results for T H E T A  = 0 in the case of  the shallow founda- 
tion (Figure la) are the same as those for T H E T A  = 90 ° for the deep foundation (Figure 
lb), all the curves in Figures 2 through 6 are labeled first for shallow and then for the deep 
(in the brackets) foundation case. In each figure the data are plotted for the same e value 
ranging from 0 (Figure 2) to 8 (Figure 6) and for three values of Mb/Ms = 0.5, 2.0, and 
8.0. For all calculations in this paper we have assumed that Mo/Ms = 1. 

Figure 2 presents the e = 0 case. From (41) it is seen that this value of e may be 
realized for a rigid wall (fib = ~ )  or for a building mass concentrated at x '  ~ 0 so that 
H = 0. In either case, there is no motion of the building mass relative to the foundation, 
and consequently no building resonances enter into the problem. As a result, Figure 2 

n o  zeroe  o r   ore 

equally spaced zero IAI amplitudes. The zeroes in ]A] versus toA/fl diagrams correspond 
to the natural frequencies of  the shear wall and occur at kbH = (r/+ ~)7t. This, of  course, 
corresponds to ~oA/fl = (n + 1)~/~. 

The e = 0 case in Figure 2 describes the case of  a rigid mass M = Mo + Mb forced to 
vibrate by the incident S H  waves. It  is seen from Figure 2 that for the small axis ratio, 
small Mb/M s ratio of  0.5, the dimensionless frequency band for toA/fl between 0 and 3, 
very shallow ~foundation and vertical-wave incidence, or for very deep foundation and 
horizontal incidence, the foundation moves essentially like the half-space would move in 
the absence of any foundation. In these two cases the "projection" of  that part  of the 
foundation mass which is in contact with the half-space onto the normal of  the plane- 
wave front is "small" relative to the cases of  T H E T A  = 90 ° incidence for shallow 
foundation and T H E T A  = 0 ° incidence for deep foundations, so that the incident waves 
do not "see" the foundation very well. Consequently, the scattering and diffraction effects 
and interaction are therefore reduced. As the angle T H E T A  increases toward 90 ° for the 
shallow foundation, or decreases toward 0 ° for the deep foundation, the size of  the pro- 
jection of the foundation onto the normal of  the plane-wave front increases, the scattering 
and diffraction become more prominent, and IAI becomes more sensitive to changes of  
¢oA/fl. This is best displayed in Figure 2 for M d M s  = 0.5 and axis ratio equal to 0.05. 
As the axis ratio increases toward 1, i.e., the elliptical cross section of the foundation 
tends toward a circular cross section, the size of  the "projection" of  the foundation onto 
the plane-wave front and the amplitude IAI become independent of  the incidence angle 
THETA.  For the axis ratio of  0.99 this dependence is already lost. 

When Mb/M s is small or zero, and since we take Mo/M s = l, the Figure 2 reflects the 
consequences of  assuming that the foundation medium is rigid. As Mb/M s increases, the 
effective density of  the foundation block increases relative to the density of the surround- 
ing medium and the contribution of inertial forces becomes more prominent. The result 
of  this is that the characteristics of  a single-degree-of-freedom system represented by a 
spring, mass, and a dash-pot emerge as representative of the IAI curves in Figure 2. 
Keeping the foundation shape constant in effect means that one keeps the equivalent 
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FIG. 2. Effect of  interaction on the motion IAI of  the rigid foundation. 
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FIG.  3.  E f f e c t  o f  i n t e r a c t i o n  o n  t h e  m o t i o n  IAI o f  t h e  r i g i d  f o u n d a t i o n .  
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FIo. 4. Effect of  interact ion on the  mot ion  [A[ of  the  rigid foundat ion.  
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elastic spring and the equivalent dash-pot constants fixed, and then the increasing of Mb, 
which leads to the increase of M = Ms + Mo + Mb, results in the reduction of the equiva- 
lent natural frequency and the fraction of critical damping. This trend is clearly seen in 
Figure 2. 

As e increases, the zeroes of IA] at o~A/fl = (n+~)n/e become smaller and more 
densely distributed, as may be seen in Figures 3 through 6. The overall trends of the IA[ 
versus tnA/fl curves and the characteristics of the low-frequency peak which increases in 
amplitude with increasing Mb/Ms remain the same as in Figure 2 for e --- 0. The nature of  
THETA dependence on the shape of the foundation (axis ratio) and the rate at which IA[ 
decreases with increasing toA/fl are also the same as those in Figure 2. While e governs 
the position of zeroes in IAI diagrams, the width of the reduced IAI amplitudes centered 
around these zeroes increases with Mb/Ms. This behavior can be explained by noting the 
term Mb/Ms(tan kbH/kbH ) in the denominator of equation (30). With larger Mb/Ms this 
term affects the [A[in the wider interval of ~oA/fl centered around c~A/fl = (n+½)n/e. 

RELATIVE RESPONSE 

In the analysis and design of earthquake-resistant structures, it is necessary to know 
the maximum amplitudes of the displacement of the top of the structure relative to its 
foundation. From maxima of these relative displacements, it is possible to calculate the 
linear strains and therefore the maximum stresses experienced at any point in the 
structure. Using equation (23) for x' -- H, we calculate the relative response RUz at the 
top of the shear wall as 

l( )1 I .ud  = = A c o s k b H  1 . (42)  

When we neglect interaction, A would become 1 and IRu~l would reduce to 

I '  I I"u~l = cos)%H 1 . (43) 

From equation (27)it is seen that for the fixed base natural frequencies, kbtI = (n+~) 
~, n = 1, 2, 3,..., the relative response given by (43) becomes infinite. However, if inter- 
action is not neglected, since A is equal to zero when kbH = (n+~)~, the relative 
response given by (42) remains finite. Thus, the interaction plays a role similar to the 
damping mechanisms, which are used to model the energy dissipation in the structural 
dynamics. 

Figures 7, 8, and 9 show the relative responses IRU~I given by equations (42) and (43) 
and for the same set of parameters used in describing IAI versus coA/fl in Figures 3 
through 5. The solid lines in these figures correspond to equation (43) and tend to infinity 
for o~A/fl = (n+~)n/e. The dashed lines correspond to equation (42) and show the 
relative response for four typical incidence angles THETA ~ 0 °, 30 °, 60 °, and 90 °. It is 
seen that the relative response is strongly dependent on the incidence angle of SH waves 
when the axis ratio of the elliptical rigid foundation is small. When the axis ratio tends to 
one, i.e., when the cross section of the foundation becomes circular, the THETA 
dependence disappears. 

The ratio Mb/M s has a pronounced influence on the shape of the relative response 
curves (Figures 7, 8, and 9). As it increases, the overall amplitudes of the relative response 
decrease and change their shape appreciably. This change is so pronounced for the large 
values of Mo/Ms that the peaks at wA/fl ~ (n+~) n/e, n ~ 1, 2 ..... corresponding to 
the fixed base frequencies, are completely lost. This could, therefore, represent one 
possible mechanism that might explain the differences between the calculated and meas- 
ured natural frequencies for full scale structures. 
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CONCLUSIONS 

In this paper, we have generalized the results for the two-dimensional dynamic soil- 
structure interaction problem, previously known only for the rigid semi-circular founda-  
tion (Luco, 1969; Trifunac, 1972), to the case of  rigid foundat ion with the elliptical cross 
section. Al though such a two-dimensional model might be used in the analysis of  very 
long structures only, the exact nature o f  the solution gives a valuable insight into the 
physical nature o f  the problem. Of  special interest in the analysis have been the effects o f  
the foundat ion depth on the overall interaction amplitudes and the extent o f  coupling 
with the motion of  the half-space for different angles o f  incident S H  waves. We found 
that the motion of  the rigid foundat ion is more dependent on the angle o f  incidence for the 
foundat ion mass characterized by a small "minor- to-major  axis ratio," and that  when this 
ratio tends to one, this dependence on the angle o f  incidence disappears. 

For  the fixed-base natural frequencies o f  the undamped  shear wall erected on top o f  
the rigid foundation,  the amplitude o f  the foundat ion mot ion  is zero. Essentially for all 
other frequencies, this amplitude is less than the "free-field" amplitude of  the half-space 
mot ion  excited by the plane S H  waves and equal to 2. The only exception to this occurs 
for  a frequency band 0 < ~oA/fl < n/2e when the amplitude o f  the foundat ion displace- 
ment may be larger than 2. This amplification corresponds to the "natural  f requency" of  
the rigid foundat ion embedded into the half-space and it increases with the increasing 
total mass o f  the foundat ion and the building. The frequency at which this amplitude 
occurs decreases with the increase of  this total mass. 
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