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SURFACE MOTION OF A SEMI-ELLIPTICAL ALLUVIAL 
VALLEY FOR INCIDENT PLANE S H  WAVES 

BY H. L. WONG AND M. D. TRIFUNAC 

A B S T R A C T  

By using the exact analytical solution for the two-dimensional SH-wave 
propagation in and around an elastic inclusion whose cross section corresponds to 
one half of an ellipse, we have examined those aspects of the resulting ground 
motion that are of special interest for earthquake engineering and strong-motion 
seismology. Computed amplitudes and phases of periodic ground motion display 
complicated wave-interference phenomena that lead to nearly-standing wave 
patterns, abrupt changes in the amplification of incident motions along the free 
surface of the alluvial valley and strong dependence of the overall motions on the 
incidence angle of SH waves. By comparing the amplification patterns derived 
from the exact model with the amplifications computed on the basis of an equivalent 
single-layer model excited by the vertically incident shear waves, we have 
demonstrated that this approximate representation may lead to meaningful results 
only if the wavelength of incident waves is longer than the characteristic dimension 
of the alluvial valley. Although simple, we expect that the model presented in this 
paper might explain qualitatively the vibrations of some alluvial valleys excited 
by S H  components of strong ground motion. 

INTRODUCTION 

Field observations following large earthquakes have indicated that the areas of intense 
damage may be highly localized (e.g., Jennings, 1971 ; Sozen et al., 1968; Hudson, 1972; 
Gutenberg, 1957; Richter, 1958). Although numerous factors, such as the overall quality 
of construction and the poor soil conditions, may have contributed significantly to such 
observations, it has been suggested frequently that one of the principal causes for the 
observed distributions of damage should be attributed to the amplification of incident 
waves by the local geological and surface soil conditions. Consequently, in earthquake 
engineering and strong-motion seismology research, significant effort is now being directed 
toward better understanding of these amplification phenomena (e.g., Tsai, 1969; Aki 
and Larner, 1970; Boore, 1970; Trifunac, 1971). To this end, we investigate in this paper 
the amplification patterns and other related phenomena associated with the plane SH-  
wave motion in and around the semi-elliptical alluvial valley. Although there might be 
only a few known alluvial valleys with a cross section that resembles one half of an 
ellipse (Trifunac, 1971), the exact nature of the solution presented in this paper enables 
us to understand and explain many important properties of the two-dimensional wave 
propagation in similar geometries. Furthermore, we expect that the exact solution 
presented in this paper for the elastic unattenuated S H  waves should be of some use for 
critical calibration and checking of the approximate finite element (e.g., Dezfulian and 
Seed, 1969) and finite difference calculations (e.g., Boore et al., 1971) which were recently 
developed for the related wave-propagation problems. 

1389 



1390 H.L.  WONG AND M. D. TRIFUNAC 

THE MODEL 

The model to be analyzed in this paper  is shown in Figure 1. It  consists o f  a semi- 
elliptical elastic inclusion for  4 < 40 and the elastic isotropic and homogeneous  half- 
space. To  facilitate the analysis, we define the half-space by y =< 0 for the shallow elliptical 
inclusion and by x > 0 for the deep elliptical inclusion, the focal length of  the elliptical 
coordinate  system being a in both  cases. The contact  between the inclusion and the half- 
space is assumed to be welded. The material  propert ies in the half-space are given by the 
rigidity/~ and the velocity of  shear waves ft. To  designate these and other quantities for  

< 40, we will employ  the subscript  or superscript  t;. 
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FIG. 1. Shallow and deep semi-elliptical alluvial valleys and the coordinate system~ used. 

The excitation of  the half-space, Uz i, will consist o f  an infinite train of  plane S H  waves 
with frequency ~o and the nonzero mot ion  in the z direction only 

u~ i = exp { - iog(t-x/cx-y/cy)} ,  

where cx = fl/cos 0 and cy = fl/sin 0 are the phase velocities along the x and y co- 
ordinates.  Far  f rom the inclusion, the uz' waves reflect f rom the free surface, y = 0, 
interfere with the incident waves, u~ i, and give 

i + r  _ _  i r u= +Uz 2 exp [-io9(t-X/Cx)] cos (ogy/cr). 

SOLUTION OF THE PROBLEM 

The Elliptical Coordinates 

It  is, of  course, convenient  to use the elliptical coordinate  system to solve the boundary  
value problems for  media with boundaries  described by ellipses and hyperbolas .  
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The elliptical coordinates are the radial coordinate, ~, and the angular coordinate, ~/. 
They are related to the rectangular x - y  coordinate system by 

x = a c o s h 4 c o s q  0 <  { <  oo (1.1) 

y = a sinh 4 sin r/ 0 < ~/< 2~. (1.2) 

As { --+ 0, the ellipse reduces to a line, and for 4 --+ 0% the ellipse tends to a circle. 

The minor-to-major axis ratio for the ellipse with { = 4o is 

minor axis 
R _ - tanh Go (1.3) 

major axis 
where 

major axis length = a cosh 4o 
(1.4) 

minor axis length = a sinh 4o 

and a is the focal length. 

From (1.1) and (1.2) one may solve for r/and { in terms o f x  and y simultaneously to 
get 

acosh { + = 1 (1.5a) 

X 2 

an ellipse for { and a hyperbola for r/. 

The Wave Equation 

One can show that the harmonic wave equation has the time-independent part satisfy- 
ing the Helmholtz equation 

where 

0~ 2 J- +k2 ¢  = 0 (2.1) 

k = o9/fl. (2.2) 

Using equations (1.1) and (1.2) we can transform (2.1) to elliptical coordinates 

020 024, 
~-2+-~2 +a2kZ[cosh 2 { - c o s  e r/]~ = 0. (2.3) 

The most general solution of equation (2. I) (Morse and Feshbach, 1953) is of the form 

~(x, y, t) = 52= F[x cos u+y  sin u-ctJdu. (2.4) 

However, if the boundary is a rectangle, a circle, an ellipse, or a parabola, the integral 
(2.4) may degenerate to an infinite series of the form (Mow and Pao, 197 I) 

F, a,,,Z,,,(~)H,,(,7). 
m=O 

The functions Z,. and H,. are then solutions of the separate ordinary differential equations 
in { and q. 
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For the elliptical coordinates the functions Z,, and H"  are the solutions of the ordinary 
differential equations 

d2H 
d ~  + ( b - 2 q  cos 2q)H = 0 (2.5) 

dzZ 
d~ z (b -2q  cosh 2~)Z = 0 (2.6) 

where 

1 2 2 1 a2(-°2 
q = ~ a  k - 2 ~ . (2.7) 

Equation (2.5) is called the Mathieu's equation, while (2.6) is called the modified 
Mathieu equation because it reduces to (2.5) if ~ is replaced by - i q .  

We shall look for periodic solutions of  (2.5) only, since ~ must be the same at q = 0, 
r 1 = 2nn, etc. These periodic solutions exist only for a countable number of  discrete 
values of  b, which are the characteristic values. (Note that b ~ m 2 if q ~ 0, and that 
the eigenfunctions then become cos mO and sin mO.) 

Since H "  is periodic in r/, it may be expressed as a Fourier series of  sines and cosines. 
The solutions, known as Mathieu functions, may be divided into the four different types 
(e.g., Morse and Feshbach, 1953; Meixner, 1954) 

o0  

Ce2m(rl, q) = ~ A22T(q) cos 2rr/ even in ~/ 

= o periodic with period n 

S e 2 " + 2 ( r l ,  q) = ~ R(2"+ 2 ) { " ~ ~ 2 ,  wJ sin 2rq odd in q 
r = 0  

(2.8) 

ce2"+l(r/, q) = ~ ~-2,+a(2"+1 i)(q) cos (2r+ 1)r/ even in r/ 

,=o periodic with period 2n 
¢ / 3  

sezm+a(~l, q) = ~ n(2"+~2r+ l 1)/,,~j sin (2r+ 1)q odd in t/ 
r = 0  

Each eigenfunction corresponds to an eigenvalue be,,, or bo" (even or odd). Corres- 
ponding to the same eigenvalue, we have the solutions of  (2.6), which are called modified 
Mathieu functions 

m c 2 r # ,  l v J ~ 2 m + 2 ,  arat~2ra+l)  

As q ~ 0 these solutions become Bessel functions arm. Also, solutions 

m . . ( 2 )  a/t~(2) aAr,~(2) ~t/A2) 
t'2rn, ~ ' ~ ° 2 "  + 2 ,  ~ ' ~ 2 m +  1~ ~ ' ~ ° 2 m + l  

become Neumann functions Ym as q -+ 0. Linear combinations of  the above are also 
solutions 

Mc(z~ = M C ( 1 )  ..t- ; II/I,4 2 ) 

M c ~  = M / 1 ) - ; a 1 " ( 2 )  
~2m ~v.~ ~2m • 

A s q ~  0 
M,.(3) __¢. Hankel function of the first kind and ~2m 

M # 4 )  ~z" ~ Hankel function of the second kind. 

The above "radial"  solutions may be expanded in series of  Bessel functions once the 
coefficients 2ra 2m R 2 m +  l ( a  ] A z r  (q ) ,  B2,+2(q), A2'fl+ll(q ) and =2,+1 ~uJ are known. These coefficients may 
be calculated by a recursion relation, and are also available in tabulated form for limited 
values o fq  (Abramowitz and Stegun, 1964; Meixner, 1954). 
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The Plane Wave in Elliptical Coordinates 

The plane wave traveling in the direction with its positive normal making an angle 0 
with the positive x-axis is 

u~ i = exp (-loot) exp [ik(x cos O+y sin 0)], (3.1) 

using (1.1) and (1.2), (3.1) can be transformed into the elliptical coordinates 

Uz ~ = exp ( - i e ) t )  exp [ika(cosh C cos t/cos 0+sinh C sin r/sin 0)]. (3.2) 

Letting 

and since 
W = cosh C cos t/cos 0 + sinh C sin t/sin 0 

ka = 2 ~/q 
[from (2.7)], there follows 

(3.3) 

uz i = exp (-ioot) exp (i2 ~/q W). (3.4) 

Since (3.4) [i.e., (3.2)] is periodic in 0, it can be expanded into a generalized Fourier series 
of Mathieu functions 

Uz i = ~ [Cmcem(O, q)+ Dmsem(O, q)], (3.5) 
m = 0  

where (by orthogonality of these functions) 

- exp (i2 ~/q W)cem(O, q)dO (3.6a) C, .  = zr,)o 

1 12~ 
Dm= ~Jo exp (i2 ~/q W)sem(O, q)dO. (3.6b) 

The integrals in (3.6a) and (3.6b) are evaluated as (Abramowitz and Stegun, 1964; 
Meixner, 1954) 

Io 2= exp (i2 ~/q W)ce,,(O, q)dO = 2zti"ce,.(rl, q)Mc~l)(C, q) 

So 2" exp (i z ~/q W)sem(O, q)dO = 2nimse,,01, q)Ms~l)(~, q). 

Hence, the plane wave expansion in terms of Mathieu functions becomes 

u~ ~ = 2 ~ imce,,(q, q)Mc~a)(C , q)cem(O, q)+ 2 ~ imSem(rl, q)Ms~)(C , q)se~(O, q). (3.7) 
m=O ra=l  

The Elastic Inclusion: An Elliptical Valley 

We now proceed to solve the problem of a half-space where the elastic properties 
inside the elliptically shaped valley, C < Co, are different from those outside C = Co- 
The solution inside the valley, Uz v for ¢ < Co, must satisfy the differential equation 

VZuzV+kv2uz v = 0 (4.1) 

and the boundary conditions 

auJ  
p. ~ q  = 0 (4.2a) 

~Uz v 
p, ~ -  -- 0 (4.2b) 

at t /  = O, - r c a n d  Ix] > a 

atC = O a n d [ x [  N a  
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where p~ is the rigidity for C < (o. We note that within the focal length, the normal 
derivative is no longer 0/0r/but c~/0C. 

The solution outside the elliptical valley, u~ = u~ + ~ + u f ,  (where u~ R represents the wave 
~+r is the complete solution of the scattered and diffracted from C = C0, and motion u~ 

homogeneous half-space problem for incident u~ ~ waves) must satisfy the differential 
equation 

V2u~+k2uz = 0 (4.3) 
and the boundary conditions 

~ (u~ R + u~ + *) = 0 at q = 0, - zr (4.4) 

uS = u~g+u i+* at ~ = C0 (4.5) 

#u~" ~ (Uz R + Uiz +r) at C = Co. (4.6) 

Case A : Shallow Valley. We take the coordinate system as shown in Figure 1 and the 
half-space defined by y < 0. The solution in the homogeneous half-space u~ +r is then 
obtained by adding the series (3.7) for angle 0 to another series (3.7) for angle - 0 .  Since 
se,,(O, q) are odd in 0, their contribution cancels out and there follows 

i+r 4 ~ ( -  1)mee2,,(r/, q)Me~2~(~, q)ee2m(O, q) U z ~- 
m=O 

+ 4  ~ (-1)"ieezm+l(r/, q) me2(~),, + i (~, q)ee2 ,, + 1 (0, q). (4.7) 
m~O 

The solution Uz R, the wave reflected from the valley, may be taken to have the form 

u~ R = ~ [amMe(m3)(C, q)eem(r/, q) + b,.Ms~3)(C, q)sem(r/, q)], (4.8) 
m=O 

since Mc~)(C, q) and MStm3)(C, q) are solutions corresponding to the outward propagating 
waves. Since u~ +r already satisfies the zero-stress condition at the surface y = 0, we now 
require that 

(Uz R) = 0 a t  r/ = 0 ,  P 7~. 
or/ 

Since, 

and 

d 
only T ee,.(r/, q) = 0 

ar/ 
atr/  = 0 , - z r  

where 
q* = (aZco2/4f12). 

d 
dq Sem(r/,q) # 0 at q = 0, - ~ ,  

the solution u~ R must have the form 

btz R ~ 13) ~- [a2mMezm(~ , q)eezm(q , q)+azm+lMe~23~+l(C, q)ee2rn+l(q, q)]. (4.9) 
m = 0  

The solution inside the elliptical valley may be written as 

u~ v = ~ [a,,Mc~mZ)(C, q*)+emMe~l)(C, q*)cem(q, q*) 
m=O 

+ f ,  Me~mZ)(¢, q*) + emMs(~l)(~, q*)sem(r/, q*)] (4.10) 
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All terms with se,,(q, q*) drop out because (d/dq)se,.(q, q*) ~ 0 at r/ = 0, - n .  Although 
the function Mc(,, z) is "finite" at the focal length but its derivative is nonzero, i.e., 

therefore 
(d/d4)Mc2,,(~, q*) # 0 at 4 = 0 

uz v = ~ cmMc~l)(~, q*)cem(tl, q*). (4.11) 
m=O 

Separating (4.11) into functions with period 2n and n yields, 

(1) * * (1) * 
Uz v = ,., [c2mMC2,.(~, (4.12) q )ce2~(q, q )+e2,,+1Me2,~+l(4, q )ce2,.+l(r/, q*)]. 

m = 0  

The displacements u~+'+ uz r and u7 must satisfy the boundary conditions (4.5)and (4.6) 
by which the coefficients a2,,, a2,,+l, ezra, and e2,,+1 may be determined. The first 
condition (4.5) requires 

[czmMc(2~(~o, q*)ce2m(rl, * (,) q )+Czm+lMc2,,+i(4o, q*)ce2,.+i(tl, q*) 
m=O 

(3) (3) = [a2mMC2~(~o, q)ce2,,(q, q)+a2,,+ 1Mc2,.+1(~0, q*)ce2,,+l(rl, q)] 
m=O 

+ ~ [4( -  1)"ce2,.(q, q)Mc(2~(~o, q)Ce2m(O, q) 
rn=O 

+ 4 ( -  l)miCe2m+ (1) l(q, q)mc2,,+ l(4o, q)ce2m+ l(O, q)]" (4.13) 

Similarly condition (4.6) requires 

(1), * (1), [czmMc2m (30, q )CezmO1, q*) + c2m+ a Mc2~+ l(~o, q*)cez,,+ i(q, q*)] 
m=O 

I~ ~ [azm Mc(2~'(4o, q)Cezm(q, q) + a2,, +, Mcz,. +1(4o, q)Cezm +101, q)] = (3) '  

m = 0  

+ p  ~ [4(-l)'%e2m(q, q)Mc(2~'(~o, q)ce2m(O, q) 
m = 0  

,7~Mdl), r~ , 1(0, q)]. (4.14) + 4 ( -  l)mice2m+l(~, ~, 2m+flqO, q)ce2m+ 

Here " ' "  designates the derivative of a function with respect to 4. Sinceq and q* are not 
the same for both media, i.e., 

q = a2coz/4fl z and q* = aZ~oz/4flv 2, 

and the Mathieu functions with different values of q are not orthogonal to each other, 
the coefficients a,. and cm may not be separated term by term, rather, infinite matrices 
result from the expansion of ce2,,O1, q*) and ce2,.(~l, q) into the Fourier series 

ce2m(t/, q*) = AZm*"zn COS 2nq 
rim0 

ce2,.01, q) = ~ Azz~ ' cos 2nr/ 
rt~O 

and 

ce2m+ l(?l, q*) = 

Ce2m+l(r/, q) = 

~ a2, .+a.  (2n+l)r/ ~ 2 n +  1 COS 
n=O 

~ a2. ,+i  cos (24+ 1)q. "X2n+ 1 
n=O 
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T h e s e  m a t r i c e s  are  

-AoMc o Ao MCo -AoMc ~ Ao Mc2 .... o c~, A o Mc~ 

-- --A-oMc~ "~-~o lvlc~ . . . .  A o Mca,  -~-A o Mc2, "-" -noMco B ~ o  mCo 

.A~ Mc {oa) ~ , M c o  ~ _ a . .  (s) a* (~) a 'M (3) ~ )"i~ M c ~  ""  

• 0 ~ .  (3}) ~ _ _ 0 @ ~ .  0-)) @ (8), ~'V A 2 @ ~ .  (I)) 2= (3)) ~ V  2=:~ (3), . ~ %  - K .  % ~% -A~M~ -R- ~ ~% . . . .  ~ M ~ ,  -R- ~ M ~ , . . .  

o (a) O,Mcft ) _s .. (s) s~ (I) ~=M (s) a=#s (~) 

_ o  . .  (a ,  ~ . 4 2 , M c ~ '  ~ . .  (a), ~v _ 2 . . .  0 - ) '  2 ,  (a,  I ~ .  = , ~ . .  (s), 
-'~2~ Mc0 ~L ~n ~ ~L /~IViC2 

: : : : : : 
: : : 

X( 

I (3) Al~iv[ c %(~ .AIMcaa (3) AIS~MC3(1) ~ I-L~V I {3} .... £) AIMC 1 "'" -A I c~s&l A1 Mcsm~l 

-A~Mc~ 

1 (S) 1 $ (I) S (3} 
-AsMc ~ A s Mc~, -AsMc s A s Mc a "'" - A s  L~v~c2~+l O C~,.I "" 

x~ 

-A~M% "'" -A~ +h~c~,~ --~-As Mc~,~ "" 

1 (~ IX~ (I) 3 ¢s) 35 ~) a~l (3} ss+l M (I) -Aa~)~Mc~ A~n~Mc~ -A~,)~M% A~Mc a "." -A~,~Mca, 4 A~,~ ca,~. "'" 

I {S)) ~t v I~ (D, S M (a), ~tv a~ (i), as~l (s), P~v Sm*l (9' -%..~Mc~ -V~.+~M~ ~ -A~.+~ % -~A~+~M% .... &.~Mc~,_~ -V&o,~M%.~'" 

i : : : : i 

a 0 

C O 
I 

a~ 

c 2 

a2m 

C2 m 

,! 
L 

c 1 

a S 

c S 

4 E (-1)A°M%'c%'~O'q) 

m=0  

co 

1 ~AamM (i), 

rn=0 

• a, (I) 
4 (-I)A~ Mc~ c%,(8,~ 

m=0 

z am (i)) 4 (-1)A~ M%,c%~B,q) 

m=0  

" ~" M (I) 4 E (-1)Aa= q~=c%m(O'q) 

1 '~=0 

4 (-I) A2 M%mc%,(~,q) 

m=0  

II 
~ 2m+l (I) i 

14i ~__ 0 (-I) A1 IVi',+ice~m+l(~ ~ 

m=0 

(-1) A ~  " ~ + h'v[ % ,~.j. c e2 ~4.( 0, q ) ( 1 )  4 i  
L.., 

m=0 

133.=0 

a~ m_ 1 elm- 
m=0 

m 2m+i (i}, 

m=0 
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Case B:  Deep Valley. For this case, it is convenient to redefine the half-space to be 
x > 0 as in Figure 1. The formulation of the problem remains the same, but the boundary 
condition (4.2) is changed to 

~UVz 7z 
/~v 0 v / =  0 at q = _+ }. (4.15) 

and the boundary condition (4.4) becomes 

0 .. 7r (4.16) Pv ~q (u~ R + u'i ~') = 0 at v/ = _+ :2" 

All other boundary conditions remain unchanged. The half-space solution for this case, 
ui~ +', is obtained by adding the series (3.7) for 0 to the series for ~z-0. 

Since 

Ce2rn + 1 (It -- O, q) = -- Cezm + 1 (0, q) 

and 

se2,,(rc-- O, q) = -- se2,.(O, q) ,  

all the terms with Ce2m+l and se2, . drop out and the solution becomes 

ui+, 4 ~ (--1)mce2vn(q, (1) = q)Mezm(~,  q)ce2,,(O, q) 
m=O 

+4  X ( -  1)"i sezm(q, q)Ms(z~(( ,  q)se2,,(O, q) .  (4.17) 
m=O 

Also, since 

d 7z 
~ e e 2 , , + l O T ,  q ) ¢ O  a t v / =  + -  

- 2  

d 7r 
d~q se2,,(q, q) # 0 q = +_ :2 

the wave scattered from and diffracted around the valley, Uz R, becomes 

Uz R =  ~ [a2~Mc(z3,),(~,q)ee2m(~7, q)+a2, ,+lMs[3)+l(~,q)sezm+~(rl ,  q)]. (4.18) 
rn=O 

The solution inside the valley is 

v ~ ,  ,(1) u z = [ c 2 , , M e ~ ( ~ ,  q*)eez~(q , q * ) + e 2 , , + l M ~ z m + l ( ~ ,  q*)se2m+x(vl, q*)]. (4.19) 
m = 0  

The boundary condition (4.5) now gives 

[ e z ~ M c ~ ( ~ o , q , ) c e 2 , , ( q , q , ) +  ~ 1 1 )  (Go q*)se2m+l(rl, q*)] C2m + 11Vl?'2m ~ 1 
m=O 

[ a 2 , , M c ~ ( ~  o, q )eez , (q ,  M (3) = q)+a2m+l  s2m+l(~o,q)se2m+l(rl ,  q)] 
m=O 

+ ~ [4( - l)"ce2~(r/, q)Mc2m(~o,(l) q)ce2,,(O, q) 
rn=O 

m" ,(1) + 4( -- ) t se 2,,, + 1 (q, q) Ms  2,, + 1 (~o, q)se2 m + 1 (0, q)], (4.20) 
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while the boundary condition (4.6) gives 

[ c 2 ~ M c ( 1 ) , ( y  ~1), ]1 . . . .  ' ,~o, q*)ce2,,O1, q * ) + C 2 m + l M S z m + l S e 2 m + l ( q ,  q*)] 
m=O 

~ [a2mMc~3~,(~o,q)ce2,.(q, ~3), = q)+azm+lMSzm+lSe2m+l(tl, q)] 
m=O 

+/~ ~ [4 ( -  1)'%e2,.(t/, q)Mc~'(¢o, q)ce2,.(O , q) 
m=O 

+ 4 ( -  1)mise2,,+l(q, ~1~, q)Ms2m+ 1(~o, q)se2m+ 1(0, q)]. (4.~.. 

Since the functions Se2m+ 1 may be expressed as 

Se2m+l(q,q*) = ~ n2 , ,+ l* s in (2n+ l )q  ~2n-[- 1 
m=O 

se2,,+l(q,q) = ~ Rz,,+l sin (2n+ l )q  U 2 n +  1 
n=O 

the infinite matrices have the same form as before except that 

A2m+l becomes R2m-I-1 
2n 4- 1 ~ 2 n - -  1 

m2m+l* becomes R 2 r n + l *  
2n+1 ~ 2 n ÷ l  

M c ~  ~1 becomes a~t~) (same for the derivatives) , ~r* °2rn+ 1 

Mc~+~ becomes Ms~3~+l (same for the derivatives) 

CC2m+ I b e c o m e s  SC2m + 1 

These changes, of course, occur only in the second matrix, the first matrix remaini:~ 
unaltered. 

C A L C U L A T I O N  OF THE COEFFICIENTS 

It is numerically impossible to invert an infinite matrix and a possible alternative is to 
approximate it by one with finite dimensions. Fortunately, the coefficients A2m+2,+11, Az,,2m 
B2rn+ 1 2,+ 1, etc., are usually the largest and close to 1 ifn ~ m. For n = m _  3, the coefficients 
may be less than 1/100. This indicates that the matrix is "essentially banded," since the 
diagonal terms are large compared to the off-diagonal terms. This is a favorable situation 
because it means that al will not depend much on as ,  aT, etc., while a 5 will not depend 
much on a l ,  a9, a11 , etc., so that the penalty for terminating the infinite matrix will not 
be severe for a range ofq  that is not too large. It is, of course, wise to calculate more than 
the number of  coefficients necessary and to discard the last few that contribute less than 
the round-off errors. Excellent results have been obtained by calculating 20 coefficients 
and discarding the last six. 

SURFACE DISPLACEMENTS 

From the earthquake engineering and strong-motion seismology viewpoints, it is 
useful to examine the amplitudes and phases describing the motion at various points 
on the surface of the half-space. Since we have assumed that the excitation consists of  an 
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infinite train of SH waves with amplitude 1 and frequency o9, these amplitudes and phases 
are readily available from the solutions (4.7), (4.9), and (4.12) for the shallow valley and 
from (4.17), (4.18), and (4.19) for the deep valley. For the complex displacements, u, 
we define 

amplitude ~- {Re2(u) + Im2(u)) 1/2 

phase -~ tan -1 (Im(u)/Re(u)). 

: amplitudes and phases depend on the frequency and the angle of the incident 
\~;iw~s, the ratio of the major to minor axis, R, of the semi-elliptical valley, and on the 

material constants, p, Pv (P = #/f12; Pv = I~Jfl2), fl, and fly or on the dimensionless 
parameters kA, p/p~, fl/flv, R, and 0. The parameter kA = ogA/fl is also equal to 2nA/L 
Since ). is equal to fiT it becomes convenient to think in terms of another dimensionless 
parameter given by ETA ~ 2A/2 (for the deep valley ETA is equal to 2A/2R) where 2A 
is the width of the alluvial valley. This choice of the dimensionless parameter ETA has 
been motivated by its physical meaning linking the maximum dimension of the alluvial 
valley with the wavelength of the incident SH-waves. 

Figures 2 through 5 present the amplitudes and phases plotted versus x/A. For 
simplicity in comparing the different figures and in contrast to the coordinate systems 
used in derivations of the mathematical solutions, for Figures 5 and 6 we use x as the 
horizontal (lying in the half-space boundary) and y as the vertical coordinate. Also for 
uniformity, in all figures THETA = 0 corresponds to the horizontal (grazing) incidence, 
while THETA = 90 ° corresponds to the vertical incidence of SH waves. The ratios 
# J #  = 0.167 and pJp = 0.667 used for presenting all the figures correspond to the 
ratio fl/fl, = 2.0. Figures 2, 3, and 4 present the amplitudes and phases for the shallow 
elliptical valleys with the minor-to-major axis ratios R = 0.1, 0.3, and 0.7. Figures 5 and 
6~present the same for the deep elliptical valleys and for the minor-to-major axis ratios 
~ = 0.7 and 0.5. 

As may be seen from Figures 2 through 6, when ETA increases (the incident wave- 
length 2 decreases) the influence of the v~tlley on the motion of the surrounding half- 
space and the complexity of motion in ,the valley increase. This is in accord with our 
expectation that the long waves do not "feel" the geological discontinuities with charac- 
teristic size smaller than the wavelength in question, whereas the short waves are sensitive 
to such irregularitieL 

For short incident waves, small angles of incidence and for x/A typically less than 1, 
significant standing-wave patterns may develop in the valley and for x/A less than 
- 1 ,  i.e., in the direction from which the incident waves arrive. These waves develop 
from the interference of the incident plane SH-waves and the elliptical waves scattered 
from and refracted through the discontinuity at ~ = 40 near x/A = - 1 .  The standing 
wave patterns also develop within the valley because for the grazing and acute angles of 
incidence the soft to hard jump in the rigidities at x/A = 1 acts as a barrier which reflects 
appreciable amounts of the wave energy back into the direction of decreasing x/A. These 
standing waves are further characterized by several points along x/A where the dis- 
placement amplitudes are zero or are very small and where the phase experiences a jump 
of  essentially 180 ° . These jumps in the phase diagrams indicate that at these points the 
ground motion has essentially a torsional character. More detailed discussion on this 
type of motion and its possible implication may be found in our paper dealing with the 
vibrations in the semi-cylindrical alluvial valley (Trifunac, 1971) and therefore will not 
be repeated here. 

The phase of surface displacements is plotted in Figures 2 through 6 relative to the 
phase at x/A = 0, arbitrarily set to zero, for convenience in presentation. In the absence 
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of  the alluvial valley this phase would be a straight line 

~oA x coA x 
phase (x/A) = - cos 0 

cx A fl A 

and its slope would increase for 0 decreasing. Since ETA = 2A/2, 

phase (x/A) = -~z(x/A)ETA cos 0, 

and it is seen that with higher ETA the slope of  the phase (x/A) increases. The Figures 2 
through 6 clearly show these trends in the phase diagrams and demonstrate that the 

~ F  
I 

_! 
of 

rq 
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FIG. 3C.  

overall nature of  the wave propagation is from left to right, as it would be in the absence 
of  the alluvial valley. The local jumps and departures in the phase diagrams from this 
simple picture are, of  course, caused by the interference and scattering of  waves in the 
presence of  the alluvial valley. 

In engineering practice the approximate model employed in evaluating the influence of  
local site conditions on the amplification of  vertically incident plane S waves consists o f  
a layer of  constant thickness H. For the material properties/L v and fly of  the layer over- 
lying the half-space (characterized by/ l  and/~) and for the incident waves with frequency 
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o~ and amplitude equal to l, the amplitude of surface displacements becomes (Haske11, 
1960). 

amplitude = 2{cos 2 (o~H/~,) + (/tdT/~fl,) 2 sin 2 (o~H//~)}- 112 

The maxima of this function occur at ~oH/~ = (2m+ 1)~/2 and are equal to 2/t/~//~,/~. 
To explore the applicability of such a simple approximate model we plotted the above 
amplitudes versus x/A in Figures 2 through 6. We note that in different diagrams in 
Figures 2 through 6 the frequency ~o and /~/~//%/~ are fixed. Only H, the depth of the 

• r  ............. ETA = 1 . 5 0  

A~PRo×IM~,IoN ~ : 0.7 

=1- i't 7 " , , , i i  
!t I i~ 
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-H 

°F  
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m i 

7 

. . . . . . .  THETA: 0 
. . . . . . .  THETI:q:30 

THETA=60 
THETA:90 

X/A 
FIG. 4 c .  

"equivalent" layer, changes with x/A and has been selected to correspond to the depth 
of the elliptical valley at x/A.  For Pv/P = 0.167 and pv/p = 0.667 the maximum 
amplitude of surface motion is 6. For deeper valleys, when / /var ies  more rapidly with 
x /A  and for larger values of ETA, it will be seen that some of the peaks of the above 
amplitude appear to be "cut off" and smaller than 6. This is merely a consequence of the 
finite number of points used in the computer program that plotted these amplitudes. 

Detailed comparison of the surface displacement amplitudes derived from the 
horizontal layer approximation with those derived from the exact solution in this paper 
shows that in some limited cases the horizontal layer approximation may lead to good 
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estimates of  surface ground displacements. It seems that coH/fl v should be less than n/2 
for this approximation to hold (Figure 2). For "deeper" alluvial valleys where the local 
depth exceeds flvn/2to, the approximate amplification pattern predicted by the horizontal 
layer model has nothing in common with the exact solution. This disagreement can be 
explained by the two-dimensional nature of  the exact problem displaying horizontal as 
well as vertical interference patterns, whereas the equivalent horizontal layer model can 
support only the interference of  SH waves in one dimension. 
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FIG. 5C. 

The two-dimensional focusing effects, especially in cases of  deep elliptical valleys, lead 
to large surface amplitudes between x/A = 0 and x/A = I. These amplitudes, often 
larger than 2/aflv/la~fl, are caused by the strong concentration and constructive inter- 
ference of  the waves incident from left and the waves reflected from the discontinuity 
~- = ~ o a t x / A  = 1. 

C O N C L U S I O N S  

The pattern of  surface displacement amplifications for the semi-elliptical alluvial 
valley has been found to change rapidly over short distances and the amplification accom- 
panying these rapid changes has been found to vary by as much as one order of  magnitude. 
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The overall degree of complexity of the amplification pattern and the observed maximum 
amplitudes both increase with the increasing frequency of the incident plane SH-waves. 
The computed amplification curves for the steady-state excitation seriously depend on 
the angle of incidence of the S H  waves. This dependence is reflected in the change of 
spectral amplitudes, complete disappearance and occurrence of local peaks, and the 
change in overall trends of the displacement amplitudes as 0 varies from 0 ° to 90 °. 

A comparison was made of the amplification patterns in the semi-elliptical valley 
with the amplifications derived from the simple horizontal layer overlying the half-space 
and excited by the vertically incident S-waves. The layer thickness has been selected to 
correspond to the local depth of the elliptical valley. It has been found that for a limited 
range of co,/~v, and H, given by ogH/ f l  v < n/2, the two amplification patterns agree for 
shallow alluvia! valleys. For ~ n H / ~  v > 7r/2 there is no resemblance between the exact 
and approximate amplitudes computed from the "equivalent" horizontal later. This 
conclusion seems to be important for many engineering applications when the explanation 
of the amplification effects possibly caused by the local soil conditions is attempted by 
employing the simple horizontal layer overlying the elastic half-space. 

ACKNOWLEDGMENTS 

We thank P. C. Jennings and J. E. Luco for critical reading of the manuscript and some useful com- 
ments. This research was supported in part by grants from the National Science Foundation and the 
Earthquake Research Affiliates Program at the California Institute of Technology. 

REFERENCES 

Abramowitz, M. and I. A. Stegun (1964). Handbook of  Mathematical Functions, National Bureau of 
Standards. 

Aki, K. and K. Larner (1970). Surface motion of a layered medium having an irregular interface due to 
incident plane S H  waves, J. Geophys. Res. 75, 933-954. 

Boore, D. (1970). Love waves in nonuniform wave guides: finite difference calculation, J. Geophys. Res. 
75, 1512-1527. 

Boore, D. M., K. H. Larner and K. Aki (1971). Comparison of two independent methods for the solution 
of wave-scattering problems: response of a sedimentary basin to vertically incident S H  waves, J. 
Geophys. Res. 76, 558-569. 

Dezfulian, H. and H. B. Seed (1969). Seismic response of soil deposits underlain by sloping rock boun- 
daries, Report No. EERC69-9, U. California, Berkeley. 

Gutenberg, B. (1957). Effects of ground on earthquake motion, Bull. Seism. Soc. Am. 47, 221-250. 
Haskell, N. (1960). Crustal reflection of plane S H  waves, J. Geophys. Res. 65, 4147-4150. 
Hudson, D. E. (1972). Local distribution of strong earthquake ground motion, Bull. Seism. Soe. Am. 62, 

1765-1786. 
Jennings, P. C. (Editor) (1971). San Fernando earthquake of February 9, 1971, Earthquake Eng. Res. 

Lab., EERL 71-02, Calif. Inst. of Tech., Pasadena. 
Meixner, J. (1954). Mathieusehe Funktionen und Sphiiroidfunktionen, Springer-Verlag, Berlin. 
Morse, P. M. and H. Feshbach (1953). Methods of  TheoreticalPhysies, McGraw-Hill, New York. 
Mow, C. C. and Y. H. Pao (1971). The diffraction of elastic waves and dynamic stress concentra- 

tions, U.S. Air Force Project Pand, R-482-PR, April, 1971. 
Richter, C. F. (1958). Elementary Seismology, Freeman, San Francisco. 
Sozen, M. A., P. C. Jennings, R. B. Matthiesen, G. W. Housner and N. M. Newmark (1968). Engineering 

Report on the Caracas Earthquake of  29 July 1967, National Academy of Sciences, Washington, D.C. 
Tsai, N. C. (1969). Influence of local geology on earthquake ground motion, Earthquake Eng. Res. Lab., 

Calif. Inst. of Tech., Pasadena. 
Trifunac, M. D. (1971). Surface motion of a semi-cylindrical alluvial valley for incident plane SH waves, 

Bull. Seism. Soe. Am. 61, 1755-1770. 

EARTHQUAKE ENGINEERING RESEARCH LABORATORY 
CALIFORNIA INSTITUTE OF TECHNOLOGY 
PASADENA, CALIFORNIA 91109. 

Manuscript received March 18, 1974. 


