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ABSTRACT 

A quantitative measure of the Modified Mercalli Intensity Scale for earth- 
quakes in ~he western United States has been developed by correlating the peak 
seismoscope relative displacement response, Sd, with the reported site intensity, 
IMM. This correlation can be approximated by 

1 100.288 IM M 

for IMM =< VIII and is characterized by one standard deviation of about 0.7 Sa. 
The data used in this study do not indicate an obvious type of dependence of Sa on 
local site conditions. 

A method for computing the analog of the local earthquake magnitude, 
Mseismoscope, has been presented for possible use in strong-motion seismol- 
ogy and for sealing earthquakes by close-in measurements, when other seismo- 
logical instruments may go off scale. 

INTRODUCTION 

Early notable attempts to develop simple strong-motion recording instruments that 
would provide the structural engineer with information on response spectrum amplitudes 
have been carried out by Galitzin (1913), Kirkpatrick (1927), Suyehiro (1926), and the 
U.S. Coast and Geodetic Survey (Ulrich, 1941). Based on these pioneering ideas and 
motivated by the increasing need for simple and inexpensive strong-motion recorders, 
the U.S. Coast and Geodetic Survey and the California Institute of Technology devel- 
oped the modern version of the strong-motion seismoscope (Hudson, 1958). Similar 
instruments were concurrently developed and deployed in the U.S.S.R. (Medvedev, 
1965) and later in India (Krishna and Chandrasekaran, 1965) and several other countries. 
In 1972, over 1,200 seismoscopes were reported to have been installed in at least 16 
countries (Fournier d'Albe, 1973), with the largest concentrations being in the U.S.A. 
(400), Yugoslavia (320), and the U.S.S.R. (197). 

During the last 15 years, numerous seismoscopes registered strong ground motion. 
These measurements were used to infer the overall response spectrum amplitudes (e.g., 
Cloud and Hudson, 1961), to study the variability of strong ground motion with distance 
from an earthquake source and site conditions (e.g., Hudson and Cloud, 1967; Hudson, 
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1971), and to fill in the detailed information on strong ground motion where accelero- 
graphs malfunctioned (Trifunac and Hudson, 1970) or were not available (Scott, 1973). 
In the U.S.S.R., seismoscope response has also been used for correlations with and 
determinations of intensity of ground shaking (Medvedev, 1965). 

The purpose of this paper is to explore and to suggest the possibility of an extended 
usage of this simple and rugged instrument. The motivation for our effort results from the 
fact that the number of installed seismoscopes is already sufficiently large and can pro- 
vide significant input to the overall problem of scaling and interpreting strong ground 
motion. 

We begin by developing correlations of seismoscope response with earthquake magni- 
tude and local site conditions. We show that on the basis of such correlations seismo- 
scope records might be used to infer the local earthquake magnitude in the epicentral 
region where other more sensitive seismological instruments normally go off scale. 
Subsequently, as proposed by Medvedev (1965), we develop correlations between the 
local estimates of earthquake intensity and seismoscope peak response, and in this way 
derive the approximate scaling laws for response spectra and Modified Mercalli intensities. 

To avoid possible constraints on the above-mentioned correlations that might result 
from~the limited amplitude range that can be recorded on the standard seismoscope 
recording glass ( S  a ~ 7.5 cm) and to increase the number of usable correlation points, 
we derive all correlations from the computed values of 186 seismoscope responses 
obtained from recorded strong-motion accelerograms. 

COMPUTATION OF SEISMOSCOPE RESPONSE 

The elementary theory of the response and the physical characteristics of the seismo- 
scope (Figure l) have been presented in previous papers (Hudson, 1958; Cloud and 
Hudson, 1961; Hudson and Cloud, 1967; Trifunac and Hudson, 1970) and will not be 
repeated here. Laboratory and field tests have further shown that seismoscope response, 
for small amplitudes, can be approximated by a system of two uncoupled second-order 
differential equations, that the effect of vertical accelerations can be neglected, and that 
the damping can be modeled by a constant equivalent viscous dash-pot (Trifunac and 
Hudson, 1970). 

For large deflections of the seismoscope pendulum, however, more refined theory is 
required, and the Coulomb-type friction between the smoked glass and the recording 
needle and the effects of vertical accelerations may be considered. If one neglects the 
contributions of torsional and higher modes to the calculated response, then the non- 
linear, coupled differential equations for the deflection angles ¢p and ~ (Figure 2) become 

~ + 2 o n ( ~ b + c o n  2 sin ~0 cos ~ = -(ogn2/g) (cos  ~0~:+sin cp;~) (la) 

~/+209n(~  +¢.On 2 s in  ~ cos cp -- --(O)n2/g) (COS ~by+sin @ ~). (lb) 

In these equations co n is the natural frequency of the seismoscope pendulum normally 
equal to 8.38 rad/sec, ( is the fraction of critical damping for equivalent viscously 
damped systems, and g is the acceleration of gravity. 2, y and ;~ represent the absolute 
components of acceleration of the pendulum support. For accurate response calculations 
the ( dependence on the recorded amplitude is as shown in Figure 3. This functional form 
has been confirmed by many laboratory experiments (Hudson, 1958). It represents a 
superposition of the viscous amplitude-independent (5 to 7 per cent of critical) damping 
resulting from the pendulum mass moving in the magnetic field (Figure 1) and the 
equivalent viscous damping coefficient, which results from Coulomb friction between the 
glass and the needle, and is inversely proportional to the response amplitude. 
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FIG. 1. Photograph of the Wilrnot seismoscope with protective cover removed. 
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FIG. 3. Functional dependence of the fraction of critical damping on the amplitude of the seismoscope 
response measured on the recording glass. 
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The distance between the midpoint of the pivot spring suspension and the top surface 
of the spherical standard watch glass is about 6.00 cm. This distance is required in con- 
verting the angular deflections of the pendulum into the recorded amplitude on the 
spherical glass surface. 

From the analogy of the differential equations describing the relative motion of a 
single degree-of-freedom viscously damped oscillator which is used in computations of 
relative displacement response spectra, Sd, and the equations for small amplitude 
seismoscope response, it can be shown that (Hudson and Cloud, 1967) 

gT z 
Sd = ~ 2  ~ . . . .  (2) 

where Tis the natural period of the seismoscope pendulum, normally 0.75 sec, and where 
:~ . . . .  measured in radians, is the largest angular deflection of the seismoscope pendulum 
relative to the z axis(Figure 2) during a particular excitation. The value of :t .... can be 
computed from the time histories (0(t) and 6(t). For large ¢p and ~ when nonlinear terms 
in equations (la) and (lb) become significant, equation (2), of course, ceases to corre- 
spond to its linear displacement spectrum analog. 

Although valid for large pendulum deflections ~0 and 6, equations (la) and (lb) neglect 
the contributions to the seismoscope response that may result from torsional, second 
(Scott, 1973), and higher modes of vibration of the seismoscope pendulum. However, in 
computing the synthetic seismoscope responses in this paper, we shall neglect those 
torsional and higher mode contributions because the comparison between the calculated 
and actually recorded seismoscope responses appears to be quite good. This has been 
demonstrated on several occasions (e.g., Figures 9 and  10 of Hudson and Cloud, 1967) 
when both a seismoscope and an accelerograph recorded strong ground motion at the 
same point permitting direct comparison of the recorded and computed seismoscope 
responses. 

CORRELATION OF SEISMOSCOPE RESPONSE AND MODIFIED MERCALLI INTENSITY 

Earthquake intensity scales are of necessity only descriptive and qualitative measures 
of vibrational effects caused by earthquakes. These scales depend on numerous factors 
that can change from one area to another. For example, the material and the type of 
construction used for residential, industrial and public buildings, the type of geological 
environment, the time of day when the earthquake occurs, public awareness of an existing 
earthquake hazard, the methods used in collecting and interpreting intensity data (e.g., 
Lomnitz, 1970), all can result in significant differences of intensity determination in 
various parts of the world. One possible remedy for these variations would be the estab- 
lishment of some instrumental basis for intensity determinations. 

One instrumental basis for the MKS intensity scale, now used in the U.S.S.R., has 
been proposed by Medvedev (1965). To this end a conical pendulum, with static magni- 
fication of 1.1, has been developed. This instrument, called an SBM seismometer, is very 
similar in construction to the Wilmot type seismoscope used in the U.S. (Hudson, 1958). 
It records on a spherical smoked glass, has a natural period of T = 0.25 sec, and the 
fraction of critical damping ( = 0.08. By recording ground motions caused by earth- 
quakes, explosions and machine vibrations, the empirical correlation between the MKS 
intensity scale (Medvedev and Sponheuer, 1969) and the maximum recorded amplitude 
on the SBM seismometer has been established (Medvedev, 1965). 

To develop similar correlations between the Modified Mercalli intensity and the 
maximum amplitude on the Wilmot Seismoscope (T = 0.75 sec, ( ~ 0.10), we calculated 
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synthetic seismoscope responses for 186 strong-motion accelerograph records (Trifunac 
and Brady, 1975) now available in digital form. These accelerograms represent the best 
strong-motion data recorded between 1933 and 1971 in the western United States and 
are representative of earthquakes with magnitudes ranging from M = 4 to about M = 
7.5. The Modified Mercalli intensity levels at the recording sites were estimated from the 
isoseismal maps produced in the annual publication "United States Earthquakes" by 
the U.S. Department of Commerce. Where detailed intensity levels were indicated in 
these maps close to a recording site, these levels took precedence over the isoseismals. The 
resulting intensity levels range from Ill  to X, although the 186 accelerograph records 
provide adequate data only for the intensities V, VI and VII. 

T A B L E  1 

AVERAGE SEISMOSCOPE RESPONSE COMPUTED FROM 186 
ACCELERATION RECORDS 

o 
Modified One Standard 
Mercalli ,~a Deviation No. 
Intensity (cm) of Sd (cm) of Data  

I l i  0 .30  - -  1 * 

IV 0.43 0 .19  3 

V 0 .52  0 .40  34* 

VI  1.14 1.03 66* 

VI I  2 .55 1.52 75 

VI I I  3.63 2 .06  6 

I X  - -  - -  - -  

X 23 .5  - -  1 

Total 186 

*In Table 3 of Trifunac and Brady (1975) the number 
of data listed for intensities III, V and VI are 2, 33 and 67, 
respectively, rather than those listed above. These changes 
reflect the latest improvements in the classification of the 
basic data-set and in no way affect the results and infer- 
ences presented in this or our previous paper. 

Most of the above 186 accelerograph records have been registered on alluvium or in a 
"soft" geological environment (117 of 186 or 63 per cent) or on "intermediate" sedi- 
mentary type rocks (54 of 186 or 29 per cent). Only a few records are available from 
strong-motion stations located on "hard"  rock (15 of 186 or 8 per cent). For simplicity 
of notation in this paper, the data or the derived results that correspond to the stations 
recording on "soft," "intermediate," or "hard"  rocks will be labeled by the arbitrarily 
chosen symbols 0, 1, and 2, respectively. The simplified geological data used to select 
these 0, 1, and 2 labels and the methods employed in their selection have been presented 
in our previous paper (Trifunac and Brady, 1975). 

Table 1 and Figure 4 give the average maxima of the seismoscope responses and their 
standard deviations for different Modified Mercalli intensities. It is seen that both ga and 
its standard deviation rapidly increase for higher intensities. As already mentioned, the 
number of data points is adequate to define Sa for the Modified Mercalli intensities V, 
VI and VII only. However, to present all available information, we included even the 
single point measurements in Figure 4. 

It should be noted here that Table 1 and Figure 4 present the S a data versus the Modi- 
fied Mercalli intensity, which is normally reported in terms of integer values, only for 
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convenience in computations. Since the seismoscope response Sa is an instrumental 
measurement, it represents a more accurate quantity than a Modified Mercalli intensity 
level and the scatter of S a versus the Modified Mercalli intensity in Table 1 and Figure 4 
most probably is due to the poor accuracy of the intensity scale levels. 

The functional relationship between the average Sn seismoscope reading and the 
Modified Mercalli intensity cannot be derived from basic physical principles because the 
earthquake intensity scale has no physical units. It has been derived by adopting a set of 
conventions and definitions which give a qualitative but not quantitative description of 
the level of shaking. By developing the empirical correlations of the type proposed by 
Medvedev (1965), it may eventually become possible to "calibrate" various intensity 
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FIG. 4. Average maxima of both the computed and observed seismoscope responses and their standard 
deviations for different Modified Mercalli intensities (see Tables I and 2). 

scales by assigning to each intensity level a certain range of possible amplitudes recorded 
on seismoscopes, accelerographs, seismometers or other related instruments. The data 
we have at our disposal to date are certainly not adequate for this purpose but can be 
used to derive the preliminary and approximate correlations. One such correlation that 
can be used for preliminary prediction of Sd could be of the following form 

1 
Sa(cm) ~ ~ 10°'2881MM; |MM <VIII,  (3) 

where IMM represents the Modified Mercalli intensity. The data of Table 1 suggest that 
the average standard deviation of S a would be of the order of 0.7 Sa. 

To test the validity of the simplified seismoscope model (Figure 2) and the methods of 
integrating the equations (la) and (lb) and thus the quality of the derived correlations in 
Figure 4, Table 1 and our subsequent analysis, we correlated 116 seismoscope readings 
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(Hudson, 1971), which were recorded in the greater Los Angeles area during the San 
Fernando, California, earthquake of February 9, 1971, with the corresponding Modified 
Mercalli intensity. The results of this correlation are given in Table 2 and Figure 4. As 
may be seen from Figure 4, the agreement between the trends indicated by the measured 
and calculated seismoscope responses is very good. We interpret this to mean that our 
method of computing the seismoscope response can be used as a substitute for actual 
seismoscope recordings. This is clearly a useful result, since it allows us to derive numer- 
ous correlations involving seismoscopes in the absence of actual seismoscope recordings. 

In developing the above correlations (Tables 1, 2, Figure 4), we tabulated the Sa 
readings irrespective of the local site and geological conditions at the recording stations. 
Since the peaks of strong ground motion appear to be influenced by the type of site 
conditions (Trifunac and Brady, 1975), it is appropriate to examine to what extent those 
conditions may also be reflected in the seismoscope records computed from the same list 
of 186 accelerograph records. The results of such analyses have been presented in Table 3 
and Figure 5, where S e and its standard deviation have been tabulated versus Modified 
Mercalli intensity and for different site classifications. Perusal of Table 3 shows that the 
number of data used in this analysis is barely adequate to suggest the possible trends of 
Sa and its standard deviation for intensities V, VI and VII and shows that many more 
recordings will be required before we can develop reliable inferences on what effects the 
site conditions may have on the recorded seismoscope response. Thus, the data plotted 
in Figure 5 may eventually merge into a well-defined trend that might result from the 
effects of geological conditions at the recording site, but does not, at this time, indicate 
any obvious trends. In fact, some variations of Sd and its standard deviation in Figure 5 
and Table 3 may be accidental and result from averaging over a small number of points 
which are not representative of the whole population. 

CORRELATIONS OF SEISMOSCOPE RESPONSE WITH MAGNITUDE AND 

SITE CONDITIONS 

Typically, an earthquake magnitude is proportional to the logarithm of the peak 
amplitude of a seismogram recorded by a standard instrument. Starting from this 
elementary definition, numerous magnitude scales have been developed for different 
source-to-station distances, different types of recorded waves and for a variety of instru- 
ments employed (e.g., Richter, 1958). 

At close distances, typically less than 50 km, the amplitudes of ground motion caused 
by even moderate earthquakes drive the conventional seismic instruments off scale and 
the computation of magnitude must depend on more distant recordings. This leads to 
several problems, the most important one being that in some cases no quick and local 
information on the size of an earthquake may he available when the rescuing authorities 
need it most. Therefore, it is especially fortunate when a strong-motion aceelerograph is 
located so as to record near-field strong ground motions and thus provide statistics on the 
local magnitude characteristics. 

One simple and inexpensive solution to this problem seems to be the use of the seismo- 
scope. Although only sensitive to a narrow band of input frequencies centered about its 
natural frequency of 1.33 Hz, the seismoseope offers additional advantages in that it 
represents a simple building model and thus also provides direct information on the 
amplitude of response spectrum curves. With this in mind, we develop the correlations 
between the peak seismoscope relative displacement response Sa and the magnitude 
scale by using 182 accelerograph recordings obtained from 57 earthquakes in the Western 
United States (see Table 2 of Trifunac and Brady, 1975). 
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TABLE 2 

AVERAGE OBSERVED SEISMOSCOPE 
EARTHQUAKE 

DATA FROM S.F. 

Gsd 
Modified One Standard 
Mercaili Sa of Deviation No. 

Intensity (crn) Sa (cm) of Data 

VIII 6.70 - -  1 
VII 2.34 1.07 40 
VI 1.20 0.84 52 
V 0.34 0.28 23 

Total 116 

TABLE 3 

AVERAGE SEISMOSCOPE RESPONSE COMPUTED FROM 186 
ACCELERATION RECORDS AND FOR DIFFERENT SITE 

CLASSIFICATIONS* 

tr 
Modified One Standard 
Mercalli ~ Deviation No. 

Intensity (cm), of Sa (cm) of Data 

III-0 0.30 
III-1 
III-2 
IV-0 0.70 
IV-I 0.3O 
IV-2 
V-0 0.55 
V-1 0.47 
V-2 0.60 
VI-0 1,02 
VI-I 1.35 
VI-2 1.41 
VII-0 2.40 
VII-1 3.01 
VII-2 2.02 
VIII-0 3.63 
VIII-1 
VIII-2 
X-0 
X-I  
X-2 23.5 

0.45 17 
0.31 15t 
0.50 2 
0.80 43 
1.30 16~ 
1.35 7 
0.98 49t 
2.31 21t 
1.14 5 
2.06 6 

Total 186 

*See Trifunac and Brady (1975). 

t in  Table 5 of Trifunac and Brady (1975) the "number 
of data" listed for intensities V-I ,  VI-I ,  VII-0 and VII-1 
are 14, 17, 50 and 20 rather than those shown above. 
These changes reflect the latest improvements in the 
classification of the basic data-set and in no way affect the 
results and inferences presented in this or our previous 
paper. 
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For most earthquakes studied in this paper, the magnitude determination has been 
arrived at by using the standard definition of the local Richter magnitude M L (Richter, 
1958) 

M L = loglo A - l o g l o  Ao(A), (4) 

where A is the amplitude in millimeters recorded on the standard Wood-Anderson seismo- 
graph whose natural period is 0.8 sec, static magnification V s = 2800, and the fraction of 
critical damping is 0.8 to 1.0. The empirically determined A o(A) represents the amplitude 
in millimeters with which a standard seismometer would register an earthquake of 
magnitude zero. Table 4, reproduced from Richter  (1958), gives log~o Ao(A ) versus 
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FIG. 5. Average m a x i m a  of  seismoscope response computed  f rom 186 acceleration records and  their 
s tandard  deviations,  for different Modified Mercalli intensities and  for different site classifications 
(see Table 3). 

distance. In analogy with the definition (4), we can propose the magnitude derived from 
seismoscope record, Mseismoscope, to be 

Msei . . . . . .  p~ = log 1 o Sd(cm) + 1 - log 1 o A o(A) + log 1 o 2800 - 

- log1 o (seismoscope transfer function). (5) 

it is convenient to incorporate the effects of  scaling and the transfer function into one 
seismoscope scaling factor defined by 

log 1 o Sao = log1 o (seismoscope transfer function) - 1 - log1  o 2800. 

For a lightly damped seismoscope with the fraction of critical damping equal to about 
0.10 and for a steady state sinusoidal excitation, the amplitude of the seismoscope trans- 
fer function at its natural frequency would be 1/2~ ~ 5. This would then give 

log ~ o Sao = log I o Sd(Cm) -- Msoi . . . .  c o p e  - -  log 1 o A o(A) ~ - 3.75. (6) 

To calculate the lOglo Sao for different magnitudes and recording site classifications, 
we substituted the reported earthquake magnitudes for Ms~ismo~cop e in equation (6), 
computed log1 o Sd(Cm) from the maximum of the synthetic seismoscope response, and 
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computed  log~o Ao(A) f rom Table 4 by using the known epicenter  to s tat ion distance. 
F o r  the four  magni tude  intervals M = 4.0 to 5.0, 5.0 to 6.0, 6.0 to 7.0, and 7.0 to 8.0 
and  three site classifications 0, 1, and 2, we then least-squares fitted the best  es t imate of  
l og lo  Sa o. Table  5 and Figure  6 summarize  the results ob ta ined  in this way. As may  be 
seen f rom Figure  6, the scaling factor  log1 o Sdo decreases with magni tude  in a way that  
emphasizes the progressively smaller  influence of  larger  repor ted  magni tudes  on the 
ampl i tude  o f  seismoscope response. This is in agreement  with our  previous work  
(Trifunac,  1973) which suggested that  close to the source o f  energy release the stress 
d rop  and  the final D C  componen t  of  g round  displacement  should govern the overall  

TABLE 4" 

LOGARITHMS'~ OF THE AMPLITUDES Ao IN MILLIMETERS, WITH WHICH A 
STANDARD TORSION SEISMOMETER (To = 0.8, V= 2800, h = 0.8) 

SHOULD REGISTER AN EARTHQUAKE OF MAGNITUDE ZERO 

A A A 
(km) - log A o (km) -- log A o (km) - log Ao 

0 1.4 150 3.3 390 4.4 
5 1.4 160 3.3 400 4.5 

10 1.5 170 3.4 410 4.5 
15 1.6 180 3.4 420 4.5 
20 1.7 190 3.5 430 4.6 
25 1.9 200 3.5 440 4.6 
30 2.1 210 3.6 450 4.6 
35 2.3 220 3.65 460 4.6 
40 2.4 230 3.7 470 4.7 
45 2.5 240 3.7 480 4.7 
50 2.6 250 3.8 490 4.7 
55 2.7 260 3.8 500 4.7 
60 2.8 270 3.9 510 4.8 
65 2.8 280 3.9 520 4.8 
70 2.8 290 4.0 530 4.8 
80 2.9 300 4.0 540 4.8 
85 2.9 310 4.1 550 4.8 
90 3.0 320 4.1 560 4.9 
95 3.0 330 4.2 570 4.9 

100 3.0 340 4.2 580 4.9 
110 3.1 350 4.3 590 4.9 
120 3.1 360 4.3 600 4.9 
130 3.2 370 4.3 
140 3.2 380 4.4 

*Reproduced from Richter (1958). 
tSince A o is less than 1, its logarithm is negative, and the table shows 

values for - log A o. 

shape  of  the response spectra,  while the influence o f  magni tude  progressively diminishes.  
A s  seen in F igure  6, the slope defined by the two averages of  log1 o Sdo for  0 site classifica- 
t ion  and for  magni tude  intervals 6.0 to 7.0 and  7.0 to 8.0 is a lmos t  equal  to - 1 ,  indicat-  
ing  tha t  the peak  seismoscope response and therefore the response spect rum ampl i tudes  
a re  pract ica l ly  independent  of  magni tude  in the magni tude  range larger  than abou t  6. A 
more  precise descr ip t ion  of  the dependence  of  log1 o Sao on the magni tude  scale and  the 
de te rmina t ion  of  the magni tude  for  which the slope of  log 10 Sao ceases to be magni tude-  
dependent  will, o f  course,  have to awai t  a more  abundan t  set of  accelerograph data ,  
covering a much larger  magni tude  range and recorded on a more  comple te  sample  of  
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different recording  sites than the da ta  we have at  our  disposal  now. In the meant ime,  we 

hope  that  the t rends indicated in F igure  6 will prove useful for  the pre l iminary  correla-  

t ions of  seismoscope da ta  and repor ted  ear thquake  magni tudes ,  as well as for  the 
app rox ima te  predict ions  of  ea r thquake  magni tude  where only seismoscope records are 
available.  

Recent  source mechanism studies o f  s t rong ground  mot ion  close to the ea r thquake  
energy release (e.g., Trifunac,  1972a; 1972b), as well as numerous  teleseismic observa-  
t ions of  body-wave  spectra (e.g., Hanks  and Wyss,  1972), have demons t ra ted  that  large 

TABLE 5 

DEPENDENCE OF LOG.to(SaD ) ON MAGNITUDE AND SITE CONDITIONS 

Cr 
One Standard 

Magnitude Site log~o (SAD) Deviation No. 
Range Classification* (era) logj o (Sdo) of Data 

4-5 0 - 3.028 0.242 4 
4-5 l - 3.339 0.296 3 

5-6 0 - 3.353 0.460 23 
5-6 1 - 3.470 0.328 15 
5-6 2 - 3.739 0.408 3 

6-7 0 - 3.651 0.308 83 
6-7 1 - 3.699 0.291 33 
6-7 2 - 3.938 0.469 11 

7-8~ 0 - 4.455 0.248 7 

Total 182+ + 

*See Trifunac and Brady (1975). 
tFor most earthquakes used in this work, the magnitude has been 

calculated from the Wood-Anderson seismograph records and repre- 
sents, by definition, the Local Richter magnitude ML. For earthquakes 
larger than about 6.5 to 7.0, local stations usually go off scale and the 
"magnitude" has to be determined from other teleseismic seismograms. 
For this reason, there may be systematic deviations between the magni- 
tude estimates for shocks less than and greater than 6.5 to 7.0. 

~The four calculated seismoscope records not included in this table 
either had the assigned magnitude less than 4.0 or no magnitude infor- 
mation was available. 

ear thquakes  lead to progressively greater  energy content  in the long-per iod  waves, while 
the high-frequency end of  the d isplacement  spectrum falls off like co-2 to co-3. The 
intui t ive physical  basis for such scaling has been given by Brune (1970) who p roposed  an 
approx imate  shape of  ea r thquake  displacement  spectra based on the co- 2 fal loff  at  high 
frequencies and  with a flat D C  displacement  spectrum ampl i tude  p ropor t iona l  to the 
seismic moment .  In this theory the corner  frequency, where the flat D C  spectrum ampl i -  
tude begins to fall off like co-2, decreases with increasing seismic momen t  and /o r  the size 
of  an ear thquake.  Thus,  when the p redominen t  f requency band of  the recording instru-  
ment  is at  frequencies smaller  than the corner  frequency, the magni tude  derived f rom the 
peak of  a se ismogram may  be expected to be representat ive o f  the ea r thquake  "magn i -  
t ude" ;  while if  the frequency band is higher  than the corner  frequency, the peak  on a 
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seismogram becomes more representative of the amplitude of the o9-2 part of the dis- 
placement spectrum. 

The Wood-Anderson seismometer, which represents the standard instrument for pub- 
lished magnitudes for the majority of earthquakes studied in this paper, has a transfer 
function proportional to f2 for frequencies shorter than 0.8 Hz and equal to unity for 
frequencies higher than 0.8 Hz. Thus, for small earthquakes having high corner fre- 
quency (> 1 Hz), the Wood-Anderson instrument can sample the amplitudes of the flat 
portion of the displacement spectrum quite well. For large earthquakes, as the corner 
frequency becomes smaller than about 1 Hz, the Wood-Anderson seismometer samples 
the amplitudes of the high-frequency spectra and ceases to grow with magnitude (Brune, 
1970). 
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Fie. 6. Dependence of Iogto(Sdo) on magnitude and site classification (see Table 5). 

When a seismoscope is used for magnitude determinations, the above qualitative 
discussion should become even more applicable since a seismoscope samples only a 
narrow part of the input displacemev.t spectrum close to 1.33 Hz. Therefore, it might be 
expected that the scaling given by log1 o Sdo should be nearly constant for small magni- 
tude earthquakes, whereas for large magnitudes it would decrease by one for each unit of 
increasing magnitude, if one were to assume that the amplitude of the 09- 2 portion of the 
displacement spectrum has some absolute maximum which is independent of earthquake 
magnitude (Brune, 1970; Thatcher and Hanks, 1973). 

The effect of site classification on loglo Sdo is consistent for all magnitude ranges 
covered by the available data. Although not significantly different in all cases, the mean 
values of log1 o Sdo are consistently smaller for "intermediate" and "hard" sites than for 
the "soft" sites. These differences show that the seismoscope response recorded on "soft" 
alluvium can be up to ~2.5 times larger than the corresponding response on "hard" 
rock formations. 
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Rewriting equation (6) 

Mseismoscop e = logxo Sd(Cm)--log1 o A0(A)-log I o Sao (6) 

and using Tables 4 and 5, one can compute the Ms~ismoscoo ~ magnitude by observing the 
maximum deflection on seismoscope records, c~ . . . .  and by computing S a from equation 
(2). If many seismoscope records are available, then one standard deviation of such an 
estimate, obtained by averaging over all seismoscope records, may be on the average 
0.35 magnitude units (Table 5), which is close to the accuracy with which the local 
Richter magnitude, ML, can be determined (Richter, 1958). 

The difficulty in this approach, however, arises from the fact that the log10 Sao is 
magnitude-dependent and that several iterations may be required before one arrives at an 
estimate of the Mseismoscop e magnitude. For large earthquakes where loglo Sao versus 
magnitude attains the slope of -1 ,  i.e., the seismoscope response becomes insensitive to 
earthquake magnitude, the above method of computing Mseismoscop e breaks down and, 
of course, should not be used. Precisely at what magnitude level this takes place cannot 
be determined from the present set of data, and one can only guess that this is probably 
in the range of magnitude 6 or 7. 

If one does know the approximate magnitude range for the earthquake studied, the 
standard error of each individual estimate of magnitude determined from a seismoscope 
record would be about 0.35 magnitude units. If one does not know the range of possible 
magnitude of an earthquake and one works 0nly with Tables 4 and 5 using the trial and 
error procedure, the results may not be unique, i.e., there may be two magnitude esti- 
mates for the two adjacent magnitude intervals given in Table 5 and Figure 6. In that 
case, the error of an estimate can be as large as one magnitude unit. In normal circum- 
stances, however, at least several seismoscope records will be available, and by averaging 
the results from all seismoscopes the accuracy of the determined magnitude may be 
significantly improved. 

The important assumption in deriving equation (6) and subsequently the average 
values of log1 o Sdo (Table 5) has been that the apparent attenuation with distance for the 
Western United States can be adequately described by the empirical data in Table 4. 
These data have been tabulated by Richter (1958) and result from numerous calcula- 
tions of the local magnitude scale. Therefore, our results in Table 5 merely represent an 
extension of the methods used by Richter in deriving the definition of the local magnitude 
scale. The magnitude-dependent changes of log~ 0 Sao (Table 5 and Figure 6) then reflect 
the inferred variations between our estimate of the local magnitude in terms of Mseismoscop e 

and the "magnitude" reported in the literature for the 57 earthquakes used in our 
analysis. For the majority of shocks used in our work, the reported magnitude does 
represent the local Richter magnitude. For larger earthquakes, however, when the local 
Wood-Anderson instruments go off scale, the magnitude reported in the literature and 
used in our correlations represents the surface-wave magnitude. Table 2 of our paper 
dealing with the correlation of seismic intensity scales with the peaks of recorded ground 
motion (Trifunac and Brady, 1975) gives all pertinent data for the 57 earthquakes studied 
in this paper and lists their assigned magnitudes. 

CONCLUSIONS 

In this paper, we presented correlations of peak seismoscope response Sd with the 
Modified Mercalli intensity. Although the range of the seismoscope response has been 
found to vary appreciably for a given intensity level, IMM, illustrating the imprecise 
nature of scaling the level of strong shaking with the Modified Mercalli intensity, there is 
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a definite trend of the mean seismoscope response which can be approximated by 

1 .~ 100.2 88IMM, s d  ~ 

for IMM < VIII. In the absence of reliable estimates of intensity of strong ground shak- 
ing, when seismoscope records are available, this correlation can prove useful in supply- 
ing additional intensity information. Since the seismoscope represents a typical building 
vibrating at its first mode with the period of 0.75 sec and fraction of critical damping 
equal to 10 per cent, the above correlation also provides means for predicting the 
expected amplitude of the relative displacement response and the pseudo-relative 
velocity spectrum. 

By subdividing all available data into three groups, corresponding to the type of 
geological formations underlying the recording stations used in this study, we found no 
systematic trends in the above correlation that would indicate strong dependence on site 
conditions. 

We extended the standard methods used for calculation of the local earthquake 
magnitude, ML, and applied them to the calculation of the local magnitude, Mseismoscop e, 
using the recorded peak of the seismoscope relative displacement response S a. We found 
that the scaling function that relates the magnitude computed from the seismoscope 
reading, Sa, with the magnitude reported in the literature is strongly magnitude-depen- 
dent. We found that the data used in this study is not adequate to describe this magni- 
tude-dependent scaling factor over a sufficiently broad magnitude range of practical 
interest. The available data indicate, however, that there exists an upper bound for Sa, 
and therefore the relative displacement spectra, which is practically attained for an earth- 
quake with magnitude somewhere between 6 and 7. 
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