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ABSTRACT 

 

Early engineering studies of earthquake strong motion assumed linear materials and small 

deformations. Also, it was observed that under favorable conditions (long waves) the 

accompanying rotational motions are usually small, and so their effects could be 

neglected. When in 1932 Biot opted for the vibrational method of solution, in his 

formulation of the response spectrum concept, his choice of the discrete mathematical 

models of buildings further led to the conditions that did not appear to require 

consideration of the rotations. The engineering profession was not prepared in the 1930s 

and 1940s for Biot’s new theory and first had to learn the basic dynamics of structures 

before it could question the wisdom and the consequences of the vibrational versus the 

wave-propagation approaches to the solution. Also, there were too many other concerns, 

often caused by the modeling simplifications, that pushed the studies of the rotational 

motion down to the low levels of priority. Even today, 40 years after the arrival of digital 

computers and the emergence of powerful numerical computational capabilities, which 

uncovered unexpectedly large families of chaotic solutions accompanying large 

deformations, and nonlinear response, most researchers continue to ignore the role of 

rotations. Had Biot chosen the wave propagation approach for the solution of the 

earthquake engineering problems in 1932, the “progress” might have been faster. The 

wave representation can be differentiated with respect to a space coordinate, giving the 

rotations at a point directly. In contrast, the lumped-mass models in the vibrational 

approach do not make this possible, and the closest one can come to considering rotations 

is in terms of average, per-floor rotation, or drift.  

 

In this work, we review some elementary examples of ground motion and the resulting 

structural response that illustrate the role of the rotations. We show examples of how 

large such rotations can be in the response of actual structures, and we suggest how the 

profession might proceed to study and to interpret their consequences. Whether our aim is 



to understand why micro-tremors in metropolitan areas abound with high-frequency 

Rayleigh waves, why buildings rock and even overturn during strong earthquake shaking, 

or why columns fail, we must consider the rotational components of ground and 

structural motions. Only then will we be able to understand and control the response to 

strong earthquake excitation. 
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INTRODUCTION 

 

Selection of the mathematical model for the dynamic analysis of structures influences and often 

dictates the method of solution. The physical nature of the model also influences the spatial and 

temporal details of the information that can be extracted from the computed response. Solution 

of the equations that describe the dynamic response of structures can be formulated in terms of 

waves (D’Alembert (1717–1783) first described this method of solution in a memoir of the 

Berlin Academy in 1750) or using a vibrational approach in terms of the characteristic functions 

(mode shapes) (Bernoulli (1700–1782), first wrote about this method in a memoir of the Berlin 

Academy in 1755). Mathematically, these two approaches led to the same solution, provided that 

the problem was linear and that all waves and all mode shapes were considered. The principles 

and the mathematical methods associated with the latter approach have been researched and 

described extensively by Rayleigh (1945) (the first edition of the Theory of Sound was published 

in England in 1877), and it might be argued that his work and the finite dimensions of 

engineering structures both contributed to the popularity of, and preference for, the vibrational 

approach in the engineering solutions of the dynamic response of structures.  

 

The contemporary form of the vibrational approach for solving linear dynamic response of multi-

degree-of-freedom systems in earthquake engineering can be traced back to Biot’s Ph.D. thesis 

(Biot 1932), which dealt with the general theory of transient response. In Chapter II of his thesis, 

Biot introduced the formulation of what would later become known as the response spectrum 

method (RSM), which he fully developed in Biot (1933, 1934). Very little has changed since 

1932, and earthquake engineers still follow the method and the representation Biot introduced 75 

years ago. 

 

The material reviewed in the following will also consider elastic waves in homogeneous 

isotropic and elastic media using the first-order linear theory of elasticity. If nonlinear 

phenomena occur along the wave path, and if they are investigated, the engineering analysis is 

usually restricted to the response of soft soil deposits near the ground surface and to waves in the 

buildings, in terms of most elementary representations of nonlinear behavior of the material (e.g., 

Gičev and Trifunac 2007a,b). The more advanced representations of the material involve the 



microphysics of fracture and include the irreversible deformations from dislocations, 

disclinations, and micro-cracks (Teisseyre and Majewski 2002). However, in the following 

review of the rotational strong ground motion in the response of man-made structures, only the 

former, macroscopic representation will be considered. 

 

Rotational components of strong motion accompany the displacements induced by seismic 

waves. In linear elastic media, “point rotations” can be expressed by space derivatives of the 

displacements (e.g., Trifunac 1982). Other contributions to rotational motion can result from the 

internal structure of the medium, non-symmetric processes of fracture, and friction (Teisseyre et 

al. 2003). Once generated, these additional rotational motions are believed to attenuate quickly, 

and so, to be studied experimentally, they have to be recorded in the near field (Teisseyre 2002; 

Teisseyre and Boratynski 2002). 

 

“Average rotations” (rotation of a line connecting two moving points and separated by a distance 

that can be comparable to and longer than the representative wavelengths) can be computed from 

the differences in the recordings of two translational records from an array of stations on the 

ground (Huang 2003; Castellani and Boffi 1986, 1989; Oliveira and Bolt 1989; Nathan and 

MacKenzie 1975; Droste and Teisseyre 1976) and in structures (Moslem and Trifunac 1986; 

Trifunac and Todorovska 2001a; Trifunac and Ivanović 2003). Such estimates approximate the 

average rotations over the distance separating the two translational records and may approximate 

the rotations at a point only for the wavelengths that are much longer than this separation 

distance. This is a limitation for the studies of point rotations of strong motion in the ground and 

in the flexible foundations of structures (Trifunac et al. 1999a; Trifunac and Todorovska 

2001a,b), but is suitable, and in some cases it is desirable for describing relative rotations in 

engineering analyses of buildings in terms of inter-story drifts (Trifunac and Ivanović 2003). 

 

In the absence of recorded rotational components of strong ground motion (Trifunac and 

Todorovska 2001c), it is necessary for engineering studies of response to have at least 

preliminary and physically realistic simulations of such motions. The method of Lee and 

Trifunac meets some of these requirements in that it generates torsional and rocking 

accelerograms using an exact analytical method, if it is accepted that (1) the motion occurs in a 
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linear-elastic, layered half–space, and (2) synthetic ground motion can be constructed by 

superposition of body P and SV and surface Rayleigh waves for rocking (Lee and Trifunac 1987) 

and by body SH and surface Love waves for torsion (Lee and Trifunac 1985). This method has 

been extended to predict the associated strains (Lee 1990) and curvatures near the ground surface 

(Trifunac 1990) during passage of seismic waves. 

 

In the following, I will (1) summarize the sources and amplitudes of rotational motions that are 

relevant for engineering analyses of the response of structures, (2) illustrate how rotations can be 

used to extend the information and refine the resolution of the data on full-scale response of 

structures, and (3) suggest how rotations can be used in structural health monitoring and system 

identification through the monitoring of large rotations that occur in the areas of strain 

localization during nonlinear response.  

 

Finally, it should be noted that this presentation is neither meant to be comprehensive nor 

complete, and many studies and topics related to the rotational components of strong motion in 

structures and in the soil will not be reviewed. Laboratory experiments on the rotations of beam-

column connections, and the associated computer simulations, for example, will not be discussed 

here because this subject involves a voluminous body of literature and should be studied in 

detail, which is beyond our present scope. Here, selected full-scale experiments and strong-

motion recordings in damaged buildings, which were studied by the members of the Earthquake 

Engineering Strong Motion Group (www.usc.edu/dept/civil_eng/Earthquake_eng/) at the 

University of Southern California, will be used as primary sources of data to illustrate the 

subject. 

 

SOURCES OF ROTATIONAL MOTION 

 

The generation of seismic waves can be assumed to begin with kinematic representation of 

faulting (e.g., Haskell 1969; Bouchon and Aki 1982; Graizer 1989), which then evolves with 

radiated elastic waves, all in terms of the first-order linear theory of elasticity. In the following, 

as we analyze the rotational motions in the response of man-made structures, only this 

macroscopic representation will be considered. 
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Earthquake Source 

 

Strong ground motion near faults can be complicated due to the irregular distribution of fault slip 

caused by non-uniform and asymmetric distribution of geologic rigidities surrounding the fault, 

non-uniform distribution of stress on the fault, and complex nonlinear processes that accompany 

faulting. Thus, in general, it is not 

possible to predict the detailed nature 

of the near-fault ground motion. In the 

following, we adopt a qualitative 

approach and illustrate these motions 

by smooth pulses, which have correct 

average amplitudes and duration, and 

which have been calibrated against the 

observed fault slip and the recorded 

strong motions in terms of their peak 

amplitudes in time and their spectral 

tent (Trifunac 1993; Trifunac and 

Todorovska 1994).   

con

 

Figure 1 shows schematically a fault 

and two characteristic simple motions, 

 and , which we adopt here to 

describe monotonic growth of the 

displacement toward the permanent 

static offset, and a pulse, which near 

faults may be perpendicular to the fault 

and could represent a failure of a 

nearby asperity or passage of 

dislocation under or past the 

observation point. By appropriate transformations these displacements can be generalized to 
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describe any component of ground motion, for arbitrary orientation of faults, but for simplicity, 

in the following we will discuss the above example for a vertical strike-slip fault only. For 

arbitrary fault orientation, static fault offset will lead to permanent tilting of ground surface, and 

this will result in the corresponding tilting of structures. Analysis of the consequences of this 

tilting on the response of structures is beyond the scope of this work. 

  

For a pulse, we chose the functional form (Fig. 1, center) 

( ) Ft
F Fd t A te α−= ,                                                (1) 

where the values of  and FA Fα , for different earthquake magnitudes, are shown in Table 1 

(Trifunac 1993). Because the strong-motion data are abundant only up to about M = 6.5, the 
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values of the scaling coefficients for M = 7 and 8 in Tables 1 and 2 are placed in parentheses to 

emphasize that they are based on extrapolation. For the near-field permanent displacement, we 

consider (Fig. 1, bottom) 

( ) (1 )
2

N

t
N

N
Ad t e τ

−

= − ,                (2) 

where the values of  and NA Nτ , for different earthquake magnitudes are shown in Table 2.  

 

The amplitudes of  and  have been studied in many regression analyses of recorded peak 

displacements at various distances from the fault and in terms of the observed surface 

expressions of fault slip. The latter are traditionally presented as average dislocation amplitudes, 

Fd Nd

u , and are related to , as Nd 2 Nu d= (see Fig. 1, top).  

 

Figure 2 summarizes the trends of average dislocation amplitudes, 2 Nu d= , versus magnitude 

M. Average dislocation is the value of dislocation amplitudes averaged over the fault surface and 

is the quantity used in spectral interpretations of near-fault and near-field motions and of the 

body wave amplitudes in the far field. Various symbols show the results extracted from the 

studies of selected earthquakes, while the two shaded zones outline the 80-percent confidence 

interval (bounded by p = 0.1 and 0.9, where p is the probability of not exceeding) for the 

amplitudes of 2 Nu d=  based on four regression models (G4RM) that describe attenuation of 

strong-motion amplitudes (Trifunac 1993). The dashed line in Fig. 2 shows the amplitudes of 

, as given in Table 2. It can be seen that the agreement is satisfactory. ,max2 Nd

 

An important physical property of the and  functions is their initial velocity. It can be 

shown that 

Fd Nd

~ /Fd sσβ μ , where σ  is the effective stress (~ stress drop) on the fault surface 

(Trifunac 1998), β  is the velocity of shear waves in the fault zone, and sμ  is the rigidity of 

rocks surrounding the fault. For , it can be shown that Nd 00.5Nd C / sσβ μ=  at t = 0, where 

typical values of  are 0.6, 0.65, 1.00, 1.52, and 1.52 for M = 4, 5, 6, 7, and 8, respectively 

(Trifunac 1998). The largest peak velocities of strong ground motion observed so far are in the 

range of 200 cm/s (170 cm/s, 5 to 20 km above the fault of the 1994 Northridge, California 

0C
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earthquake ( LM = 6.4, WM = 6.7) (Trifunac et al. 1998) and 229 cm/s at station TCU068, near 

the end of surface expression of the Che-lungpu fault, during the 1999 Chi-Chi, Taiwan 

earthquake ( LM = 7.3, WM = 7.6) (Chen et al. 2001).  

Table 1.    Characteristics of Pulse Displacement (Trifunac 1993) 
 

M (magnitude) Fα (1/s) ,max ( )Fd cm  
,max ( / sFd cmFA  (cm/s) 

Because there are no strong-motion measurements of peak ground velocity at the fault surface, 

the peak velocities  and can be evaluated only indirectly in terms of Fd Nd σ . The accuracy of 

the stress estimates depends upon the assumptions and methods used in the interpretation of 

recorded strong-motion records and is typically about one order of magnitude. Therefore, by 

solving the above equations for σ  one can use  (dotted lines in Fig. 3) and 0~ 2 /( )s Nd Cσ μ β

~ s Fd /σ μ β  (continuous lines in Fig. 3) to check their consistency with other published 

estimates of σ . Fig 3 shows this comparison for typical values of sμ  and β .  

 

Fig. 3 also describes the order of magnitude of the peak rotational ground motions at the fault 

(assuming the phase velocity c ~ 1 km/s) and the order of magnitude of the expected drift in the 

buildings (assuming that a typical value of the phase velocity c in the building is 0.1 km/s—e.g., 

Todorovska and Trifunac 2007). It can be seen that for the buildings located at or very close to 

)  
 14.04 56.48 1.48 56.48 
5 7.90 151.61 7.06 151.61 
6 4.44 546.97 45.32 546.97 
7 (2.50) (860.34) (126.6) (860.34) 
8 (1.40) (1560.29) (410.0) (1560.29) 

Table 2. Characteristics of  Fault-parallel Displacement (Trifunac 1993) 
 

NA ,max ( )Nd cm
,max ( / s)Nd cm (cm)  M (magnitude)  (s)Nτ

4 0.55 4.9 2.45 4.45 
5 1.2 29.2 14.6 12.17 
6 1.8 245.5 122.75 68.19 
7 (3.0) (1288.0) (644.0) (214.7) 
8 (5.0) (4169.0) (2084.5) (416.9) 
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surface faults, large initial velocities / sσβ μ , associated with either  or , will begin to 

damage the buildings for earthquake magnitudes larger than about 5. As the distance between the 

fault and the recording site increases, attenuation and dispersion will diminish and smooth out 

the sharp jump in initial strong-motion velocity 

Fd Nd

/ sσβ μ . Figure 3 includes three such examples 

of peak ground velocity, recorded during the Parkfield 1966, the Northridge 1994, and the Chi-

Chi 1999 earthquakes. 
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Fig. 3 Comparison of stress drop determined from near-field recordings of strong motion
(different symbols), with the stress drop associated with  (solid lines, Table 1) and 
(dotted lines, Table 2) as used in this work. Also shown are the order-of-magnitude estimates
of peak rotational ground motions at the fault (assuming the phase velocity c ~ 1 km/s), an

Fd Nd

d
the order of magnitude of the expected drift in the buildings excited by the and 
displacements (assuming that a typical value of the phase velocity c in the building is 0.1
km/s). 

Fd Nd
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For the examples of  and  in this work, there is a Dirac delta function in accelerations at 

time zero. In the observed motions, because the waves propagate through sediments and soil, this 

will correspond to large but not 

infinite accelerations (Trifunac 

and Todorovska 1996). Figure 4 

(top) shows one of the early 

examples of the ground 

displacement, perpendicular to 

the fault, recorded during the 

1966 Parkfield, California 

earthquake (Trifunac and 

Udwadia 1974). This 

displacement, computed by 

double integration from the 

recorded accelerogram (Housner 

and Trifunac 1967) is used here 

to illustrate the actual near-fault 

“pulse-like” ground motion, 

which we approximate here by 

 (shown in Fig. 1, middle). 

Figure 4 (bottom) shows the 

ground displacement computed 

during the 1971 San Fernando, 

California earthquake (Trifunac 

and Hudson 1971). This 

displacement has been high-pass 

filtered by routine data processing methods (Trifunac and Lee 1973, 1978), and therefore it does 

not contain periods of motion longer than 15 s. However, in spite of this high-pass filtering, it 

clearly shows two episodes of permanent ground displacements, starting near 2.5 s and 7 s. 
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Fig. 4. Top: Ground displacement, perpendicular to the fault
strike, about 10 km southeast, and 3 km above the
southeastern end of the fault slip, on a vertical strike-slip
fault, during the 1996 Parkfield, California earthquake
(Trifunac and Udwadia 1974). Bottom: Ground
displacement recorded near the center and several
kilometers above the thrust fault that ruptured during the
1971 San Fernando, California  earthquake (Trifunac 1974).
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Wave Propagation 

 

Translational and rotational components of strong motion that are radiated from an earthquake 

source change along the propagation path through interference, focusing, scattering, and 

diffraction. For example, reflection of plane P and SV waves from half space can lead to large 

displacement amplitudes for incident angles between 30° and 43°, but the associated rotations 

(rocking for P and SV waves, and torsion for SH waves) change monotonically and do not lead 

to large amplifications (Trifunac 1982; Lin et al. 2001). Scattering and diffraction of plane waves 

from topographic features can lead to focusing and to amplification for both displacements and 

rotations (Sanchez-Sesma et al. 2002). 

 

Beyond the results of linear theory, in the near field the nonlinear response of soil and ultimately 

soil failure and liquefaction can also lead to large transient and permanent rotations. Four types 

of ground failure can follow liquefaction: lateral spreading, ground oscillations, flow failure, and 

loss of bearing strength. Lateral spreads involve displacements of surface blocks of sediment 

facilitated by liquefaction in a subsurface layer. This type of failure may occur on slopes up to 3° 

and is particularly destructive to pipelines, bridge piers, and other long and shallow structures 

situated in flood plain areas adjacent to rivers. Ground oscillations occur when the slopes are too 

small to result in lateral spreads following liquefaction at depth. The overlying surface blocks 

break one from another and then oscillate on liquefied substrate. Flow failures are a more 

catastrophic form of material transport and usually occur on slopes greater than 3°. The flow 

consists of liquefied soil and blocks of intact material riding on and with liquefied substrate on 

land or under the sea (e.g., at Seward and Valdez during the 1964 Alaska earthquake; Trifunac 

and Todorovska 2003). Loss of bearing strength can occur when the soil liquefies under 

structures. The buildings can settle, tip, or float upward if the structure is buoyant. The 

accompanying motions can lead to large transient and permanent rotations, which so far have 

been neither evaluated through simulation nor recorded by strong-motion instruments. 
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Asymmetry of Support 

 

Most man-made structures are built above the ground and can be tens of meters to several 

hundred of meters high. Supported asymmetrically at their base, with their center of gravity near 

mid-height, they undergo rocking motions when excited by earthquakes, strong winds, and man-

made transient and steady excitations. Through the rocking compliance, the soil-structure 

interaction then acts as a mechanism for conversion of the wave energy in the building into 

rotational motions of the foundation, which then radiate this wave energy into the soil (Trifunac 

2007). During earthquake and ambient noise (microseisms and micro-tremor) excitations, the 

incident waves are scattered and diffracted by the foundation-soil interface, and together with the 

waves generated by the soil-structure interaction radiate rotational motions back into the soil. 

During wind and man-made excitation, a part of the wave energy in the building is converted 

into rotational excitation of the soil. The early work on the waves created by soil structure-

interaction dates back to the 1930s (Sezawa and Kanai 1935, 1936) and the 1940s (see Biot 

2006).  

 

Full-Scale Experiments  

 

Full-scale experiments of soil-structure interaction have provided some data to quantify the 

nature of the motions at the interface between the soil and the building foundations (Luco et al. 

1986; Todorovska 2002; Trifunac and Todorovska 2001a). The emphasis in the full-scale tests 

thus far has been on the response of structures and on how this response is affected by soil-

structure interaction. Some experiments, however, did investigate the nature of the near-field 

deformation of soil surrounding the building foundation (Luco et al. 1975; 1988; Foutch et al. 

1975; Wong et al. 1977a). It has been found that for stiff foundation-structure systems the soil-

foundation interaction can be approximated by a rigid foundation model having only six degrees 

of freedom. For flexible foundations (Trifunac et al. 1999a) and multiple foundations, the soil 

deformation is far more complex, and the translational and rotational waves in the near field, 

radiated by the motion of the foundations, require complex, three-dimensional (3-D) analyses. In 

densely populated metropolitan areas where the separation distances between adjacent buildings 
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are small or negligible, and where long bridges have multiple supports resting on soil, detailed 2-

D and 3-D analyses are required (Werner et al. 1979; Wong and Trifunac 1975). Analytical 

studies of 2-D soil-structure interaction (of long buildings on rigid foundations) have shown how 

the interference of the incident waves and of the scattered waves from the foundation can lead to 

nearly standing-wave motions on the ground surface, which, at the nodes, result in strong 

torsional ground motions (Trifunac 1972c; Trifunac et al. 2001a; Todorovska et al. 1988). 

Analytical studies of the response of 3-D models show amplification of the torsional response of 

building-foundation-soil systems and the radiation of torsional scattered waves for near-

horizontal incidence of SH waves (Lee 1979). Studies of the wave passage effects around rigid, 

embedded foundations have explained amplification of the rocking foundation motions and the 

more energetic radiation of rotational waves when half-wavelengths of the incident waves are 

comparable to the foundation width (Todorovska and Trifunac 1990a; 1991; 1992a,b; 1993). 

Observational and analytical studies of buildings in an urban setting have examined the site-city 

interaction (Boutin and Roussillon 2004; Gueguen et al. 2000; 2002; Kham et al. 2006; Tsogka 

and Wirgin 2003) and have interpreted the prolonged duration of strong ground motion in urban 

settings (Wirgin and Bard 1996) in terms of the waves delayed by prolonged paths up and down 

the buildings (Gičev 2005). 

 

Experiments using forced vibration of full-scale structures have been used to investigate the 

wave motion in the far field radiated by the soil-structure interaction (Luco et al. 1975; Favela 

2004). The radiated waves in the far field have been used as monochromatic sources of waves to 

investigate the relative significance of irregular topography and of irregular geometry of 

sedimentary layers on amplification of surface displacements (Wong et al. 1977b).  

 

ROTATIONS IN STRUCTURAL RESPONSE 

 

As already noted, in earthquake engineering most dynamic response analyses are based on the 

vibrational representation of the solution, within the framework of linear analysis, and the use of 

the response spectrum method, in which each mode shape and its natural frequency can be 

represented by one equivalent single-degree-of-freedom (SDOF) system. Then, for linear 

systems the response is given by a superposition of the responses of those equivalent SDOF 
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systems. Therefore, the analysis of the linear response of an n-degree-of-freedom system can be 

reduced to a study of individual SDOF systems (Fig. 5a) one at a time. 

Fig. 5. (a) Equivalent SDOF system (with damping Ce, rotational stiffness Ke, equivalent mass
mb, and equivalent height He, on a rigid foundation with mass mf) supported by flexible soil.
(b) Multi-degree-of-freedom system (e.g., moment-resistant frame) supported by independent
spread footings on elastic soil. (c) Continuous-model representation of a tall building with a
stiff central core (Todorovska et al. 1988). (d) Continuous-model representation of a building
with a soft first story, on flexible soil (Todorovska et al. 1988). (e) Discrete MDOF system of
an n-story building with rigid floors (mi= floor mass; Ki = floor stiffness; A, B, and C = strong-
motion instruments). (e) A section through a six-story, reinforced-concrete structure supported
by a foundation on piles (Kojic et al. 1984). 
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The n-degree-of-freedom systems (e.g., Figs. 5b,e,f) can be modeled by lumped masses 

interconnected with springs and dashpots or by finite elements, but the accuracy of final 

representation ultimately depends upon the number of mode shapes included in the analysis and 

upon realistic representation of the boundary conditions. Because the computation of point 

rotations will require differentiation of mode shapes with respect to appropriate space 

coordinates, it can be seen that the description of transient point rotations will require a large 

number of mode shapes to be included in the analyses. Since this is not practical, the typical 

outcome will represent a low-pass-filtered approximation of point rotations. 

 

Elementary Representation of Linear Response 

 

In the basic model in earthquake engineering employed to 

describe the response of (1) a simple structure or (2) the 

equivalent oscillator (representing one of the 

characteristic functions in an n-degree-of-freedom system) 

to only horizontal earthquake ground acceleration, xΔ , is 

an SDOF system experiencing rocking rψ  relative to the 

normal with regard to the ground surface, assuming that 

the ground does not deform in the vicinity of the 

foundation—that is, neglecting the soil-structure 

interaction (Fig. 6a). The rocking rψ  is restrained by a 

spring with stiffness  and by a dashpot with rocking 

damping constant , providing a fraction of the critical damping 

rK

rC rς . The natural frequency of 

this system is , and for small rocking angles it is governed by the linear 

ordinary differential equation 

( 1/ 22/r r bK h mω

m

)=

 
22 /r r r r r r x hψ ω ς ψ ω ψ+ + = − Δ  .              (3) 

 

Δ
x

h

O

B x

z
y

bψ
r

Kr
Cr

 
Fig. 6a. An SDOF representation
of a building (inverted pendulum)
with equivalent mass anbm d
mass-less column height h ,
experiencing rocking rψ  due to
horizontal motion of its base xΔ . 
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For any initial conditions, and for arbitrary excitation, this system always leads to a deterministic 

and predictable response. Equation (3) was used originally to develop the concept of the relative-

response spectrum, which continues to this day to be the main vehicle in the formulation of most 

earthquake engineering analyses of response (Trifunac 2003). If the gravity force is considered, 

rω in Eqn. (3) has to be reduced (Biot 2006). The system described by Eqn. (3) is meta-stable for 

rψ  smaller than its critical value. At the critical value of rψ , the overturning moment of the 

gravity force is just balanced by the elastic moment in the restraining spring, and for values 

greater than the critical value the system becomes unstable.  

 

We note that in this model (Fig. 6a) 

the angle rψ  does not describe the 

rocking angle of the structure; instead, 

it is a mathematical degree of freedom. 

Because the model of the structure in 

this representation is fixed at the base, 

actual rocking in the structure will be 

represented by the deformation of the 

structure only and will depend upon 

the nature of the model and the 

number of the mode shapes in the 

analysis. It will include neither rocking 

nor torsional excitations by strong-

motion waves nor the rocking induced 

by the soil-structure interaction. Thus, 

the contributions of all components of 

ground motion, and of soil-structure 

interaction, to the estimated response 

are excluded from contributing to the 

total picture by the restrictive model 

selection process. 

 

φ
y

Δ
x Δ

z

h

ψ
r

m Ib b

O

B

x

z
y

θSV P

a

 

Fig. 6b. An SDOF representation of a building
(inverted pendulum), with equivalent mass ,
moment of inertia (aboutO ) 

bm

bI , and a mass-less
column of height h , experiencing relative rocking

rψ  due to horizontal, vertical, and rocking motions
of its foundation ( xΔ zΔ y, , and φ , respectively),
which result from soil-structure interaction under
excitation by incident-wave motion. 
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Advanced Representation of Response  

 

In a more advanced vibrational representation of the response, additional components of the 

earthquake excitation (including rocking and torsional excitation by ground waves), dynamic 

instability, soil-structure interaction, spatial and temporal variations of the excitation, differential 

motions at different support points, and nonlinear behavior of the stiffness  can be considered, 

but in earthquake engineering the structure usually continues to be modeled by mass-less 

columns, springs, and dashpots, and with a rigid mass  (Jalali and Trifunac 2007a,b; Jalali et 

al. 2007). In the following, we illustrate some of the above cases. 

rK

bm

 

Dynamic Instability 

 

An example of a simple model that includes instability is shown in Fig. 6b. It experiences 

horizontal, vertical, and rocking components of ground motion, which can result, for example 

from incident P and SV body waves and from Rayleigh surface waves. The structure is 

represented by an equivalent SDOF system with a concentrated mass at height h above the 

foundation. It has a radius of gyration  and a moment of inertia 

bm

br
2

b b bI m r=  about point O. The 

degree-of-freedom in the model is the relative rocking angle rψ . This rotation is restrained by a 

spring with rocking stiffness  and by a dashpot with rocking damping  (as in Fig. 6a, but 

not shown in Fig. 6b). The gravitational force  is considered. Taking moments about B 

results in the equation of motion 

rK rC

bm g

 

( ) ( ){22 / cy r r r r r r x y ra osφ ψ ω ς ψ ω ψ φ ψ+ + + = − Δ + ( ) ( )}2 / sin /r g z y raω ε φ ψ+ + Δ + ε  ,  (4) 

                                    

where , ( )( )21 / /bh r hε = + a ( )2 2/r r bK m h rω 2⎡ ⎤= +⎣ ⎦ , rω  is the fixed-base natural frequency of 

rocking, rζ is a fraction of critical damping in ( )2 22 /r bC m h rr rω ς ⎡ ⎤= +⎣ ⎦ , and 22 /g r aε ω=

y

. 

Equation (4) is a differential equation coupling the rocking of the foundation, φ , and the 

structure, rψ , with the horizontal and vertical motions of the foundation. It is a nonlinear 
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equation the solution of which requires numerical analysis. In this example, we will discuss only 

the case in which y rφ ψ+

{
is small. Then,  

( ) }22 1r r / /r r r g z raψ ω ς ψ ε ε ε ψ− − Δ = ( ){ }2/ /y x r g z ya a /φ ω ε φ ε− + −Δ + + Δ  .      (5) ω+ +

 

For steady-state excitation with frequency ω  (illustrated in this example only for incident P and 

SV waves), ,x yφΔ , and , and therefore the forcing function of Eqn. (5), will be periodic. 

Equation (5) is then a special form of Hill's equation, and analysis of the stability of this equation 

can be found in the work of Lee 

(1979). For general earthquake 

excitation,

zΔ

,x yφΔ , and zΔ will be 

determined by the recorded 

components of motion and in 

predictive analyses by simulated 

ground motions (Lee and 

Trifunac 1985, 1987; Wong and 

Trifunac 1979). 

 

In Eqn. (5), yφ describes rocking 

of the foundation to which the 

structure is attached. In analyses 

that do not consider soil-structure 

interaction, yφ will be given by 

the rocking component of strong 

ground motion (e.g., Lee and 

Trifunac 1987; Jalali and 

Trifunac 2007a). In studies that 

consider soil-structure interaction, yφ will be one of the variables to be determined by the 

analysis (Lee 1979). 

 

φ
z

φ
y

φ
x

d

Δ
x

Δ
y

θ

SH

SV P

a

Fbx

Fbz

Fby
Mbz

Mby

Mbx

m0
B

Δ
z

Fig. 7. Six components of motion (three translations and
three rotations) of point B  { } , ,  , , ,x y z x y zφ φ φΔ Δ Δ

{

, and six
components of force (three forces and three moments)

}extF = { }, , , , ,bx by bz bx by bzF F F M M M , that the structure
exerts on the foundation at B . 
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Soil-Structure Interaction.  

 

The problem of linear soil-structure interaction includes the phenomena that result from (1) the 

presence of an inclusion (foundation, Fig. 7) in the soil (Lee and Trifunac 1982), and (2) the 

vibration of the structure supported by the foundation, which exerts dynamic forces on the 

foundation (Lee 1979). Examples and a discussion of nonlinear aspects of soil-structure 

interaction can be found in Gičev (2005) and in a review of observations of response to 

earthquake shaking of full-scale structures in Todorovska (2002) and Trifunac et al. (2001b,c). 

 

The dynamic response of a rigid, embedded foundation to seismic waves can be separated into 

two parts. The first part corresponds to the determination of the restraining forces due to the 

motion of the inclusion, usually assumed to be a rigid body. The second part deals with the 

evaluation of the driving forces due to scattering of the incident waves by the inclusion, which is 

presumed to be immobile. This can be illustrated by considering a foundation embedded in an 

elastic medium and supporting an elastic superstructure (Fig. 6b). The steady-state 

harmonic motion of the foundation having frequency ω  can be described by a vector 

{ } , ,  , , ,
T

x y z x y zφ φ φΔ Δ Δ  (Fig. 7), where xΔ  and yΔ  are horizontal translations,  is vertical 

translation, 

zΔ

xφ and yφ  are rotations about horizontal axes, and zφ  is torsion about the vertical axis. 

Using superposition, displacement of the foundation is the sum of two displacements, as follows: 

 

{ } { } { }0*U U U= +   ,                                             (6)  

  

where { }*U  is the foundation input motion corresponding to the displacement of the foundation 

under the action of the incident waves in the absence of external forces and { }0U  is the relative 

displacement corresponding to the displacement of the foundation under the action of the 

external forces in the absence of incident-wave excitation. The interaction force { }sF  generates 

the relative displacement { }0U , which are related to { } ( ) { }0s sF K Uω= ⎡ ⎤⎣ ⎦ , where ( )sK ω⎡ ⎤⎣ ⎦  is 

the 6 x 6 complex stiffness matrix of the embedded foundation. This force depends upon the 

material properties of the soil medium, the characteristics and shape of the foundation, and the 
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frequency of the harmonic motion, and it describes the force-displacement relationship between 

the rigid foundation and the soil medium. 

 

The driving force of the incident waves is equal to { } { }* [ ]s sF K U= * , where the input motion 

{ }*U  is measured relative to an inertial frame. The "driving force" is the force that the ground 

exerts on the foundation when the rigid foundation is kept fixed under the action of the 

incident waves, and it depends upon the properties of the foundation and the soil and on the 

nature of excitation. 

 

The displacement { }U is related to the interaction and driving forces via { } { } { }*[ ]s s sK U F F= + . 

For a rigid foundation having a mass matrix [ ]0M  and subjected to a periodic external 

force{ }extF , the dynamic equilibrium equation is  

  

[ ]{ } { } { }0 s extM U F F= − + , (7) 

  

where { }extF =  { }, , , , ,bx by bz bx by bzF F F M M M  is the force the structure exerts on the foundation 

(Fig. 7). Then Eqn. (7) becomes  

 

         [ ]{ } [ ]{ } { } { }0 *s exts
M U K U F F+ = + . (8) 

  

The solution of { }U  requires the determination of the mass matrix, the impedance matrix, the 

driving forces and the external forces (Lee 1979). 

 

After the mass matrix [ ]0M , the stiffness matrix [ ]sK , and the force { }*
sF  have all been 

evaluated, they can be used to determine the foundation displacement { }U . For in-plane response, 

excited by P and SV waves, for example, the relative response rψ is given by Eqn. (5). 
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Differential Motions  

 

Common use of the response 

spectrum method (Trifunac 2003) 

and many dynamic analyses in 

earthquake engineering implicitly 

assume that all points of building 

foundations move synchronously and 

with the same amplitudes. This, in 

effect, implies that the wave 

propagation in the soil is neglected. 

Unless the structure is long (e.g., a 

bridge with long spans, a dam, a 

tunnel) or “stiff” relative to the 

underlying soil, these simplifications 

are justified and can lead to a 

selection of approximate design 

forces if the effects of soil-foundation 

interaction in the presence of 

differential ground motions can be 

neglected (Bycroft 1980). Simple 

analyses of 2-D models of long 

buildings suggest that when  a/λ < 

10-4, where a is wave amplitude and λ is the corresponding wavelength, the wave-propagation 

effects on the response of simple structures can be neglected (Todorovska and Trifunac 1990b).  

λ

a

H

L

c

x

c

SH  or  Love Wave

L

Ha

λ

Rayleigh Wave  

Fig. 8. Schematic representation of the deformation of
columns accompanying differential wave excitation of
long structures for out-of-plane response (top) and in-
plane response (bottom) when SH or Lave waves (top)
or Rayleigh waves (bottom) propagate along the
longitudinal axis of a structure. 

 

Figure 8 illustrates the “short” waves propagating along the longitudinal axis of a long building 

or a multiple-span bridge. For simplicity, the incident-wave motion has been separated into out-

of-plane motion (Fig. 8, top), consisting of SH and Love waves, and in-plane motion (Fig. 8, 

bottom), consisting of P, SV, and Rayleigh waves. The in-plane motion can further be separated 

 20



into horizontal (longitudinal), vertical, and rocking components, while out-of-plane motion 

consists of horizontal motion in the transverse direction and torsion along the vertical axis. 

Trifunac and Todorovska (1997) analyzed the effects of the horizontal in-plane components of 

differential motion for buildings with models that are analogous to the sketch in Fig. 8 (bottom), 

and they showed how the response spectrum method can be modified to include the first-order 

effects of differential motions. Trifunac and Gičev (2006) showed how to modify the spectra of 

translational motions into a spectrum that approximates the total (translational and torsional) 

responses and how this approximation is valid for strong-motion waves an order of magnitude 

longer than the structure ( Lλ >> ). 

 

As can be seen from the above examples, the differential motions lead to complex excitation and 

deformation of the structural members (columns, shear walls, beams, braces), cause increases in 

the dimensions of the governing differential equations, lead to 3-D dynamic instability problems, 

and can lead to nonlinear boundary conditions. These are all conditions that create an 

environment in which, even with the most detailed numerical simulations, it is difficult to predict 

all complexities of the possible responses. 

 

Observations of Structural Response 

 

In the following, we review selected cases dealing with rotational motion, from our studies of 

buildings in southern California. We describe in more detail the examples from two buildings—

the Hollywood Storage Building in Hollywood and the Van Nuys Holiday Inn in Van Nuys—

both in the greater Los Angeles metropolitan area. These buildings are neither typical nor 

representative of the general building population in the area. The reasons they are considered 

here is that both were instrumented for extended periods, so that multiple earthquake recordings 

of their responses are available, and that studies of their responses have been published and are 

available for distribution (http://www.usc.edu/dept/civil_eng/ Earthquake_eng/). 
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Hollywood Storage Building (HSB, Fig. 9a,b). This is the first structure to have been equipped 

with permanent strong-motion accelerographs in California, in 1933 (Trifunac et al 2001a). It is 

also the first building in California for which strong motion was recorded (October 1933), and 

the first building for which it could be shown that both theoretical analysis and observation of 

soil-structure interaction are consistent. This building served as a testing ground for intuitive 

(Housner 1957) and theoretical and quantitative (Duke et al. 1970) studies of soil-structure 

interaction. The data recorded in and near this building were also used in several other related 
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Fig. 9(a).  Hollywood Storage Building in the early 1950s, with strong-motion accelerograph 
stations in the basement, on the roof, and at the "free-field" site 112 ft west of the southwest 
corner of the building (Trifunac et al. 2001a). 
 

 22



types of studies—for example, the scattering of waves by a "rigid" foundation, the associated 

"filtering" of high-frequency motions, and the associated torsional excitation of foundations 

(Cloud 1978, Shioya and Yamahara 1980). Since 1933 there have been numerous triggers of 

strong-motion acceleraographs in HSB, but thus far only a few have been processed and are 

available for analysis (Trifunac et al. 2001a). HSB was also studied using ambient and forced 

vibration tests (Carder 1936; 1964). 

 

Analyses of the effects of soil-structure interaction involve comparison of the motions recorded 

in a structure with those recorded at a free-field site (typically several hundred feet away from 

the structure—e.g., Fig. 9a). It is usually assumed that the free-field record approximates the 

motions in the absence of the structure (Trifunac, 1972c). The transfer functions between the 

foundation motion and the corresponding motions at the free-field site are then used for analysis.  

The first successful interpretation of observed data using analysis of this type was presented by 

Duke et al. (1970). They interpreted the EW recorded motions (along the longitudinal building 
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Fig. 9(b). Location and orientations of 12 accelerometers maintained in the Hollywood Storage
Building by the California Division of Mines and Geology since 1976 (Trifunac et al. 2001a). 
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direction, see Fig. 9a) of the Hollywood Storage Building in terms of an analytic solution of soil-

structure interaction, with a rigid, semi-cylindrical foundation, and for vertically incident SH 

waves. Duke et al. (1970) did not 

interpret soil-structure interaction for 

NS (transverse) response because at 

that time the needed theoretical solution 

did not exist—it was formulated 20 

years later by Todorovska and Trifunac 

(1990a). As for the solutions of Luco 

(1969) and Trifunac (1972c) for SH-

wave excitation, Todorovska and 

Trifunac (1990a) showed that the 

horizontal motions of a rigid 

foundation, Δ, excited by P, SV, and 

Rayleigh waves, have minima at fixed-

base natural frequencies of the building 

(Figs. 10). However, for all other 

frequencies the amplitudes of the 

transfer functions are "complicated" 
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Fig. 10a. Transfer-function amplitudes
for (a) horizontal foundation motion Δ,
(b) foundation rocking ϕa,  (c) relative
horizontal motion of the building u ,
(d) vertical foundation motion V, an
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d
(e) relative vertical motion of the
building , versus dimensionless
frequency ωa/βb for incident P waves
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bv

— after Todorovska and Trifunac
(1990a). For description of full and
dashed lines see Fig. 10c. 
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and "different" for different incoming waves and for different model parameters (ε , H/a, W/H, 

ms/mf, ms/mf) and angles of wave incidence γ . 
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Fig. 10b  Same as Fig. 10a but for 
incident SV-waves. 

Fig. 10c  Same as Fig. 10a but for 
incident Rayleigh waves. 
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In Figs. 10, W and H are building width and height; a is the radius of a semi-circular rigid 

foundation; sm  is the mass of the soil, per unit length, replaced by the foundation; fm  is the 

mass of the foundation per unit length; and is the mass of the building per unit length. In 

addition, , V, and 

bm

Δ ϕ  are the horizontal, vertical, and rocking motions of the foundation, 

respectively; and  are the relative horizontal and vertical deformations of the structure 

with respect to the moving rigid foundation; and 

rel
bu rel

bv

/ bH aε β β= . 

 

In contrast to horizontal motion Δ, Todorovska and Trifunac (1990a) show that the transfer 

functions for vertical motion V, are "simpler" and more "similar" for all incident waves and all 

incident angles (Fig. 10). They also show the transfer functions of rocking motions (equivalent to 

yφ  in Fig. 6, and shown normalized by ), whose nature is very dependent upon the type of 

incident waves. It can be seen that, as the half-wavelength of Rayleigh waves becomes 

comparable to the diameter of the foundation, Rayleigh waves cause large rocking motions of the 

foundation and large relative response of the building. 

a

 

In the analysis by Duke et al. (1970), and for the results illustrated in Figs. 10, it has been 

assumed that the building foundation can be represented by a semi-cylindrical, rigid mass. 

Clearly, this is a rough approximation for the foundation system of the Hollywood Storage 

Building, which is on Raymond concrete piles 12 ft to 30 ft long (Fig. 9a,b). Thus, if this 

foundation is to be modeled by a rigid equivalent foundation, it would be good to consider some 

more representative embedment ratios because this affects the nature of the waves scattered from 

the foundation (Wong and Trifunac 1974). It is more likely, however, that this foundation does 

not behave like a rigid body, especially for intermediate- and high-frequency waves (Trifunac et 

al. 1999a). How soil-structure interaction with a flexible 3-D foundation should be represented 

has not been studied in sufficient detail thus far to allow any definite interpretation, and so we 

leave this interesting topic for a future analysis. 

 

An example of early earthquake engineering analysis of the rocking period of a rigid building on 

flexible soil can be found in papers by Biot (1942, 2006). Merritt and Housner (1954) also 
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investigated the rocking motions, from which Housner (1957) concluded that “significant effects 

could be expected only with exceptionally soft ground.”  It is interesting to note that the Housner  
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Fig. 11a. Response of the HSB during the 1992 Landers earthquake. Top: Comparison of relative 
(with respect to basement-center) displacements recorded at the west end of the roof (“12-1,” 
solid line) and at the roof center (“10-1,” light dashed line). Center: Comparison of average 
torsion of the western half of the building (“(12-10)/3060,” solid line) and at ground level (“9-
1)/3060,” light dashed line). Bottom: Comparison of relative (with respect to basement-center) 
displacements at the west end of the roof due to torsion alone (“12-10-9+1,” solid line) and due 
to torsion and translation (“12-1,” dashed line). 
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 (1957) and Duke et al. (1970) papers appear to have left an impression on subsequent 

researchers, who stated, for example, that the “evidence of soil-structure interaction can be  
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Fig. 11b. Same as Fig. 11a, but for 1994 Northridge earthquake. 

 

quantitatively detected in the frequency domain by the ratio h
g

H
g uu+Δ ” (Hradilek et al. 

1973). Rocking and torsional contribution to interaction were rarely addressed in the papers that 

aimed to interpret earthquake accelerograms recorded in buildings. 
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Duke et al. (1970) conclude that “soil-structure interaction produced marked change in the 

horizontal base displacements, in the east-west direction,” with little or no rocking in this 

direction. For the north-south direction, soil-structure interaction did not drastically affect the 

horizontal base displacements but instead produced rocking of the foundation, as can be 

observed by its effect on the roof motion. 

 

Torsion  

 

Torsional response in non-symmetrical structures is caused by geometrical separation of the 

centers of mass and rigidity. For symmetric structures, torsional response occurs because of a 

non-symmetrical foundation system or is excited by wave-passage effects (Luco 1976; Trifunac 

et al. 1999a), or both. Long and narrow symmetrical buildings, for example, can experience 

significant torsional response and whipping (Trodorovska and Trifunac 1989; 1990b) when 

excited by earthquake waves propagating along the longitudinal axis of the soil-structure system. 

 

Full-scale measurements of torsional response and torsional components of soil-structure 

interaction cannot be performed directly because no rotational strong-motion accelerographs had 

been installed in the buildings in California during past strong earthquakes. It is only possible to 

estimate average rotations when multiple recorders in the structures are arranged so that relative 

motions can be computed from the differences in translational motions. In the following we 

illustrate this for the Hollywood Storage Building. 

 

Fig. 9b shows locations and orientations of strong motion accelerometers in the Hollywood 

Storage Building. For this configuration of instruments (since 1976) strong-motion data, in 

processed form, is available only from four earthquakes: Whittier-Narrows, 1987; Landers, 1992; 

Big Bear, 1992; and Northridge, 1994. By suitable combination of displacements yi computed by 

double integration from the recorded accelerograms it is possible to estimate average torsion in 

the west side of the building. Thus, 

 

φb(t) = (y9(t) – y1(t))/3060    (9) 
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(3060 cm is the separation distance between recorders 1 and 9) gives the average torsion at the 

foundation level, and 

 

φr(t) = (y12(t) – y10(t))/3060    (10) 

 

gives average torsion of the western half of the building at the roof. Relative NS vibrations at the 

center of the building are described by y10(t) – y1(t), while y12(t) – y1(t) gives the NS motion at 

the roof, at the western end of the building, relative to the central station at the ground level. 

Then, y12(t) – y10(t) – y9(t) + y1(t) gives the contribution to the motion of the western end of the 

building, at roof level, associated with torsion of the building, relative to its base. Figs. 11a and b 

illustrate these functions versus time for the motions recorded during the Landers and Northridge 

earthquakes. It can be seen that y12(t) – y10(t) – y9(t) + y1(t) ~ y12(t) – y1(t) and that  y12(t) – y1 (t) ~ 

2
1   (y10(t) – y1(t)). It can also be seen that (most of the time) the relative motions at recording site 

12 (western end of the building, on the roof) are about one half the motions at recording site 10 

(roof, center) and that the two motions are in phase. An exception to this (see Fig. 11b) occurred 

during the Northridge earthquake, 8 to 12 s after trigger time. Thus, most of the time the building 

is twisting about a point (rotating about a vertical axis) that is west of its geometric center. We 

reported on a similar behavior for a seven-story reinforced concrete building that is also 

supported by a pile foundation (Trifunac et al. 1999a). Such behavior may be caused in part by 

non-symmetry of the foundation (the HSB has the basement only beneath its western half, see 

Figs. 9a,b). Such torsional eccentricity thus causes whipping of the eastern end of the building, 

particularly for EW arrivals of SH and Love waves (in this example during the Landers, 1992 

earthquake). Unfortunately, there are no strong-motion instruments along the eastern end of the 

Hollywood Storage Building to verify this interpretation. 

 

When soil-structure interaction is considered in the dynamic analyses of soil-structure systems, it 

is convenient to assume that the foundation is rigid (Fig. 12). This assumption simplifies the 

analysis and reduces the number of additional degrees of freedom required to model soil-

structure interaction, and thereby the number of simultaneous equations that must be solved. 

Whether such an assumption can be made must be carefully investigated, and the outcome does 
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not depend only on the relative rigidity of the foundation and of the soil but is also influenced by 

the overall rigidity and type of the structure, its lateral load-resisting system, and its orientation. 
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Fig. 12. Two-dimensional model of a soil-foundation-structure system excited into motion by 
ground translations  H

gu , V
gu  and ground rocking angle θ . The relative local soil deformation 

caused by soil-structure interaction is described by translations Δ and V and by relative rocking 
angle ϕ, such that ,  and H

x g +uΔ = Δ V
z gu VΔ = − − yφ θ ϕ= +  (see Fig. 6b). The masses per unit 

length (in a direction perpendicular to the cross-section shown in this figure) of the building and 
of the foundation, respectively, are mb and mf. Numbers 1 through 12 show the locations of 12 
accelerometers in the HSB (see Fig. 9b). 
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This can be illustrated by comparison of the NS versus EW vibrations of the Millikan Library in 

Pasadena a nine-story reinforced concrete structure that was studied by Luco et al. (1986). Even  
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Fig. 13. Deformation of the Millikan Library, a nine-story concrete building, excited at the roof 
by a shaker with two counter-rotating masses (a) along the west shear wall during NS excitation, 
(b) along a section through the elevator core during EW excitation, (c) deformation of the 
basement slab during NS excitation, and (d) deformation of the basement slab during EW 
excitation (Foutch et al. 1975). 
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though the foundation system of this building is relatively flexible, for NS vibrations two 

symmetric shear walls at each end (east and west) of the building act to stiffen the foundation 

slab (Figs. 13a and c), and this allows one to proceed with "rigid" foundation representation, as 

in Fig. 12. For EW vibrations, the building carries 

lateral loads by an elevator core, which deforms the 

foundation slab in the middle, while the shear walls 

act as membranes providing axial constraints but 

provide little bending stiffness (Figs. 13b and d). For 

EW vibrations, the foundation slab cannot be 

approximated by a "rigid" foundation model. These 3-

D deformation shapes, which showed how this 

structure deforms while vibrating in NS and EW 

directions, were measured during forced vibration 

tests (Foutch et al. 1975) and were essential for this 

interpretation. Figure 14 shows schematically the 

relative contribution of horizontal deformation of soil 

(4 percent), roof displacement resulting from rigid 

body rocking (25 percent), and relative deformation of 

the Millikan Library Building (71 percent) during 

steady-state forced vibrations in the NS direction (as 

in Figure 13a). 

 

Van Nuys Hotel (VN7SH)-Holiday Inn (Figs. 15 and 

16) is located in Van Nuys, California. It was 

damaged by the 1994 Northridge, California earthquake (Ivanović et al. 1999, Trifunac and Hao 

2001, Trifunac et al. 1999a,b). The reinforced concrete building, designed in 1965 and 

constructed in 1966 (Blume and Assoc. 1973, Mulhern and Maley 1973), is 18.9 × 45.7 m in 

plan, has seven stories, and is 20 m high. The typical framing consists of four rows of columns 

spaced on 6.1-m centers in the transverse direction and 5.7-m centers in the longitudinal 

direction (nine columns). Spandrel beams surround the perimeter of the structure. Lateral forces 

in the longitudinal (EW) direction are resisted by interior column-slab frames (B and C) and 

Fig.14. Contributions of foundation
translation and rocking to the roof
motion of the Millikan Library for N-S
shaking (Foutch et al. 1975). 
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exterior column spandrel beam frames (A and D) (Fig. 15). The added stiffness in the exterior 

frames associated with the spandrel beams creates exterior frames that are roughly twice as stiff  
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Fig. 15. Van Nuys seven-story hotel (VN7SH) building: (a) typical floor plan, and (b) typical 
transverse section. 
 

as interior frames. The floor system is a reinforced concrete flat slab, 25.4 cm thick at the second 

floor, 21.6 cm thick at the third to seventh floors, and 20.3 cm thick at the roof (Browning et al. 

2000; De La Llera et al. 2001; Islam 1996; Li and Jirsa 1998; Trifunac and Ivanović 2003). The 

building is situated on undifferentiated Holocene alluvium, uncemented and unconsolidated, with 
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a thickness of < 30 m and an age of < 10,000 years (Trifunac and Todorovska 1998). The 

average shear-wave velocity in the top 30 m of soil is 300 m/s, and the soil-boring log shows that  
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Fig. 16. Schematic representation of damage: (top) frame D (North view), and (bottom) frame A 
(south view). The strong-motion sensor locations for channels 9–12 and 16 of the strong-motion 
recorders (oriented toward the West) are also shown (see Trifunac et al. 1999b). 
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the underlying soil consists primarily of fine sandy silts and silty fine sands. The foundation 

system consists of 96.5-cm-deep pile caps supported by groups of two to four poured-in-place, 

61-cm-diameter, reinforced-concrete friction piles, which are centered under the main building  
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Fig. 17a. Post-earthquake view of damaged columns in frame D (see Figs. 15 and 16). 
 

columns. All of the pile caps are connected by a grid of beams, and each pile is approximately 

12.2 m long and has a design capacity of over 444.82 × 103 N vertical load and up to a 88.96 × 

103 N lateral load. The structure is constructed of normal-weight reinforced concrete (Blume and 

Assoc. 1973). 
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The ML = 6.4 Northridge earthquake of January 17, 1994 severely damaged the building. The 

structural damage was extensive in the exterior north (D) (Fig. 16 top) and south (A) (Fig. 16 

bottom and Figs. 17a,b, and c) frames, which were designed to take most of the lateral load in the 

longitudinal (EW) direction. Severe shear cracks occurred at the middle columns of frame A,  
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Fig. 17b. North (left) and South (right) views of wooden braces in frames D and A, as seen at the 
time of Experiment II (April 19, 1994). 
 

near the contact with the spandrel beam of the 5th floor (Figs. 16 and 17), and those cracks 

significantly decreased the axial, moment, and shear capacity of the columns. The shear cracks 

that appeared in the north (D) frame (Fig. 16) caused minor to moderate changes in the capacities 

of these structural elements. No major damage to the interior longitudinal (B and C) frames was 

observed, and there was no visible damage to the slabs or around the foundation, but the 

nonstructural damage was significant. Photographs and detailed descriptions of the damage from 

the earthquake can be found in Trifunac et al. (1999b) and Trifunac and Hao (2001), and analysis 

of the relationship between the observed damage and the changes in equivalent vertical shear-

wave velocity in the building can be found in Todorovska and Trifunac (2006, 2007). A 

discussion of the extent to which this damage has contributed to the changes in the apparent 

period of the soil-structure system can be found in Trifunac et al. (2001b,c).  
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The earthquake response of VN7SH was recorded by a 13-channel CR-1 central recording 

system and by one tri-component SMA-1 accelerograph with an independent recording system 

but with a common trigger time with the CR-1 recorder (Trifunac et al. 1999b).  
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Fig. 17c. Schematic representation of the structure and location of damage and of wooden braces 
as seen at the time of Experiment II (April 19, 1994). Different open circles show schematically 
the degrees of damage in columns. 
 

 

Ambient vibration tests in VN7SH have shown that the foundation supported by piles deforms 

during passage of micro-tremor waves. It was then inferred that the same happens during passage 

of much larger strong-motion waves. A detailed ambient vibration survey of this symmetric 

structure, on symmetric pile foundations, showed that the center of torsion for this structure is 

outside the building plan, close to its southeastern corner (Ivanović et al. 1999). Subsequent re-

examination of the strong-motion records in this building has shown that this eccentricity may 

have been present in all post-1971 excitations and that it is associated with some asymmetry in 

the soil-pile system dating from its construction in 1966, or that it was caused by some partial 

damage during the 1971 San Fernando earthquake (Trifunac et al. 1999a). 
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Differential motions of building foundations (Trifunac 1997) may reduce the translational 

response at the upper floors but lead to large additional shear forces and bending moments in the 

columns of the first floor, which are caused by differential displacements and rocking of the 

ground. The response spectrum method can be modified to include the consequences of such 

differential motion (Trifunac and Todorovska 1997), but it is necessary to study this further 

using full-scale measurements during future strong earthquakes and to verify the theory against 

the observations. 

 

The assumption that foundations can be represented by rigid “slabs” (Fig. 12) seems to be 

implicit in most full-scale instrumentation programs for the buildings where strong motion has 

been recorded so far, but this assumption must be verified by comparison with the recorded 

motions. Technically, it should be easy to supplement the existing instrumentation to provide 

data on differential motion of building foundations, and ideally this should be done first in all 

instrumented buildings where strong motion has already been recorded during many past 

earthquakes, so that additional value can be added to the existing data, interpretation, and 

analyses. 

 

Rocking  

 

Figures 18a and b compare the overall "rocking angles" ((displacement at roof–displacement at 

ground level)/building height) versus instantaneous apparent frequency computed for most half-

period segments of the response of the Hollywood Storage Building during seven earthquakes. It 

can be seen that the apparent system frequency depends upon the amplitude of excitation and 

that for small amplitudes it approaches the frequencies measured by Carder (1936, 1964) during 

full-scale ambient- and forced-vibration tests. These trends can be explained in terms of the 

conceptual nonlinear soil-structure model shown in Fig. 19. 

 

Nonlinear effects in the response of soil-structure systems depend upon the level of the excitation 

and also on the initial state of the system (e.g., the state of the soil, such as degree of 

consolidation, water content, etc., Todorovska and Al Rjoub 2006a,b). The building damage 
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changes the building permanently, but the soil can “heal” itself and recover the original stiffness 

by settlement with time and dynamic compaction from shaking during smaller events.  
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Fig. 18a. Dependence of apparent system frequency on amplitude of response ("rocking angle") 
for EW translational responses of the HSB. Small-amplitude, ambient-vibration, and forced-
vibration estimates of system frequencies by Carder (1936, 1964) are shown by solid vertical 
lines. 
 
 

Time-frequency analysis of multiple earthquake records by two independent methods (short-time 

Fourier transform and zero-crossing analyses) showed that the system frequency changes from 
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earthquake to earthquake and during larger earthquakes (Todorovska and Trifunac 2007). 

Figures 20a and 20b show the instantaneous system frequency fp on the abscissa and the peaks of  
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Fig. 18b. Same as Fig. 18a, but for NS response. 

 

 

the “rocking” accelerations x(t) and y(t) (band-pass filtered by Ormsby filters between 0.1 ~ 

0.2 Hz to 0.8 ~ 1.0 Hz) in the VN7SH. These figures show progressive reduction of fp with 

increasing amplitude of response, but the reduction is not permanent. It can be seen that, during 

both ambient-vibration tests, fp of the transverse (NS) response is near 1.4 Hz and close to the 

θ θ
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value for the smallest earthquake motions (Montebello, 1989 earthquake, Fig. 20a,b). This 

suggests that the soil-foundation-structure stiffness can be “regenerated” by the weak shaking 

during aftershocks. For the longitudinal (EW) response, ambient-vibration surveys indicate only 

partial recovery, from 0.4 ~ 0.6 Hz during Northridge to fp = 1.0 ~ 1.1 Hz (note that during the 

aftershock on March 20, 1994, fp ~ 1.3 ~ 1.4 Hz, see Fig. 20a). The shift in fp from 1.0 Hz 

(Ambient-Vibration Experiment I, February 4–5, 1994, Ivanović et al. 1999) to 1.1 Hz (Ambient-

Vibration Experiment II, April 19–20, 1994, Ivanović et al. 1999) can be interpreted as having 

resulted in part from an increase in the “building stiffness” associated with temporary wooden  
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Fig. 19  (a) Nonlinear changes in rocking stiffness caused by passive soil pressure on sidewalls of 
the building and variable equivalent depth of fixity deg. (b) Schematic representation of 
“permanent” soil deformation after large rocking response. 
 

 

braces along frames A and D (see Ivanović et al. 1999, and Figs. 17b and c). Consistent with this 

interpretation is the fact that, for Experiment II, the peaks of the transfer-functions were smaller 

by 30% than for Experiment I, which suggests a stiffer overall system at the time of Experiment 

II. Figures 20a and 20b also suggest that the soil-pile-foundation system during strong shaking 
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behaves as a nonlinear system with gap elements, which open during strong motion and are 

closed by aftershock excitations (Fig. 19).  
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Fig. 20a. Peak amplitudes of x (EW rocking acceleration) versus fp (apparent frequency of the 
soil-foundation-structure system) during twelve earthquakes recorded in the VN7SH building. 
The wide vertical lines show the apparent EW frequencies of the system response, as determined 
from Experiments I and II. The hatched zone near the top-left describes the range of typical code 
values for allowed drift in concrete structures. 
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Figs. 16 and 17a show the structural damage as observed at the time of the first ambient-

vibration experiment in the VN7SH (Experiment I, performed February 4–5, 1994). A detailed  
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Fig. 20b. Peak amplitudes of y (NS rocking acceleration) versus fp (apparent frequency of the 
soil-foundation-structure system) during twelve earthquakes recorded in the VN7SH building. 
The wide vertical line shows the apparent NS frequency of the system response, as determined 
from Experiments I and II. The hatched zone near the top-left describes the range of typical code 
values for allowed drift in concrete structures. 
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pictorial documentation of the damage observed at the time of Experiment I can be found in the 

report by Trifunac et al. (1999a). The second ambient-vibration experiment (Experiment II) was 
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carried out on Tuesday and Wednesday, April 19 and 20, 1994, three months after the January 

17, Northridge, California earthquake, and one month after a strong aftershock with epicenter at 

1 km from the building (March 20, 1994, M = 5.2). The building was restrained between the two 

experiments. Wooden braces were installed to increase the structural capacity near the areas of 

structural damage, and braces were also placed in the first three or four stories at selected spans 

in the exterior longitudinal frames (A and D) (Figs. 17b,c). Only the first floor of the interior 

longitudinal frames was restrained. We do not know when exactly the addition of the braces was 

completed or whether this preceded the aftershock on March 20. However, we did observe that 

the width of the cracks, especially the shear cracks in the south (A) frame, had become larger 

(relative to our first inspection on February 4). No new structural damage was noticed in the 

building or around its foundation, and no braces were added to the transverse frames. Figs. 17c 

and d show the locations of structural damage and the braces as observed on April 19, 1994. In 

Fig. 17c, the size of the “hinges” is proportional to the level of damage. 

 

Component Response  

 

Two-Dimensional Displacements Along the Floor Slabs and Migration of Centers of Torsion 

 

The first torsional mode (f = 1.6 Hz) in VN7SH could be seen in both the transverse and the 

longitudinal vibrations, and therefore both longitudinal and transverse components of the modal 

displacement could be determined. Fig. 21 shows the modal displacements in the plane of each 

floor. Parts (a) and (b) show, respectively, the results from Experiments I (February 4–5, 1994, 

before the wooden braces were added to strengthen the damaged building) and II (April 19–20, 

1994, after the wooden braces were added, see Ivanović et al. 1999). The measurements were 

taken along longitudinal frame C. The most severely damaged columns were 7 and 8 of 

longitudinal frame A (south of frame C, see Figs. 17a,b, and c) and columns 3, 4, and 5 on the 

fifth floor, which were cracked. The wooden braces were added to the damaged building after 

ambient-vibration Experiment I and before Experiment II (Fig. 17b,c). 

 

 45



It can be seen that the reinforced-concrete floor slabs, 8.5 inches thick and stiff in their own 

plane, translate and rotate about vertical axes. While the transverse component of motion is  
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Fig. 21. Vector displacement amplitudes in the planes of the floor slabs (at 2nd through 7th floors 
and roof) at the frequency of the first torsional mode (f = 1.6 Hz). (a) Experiment I, (b) 
Experiment II. The oval gray zones show approximate locations of the centers of rotation. Notice 
in part (a) the jump in the position of the centers of rotation between the 5th and 6th floors. 
 

 

dominant, the response in the longitudinal direction is also significant, especially for the top 

floors. It can be noticed that during Experiment I (Fig. 21a) the transverse component of motion 

changes phase but the longitudinal component does not. Also, the amplitudes of the longitudinal 

displacements are not proportional to the transverse displacements, as would be expected for a 

“clean” rotation (maximum displacements at the end columns for both directions of motion, and 
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almost zero displacements at the centers of rotation). The longitudinal response of the middle 

columns (C4, C5, and C6) is clearly seen at each floor, which indicates coupling of the torsional  
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Fig. 22. Experiment II: in-plane displacements of transverse frames 2, 5, and 8; (a) at the 
frequency of the first transverse mode (f = 1.4 Hz), and (b) at the frequency of the first torsional 
mode  f = 1.6 Hz. 
 

 

response for this mode with the longitudinal response. The phase of the longitudinal response of 

the upper floors (roof, 7th, and 6th) is opposite from the one at the lower floors (3rd and 4th). 
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The shaded oval zones in Fig. 21a illustrate the loci of the centers of rotation for the floor slabs, 

determined by drawing a normal to the displacement vectors. Because of measurement errors and 

some deformation of the floor slabs, the “center of rotation” for a floor slab is not a point but a 

zone. The “centers of rotation” are located south of frame C at the upper floors (above the 5th), 

and north of frame C at the lower floors (5th and below). At the lower floors, the centers are 

located close to the middle (column 5), and then they “jump” to the east part of the frame at the 

6th floor. Between the 6th floor and the roof, they move again toward the center of the frame. The 

jump from south to north is between the 5th and 6th floors, exactly where the most severe damage 

occurred (Figs. 16 and 17).  

 

The results of Experiment II (Fig. 21b) show that, in contrast to Experiment I, the “centers of 

rotation” are all south of frame C and are all near the center of the frame (near column line 5). 

This may be explained by the added braces (see Ivanović et al. 1999), which may have 

eliminated torsional eccentricities caused by the damaged columns at the 5th floor and mainly 

along (south) frame A (Figs. 15, 16, and 17). 

 

The above example illustrates the association of the discontinuous behavior of the torsional 

centers of rotation with the locations of the damaged columns, and it suggests that mapping 

discontinuities in the rotational response of full-scale structures can become a useful tool for 

locating damage in structural members.  

 

 

Two-Dimensional Displacements Along Transverse Building Cross-Sections 

   

As the building vibrates, most of the deformations occur in the columns. Consequently, the floor 

slabs also move in the vertical direction. Therefore, the transverse and longitudinal modes can 

also be “seen” in the vertical response, especially at the upper floors. 

 

Figure 22 shows 2-D, in-plane motions of transverse frames 2, 5, and 8 at the frequency of the 

first transverse mode (part (a), f = 1.4 Hz) and at the frequency of the first torsional mode (part 
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(b), f = 1.6 Hz). The vertical displacements, shown in Fig. 22, are exaggerated by a factor of two 

to emphasize the deformation of the columns. A noticeable vertical displacement is seen only at 

column A5 of the 5th floor, and only at the frequency of the first transverse mode (see Fig. 22 

part (a)). This column experienced large shear cracks (Fig. 17) during the Northridge earthquake, 

and the rotation of the floor slab and large vertical displacement in Fig. 22 indicate decreased 

axial capacity of this column. No large vertical displacement or floor rotations are noticeable 

near column A5 at the 7th floor, presumably because of participation of the neighboring frames 

and slabs. The vertical displacements of transverse frames 2 and 8 were small, as would be 

expected, because the columns in these frames suffered less (frame 8) or no (frame 2) damage 

(Figs. 15, 16, and 17). No unusual vertical displacements of the transverse frames 2, 5, and 8 or 

rotations of the corresponding segments of the floor slabs could be seen at the first torsional 

frequency (f = 1.6 Hz, Fig. 14, part (b)) (Ivanović et al. 1999). 

 

The above examples from the HSB and the VN7SH show significant departures from what 

would normally be assumed and inferred in analyses, which thus far have generally ignored 

rotational degrees of freedom and have interpreted translational components of recorded motions 

only. It is clear that the additional information, which is provided by the rotational motions, plays 

an important role in the description of overall structural models, in the analysis of structural 

components, and in the experimental determination of the location of the damaged members. 

 

Nonlinear Response 

 

Nonlinear response studies, which use lumped-mass models of buildings, cannot provide 

information about point rotations. The rotations that can be observed in the results for these 

models can only describe inter-story drifts, which are predetermined by the modeling 

assumptions. Such models provide useful results about a structure’s overall response, including 

instability and failure, and they can be used to evaluate the relative significance of the rotational 

components of strong motion, especially near faults, where a sudden onset of motion with a large 

velocity jump is associated with sudden, large rotations (Fig. 1,3; Jalali and Trifunac 2007a,b; 

Jalali et al. 2007), but they should not be considered for analysis of point rotations and for 

studies of deformation of individual structural members. 

 49



 

Nonlinear Waves 

 

Strong ground motion can be viewed as resulting from a sequence of pulses emitted from failing 

asperities on the fault surface (Trifunac 1972a,b; 1974; 1998). Through multiple arrivals with 

different source to station paths and 

scattering, the strong motion observed 

at a site assumes the appearance of 

irregular oscillations in time but 

usually preserves one or several larger 

and long-velocity “pulses.” These 

pulses are “spread out” in time due to 

multiple arrival paths and dispersion, 

but they appear systematically in 

recordings at adjacent stations, up to 

epicentral distances approaching 100 

km (Todorovska and Trifunac 

1997a,b). 

 

As a first approximation, the motion at 

the base of the building can be 

represented by a velocity pulse with amplitude vb and duration t0. For small t0, this pulse 

approximates a delta function and can be used as a building block to represent more general 

velocity pulses in input motion. For an elastic building on rigid soil (i.e., no soil-structure 

interaction), a velocity pulse with amplitude vb = = vG,max ( is the velocity-pulse amplitude 

inside the building, and is the peak ground velocity in the free field outside the building) 

will create a wave propagating up the building with phase velocity c = 

linV bv

,maxGv

bβ  (see Fig. 23). For 

times shorter than H/c and for elastic strain (∂u/∂x = vb /c)—i.e., strain ( , )x tε smaller than the 

elastic limit yε  (Fig. 24)—the wave propagating up into the building will be defined by a 

straight line, as follows: 

u(x,t)

x

H β
b

vlin

u(0,t) = vlint

β
bt

roof

base

Fig. 23. A wave caused by sudden movement at the
base of the shear building, for a constant-velocity
pulse with amplitude Vlin = , and for time t < t0

(= pulse duration). 
bv
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During reflection from the stress-free top of the building, the incident wave from below and the 

reflected wave from above will 

interfere with each other, leading 

to double amplitude at the roof. 

The propagation of the energy of 

the pulse will continue downward 

as a linear wave as long as the 

incident strain amplitude is smaller 

than / 2yε  (Fig. 24). 

 

Figure 25 illustrates the “peak drift 

amplitudes” (vb/c) in a shear-beam 

model of a building, assuming c = 

100 m/s and assuming short transient pulses and linear response. For 12 earthquakes (Trifunac et 

al. 2001d), the maximum drift at the base of the structure is plotted versus vb (solid points). For 

the Landers, San Fernando, and Northridge earthquakes, the maximum drift at the roof is also 

shown (2vb/c). It can be seen that the maximum drift at the base occurs during the Northridge 

earthquake and is approximately 0.5%, while at the roof it is equal to about 1%. 

Sress

Strain
O

Y
U

ε
u

ε
y

 

For a building supported by flexible soil, the soil-structure interaction will lead to horizontal and 

rocking deformations of the soil, and in general this will modify and usually reduce the 

amplitude vb of the strong-motion pulse entering the structure (Gičev 2005). Partitioning of the 

incident wave energy into horizontal and rocking motions of the building-foundation-soil system 

and scattering of the incident wave from the foundation will thus change the energy available to 

cause relative deformation of the structure.  

 

σ
0

σ
y

σ
u

μ
0

μ
e

μ
1

μ1=γμ0

Fig. 24. Bilinear stress-strain representation of a shear-
beam model experiencing nonlinear response. 
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The presence of the foundation within the soil creates an impedance jump for incident-wave 

motion, and this causes scattering of the incident waves (Trifunac 1972c; Iguchi and Luco 1982; 

Lee et al. 1982; Moslem and Trifunac 1987; Todorovska and Trifunac 1990a,b; 1992b; 1993; 

Trifunac et al. 2001c). Gičev (2005) illustrates the extent and nature of the reduction of the 

incident free-field amplitude of vG,max through scattering and refraction for a 2-D soil-foundation-

building model.  
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Fig. 25. Drift amplitudes in a shear-beam building with linear shear-wave velocity 

100 / .b m sβ =  
 

To illustrate the nonlinear wave motion in a building, we consider horizontal deformations, u , in 

a 1-D model of a building supported by 1-D half space and excited by a vertically propagating 
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shear wave described by a half-sine-pulse. For simplicity, the incident displacement in the soil is 

chosen to be a sinusoidal pulse with characteristics as shown in Fig. 26. The constitutive law of 

the building material is assumed to be bilinear, with the first slope, 0μ , representing the linear 

(initial) shear modulus and the second slope, 01 γμμ = , representing the material during yielding 

(Fig. 24). The yielding strain in the building is ybε .  

 

The equation of motion is 

( ) /t x
v σ ρ=  ,               (12) 

 

and the relation between the derivative of the strain and the velocity is 

 

t xvε =  ,  (13) 

 

where ν , ρ , σ , and ε  are particle velocity, density, shear stress, and shear strain, respectively, 

and the subscripts t and x represent derivatives with respect to time and space. 

 

The domain for this example consists of two materials (see Fig. 26): (1) soil with physical 

properties sρ  and μs, and (2) a building with physical properties bρ  and μb, where iρ  is the 

density and μi is the initial shear modulus in the soil (i = s) or in the building (i = b). The velocity 

and rotation (strain) of a particle are 
t
uv

∂
∂

=   and  
x
u

∂
∂

=ε , respectively, and u is the out-of-plane 

displacement of a particle perpendicular to the velocity along the propagation ray. 

 

It is assumed that the incoming wave is known and that its displacement as a function of t is 

prescribed at the soil point 1 ( sxx Δ−= 2 ). For analysis, in this example it is assumed that the soil 

is always in the linear elastic state. To model the radiation of the wave from the building, we 

provide an artificial boundary at the bottom of the model. The transparent boundary adopted for 

this study is described in Fujino and Hakuno (1978), and it is a perfect transparent boundary for 

one-dimensional waves when 1=
Δ
Δ
x
tβ .  
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For the numerical analysis, the densities of the soil and of the beam are assumed to be the same: 

ρρρ == sb = 2000 kg/m3. The velocity of the shear waves in the soil is taken as sms /250=β , 

and the velocity in the building is set as smb / 100=β . The height of the building is mH B 10= .  
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Fig. 26. Shear-beam building and incoming strong-motion displacement pulse: (a) model of the 
beam, and (b) the pulse in the soil. 
 

 

To study nonlinear response and the development of transient and permanent strains in the 

building, we introduce two dimensionless parameters (Gičev 2005): (a) dimensionless amplitude  
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ybbH
A
ε

α
⋅

=   ,              (14) 

 

where  is the amplitude of the pulse (see Fig. 26),  is the height of the building, and A bH ybε  is 

the yielding strain in the building, and (b) dimensionless frequency   

 

db

b

db

b

b

b

t
H

t
HH

ββλ
η =

⋅
==

2
2

2

 ,                 (15) 

 

where bλ  is the wavelength of the wave in the building, bβ  is the shear wave velocity in the 

building, and  is the duration of the half-sine pulse. dt

 

For the linear motions at the contact (point 3 in Fig. 26), one part of the incoming wave is 

transmitted into the other medium and one is reflected back into the same medium. The 

corresponding coefficients are obtained from the boundary conditions of continuity of the 

displacements and stresses at the contact. For a transmitted wave from medium B to medium A, 

and for a reflected wave from medium B back into medium B, these coefficients are 

 

2 / 1 a a
trB A

b b

k ρ β
ρ β→

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
        (16) 

 

and 

 

1 / 1a a a a
refB B

b b b b

k ρ β ρ β
ρ β ρ→

⎛ ⎞ ⎛
= − +⎜ ⎟ ⎜

⎝ ⎠ ⎝ β
⎞
⎟
⎠

 .                   (17) 

 

For the opposite direction of propagation, the numerators and the denominators in these fractions 

exchange places. For the shear-wave velocities in our example ( 250 /s m sβ = and 100 /b m sβ =

/ 7

), 

the coefficient of transmission of the wave from the soil to the building is = 10  and the  tk
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coefficient of reflection of the incident wave from the building, back to the building, is 

.  3 / 7rk = −

250s

 

Gičev and Trifunac (2006), have derived the conditions for the first occurrence of permanent 

strain in the building, which relate the amplitude and frequency of the pulse, the physical 

properties of the building, and the soil stiffness. For material properties in this example 

( /m s and 100 /b m sβ = ), these conditions are  β =

 

1
2
b s

t sk
β βαη

π πβ
+

> = =  0.2228      (18) 

1
2 4

b s

t sk
β βαη

π πβ
+

> = =  0.1114     (19) 

1 0.2228
(2 ) 2 (2 ) 2

b s

t r s rk k k kr

β βαη
π πβ

+
> = =

+ + +
 = 0.09174 .  (20) 

 

The condition (18) requires the biggest product αη , and if it is satisfied it describes the 

occurrence of the first permanent strain, which is always located at the bottom of the building. 

We refer to this part of the building as Zone 2, or 2Z  (when 0.5η > ). If the condition (18) is not 

satisfied, the condition (19) becomes relevant and, if it is satisfied, the first permanent strain 

occurs at some point (T) in the building, between the base and top. We refer to this part of the 

building as Zone 3, or 3Z  (when 0.5η > ). Finally, if both conditions (18) and (19) are not 

satisfied, and if 5.0≤η , the condition (20) describes the amplitude-frequency condition for the 

occurrence of the first permanent strain. This can occur anywhere in the building, and we refer to 

this as Zone 1, or 1Z  (when 0.5η < ). 

 

In the following, the results are illustrated based on the studies of Gičev and Trifunac (2006; 

2007a,b) who investigated the range of the dimensionless frequencies ( 506.0 ≤≤ η ), five 

dimensionless amplitudes ( 0.01, 0.05, 0.10, 0.20,α =  and 0.30), and four ratios of moduli 

( 0.3 and 0.2, 0.1, 0.0,
0

1 ==
μ
μ

γ ). Their results are best illustrated in terms of dimensionless ratios 
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of the governing variables. One of those variables, , is the maximum velocity entering the 

beam (building), assuming that the building is linear (Fig. 23). This velocity is a linear function 

of 

linv

η :  

                                        tbybt
d

lin kk
t
Av βπαηεπ

=⋅= .         (21) 

Instead of studying the absolute maxima of the rotations (strains), we can consider the 

normalized maxima, defined by the ratio  

 

lin

b

lin
norm v ε

ε

β

ε
ε maxmaxmax ==   .  (22) 

This quantity will show the degree of nonlinearity in the building response and the effects of the 

interference on the amplification of the linear entry strain. This strain is always larger than one. 

 

The normalized strain at the end of the analysis (permanent strain) can be described by the ratio  

                                             
lin

end

b

lin

endend
norm v ε

ε

β

ε
ε ==  .                   (23) 

 

This will show the ratio of the permanent strain (after all of the wave energy exits the building) 

and of the linear entry strain. It can be larger or smaller than one, and for linear waves (when 

neither condition 19 nor condition 20 are satisfied) it is zero. 

 

In Figs. 27a,b,c, the normalized strains versus dimensionless amplitude α  are shown for the four 

values of 0.3 and 0.2, 0.1, ,0.0=γ  in the three zones Z1, Z2, and Z3, respectively, using a semi-

logarithmic scale. From condition (20), the first nonlinear strain in Zone 1 occurs for  

 

                            1835.0
5.0

09174.009174.0

max
1 ==>

η
α  .  (24) 

As can be noticed, in Zone 1 (Fig. 27a), while the strain is linear ( 1αα ≤ ), there is no 

dependence on γ , and all of the curves coincide. The normalized maximum strain,  (see max
normε
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Eqn. 22), is constant, and its value is about 17/7, corresponding to the summation of the three 

strain-wave amplitudes at the beginning of the second wave passage (see Gičev and Trifunac 

2006). Because the response is linear, in this interval  shows only the effect of the 

interference on the amplification of the linear entry strain.  
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Fig. 27a. Dependence of the normalized strains on the dimensionless amplitude, α , in Zone 1 
for γ  = 0.0, 0.1, 0.2, and 0.3. 
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The normalized strain  in this interval is zero, showing that the strains are reversible. The 

normalized strain 

end
normε

mam x /y
nor ybε ε ε=  approaches zero as α approaches zero. With increasing α , 

beyond 1α , the response at the bottom of the building becomes nonlinear at the beginning of the 

second wave passage, the curves for different γ  separate, and the normalized strains increase 

with decreasing γ , being the largest for elasto-plastic material, .0=γ   
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Fig. 27b. Dependence of the normalized strains on the dimensionless amplitude, α , in Zone 2 
for γ  = 0.0, 0.1, 0.2, and 0.3. 
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For the amplitude range considered, the normalized strain (rotation)  reaches its maximum 

value of 29.74 at 

max
normε

0.3α = , for elasto-plastic material. In this case, the effect of the nonlinearity of 

the building response overwhelms the effect of constructive interference of the three strains at 

the bottom. The remaining normalized permanent strain at the end, after the wave exits the beam 

completely, , is 28.17 for the elasto-plastic material, while the normalized strain, end
normε

ybmax /y
normε ε= ε , is 16.18, indicating that the beam will probably fail at 3.0=α . 
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Fig. 27c. Dependence of the normalized strains on the dimensionless amplitude,α , in Zone 3 for 
γ  = 0.0, 0.1, 0.2, and 0.3. 
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In Fig. 27b, the normalized strains versus α  in Zone 2 are shown, again using the semi-

logarithmic scale. It can be seen that for small amplitudes, 05.0≤α , all of the curves converge 

to zero. As α  increases, all normalized strains increase. For α  larger than 0.1, the dependence 

of all of the normalized strains on α  for elasto-plastic material, 0=γ , resembles, in this scale, a 

logarithmic function, which means that the normalized strains (rotations) for elasto-plastic 

material behave like linear functions of α . For materials with 0≠γ , the normalized strains 

 are independent of end
normε α , while the normalized strains  and  are approximately 

linear, with the slope  

max
normε y

normε

α

max
normε

∂
∂

  being smaller than the slope 
α

ε
∂

∂ y
norm . 

 

In Fig. 27c, the normalized strains (rotations) versus α  in Zone 3 are shown using a semi-

logarithmic scale. For any γ , the normalized strains  and max
normε max /y

norm ybε ε ε=  approach 2 and 0, 

respectively, as α  approaches 0. The normalized strain  depends only on end
normε γ  and is 

independent of α . The lowest amplitude, when it occurs, can be found from condition (19) at the 

highest considered η  as 02228.0
5

1114.0
min =>α . For minαα ≤ ,   . 0end

norm =ε

 

In this example, we described the consequences of earthquake energy flow into a structure, with 

the objectives of providing some understanding of the resulting response and making this useful 

for the design of structures experiencing transient excitation. We examined some elementary 

aspects of transient waves propagating in a structure, and we illustrated the relationships between 

the amplitude of peak velocity of the wave entering the structure, lin bv v= , and transient and 

permanent point rotations associated with the resulting response. Our analysis is qualitative in 

that it only describes the response of a simple shear beam with constant material properties. In 

real buildings, variations of material properties with height introduce additional complications 

(although they are qualitatively similar) (Gičev and Trifunac 2007b). Nevertheless, the above 

example shows that consideration of the response in terms of propagating nonlinear waves can 

provide invaluable details on where inter-story drifts and large point rotations may occur and 

how large those might be. In terms of the more detailed models of actual structures (or layers of 
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soft soil near the ground surface), the approach we have presented can offer major improvements 

and can represent an excellent starting point for use in earthquake-resistant design. These results 

provide direct data for initiating displacement-based design, but the power of incident waves—

that is, the time rate of the incoming seismic wave energy—must also be considered if damage to 

structures is to be controlled and eliminated. 

 

SUMMARY AND CONCLUSIONS 

 

While every effort was made in this overview to illustrate the physical nature of added insights 

and the benefits and significance of considering rotations in structural response, it must be 

emphasized that, at present, we have essentially no full-scale measurements, either of point 

rotations in strong ground motion or of rotations in structural response. Consequently, the 

observational inferences we can make at present are based only on the “average” rotations 

(measured from the differences in the translational motion at two points, separated by a 

distance ), and therefore they can describe at best that part of the rotational spectrum that is 

associated with the very long wavelengths 

d

λ  (such that dλ >> ). Furthermore, as we noted at 

the beginning, we employed only the classical wave representation, which applies only to 

homogeneous, elastic, and continuous idealization of the medium. Obviously, this is a 

simplification for earth materials and an oversimplification for structures, which are made up of 

discrete beams and columns. Under these conditions, it is reasonable to expect that most of what 

was presented here can be assumed to be representative only for the long wavelengths of the 

complete spectrum of the rotational motions. However, in spite of these limitations it should be 

clear that we must continue to study the rotational components of motion if we wish to consider 

all physical aspects of the engineering description of the response of structures to transient 

dynamic loads.  

 

 

The examples in this work are neither general nor complete, and we illustrated only a small 

number of cases that describe the role of the rotational components of motion. Based on these 

examples, the roles of (1) sudden and very strong rotational motion in the near field, associated 

with the first arrival of earthquake waves, and (2) large rotations that are associated with strain 

 62



localization in the zones of nonlinear response of the building materials, may be the most 

important aspects to study and to include in future engineering analyses. The first is important 

because it represents a powerful excitation that has not been previously described, theoretically 

or via measurements, and that consequently is not currently considered in the design of structures 

that are expected to survive strong near-field earthquake shaking. The second aspect is important 

because it has great potential for structural health monitoring because it can improve the spatial 

resolution in a monitoring process aimed at identifying the locations of damage.  
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