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CHARACTERIZATION OF RESPONSE SPECTRA T H R O U G H  THE 

STATISTICS OF OSCILLATOR RESPONSE 

BY F. E. UDWADIA AND M. D. T R I F U N A C ,  

ABSTRACT 

This paper presents the physical relationships that exist between the response 
spectra and the Fourier Transform of strong-motion accelerograms through 
the extreme value statistics of oscillator response. Under the assumption of a 
stationary response, it has been shown that the spectrum value depends only on 
two parameters: arms, the root-mean-square-value of the response, and, ~, a 
parameter which measures the distribution of the energy among the various 
frequencies. The influence of these parameters on the response statistics together 
with their physical meaning in terms of the oscillator's characteristics have 
been studied. 

Comparisons with the Damped Fourier Transform (Udwadia and Trifunac, 
1973) computed velocity spectra and the statistically calculated maximum 
response are presented for three typical accelerograms. The results indicate that 
response spectra based on statistical computations lead to good first approxima- 
tions of the actual response to strong ground motion. 

In addition to characterizing the response spectrum with statistical curves 
expressing the expected value and the most probable value of the peak response, 
the 5 and 95 per cent confidence levels are also indicated, thus giving the lower 
and upper bounds for these statistical spectral estimates. These confidence levels 
delineate the 90 per cent confidence interval. 

INTRODUCTION 

In recent years, spectrum techniques have gained wide popularity in the analysis and 
design of earthquake-resistant structures. However, our inability to predict the exact 
time history of ground motions at a given site has led us to look into the statistical nature 
of the response of a structure to a stochastic excitation. This paper attempts to correlate 
the response spectrum of a damped oscillator to the Fourier transform of  the input 
through the statistics of the peaks of the response. 

Several researchers have worked on the response of structures to random excitations. 
However, it has been generally assumed that these excitations are white in character 
(e.g., Bycroft, 1960; Rosenblueth and Bustamante, 1962; Rosenblueth, 1964). Crandal 
(1970) has studied the statistics of the time associated with the first passage of an oscillator 
response above a preset limit. Extensions of the first passage problem to nonstationary 
excitation have been reported by Corotis et al. (1972). 

This paper has been motivated by the need for a simple statistical tool for the deter- 
mination of earthquake response spectra. It attempts to tie in the Damped Fourier 
Spectrum (Udwadia and Trifunac, 1973), Response Spectra and Fourier transforms with 
the statistical estimates obtained. The study throws light on the parameters that princi- 
pally govern the peak response and delineates the extent to which they affect it in a 
statistical sense. In the discussion that follows, we will assume that the input is a stationary 
process with an arbitrary power-density function. Although strong shaking is not an 
ergodic process (and hence the response of an oscillator to it is likewise not ergodic) 
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(Bogdanoff et al., 1961) in order to highlight the relationships between the Fourier 
Amplitude Spectrum and the extreme values of the oscillator response, as a first approxi- 
mation, we will assume that the response can be described adequately by the theory of 
random ergodic processes. The specific properties of random functions (Rice, 1954) 
which have been discussed here are related to the distribution of extreme values, the 
expected values of the maxima in a given time interval and the relationship of these 
maxima to the rms value of the functions. 

The results of the statistical analysis have been applied to the response of an oscillator 
and the correlations obtained have been discussed in the light of the oscillator's charac- 
teristics and the underlying assumptions in the theory. 

The distribution of  maxima of  the maxima of  a random function. We begin by sum- 
marizing briefly kome of the basic results first derived by S. Oi Rice (1954) and later 
extended by Cartwright and Longuet-Higgins (1956). They consider a random function 
f( t) ,  represented as the sum of an infinite number of sine waves 

f ( t )  = ~c ,  cos(~o,t + ~o,) (1) 
n 

with frequencies, co,, distributed densely in the interval (0, or) and phases, ~o,, assumed 
to be random and uniformly distributed between 0 and 2g. In our applications f ( t )  will 
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FIG. 1. Graphs of p(r/), the probability distribution of the heights of maxima for various values of e. 

represent the response of an oscillator to the earthquake ground motion; E(~o), the energy 
spectrum off(t),  is related to the amplitudes c, through 

~o+dw 

Z ½c, 2 = E(co) do). (2) 
t an=~ 

The total energy per unit length of the record, corresponding to the first moment of 
E(co) about the origin, is 

m o = ~E(o))  do) (3) 

while the n th moment is defined by 

m .  = .[;°E(~o)~o" d~o. (4)  

Detailed analyses of the statistical distribution of the maxima of f ( t )  (Cartwright and 
Longuet-Higgins, 1956) show that this distribution depends on only two parameters: 
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the root-mean-square value o f f ( t , )  mo 1/2, and a parameter e measuring the relative 
width of the frequency spectrum E(~o), and defined by 

e 2 1 FH22 
= - - -  (5) 

morn, ," 

From the Cauchy-Schwartz inequality, e cannot be imaginary. 
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FIG. 2. Three types of  energy spectra illustrating the dependence of  e on the shape of the power spectrum. 

After normalizingf(t) by 
f ( t ) /mo 1/2 - -  /7 (6) 

the probability distribution of the heights of the maxima o f f ( t ) / m  o ~/2 becomes 

n(1 -E2) 1~2 

, [  f ] p(t/) (2rc)i/z e exp -2- +(1-ez ) l / z t / exp( -½r /z )  exp(-½xZ)dx 

- c o  

(7) 

(Cartwright and Longuet-Higgins, 1956) and is shown in Figure 1. The statistical distri- 
bution of the minima is the reflection of(7) in the mean level t/ = 0. 

Physically, the parameter e is a measure of the relative proportions of the various 
frequencies contained in a signal. To fix our ideas on this parameter, let us determine 
values for the three energy spectra indicated in Figure 2(a, b, c). Figure 2a indicates the 
spectrum of a pure sine wave. The values of the zeroth, second and fourth moments are 
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a, a0)o 2, and a0)o 4 so that e = 0. The corresponding distribution given by equation (7) 
then reduces to 

t/exp(--½t/2) t/ > 0 
p(~)  = (8) 

0 ~___0 

showing that for an infinitely narrow spectrum, p(t/) becomes a Rayleigh distribution. 
For the rectangular block shown in Figure 2b, ~ = 2/3. The flat nature of the spectrum 

is indicative of equal proportions of high- and low-frequency contents. Figure 2c indi- 
cates two delta functions at frequencies 0) 0 and 50)0 of strengths a and b (=fla). For 
such a spectrum 

(1  "l- 6 2 f l )  2 
/ 3 2 = 1  - 

(1 +/~)(1 + ~4/~) 

the value of e depends on the relative strengths of the two waves together with their 
frequency separation. For a fixed 6 = 6o, if/3 ~ 0, or fl --* o% e ~ 0, and we get the 
single sine wave case. When, for example, 5 ~ 1/fl 1/2 and fl ~ 0, e ~ 1 thereby indicat- 
ing a shift towards a Gaussian distribution. The distribution of maxima tends to the 
distribution of/(t)/mol/2. In this case, we might expect equal numbers of positive and 
negative maxima of f(t)/mo 1/2 and, therefore, a p(t/) symmetric about t/ = 0. Indeed, 
setting e = 1 in (7) we obtain 

p(t/) = (2~)- 1,,2 exp(_½q2) (9) 

which is the Gaussian distribution. For values of e between 0 and 1, pO1) lies between 
the Rayleigh and Gaussian distributions as shown in Figure 1. 

An example in Figure 3 illustrates how e measures the relative width of the power 
spectrum of the response of a single-degree-of-freedom system to a stationary excitation 
having a power spectrum given by 

1 

The transfer function of a single-degree-of-freedom system is given by 

1 
H(0)) -- (11) 

(.On 2 - -  0 )  2 - -  2i0).{0) 

where 0), is the natural frequency of the oscillator and { is the fraction of critical damping. 
The dimensionless parameter 

- (12) 
(-On 

is a measure of  the width of the input spectrum relative to the natural frequency of the 
oscillator considered. Figure 3 then shows that when ~, the fraction of critical damping, 
tends to zero, i.e., when the peak of the transfer function H(0)) at co = co, becomes 
sharper and higher, the oscillator becomes increasingly more sensitive only to the input 
frequencies co ~ co, and the output spectrum reduces to a narrow band centered at 
co = co, with e ~ 1. In the other extreme case, when ~ --* 1 the oscillator "feels" all 
frequencies between 0 and 0), equally well, the output spectrum broadens and e ~ 1. 
In addition to this effect of  4, the influence of the cut-off frequency c~ of the input spec- 
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trum on e, also shown in Figure 3, demonstrates that for the broad-band excitation only 
small ~ leads to a "narrow" output spectrum as measured by e. 

The expected value and the most probable value of the maximum wave amplitude. 
Let the peaks of the function fit) be denoted by a s, a2 . . . .  a,, the rms value of f ( t )  be 
denoted by arms and let 8 denote ~/2arms. 8 may then be interpreted as the rms value of 
the peak amplitudes when f i t)  is a narrow-band process (i.e., e is small) (Udwadia and 
Trifunac, 1973). 

The probability distribution of a . . . .  the maximum wave amplitude, can then be 
derived by assuming that the sampling of the peak amplitudes is at random. Strictly, 
this assumption does not hold, since the sample consists of N consecutive peaks bounded 
by a slowly fluctuating amplitude, and there must be some correlation between the 
consecutive peaks especially when the power spectrum of f i t )  is narrow. However, as 
pointed out by Longuet-Higgins (1952). fluctuations of the envelope function may act as 
a "randomizing" process leading to a better agreement between the observed and 
theoretical distributions. 
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FIG. 3. Graph of e as a function of the percentage of critical damping, ~, of a single-degree-of-freedom 
system subjected to the band limited (from 0 to c~ radians/sec) signal q~ (co). 

It can be shown that the expected value for e = 0 is given by 

E(amax) ~/rc( N ( N - 1 ) + N ( N -  1)N+ 1 ) 5 - ~ N -  1 ) ( N - 2 ) + . . . ( _  1 (13) 
2 3 

(Longuet-Higgins, 1952) where N is the number of waves considered in the sample. 
The asymptotic form of equation (13) for large N becomes 

E(am.x) ~ (lnN) l/Z +½?(INN)- 1/z (14) 
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where ? is Euler's constant equal to 0.5772. The difference between the expressions on 
the right-hand sides of equations (14) and (13) is of order (lnN)-3/2 and does not affect 
the approximate result even for small values of N (Udwadia and Trifunac, 1973). 

The most probable peak amplitude, designated by/~(a, ax), can be approximated by 

/~(amax) ~ [lnN]~/z (15) 

(Longuet-Higgins, 1952). 
For nonzero values of t ,  equation (14) becomes 

E(am.x) [ln(1 -~z)I/eN]I/2 + ½y[ln(1 - e2) 1/2N]- x/z (16) 

and is valid only when (1 -z2) l /2N is large (Cartwright and Longuet-Higgins, 1956). 
Although the above expression is strictly invalid for ~ ~ 1, the results obtained from 
equation (16) for e = 0.990 do not differ appreciably from Tippett's (1925) exact results 
for values of N > 3 (Udwadia and Trifunac, 1973). As ~ ~ 0 (16) reduces to (14). 
Figure 4 and Table 1 give the values of g(amax)/a for ~ = 0, 0.2, 0.4, 0.6, and 0.8 derived 
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FIG. 4. Asymptotic approximation for the expected peak value E(am.x) when (1 -,~2)1/2N is large. 

from (16). From this Figure, we observe that the value of E(amax)/5 does not vary appre- 
ciably with either N or e. The most critical factor then in the determination of E(amax) is 
the value of 8. Damping in the system has two effects ; it changes the rms of the response, 
which is related to the energy in the oscillations, and it affects the value of e, which is 
related to the distribution of this energy among the different frequencies. 

The lower and upper bound confidence levels for amax" Here we consider the probability 
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o f  area x exceeding a given level, with the objective of  calculat ing an est imate o f  the lower 

and  upper  bounds  o f  area x that  depend  on N and the preselected probabi l i ty  that  amaxWill 
not  exceed it. We  choose to call these curves " the  lower and upper  bound  confidence 

levels" and  designate them by aMeN, l - C  and aMAX, C, where C specifies the confidence 
level selected. These two curves, calculated for the various osci l la tor  frequencies co,, then 
delineate a region between them which we will call the "90 per cent Confidence In te rva l"  
(Figures 7-10). 

The probabi l i ty  that  area x will exceed a given level r, for e = 0, is given by  

p(r) = 57d[(1 - e x p ( -  r2/a2)) N] 

= 1 - (1 - e x p ( -  rZ/aZ))N 

(Udwad ia  and Trifunac,  1973). 

TABLE 1 
VALUES O F E(amax)/a AS A FUNCTION OF 

E(amax)]a 

N 
E* = 0 ~* = 0 .2  e* = 0 . 4  e* = 0 .6  ~* = 0 .8  e* = 0 . 9 9 0  CT = 1.0 

5 1.496 1.490 1.468 1.423 1.323 - -  0.822 
10 1.708 1.701 1.682 1.642 1.554 1.079 1.088 
20 1.898 1.892 1.875 1.838 1.759 1.301 1.321 
50 2.124 2.119 2.103 2.071 2.001 1.604 1.587 

100 2.280 2.276 2.261 2.231 2.166 1.804 1.773 
200 2.427 2.423 2.409 2.381 2.320 1.985 1.942 
500 2.609 2.605 2.592 2.565 2.509 2.203 2.147 

1000 2.738 2.734 2.722 2.697 2.643 2.354 2.292 

*Approximation (16). 
?Exact (Tippett, 1925). 

By defining r o by the equat ion  

roZ/ao 2 = InN; e x p ( - - r o 2 / a  2) = 1/N 

i t  can be shown tha t  

d l l  1 /r 2 r 2x~TN ~ d ro2-r 2 

The upper  bound  confidence level aMAX, c then becomes the solut ion of  the equat ion  

1 - (1 - e x p ( -  a2MAX, c/dE)) N = 1 -- C. (18) 

Solving for aMax, c/8 we obta in  

aMax, c _ [ - l n ( 1 - C 1 / N ) ]  1/2. (19) 

Mutatis mutandis in (18) and  (19) the result for aM~s, 1 - c  follows immediate ly .  Ten 
different aMax, c/8 and  aMeN, (1-c )  curves for C ranging f rom 0.90 to 0.99 are c o m p a r e d  
with the E(am,x)/8 curve for e = 0 in Figure  5. Both aMAX, c/~ and  aMeN, 1-c/8 are 
t abu la ted  in Table  2 for  C = 0.90, 0.95, and  0.99. 
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TABLE 2 

V A L U E S  OF aMAX ' C/t~ A N D  aMIN,  1 - ¢ / t ~  

N aMAX, c/a aMIN, l _ c / a  C 

1 2.146 0.100 
10 2.627 0.998 

100 3.034 1.761 
1,000 3.392 2.320 

10,000 3.715 2.772 

1 1.731 0.226 
10 2.297 1.163 

100 2.752 1.877 
1,000 3.143 2.411 

10,000 3.490 2.848 

1 1.517 0.325 
10 2.135 1.258 

100 2.618 1.945 
1,000 3.026 2.464 

10,000 3.385 2.894 

0.99 

0.95 

0.90 

Applications to response spectrum analysis. The response of  an oscillator subjected to 

an input ground mot ion  - 2 ( t )  can be obtained in frequency space as the product  o f  the 

transfer function of  the oscillator and the Four ier  t ransform of  ~(t). It  shall be assumed 
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in what follows that the oscillator started from rest. Hence 

R(o)) = H(O))Z(O)), 

where H(o)) is the transfer function of the oscillator, Z(o)) is the transform of the input 
function, and R(o)) is the response. 

As seen from the previous section, the two parameters which influence the response 
of such an oscillator are e, which is a measure of the distribution of energy among the 
various frequencies, and a .. . .  which is a measure of the total energy of the system. The 
computation of a .... can be done in terms of the values of H(o)) and Z(co) as follows 

2 rZ(t)dt = IR(o))l 2 do) IH(o))12[Z(o))[ 2 do) (20) a r m  s = = 
0 - - o o  - - e l )  

2 [H(o))[ 2[Z(o))[ 2 do). (21) 
a r m  s - -  

0 

This can be easily calculated for any given input and any desired oscillator transfer 
function H(o)). The corresponding values of e can then be calculated by computing the 
zeroth, second, and fourth moments of JR(o)) I. 

Next an estimate of the total number of maxima, N, is required. We shall assume here 
that the oscillator acts as a narrow-band filter and that the value of N can be taken as the 
ratio of the duration of the record and the fundamental period z of the oscillator. A 
knowledge of these parameters enables the calculation of the expected value of the most 
probable peak [equation (15)], the expected value of the maximum peak [equation (16)], 
and the lower and upper bound confidence levels [equation (19)]. 

Statistics on the pseudo velocity can be obtained by multiplying by co each of the three 
quantities statistically determined. Statistics on the velocity spectrum are generated by 
considering the function [o)R(o))] 2 instead of IR(o))] 2 in equation (20). Here we present 
the results for the true velocity spectrum only (Udwadia and Trifunac, 1973). 

A case study on three acceIerograms. The statistical approach outlined above is based 
on a large number of assumptions; therefore, the applicability of the method to give 
suitable approximations of the velocity and pseudo velocity spectra was checked using 
three different types of real accelerograms. The first accelerogram used was the Eureka 
1954 record shown in Figure 6a. The acceleration consists of a short burst of energy about 
5 sec long preceded and followed by much smaller motions. Figure 7 shows the velocity 
spectrum curves. The lowermost curve is the Damped Fourier Spectrum (Udwadia and 
Trifunac, 1973) drawn for 2 per cent damping, while the statistical curves are indicated 
by dashed and dotted lines. The calculated true velocity spectrum (4 = 0.02) is shown by 
full circles. The length of record analyzed was 20 sec. 

We note that the Damped Fourier Spectrum curve (4 = 0.02) is below the velocity 
spectrum points (full circles) (4 = 0.02). This is exactly what we would expect since the 
amplitude of the D.F.S. is related to the velocity and displacement of the oscillator at 
the end of the excitation (Udwadia and Trifunac, 1973) and is therefore always less than 
or equal to the true velocity spectrum. These damped spectral curves can then also be 
used as lower bounds for the damped velocity spectra. Statistical curves for frequencies 
below 2 Hz show good correlations with the computed velocity spectra. However, at 
higher frequencies rather large divergences (5-10 per cent) occur. This is caused by the 
nonstationary nature of the excitation. The lack of high-frequency contents in the signal 
tends to reduce the scaling factor, 8, when averages over longer time lengths are taken. 
However, we observe that the general trends in the statistical curves do follow the trends 
in the velocity spectrum. 
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FIG. 7. The velocity spectrum, the Damped Fourier Spectrum, and the statistical estimates for a 
20-sec length of the Eureka accelerogram (Figure 6a). 

t 

To study this point further, 2 per cent damping curves were calculated for the first 
10 sec of the record (Figure 8). We observe an improved correlation between the statistical 
bounds and the calculated spectral values up to about 4 Hz. 

The next accelerogram tested was the E1 Centro event of 1940. The curves correspond- 
ing to a 30-sec length of this accelerogram (Figure 6b) show a good correlation all the 
way to 5 Hz (Figure 9). The nearly stationary response of a lightly damped oscillator to 
this acceleration history makes the statistical estimates excellent indications of the true 
spectral values. 

The third accelerogram tested was the Kern County accelerogram (Figure 6c). This 
accelerogram is representative of  a large number of  real accelerograms in that it starts 
off with the high-frequency arrivals (S and P waves) and carries on with the various 
surface-wave modes. As we go along the accelerogram, the frequency content changes, 
there being less and less higher-frequency components in the surface-wave arrivals. 
Thirty-five seconds of record were analyzed, and the 2 per cent damped spectrum is 
obtained as shown in Figure I0. The figures show that up to about 1.8 Hz the spectral 
points (full circles) are pretty much straddled by the 90 per cent confidence interval. 
At higher frequencies again, a noticeable fall-off in the statistical values occurs. The 
maximum difference between the statistically expected maxima and the actual spectral 
values is about 20 per cent. 

The above three accelerograms have been chosen as representatives of a large number 
of  real accelerograms obtained during strong ground shaking. The results indicate that 
statistical studies can be made very fruitfully if we consider lengths of record which are 
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FIG. 10. The velocity spectrum, the Damped Fourier Spectrum, and the statistical estimates for a 35-sec 
length of the Kern County accelerogram (Figure 6c). 

nearly stationary with respect to the frequencies of interest to us. The fact that the higher 
frequency components die out earlier in the record necessitates a shorter time segment 
of  record for statistical analysis of real accelerograms to get better estimates at higher 
frequencies, than would be generally required for longer periods. However, the lengths of 
the record analyzed should contain a sufficiently large number of cycles (at least 4 or 5) 
of the oscillator so as to make such a statistical approach meaningful. 

DISCUSSION 

At frequencies below 1 Hz, the statistical estimates tend to be above the actual com- 
puted values. Studies on white noise excitation indicate that this may be principally 
attributed to the numerical errors in integration which arise when the transfer function 
H(co) is peaked around zero frequency (Udwadia and Trifunac, 1973). These errors tend 
to overestimate the area expressed by equation (21). ]n order to minimize this error, 
the Fourier transform was linearly interpolated between two consecutive frequency 
estimates and the area then computed. A better method would be the use of the sampling 
theorem to define Z(~o) continuously and then an integration of the product Z(co)H(co). 
Also, it must be remembered that statistical estimates for values of N which are less 
than 2 or 3 may not be meaningful, for the analysis assumes that the time length of record 
is long enough to ensure that the sample of wave heights is sufficiently representative. As 
observed by Corotis et al., (1972), this tack of stationarity may lead to lower response 
spectrum values than those determined by the statistical analysis under the stationary 
assumption. 
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In addition to the overestimation of the spectral amplitudes at lower frequencies 
(N < 4), other errors arise in dealing with real accelerograms. Here the major problem 
is the lack of stationarity of  the data. At any given site, the motions created by an earth- 
quake indicate the arrivals of various phases at various times. Characteristically, the S 
and P waves which arrive early in the complete time history show larger portions of 
higher-frequency contents than the later arrivals of the longer-period surface waves. A 
proper statistical analysis based on the assumption of stationarity would then require that 
the time length of recording chosen not be too long, so that in this time the frequencies 
and amplitudes do not change significantly. This has already been illustrated through the 
study of two different time lengths of the Eureka earthquake record (Figures 7 and 8). 

The damping ratio also affects e. Larger damping ratios will generally lead to larger 
e's and broader-band processes (Udwadia and Trifunac, 1973). Although the most 
probable level and the confidence level curves shown in all of  the figures correspond to 
values of e = 0, they can be used as conservative upper bounds for ~ :~ 0, since these 
curves for e = 0 will cause an overestimation of the spectral estimates. 

CONCLUSIONS 

It has been illustrated that given the Fourier transform of the input ground motion 
:z'(t), statistical estimates of the maximum response of any single-degree-of-freedom 
linear system can be easily determined if the assumption of stationarity is approximately 
satisfied. The two parameters of importance are the relative distribution of energy 
among the various frequencies and the rms level. These parameters depend on the nature 
of the input spectrum and on the damping ratio of the oscillator. Larger damping ratios 
cause relatively wider response energy spectra and hence lead to increased values of e, 
Typically, for most earthquakes, the values of e tend to be between about 0.2 and 0.5. 
When e ~ 0, we get to a pure sinusoid while with e ~ l, p(q) tends to a Gaussian 
distribution. 

Although the assumption of stationarity is far from correct in dealing with real accele- 
rograms, it has been demonstrated that with a judicious choice of the record duration, 
estimates of the damped spectra to within 10 to 15 per cent of the true values can be 
easily obtained. The success of the statistical method is greatly due to its relative insensi- 
tivity to factors such as the estimated number of waves and the spectral width e. Its 
strong dependence on the rms level is, however, a serious limitation in that it requires a 
careful choice of the time length needed to simulate stationary conditions. 
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