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SUMMARY

We model a seven-story, reinforced-concrete building in Van Nuys, CA, which was damaged during the
1994 Northridge earthquake. We use a one-dimensional, layered, shear-beam model with bi-linear material
properties, and we examine how the rotations (local strains and drifts) in this model depend upon the
distribution of the stiffness along the building height, the nonlinear properties of the reinforced concrete,
and the nature of strong motion. We show how, following the powerful waves propagating up and down
the building, point rotations take place that differ from the corresponding average drift angles. These point
rotations are larger near the rigid floor slabs (near the top and bottom ends of the columns, shear walls,
and nonstructural members found at all floors) and propagate as slow waves up and down the building.
These slow rotational waves occur only while the material is experiencing large nonlinear deformations,
and their amplitudes grow with ductility. We note that recording these rotational waves in real time may
provide a powerful new vehicle for health monitoring of full-scale structures excited by large transient
forces when their structural members enter large nonlinear deformations. Copyright r 2008 John Wiley &
Sons, Ltd.

KEY WORDS: structural health monitoring; real-time recording of rotations induced by nonlinear waves;
detection of damage by earthquakes; impacts and explosions

1. INTRODUCTION

The real-time detection of damage in buildings has become one of the contemporary challenges
in structural dynamics for powerful transient excitations by earthquakes, impact loads, and
explosions. The goal is to detect the location, the extent, the nature, and the time of occurrence
of the damage. Having detected the damage, the objective is then to provide a real-time means
of dealing with its consequences. In this paper, we explore how the point rotations at selected
points in the structure could be used for this purpose, and we explore the physical nature of this
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problem using a simple one-dimensional (1D) representation of a real structure. We note
that recording strong-motion rotations can become a powerful tool for real-time damage
detection.

Most health-monitoring methods for civil engineering structures use structural vibration data
and are based on detecting changes in their modal parameters—frequencies and mode shapes
(e.g. see Doebling et al. [1] and Chang et al. [2] for detailed state-of-the-art reviews on this topic).
While monitoring changes in the frequencies of vibration requires minimum instrumentation,
monitoring changes in the mode shapes requires more extensive instrumentation than is
available in even most instrumented structures. Furthermore, the frequencies of vibration are
usually estimated using some energy distribution of the recorded response in the time-phase
plane. The difficulty associated with this approach is that the changes caused by damage can be
small relative to the time-dependent fluctuations of full-scale structures, noise, and the
uncertainties associated with damage location.

There are two main advantages of formulating the structural health monitoring in terms of
the wave-propagation method, which will be used in this paper. One advantage is that it is local
(the wave travel times depend only upon the properties of the structure between the adjacent
observation points). In contrast, the modal methods are global (the modal properties depend
upon the overall properties of the structure, and therefore they change little when the damage is
localized). The wave methods can detect local changes with relatively few sensors (as compared
with detecting changes in mode shapes). Another advantage is that the wave travel time through
the building can provide information that is directly related to the properties of the structure
alone. In contrast, the time frequency energy distributions yield the frequency of the
soil–structure system, fsys, which also depends upon the stiffness of soil and therefore
describes the changes in the soil–structure system, not in the structure alone. The changes in fsys
have often been erroneously interpreted to be entirely due to loss of structural stiffness (e.g.
[3–6]). For comprehensive and reliable structural health monitoring, it is therefore essential to
be able to monitor the changes in the structure alone, and wave-propagation methods are
among the most suitable for this purpose.

There are only a few publications on wave-propagation methods for analyses of building
response, other than nondestructive testing, for structural health monitoring and damage
detection in civil structures [7–13]. Safak [14] proposed a layered continuous model for analysis
of seismic response of a building and detection of damage by tracing changes in the parameters
in the layers. Ivanović et al. [15] and Trifunac et al. [16] used strong-motion data recorded in an
eight-story, reinforced-concrete building during the 1994 Northridge earthquake to explore two
methods, one based on cross-correlation analysis (to estimate time lags between motions
recorded at different levels) and the other based on detecting changes in wave numbers
(inversely proportional to the wave velocities) of waves propagating between different levels. Ma
and Pines [17] proposed a method based on a lumped mass building model and propagation of
de-reverberated waves to identify the damage, which can be tested using simulated building
response data. Gičev and Trifunac [18,19] used the energy and power of nonlinear waves to
identify the location of damage. The first applications of the impulse-response functions
computed by deconvolution [20] for detecting local changes in stiffness, and for earthquake
damage detection in general, appeared in the studies of the seven-story Van Nuys Hotel [21,22]
and the Imperial County Services Building [23–25].

Rotational components of building motion accompany the displacements induced by seismic
waves. In linear elastic media, ‘point rotations’ are expressed by space derivatives of the

V. GIČEV AND M. D. TRIFUNAC

Copyright r 2008 John Wiley & Sons, Ltd. Struct. Control Health Monit. (2008)

DOI: 10.1002/stc



displacements [26]. ‘Average rotations’ (rotation of a line connecting two moving points and
separated by a known distance) can be computed from the differences in the recordings of two
translational records of the response [27–29].

During nonlinear wave propagation in buildings, point rotations can become large, especially
in the areas of strain localization. In the following, we present a simple model that allows us to
study these large point rotations in a shear-beam model of a seven-story building. We show how
these rotations relate to the overall amplitudes and time characteristics of the response.
Consideration of other contributions to point and average rotations, such as departures of real
building behavior from the simple shear-beam model, and geometric nonlinear deformations of
a structure, for example, are outside the scope of this paper.

2. CASE STUDY—VAN NUYS HOTEL (VN7SH)

The building whose response we analyze in this paper using a 1D, layered, nonlinear shear-beam
model is a seven-story hotel (VN7SH) located in Van Nuys, CA. It was damaged by the
1994 Northridge, California earthquake [30–33]. Designed in 1965 and constructed in 1966
[34,35], it is 18.9� 45.7m in plan and is 20m high. The typical framing consists of four
rows of columns spaced on 6.1m centers in the transverse direction and 5.7m centers in the
longitudinal direction (nine columns) (Figure 1(a)). Spandrel beams surround the perimeter of
the structure. Lateral forces in the longitudinal (EW) direction are resisted by interior
column–slab frames (B and C) and exterior column–spandrel beam frames (A and D).
The added stiffness in the exterior frames associated with the spandrel beams creates exterior
frames that are roughly twice as stiff as interior frames. The floor system is reinforced-concrete
flat slab, 25.4 cm thick at the second floor, 21.6 cm thick at the third to seventh floors,
and 20.3 cm thick at the roof [3–6,34]. The building is situated on undifferentiated Holocene
alluvium, uncemented and unconsolidated, with a thickness of o30m, and an age of o10 000
years [36]. The average shear-wave velocity in the top 30m of soil is 300m/s, and the soil-boring
log shows that the underlying soil consists primarily of fine sandy silts and silty fine sands.
The foundation system consists of 96.5-cm-deep pile caps supported by groups of two
to four poured-in-place, 61-cm-diameter, reinforced-concrete friction piles. These are centered
under the main building columns, and all of the pile caps are connected by a grid of beams. Each
pile is approximately 12.2m long and has a design capacity of over 444.82� 103N vertical load
and up to 88.96� 103N lateral load. The structure is constructed of normal-weight reinforced
concrete [34].

2.1. Earthquake damage

The ML 5 6.4 Northridge earthquake of January 17, 1994, severely damaged the building. The
structural damage was extensive in the exterior north (D) (Figure 2, top) and south (A) (Figure
2, bottom) frames that were designed to take most of the lateral load in the longitudinal (EW)
direction. Severe shear cracks occurred at the middle columns of frame A, near the contact with
the spandrel beam of the fifth floor (Figures 2 and 3), and those cracks significantly decreased
the axial, moment, and shear capacity of the columns. The shear cracks that appeared in the
north (D) frame (Figure 2, top) caused minor to moderate changes in the capacities of these
structural elements. No major damage to the interior longitudinal (B and C) frames was
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observed, and there was no visible damage to the slabs or around the foundation. The
nonstructural damage was significant. Photographs and detailed descriptions of the damage
from the earthquake can be found in Trifunac et al. [33] and Trifunac and Hao [31]. An analysis
of the relationship between the observed damage and the changes in equivalent vertical shear-
wave velocity in the building can be found in [21]. A discussion of the extent to which this
damage has contributed to the changes in the apparent period of the soil–structure system can
be found in [37,38].

Figure 1. Van Nuys seven-story hotel (VN7SH): (a) typical floor plan and (b) typical transverse section.
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3. NONLINEAR WAVES

In the 1D model adopted for this study, we use the velocity of shear waves and the density of the
slabs and inter-story columns based on the analysis of impulse response for EW recorded
motions in the Holiday Inn Hotel [21]. These parameters, together with the story heights, are
summarized in Table I. As can be seen from Table I, the stiffness and the density of the floors

Figure 2. Observed damage to frames A and D.
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are much larger than the stiffness of the columns, so it can be expected that the floors will
remain linear and move as rigid bodies.

To select the final model parameters—the yielding and strengthening of the material—we
calculated the east–west response of the model without considering the soil–structure
interaction, with the assumption that the input ground motion (Figure 4) can be
approximated by the strong motion recorded at the structure’s ground floor (channel 16 in
Figure 2, [39]). We then compared the results with the recorded motions at higher floors in the
building (channel 12 at the second floor, channel 11 at the third floor, channel 10 at the sixth

Table I. One-dimensional building model.

Interstory height
hinter-stosry (m)

Slab thickness
hslab (m)

binter-story
(m/s) bslab (m/s)

binter-story
(kg/m3)

bslab
(kg/m3)

Roof slab 0.203 2000 2384
Seventh story 2.44 73.15 82.90
Seventh-floor slab 0.215 2000 2384
Sixth story 2.44 76.20 82.90
Sixth-floor slab 0.216 2000 2384
Fifth story 2.44 77.72 82.90
Fifth floor-slab 0.216 2000 2384
Fourth story 2.44 79.25 82.90
Fourth-floor slab 0.216 2000 2384
Third story 2.44 91.44 82.90
Third-floor slab 0.216 2000 2384
Second story 2.44 129.50 82.90
Second-floor slab 0.254 2000 2384
First story 3.86 140.20 76.92

Figure 3. Post-earthquake view of damaged columns A7 and A8 in frame A (see Figures 1 and 2).
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floor, and channel 9 at the roof). The locations of the instruments in the building that recorded
the EW response are shown in Figure 2.

By trial and error search for the best value of the yielding strain and the bi-linear
approximation of the material properties, we obtained the best estimates for yielding strain
Ey ¼ 0:0025 and for strengthening parameter g ¼ 0:44. These two parameters, together with the
material velocities, densities, and dimensions, shown in Table I, then describe the required
physical properties of the model whose response we analyzed by finite differences (FD) [39,40].

Our 1D model consists of 14 layers representing seven floor slabs and seven inter-story
columns, with dimensions (thickness) of the layers h(i), velocities of shear waves b(i), and
densities r(i), for 1pip14, where, i ¼ 2k� 1ðk ¼ 1; 2; :::; 7Þ represent inter-story space (soft
layers), and i5 2k (k5 1,2,y,7) represent floor slabs (hard layers) (see Table I, Figure 5).

We assume the bilinear constitutive law s ¼ sðEÞ, where s is shear stress and e is shear strain
at a grid point (Figure 6). The first slope, m0b, represents the linear (initial) shear modulus, and
the second slope, m1b ¼ gm0b, represents the shear modulus after yielding. The yielding strain
Eyb ¼ 0:0025 and the strengthening g ¼ 0:44 are assumed to be the same for all soft layers (solid
lines in Figure 6). The contact points between two layers and the contact point between the soil
and layer 1 remain in a linear state (dashed line in Figure 6) [39].

The equation of shear waves we used is

vt ¼
1

r
ðsÞx ð1aÞ

and the relationship between the derivatives of the strain and the velocity is

Et ¼ vx ð1bÞ

where n, r, s, and e are particle velocity, density, shear stress, and shear strain, respectively, and
the subscripts t and x represent derivatives with respect to time and space. v ¼ @u=@t and
E ¼ @u=@x are the velocity and the strain of a particle, and u is the out-of-plane displacement of a
particle perpendicular to the velocity along the propagation ray.

The Lax–Wendroff OðDt2;Dx2Þ finite-difference method [41] for a set of simultaneous
equations was used to solve the problem. The time increment is obtained from the minimum
ratio:

Dt ¼
Dxk
bk

� �
min

¼
Dx14
b14

ð2Þ

where the subscripts stand for the layer number counted from the base.

Figure 4. Incident ground motion.
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The building in the numerical model is discretized as follows. The floor layers are discretized
with three spatial intervals, while the number of the equal spatial intervals of the story (soft)
layers is nk ¼ 3 � hk=h14, where the subscript stands for the layer number. Thus, we obtain an
equidistant grid in the inter-story layers (k5 1,3,5,y,13) with spatial interval

Dxk ¼
hk

nk
¼

h14

3
ð3aÞ

Figure 5. One-dimensional model showing 14 points at which the ‘top of story’ and ‘bottom of story’
displacements and rotations are presented in the following figures.
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while at the floor levels (k5 2,4,6,y,14) the spatial interval is

Dxk ¼
hk

3
ð3bÞ

and at the contact points i the spatial interval is

Dxi ¼
Dxiþ1 þ Dxi�1

2
ð3cÞ

where i stands for the ordered number of the contact point. The numerical tests have shown that
this discretization leads to stable results. In this way, the model is represented by a grid having
295 points and 294 intervals.

Above the top point (N5 295), an additional dummy point N0 is introduced at distance Dx14
from the point N. For a stress-free point N, for all time, the velocities and the stress at point N0

are updated as

vN 0 ¼ vN�1 ð4aÞ

sN 0 ¼ �sN�1 ð4bÞ

Equations (1a), (1b) can be written in vector form as

@U

@t
¼
@F

@x
ð5Þ

Figure 6. Bi-linear constitutive law used in the finite-difference calculations of the response of VN7SH.
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where

U ¼
v

E

( )
and F ¼

s
r

v

( )
ð6Þ

The vector U at point i in time (j11)Dt expanded in a Taylor series is

Ui;jþ1 ¼ Ui;j þ Dt
@U

@t

� �
i;j

þ
Dt2

2

@2U

@t2

� �
i;j

þOðDt3Þ

and from Equation (5)

Ui;jþ1 ¼ Ui;j þ Dt
@F

@x

� �
i;j

þ
Dt2

2

@

@t

@F

@x

� �
i;j

þOðDt3Þ

Ui;jþ1 ¼ Ui;j þ Dt
@F

@x

� �
i;j

þ
Dt2

2

@

@x
AðUÞ

@F

@x

� �
i;j

þOðDt3Þ ð7Þ

where A(U) is the Jacobian matrix

AðUÞ ¼
@F

@U
¼

@s
r@v

@s
r@E

@v
@v

@v
@E

" #
¼

0 1
r

ds
dE

1 0

" #
ð8Þ

4. RESULTS

The inter-story drifts are average rotations of the deformed shape of the simplified k-degrees-of-
freedom building model, where k is the number of building slabs 11 (and 11 is associated with
the prescribed motion at the soil–building interface). The deformed shape of this model is
piecewise linear.

Between adjacent slabs, i and i11 (i11pk), the average rotation (drift) is

driftðiÞ ¼
uiþ1 tð Þ � ui tð Þ

hi

� �
ði ¼ 1; 2; . . . ; k� 1Þ ð9Þ

where u represents the slab displacement and h is the height of the soft layer.
As we consider continuous model of the building, the deformed shape of the soft layer

representing columns is a continuous curve of higher order, and its rotations (strains), e, at each
point between two adjacent slabs are different. Because the drift represents average rotation of
the soft layers, by Lipshitz condition there is a point (not necessarily in the middle of the soft
layer) where the point rotation of the continuous model is equal to the average rotation (drift).
The conclusion is that the difference between the drift and the point rotations in the continuous
model is largest at the end points of the column.

To study the difference between the drifts and point rotations (strains), we consider the 14
points just below and above the slabs (at distance Dx ¼ 6:8 cm below and above the slabs) (see
marked points 1–14 in Figure 5). In each time step, using (9), we compute the seven inter-story
drifts. At the same time, having computed strains from the FD scheme at the 14 points at the
end of each soft layer (columns), we compute seven pairs of ratio

rð2i � 1Þ ¼
Eð2i � 1Þ
driftðiÞ

ð10aÞ
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rð2iÞ ¼
Eð2iÞ
driftðiÞ

ð10bÞ

In Equations (10), i represents the layer (soft story) number (i5 1,2,y,7).
To avoid division by zero, we introduce a small number d5 0.001. For small values of the

drift, if the absolute value of the drift is smaller than d, we take the limit

lim
driftðiÞ!0

rð2i � 1Þ ¼ lim
driftðiÞ!0

rð2iÞ ¼ 1 ð11Þ

In Figure 7, the ratios at the bottoms and tops of the soft layers (columns) are presented versus
time.

During large nonlinear response, these ratios are different from 1 (point rotations are bigger
or smaller than the average floor drift).

5. ANALYSIS

The ratios of the rotations shown in Figure 7 are plotted with higher resolution in Figures
8(a–d), for the four time windows 3.00–5.35, 5.35–7.75, 7.75–10.20, and 10.20–12.00 s. In these
figures, we show how the ‘characteristic departures from 1’ (CDF1) of the rotational ratio
propagate up and down the building. It can be seen that in the beginning, while the ground

Figure 7. Ratios of the point rotations at the top and bottom of each floor to the average rotation (drift) of
the corresponding floor, computed at the 14 points shown in Figure 5. Propagation of characteristic

‘waveforms’, showing initiation of nonlinear strains, is shown by arrows.
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motion is still relatively small and nonlinear response is just beginning to occur, the velocity of
CDF1 is still reasonably close to the linear velocities in the model (as given in Table I). As the
motions become larger, velocities of CDF1 drop, typically to values between 40 and 50m/s, but
in some instances to values as low as 19m/s. While the largest CDF1 propagate up, there are
several obvious cases of propagation down.

5.1. Energy distribution in the model

Because the model we study represents a conservative system, the kinetic and elastic part of
potential energies, the energy radiated out from the building into the soil, and the energy spent
for development of the permanent strains in the building must add up to the incident-wave
energy [19]. The input energy, Ein, can be computed from the input displacement record (Figure
4). First, by differentiation of the displacement record with respect to time, the input particle
velocity is obtained. The input energy, assuming that the cross section of the model is A ¼ 1m2,
is then computed assuming vertically propagating 1D plane waves:

Ein ¼ rs � bs

Z T

0

v2 dtffi rs � bs �
XM
k¼1

v2k � Dt ð12Þ

where rs and bs are the density and the shear-wave velocity of the soil, respectively, v ¼ @u0=@t
is the input particle velocity, T is the time at the end of the record, k is the order number of a
time step, M ¼ T=Dt is the discrete time at the end of the record, and vk ¼ ðu0;k � u0;k�1Þ=Dt for
k41 , and v1 ¼ u0;1=Dt for k5 1, are the discrete particle velocities.

The output energy, Eout, is computed from the velocity of the wave going downward, vout,
[19,40]. The cumulative output energy is then

Eout ¼ rs � bs

Z T

0

v2 dtffi rs � bs �
XM
k¼1

ðvkoutÞ
2 � Dt ð13Þ

The hysteretic energy, Ehys, is the energy spent on the development of permanent strains in the
building. The hysteretic loop (Figure 6) represents the relation sðEÞ at a point during one cycle of
the response T0;iotoT0;iþ1, where T0;1 ¼ 4 �

P14
j¼1 hj=bj � 0:8 s can be used to approximate the

apparent period of the building. Depending upon the input ground motion and the time during
strong motion, the loop in Figure 6 can be narrower or wider. By adding the areas of those
loops and assuming no strength reduction from repetitive loads, we can compute the energy
spent for the development of permanent strains at a specific point. Next, we generalize this for a
layer (continuous equivalent representation of the columns and walls at a given floor), and for
the whole building. The hysteretic energy for a specific layer is obtained as the sum of the loops
at the points belonging to that layer, while the hysteretic energy for the whole building is
obtained as the sum of the energies in all layers. The hysteretic energy in the building (the points
i5 1, 2 are soil points and i5 3 is the point at the soil–building contact) in discrete time space is

Ehys ¼
XN
i¼3

Dxi �
XM
k¼1

skav � DE
k ð14Þ

where the indices i and k stand for spatial and temporal discrete points of the model. N is the
point representing the top of the building, and M is the point representing the end of the record.
skav ¼ ðs

k þ sk�1=2Þ is the average stress at a point i in the time step k, and DEk is the strain
increment at point i in the kth time step. The points in the slabs do not contribute to the
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hysteretic energy because those are assumed to remain linear and only transmit the wave energy
to the layers above and below. After about t5 12 s of ground motion during the Northridge
earthquake, there is negligible growth of all energies [19], and therefore in the following we
illustrate the results only for the first 12 s of strong motion.

Subtracting from the input energy (Equation (12)) the output (radiated) energy (Equation
(13)), we obtain the instantaneous energy in the building. The difference

Eb
el ¼ Eb � Ehys ð15Þ

then represents the instantaneous elastic (linear) energy in the building. Until the end of the
record, one part of the elastic energy is radiated, contributing to the output energy Eout, and one
part is spent for development of permanent strains, contributing to the hysteretic energy Ehys.

A part of energy in the building is reversible. During loading, a fraction of the elastic energy
transforms into hysteretic energy, and vice versa, during unloading, a part of the hysteretic
energy is converted back into elastic energy.

Figure 8. (a) Same as Figure 7, except that more detail is shown for the time window 3–5.35 s; (b) same as
Figure 7, except that more detail is shown for the time window 5.35–7.75 s; (c) same as Figure 7, except that
more detail is shown for the time window 7.75–10.20 s; and (d) same as Figure 7, except that more detail is

shown for the time window 10.20–12.00 s.
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5.2. Energy and power capacities and demands in the building

To understand the behavior of CDF1 in the VN7SH building during the Northridge
earthquake, we also consider the energy and power capacities of different floors. To determine
the energy capacity for one period, ET0

, we consider the hysteretic loop at a point in the building
during which the point reaches the strain Eu. Following Gičev and Trifunac [19], we compute the
energy capacity of the point i per one cycle as

Ei
T0
¼ 4 � m0i � E

2
yb � ð1� gÞ � ðd � 1Þ ð16Þ

While energy capacity per one cycle gives information about the capacity of the floor (soft layer)
for oscillatory loading, the energy capacity of the floor i during one quarter period, Ei

q, gives
information about its resistance during a single monotonic loading. Gičev and Trifunac [19]
showed that

Ei
q ¼

m0i � E
2
yb

2
� ½1þ 2ðd � 1Þ þ g � ðd � 1Þ2� ð17Þ

The power is the derivative of energy with respect to time. We compute the power capacity per
full cycle by dividing Equation (16) by the period of the building, T0, and the power capacity for
quarter cycle by dividing Equation (17) by T0/4:

Pi
T0
¼ 4 � m0i � E

2
yb � ð1� gÞ � ðd � 1Þ=T0 ð18Þ

Pi
q ¼ 2m0i � E

2
yb � ½1þ 2ðd � 1Þ þ g � ðd � 1Þ2�=T0 ð19Þ

From Equations (18) and (19), it can be seen that the power capacity for one full period is
linearly dependent upon the ductility, d, while the power capacity for one quarter period
(loading only) depends upon the square of the ductility.

Figures 9(a), (b) show normalized power demands for two time windows, from 3 to 5.35 s and
from 8 to 10.20 s, in terms of the relative power. In these figures, the relative power is plotted in
terms of the ratio of Phys, which is the time rate of change of Ehys (see Equation (14)) normalized
(divided) by Pc;quart ¼ Pi

q � hi (see Equation (19)), calculated for d5 10. It can be seen that this
power ratio approaches 2 at the fourth and seventh floors, while at the fifth and sixth floors
it is near 3 at around 4 s. At the third, fourth, fifth, and sixth floors, this ratio exceeds 1 at
around 5.2 s. The same ratio exceeds 5, for example, at the third, fourth, fifth, and sixth floors
between 8.5 and 8.8 s, and again at the fifth floor at around 9.2 s. The largest peak of the ratio
Phys=Pc;quartðd ¼ 10Þ occurred on the fourth floor, with an amplitude larger than 8 at about 8.6 s.
These results are in excellent agreement with the location of the observed post-earthquake
damage on the same floor (Figures 2 and 3) and with the analyses of the peak strains and peak
drifts in the response of the 1D model of VN7SH to the Northridge earthquake [39].

Further perusal of the largest peaks of the power ratios, Phys=Pc;quartðd ¼ 10Þ (Figures 9(a),
(b)), will show that they occur in sequence, at progressively higher floors, and at times following
the entrance of the strong pulses from the ground motion into the building. The local peak
ratios occur in Figure 9(a) at around 4 s (at floors 3–6) and 5.2 s (at floors 1–6), and in Figure
9(b) at around 8.4 s (at floors 1–6) and 9.2 s (at floors 4–6). These power pulses caused damage
along their path whenever and wherever the power ratio exceeded the value of about 2. From
the time delays between these consecutive pulses in Figures 9(a), (b), we can estimate the average
wave speeds associated with the propagation of their energies. Around 4 and 5 s (in Figure 9(a)
this speed is about 45m/s). At around 8.5 s, and 10.2 s (in Figure 9(b)), the speed is lower, about
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35m/s. Comparing these speeds with the initial (linear) velocities in our model (Table I), which
range from 73m/s (seventh story) to 91m/s (third story) to 140m/s (first story), it can be
concluded that the lower speeds resulted from nonlinear deformations in the model and the
interference of nonlinear waves. Their values and their times of occurrence are consistent with
the results of other direct [21,22] and indirect analyses of the nonlinear waves in the VN7SH [39]

Figure 9. (a) Ratios of point and average floor rotations at the top and bottom of each floor compared
with the relative power Phys=Pc;quartðd ¼ 10Þ, showing that both propagate up and down the building with
comparable speeds. The time interval 3.00–5.35 s is shown and (b) same as Figure 9(a), but for time interval

7.75–10.20 s.
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and show trends similar to what has been seen in other buildings damaged by strong-motion
waves [24,25]. The typical velocities with which the normalized power propagated up the
building are similar to the velocities of CDF1, which is also reproduced in Figures 9(a), (b). It is
seen that CDF1 occur during relatively ‘quiet’ periods of power propagation and seem to be
associated with local adjustments in displacement to bring to equilibrium the deformations and
rotations imparted by the powerful pulses of power waves.

5.3. Displacements

Figure 10 shows the displacements in the model (Figure 5) subjected to ground motion recorded
during the 1994 Northridge earthquake (Figure 4). For each of the seven stories (soft layers), the
motions at the top and bottom of that story are shown. The light vertical lines at 3.00, 5.35, 7.75,
and 10.20 s are shown for easier comparison with Figures 8 and 9.

It is seen that the largest departures from the ratio of one (CDF1) are consistently initiated
when the displacements at the top and bottom of a given story intersect (are equal). It can also
be seen that the tops of all stories are consistently moving with larger positive amplitudes when a
wave carrying large power propagates through that story, moving upward (e.g. just after 4, 8,
and 10 s in Figure 10). As the displacements at the top and the bottom of a soft layer become
equal, the available potential and hysteretic energies are redistributed by slow rotational (strain)
waves locally through several floors, and sometimes through the full height of the building.

5.4. Point rotations

Figure 11 shows the point rotations (at the top and bottom of each story) corresponding to the
displacements shown in Figure 10. It can be seen that the point rotations are largest during two

Figure 10. Displacements at the 14 points shown in Figure 5, and propagation of the point rotations up
and down the building where the corresponding average drifts are equal to zero.
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episodes—from 3 to 5 s and from 8 to 10 s. During the first strong power wave, which starts to
propagate up the building just after 3 s (see Figure 9(a), the point rotations approach 1.5–2%
(0.02 rad) at the fourth and fifth floors. After 8 s, a power wave about three times larger
propagates up the building and results in the point rotations, which are in the range between 2.5
and 3%, twice at the fourth floor and once at the fifth floor. The damage to the building, as
observed after the earthquake (Figures 2 and 3), is consistent with these large rotations, which
imply initiation of damage at the fourth floor at around 4 s and then the full development of
failure during the time interval from 8 to 10 s.

In Figure 12, we show the displacements from Figure 10 together with the average floor
rotations (drifts). It can be seen that the onset of large rotations and the rapid swings of the
rotations from negative to positive values, and vice versa, begin just after the appearance of
CDF1. This suggests that monitoring of CDF1 can provide the real-time precursors for the
occurrence of large rotations associated with nonlinear response. Figures 13(a), (b) show more
detailed comparisons of the normalized power (for d5 10) and the point rotations for the two
time windows 3–5.35 and 7.75–10.25 s. Again, the CDF1 occurs during changes in sign of the
rotations and just before or after the propagation of significant power waves up and down the
building.

5.5. Curvatures

In the engineering theory of bending, member curvatures can be related to the design capacity of
structural members and serve as a useful indicator of the degree of the bending at a point,

Figure 11. Point rotations at the tops and bottoms of stories versus time. Peak rotations in percentages
(1%5 0.01 rad) during strongest motions are shown.
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imposed by the dynamic loads. In the shear-beam model adopted for this analyses the local
curvatures do not represent the member curvatures, but can serve to indicate large relative
rotations associated with nonlinear response and accompanying passage of waves with large
local power in the structures and in the soil [42]. We compute the point curvature in the shear-
beam model of the VN7SH building as

k ¼
Ex

ð1þ E2Þ3=2
ð20Þ

which is equivalent to

k ¼
uxx

ð1þ u2xÞ
3=2

ð21Þ

where u is particle displacement. The difference between the curvature in (20) and

k� Ex

is negligible, because for all examples considered in this paper E2oo1.
Further consideration of Equations (20) and (21), in combination with Equation (1a), shows

that the velocity of shear waves in the 1D shear beam, when E2oo1, is equal to ½utt=k�1=2. Thus,
for the buildings equipped with dense arrays consisting of instruments capable of recording
translational accelerations utt and point rotations, real-time computation of ½utt=k�1=2 will
provide data on real-time changes of shear-wave velocity, and its anomalous behavior (drop) in
the zones of strain localization associated with large nonlinear deformations. This suggests that
real-time monitoring of ½utt=k�1=2 can be used in the real-time evaluation of structural health.

Figure 12. Comparison of displacements at the top and bottom points of each floor with corresponding
average drifts (wide continuous lines).
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Figure 14 shows curvatures k (1/m) at the top and at the bottom of the soft layers in all seven
stories of our model of the VN7SH (Figure 5). For comparison with all previous figures, with
few exceptions, most of the arrows identified in Figures 7 and 8 are shown as well. Figures 15(a)
and (b) show further detail for the two time windows between 3.00 and 5.35 s, and between 7.75
and 10.20 s. It is seen that during propagation of the damaging power waves, up and down the

Figure 13. (a) Comparison of point rotations with relative wave power, for time window 3–5.35 s and (b)
same as Figure 13(a), but for time window 7.75–10.20 s.
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building model, curvatures are large. The largest curvatures in this example, 0.31 1/m (at the
bottom) and �0.32 1/m (at the top), occurred at the fourth floor, just after t5 8.6 s, at the same
time when peak strain occurs.

6. SUMMARY AND CONCLUSIONS

The power (energy and its duration) of the strong pulses in the near-field ground motion will
determine whether the wave entering the structure will continue to propagate through the
structure as a linear wave or begin to create nonlinear zones. For high-frequency pulses, the
nonlinear zone, with permanent strains, can be created before the wave motion reaches the top
of the structure—i.e. before the interference of waves (which leads to the formation of mode
shapes) has even started to occur. The overall duration of strong motion [43] will determine the
number of times the structure may be able to complete full cycles of response and the associated
number of ‘minor’ excursions into the nonlinear response range when the response is weakly
nonlinear [44]. The presence of powerful pulses of strong motion will determine the extent to
which the one-directional quarter period responses may lead to excessive ductility demand,
leading in turn to dynamic instability and failure precipitated by the gravity loads [45]. As large
waves propagate through the structure and deform its members beyond their linear range of
response, the creation of nonlinear response zones and their localization (plastic hinges) will give
rise to the zones of large local rotations (strains). These large rotations will also behave as
waves, which will redistribute the available potential and hysteretic energies remaining after the
passage of powerful pulses up and down the building. Recording these rotations and the CDF1
can provide an invaluable tool for local damage detection.

Figure 14. Point curvatures at tops and bottoms of stories versus time.

V. GIČEV AND M. D. TRIFUNAC

Copyright r 2008 John Wiley & Sons, Ltd. Struct. Control Health Monit. (2008)

DOI: 10.1002/stc



In this paper, we modeled the building by a simple 1D, shear-beam model having bi-linear
material properties. Consequently, our model can give only a rough, first-order approximation
of actual response. While it is known that overall building deformation can be modeled
successfully with a shear-beam model, modeling of individual beams and columns will require
more detailed models, which will locally include the Euler–Bernoulli bending theory. It is

Figure 15. (a) Same as Figure 14, but for time window 3.00–5.35 s, showing that both curvature and
power, Phys=Pc;quartðd ¼ 10Þ, propagate up and down the building with comparable speeds and (b) same as

Figure 15(a), but for time window from 7.75 to 10.20 s.
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expected that the plastic hinges accompanying bending, which will be associated with strain
localization, will lead to larger point rotations than those observed in this study. By placing
small-aperture arrays of rotational transducers on beams and columns, it will be possible to
achieve the next level in the resolution of point deformations because from closely spaced
rotational sensors it will be possible to also record the point curvature.
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V. GIČEV AND M. D. TRIFUNAC

Copyright r 2008 John Wiley & Sons, Ltd. Struct. Control Health Monit. (2008)

DOI: 10.1002/stc



23. Todorovska MI, Trifunac MD. Earthquake damage detection in the Imperial County Services Building I: the data
and time–frequency analysis. Soil Dynamics and Earthquake Engineering 2007; 26(6):564–576.

24. Todorovska MI, Trifunac MD. Earthquake damage detection in the Imperial County Services Building II: analysis
of novelties via wavelets. Soil Dynamics and Earthquake Engineering, 2008 (submitted for publication).

25. Todorovska MI, Trifunac MD. Earthquake damage detection in the Imperial County Services Building III: analysis
of wave travel times via impulse response functions. Soil Dynamics and Earthquake Engineering, 2008 (in press).

26. Trifunac MD. A note on rotational components of earthquake motions for incident body waves. Soil Dynamics and
Earthquake Engineering 1982; 1(1):11–19.

27. Moslem K, Trifunac MD. Effects of soil–structure interaction on the response of buildings during strong earthquake
ground motion. Department of Civil Engineering Report No. CE 86-04, University of Southern California, Los
Angeles, CA, 1986.

28. Trifunac MD, Todorovska MI. Recording and interpreting earthquake response of full-scale structures. In
Proceedings of the NATO Workshop on Strong Motion Instrumentation for Civil Engineering Structures, Instanbul,
Turkey, Erdik M, Celebi M, Mihailov V, Apaydin N (eds). Kluwer Academic Publishers: Turkey, 2001; 131–155.
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