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Reduced dimensionality representation of strong ground motion records as a superposition of a

relatively small number of pulses is studied. Such representation is obtained by the expansion of

velocity in orthogonal wavelet series using the Fast Wavelet Transform, and approximation by only the

largest energy terms in the series. The Coiflet 5 wavelet family is used, which is orthogonal, smooth and

nearly symmetric. The goodness of the approximation is examined for the EQUINFOS for USA Part I

database, as representative of a large variety of strong motion records (it consists of 494 three-

component records from 106 earthquakes recorded in the western US between 1933 and 1984). The

goodness of fit is measured in terms of closeness of predicting several input and output characteristics

of a nonlinear oscillator representing a structure: (i) energy of the input ground motion (proportional to

integral of velocity squared), (ii) the peak input power, and (iii) the time of collapse of a bi-linear

oscillator (considering also collapse due to dynamic instability). The results show very high degree of

correlation of these characteristics as estimated from the actual record and from its approximations,

even for small number of pulses (relative to the number that would represent the ground velocity

exactly). Such reduced representation of strong ground motion is useful for extracting such pulses from

strong motion records to study their nature, and for development of new algorithms for the synthesis of

artificial earthquake strong motion records.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The linear response of structures to earthquake shaking can be
estimated from a reduced representation of the input ground
motion, consisting only of the response spectrum ordinates at the
modal frequencies. The spectral values, however, are not sufficient
for estimation of nonlinear response, which is sensitive to the
time-dependent time rate of the seismic input energy. An
analogous reduced representation of the ground motion, such
that preserves the time information, can be in terms of a small

number of pulses. Such a representation can be motivated, for
example, by the asperity model of the earthquake source, per
which accumulated seismic energy is released via radiation from
highly stressed patches (asperities) on the fault surface radiating
pulses of energy. The ground motion at a site can be viewed as a
sum of these pulses, delayed at the source relative to each other,
and modified by attenuation, dispersion, scattering and diffraction
ll rights reserved.

usc.edu (M.I. Todorovska).
along the propagation path. The sum of the largest energy pulses
would represent an approximation of the actual ground motion.

In this paper, we explore representation of strong ground
motion in a relatively small number of wavelets of the Coiflet 5
orthogonal family, which we use as proxies of the pulses that have
arrived at the site. In particular, we examine the goodness of the
approximation, as a function of the level of the approximation, in
terms of the ability to predict the response of a nonlinear
oscillator representing a structure. The level of the approximation
is defined by the number of pulses used in the approximation, as
fraction of the number of pulses that would represent the ground
motion exactly, which is equal to the number of samples in a
critically sampled record. The goodness of fit is defined by the
closeness of: (i) the total energy of the input seismic motion
(defined in terms of the L2 norm of the ground velocity), (ii) the
peak of the input power, and (iii) the time of collapse of the
oscillator. As a trial set representative of a variety of strong motion
records, we use all records of the EQINFOS for USA Part I database
[1], which consists of 494 three-component strong motion records
of 106 earthquakes between 1933 and 1984.

The objective of this work is to gain insight in the ways of
approximating the strong motion time series that could be useful
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for a synthesis of artificial strong ground motion using
wavelets. In this paper, we examine only what is the number of
wavelets required to approximate strong motion and how this
can be done to satisfy the elementary engineering aspects of
nonlinear and collapsing response. The development of empirical
scaling equations for prediction of the number, amplitudes
and arrival times of the pulses is well beyond the scope of
this paper.

Despite their popularity, in many applications in earthquake
engineering and strong motion seismology, wavelet analysis has
turned out to be just an alternative method, not necessarily
superior to the methods used previously (see e.g. Todorovska and
Trifunac [17]). In that sense, the existence of bases of functions of
wavelets, which can be moreover orthogonal, and the efficiency of
such bases to represent transient signals (in the sense that
very good approximation is obtained with a small number of
terms, as compared to Fourier series), is an unmatched combina-
tion of properties by which wavelet analysis is superior to other
representations. In digital signal and image processing, the
latter property is referred to as data compression and the method
of preserving only the highest energy terms in the series (with
‘‘top’’ coefficients) is referred as thresholding. Wavelet representa-
tion of strong ground motion records, as well as of structural
response, has been considered earlier, e.g. by Iyama and
Kuwamura [2], Mukherjee and Gupta [3], Iyama [4]. This paper
differs from the previous studies in: (i) the measures of goodness
of fit (which include peak power of the incident motion, and
prediction of collapse of a nonlinear oscillator representing
structures, including failure due to dynamic instability), (ii) the
trial set used (which is a comprehensive database representing a
broad variety of strong motion records), and (iii) the wavelet
family used (most commonly used wavelets in earthquake
engineering are the real or complex harmonic wavelet, or the d4
Daubechies family).

In this paper, we first present the methodology, in which we (i)
review briefly the discrete wavelet transform and expansion of
signals in wavelet series and (ii) describe the model of a nonlinear
oscillator (with dynamic instability) that we use. Then, we
illustrate detailed results of the goodness of fit for the S00E
component of the El Centro record, and statistical results for the
entire database in terms of correlation coefficient. Finally, a
discussion and the conclusions are presented.
Fig. 1. The forward (top) and inverse (bottom) pyr
2. Theoretical background

2.1. Wavelet series representation of discrete time signals

A level J dyadic wavelet basis expansion of a discrete time
signal s[n] is

s½n� ¼
XJ

j¼1

XN=2j

k¼1

dj;kcj;k½n� þ
XN=2J

k¼1

sJ;kjJ;k½n� (1)

where cj,k[n], j ¼ 1,y, J, are the wavelet basis functions (zero
mean), and jJ,k[n] are the scaling functions (nonzero mean) in
which the remainder is expanded. The coefficients of expansion
constitute the discrete wavelet transform of the signal, and
represent orthogonal projections of the signal on the correspond-
ing wavelet/scaling function

dj;k ¼ hcj;k; si

sJ;k ¼ hjJ;k; si
(2)

In Eqs. (1) and (2), index j is related to the scale variable of the
transform (inversely proportional to frequency), and k is related to
the time variable. For a basis of compactly supported wavelets, the
coefficients of the expansion are computed by the pyramid
algorithm (due to [5]), which consists of splitting the original
signal in a low- and high-frequency component followed by
downsampling by a factor of two, and further recursively splitting
the lower frequency component, J times total. In each splitting, the
low-frequency component is a lower-level resolution approxima-
tion, and the high-frequency component contains the detail of the
signal that was removed. Hence, the wavelet expansion is nothing
else but splitting the signal in subbands, and expanding each
subband in a series of wavelet functions, which are shifts of one
another, and all have central frequency corresponding to the one
of the subband. Larger j corresponds to a lower-frequency
subband, and k describes the time shift of the wavelet. The
subbands have equal width on a logarithmic frequency axis, while
on a linear frequency axis the width is progressively smaller, by a
factor of two, with increasing j. The pyramid algorithm, also called
Fast Wavelet Transform, is shown graphically in Fig. 1. The top part
shows the analysis part, or the forward transform, and the bottom
part shows the synthesis part, or the inverse transform.
amid algorithms for Fast Wavelet Transform.
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Fig. 2. Decomposition low-pass (left) and high-pass (right) filters for the discrete time Coiflet 5 wavelet shown in the time domain. The units of the x-axis are samples.

Fig. 3. Nonlinear oscillator.
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An important advantage of the orthogonal wavelet bases is the
convenience to represent the energy of the signal, JsJ2, which by
the Parseval’s equality is

sk k2 ¼
X1

n¼�1

js½n�j2 ¼
XJ

j¼1

XN=2j

k¼1

jdj;kj
2 þ

XN=2J

k¼1

jsJ;kj
2 (3)

For a high-pass filtered signal, like an earthquake accelerogram,
and sufficiently many subbands (large J), the last low-frequency
subband contains practically no energy, and the coefficients of
expansion sJ,kE0.

A full expansion consists of N terms, which exactly represent
the signal. A subset of these terms represents a lower dimension-
ality approximation. Dropping all coefficients of the higher
frequency subbands creates a low-frequency approximation.
The dimensionality of the signal can also be reduced, while
preserving the significant high-frequency information, by approx-
imation by thresholding, which consists essentially of dropping
the low-energy terms (those with small |dj,k|; hard thresholding),
and possibly modifying the smallest remaining terms to insure
a smooth transition (soft thresholding). In this paper, we
apply hard thresholding, i.e. we approximate the signal by the
highest energy (‘‘top’’) coefficients. More on the wavelet transform
in signal processing can be found in various textbooks on
wavelets, e.g. in Vetterli and Kovačević [6], and on different
applications to earthquake records in Todorovska [7], Todorovska
and Hao [8].
2.2. Selection of wavelet basis for this study

Our objective is to find an approximation of a strong motion
record by a relatively small number of pulses (i.e. wavelets in an
orthogonal wavelet family) such that: (1) would produce a
reasonably good visual fit for both acceleration, velocity and
displacement, and (2) would predict closely the response of a
nonlinear oscillator. To satisfy the first requirement, we searched
among Coiflet wavelets [9], which are orthogonal, nearly sym-
metric, and relatively smooth. The orthogonality property is
convenient for the evaluation of the energy directly in the wavelet
transform domain (see Eq. (3)), the symmetry is desirable to
reduce phase distortions in the approximation, and the smooth-
ness is desirable because it helps achieve better fit for strong
motion records with smaller number of wavelets. We examined
the fit for several representative records, and for thresholding
applied either on acceleration, velocity or displacement. Based on
the visual fit, we chose the Coiflet 5 family, and thresholding
applied on the velocity signal. Fig. 2 shows the decomposition
low-pass (left) and high-pass (right) filters for the prototype
Coiflet 5 wavelet.
2.3. Measures of goodness of fit in terms of nonlinear oscillator

response

As measures of goodness of the approximation, we compare
the energy and peak power of the input ground motion from the
exact signal and form the approximation, and the corresponding
times of collapse of a nonlinear oscillator excited by such motions.
These quantities were estimated as follows.

The energy of the seismic wave motion at a site is proportional
to the integral over time of velocity squared [10]. Hence, as
measure of the energy and power of the input motion, we compute

enðt0Þ ¼

Z t0

0
vðtÞ2 dt (4)

and

pðtÞ ¼
d

dt
enðtÞ (5)

where v(t) is the ground velocity, and t0 is the duration of shaking.
We consider the power of strong ground motion because it
controls the destructiveness of nonlinear waves which propagate
into the building [11,12].

The equivalent single-degree-of-freedom (SDOF) nonlinear
oscillator representing a structure is an inverted pendulum with
mass mb and height He, connected to the base by a rotational
spring with stiffness k and a rotational dashpot with damping C

connected in parallel, as shown in Fig. 3 (left). The parameters of
the oscillator are defined assuming that it represents an N-story
building of height H, deforming primarily in shear, and with linear

fundamental period and viscous damping ratio T and z. Then, k

and C are estimated such that (k/mb ¼ (2p/T)2 and C/mb ¼

2(2p/T)z. The height of the equivalent SDOF oscillator is estimated
for the fundamental period T, assuming that HeI0.64H (from the
equivalence of the fundamental frequency of vibration of a shear
beam with that of the SDOF oscillator), that T is approximately
TIN/10, and that the average story height is 3.5 m, which gives

He ’ 0:64� 3:5� 10� T (6)
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The nonlinear behavior of the oscillator is modeled by an elasto-
plastic stress–strain relationship, as shown in Fig. 3 (right), where
fy is the yield rocking angle, and ay is the acceleration that
statically causes the oscillator to yield. The yield angle fs can be
determined from the static equilibrium of the oscillator, which is

kfy ¼ mgHe sin fs (7)

or in terms of natural frequency o0, sinfs ¼ o0
2Hefy/g.

Angle fy in Eq. (7) can be written also as

fy ¼
ay

o2
0He

(8)

We express our dynamic failure criterion in terms of the static

failure criterion. For small rotations, sinfsIfs, and the static

failure criterion is

f4fs (9)

Because a sudden pulse in the ground motion may reverse the
motion of the oscillator, forcing it to return to its elastic range of
response, for convenience and simplicity we define as dynamics

collapse criterion

f42fs

to insure that dynamic collapse has occurred.
We excite the oscillator by simultaneous horizontal and

vertical ground motion and solve the geometrically and materially
nonlinear differential equation of its response f(t). Because our
method of solution is not limited to small deflections, our
formulation describes exactly the gravity effects and dynamic
instability during all stages of collapse. During nonlinear
response, elasto-plastic spring dissipates hysteretic energy.
3. Results and analysis

The oscillator response was computed numerically using a
fourth-order Runge–Kutta algorithm, with zero initial conditions,
and time step Dt ¼ 5�10�5 s. The Fortran computer program NLR
was used to compute the results. We used nonlinear oscillators
with fundamental periods in the linear range of response T ¼ 0.2,
0.5, 1 and 2 s, with linear damping ratio z ¼ 5%. For convenience, a
small value of the yield acceleration was adopted, ay ¼ 1 cm/s2, so
that many oscillators would yield for most of the records in the
database. An equivalent alternative would have been to scale up
all strong motion records. The purpose has been to create a large
database on collapse times, in the presence of gravity effects and
dynamic instability.

Due to limitations in recording, the strong motion data are
released as band pass filtered. The low-frequency cut-off is a
result of baseline correction and is variable, depending on the
signal-to-noise ratio [13]. The high-frequency cut-off is deter-
mined by the digitization noise, and by the characteristics of the
recording transducer, as described in Trifunac [14], Lee and
Trifunac [15], and was performed for the EQINFOS database by
applying an Ormsby filter with roll-off at 25 Hz and cut-off at
27 Hz. Consequently, the sampling at which the data were
released (50/s or at Dt ¼ 0.02 s) is practically the critical sampling
rate.

The wavelet expansion was computed using the Matlab
wavelet toolbox [16], as follows. The velocity records were
expanded in a six-level orthonormal basis (in L2) of Coiflet 5
wavelets, and then reconstructed using only the largest amplitude
(‘‘top’’) coefficients. The acceleration of the approximated (by
truncated wavelet series) records needed as input to compute the
nonlinear oscillator response was calculated from the recon-
structed time series by differentiation. The level of the approx-
imation is expressed as a percentage of the number of wavelets
that would represent the signal ‘‘exactly’’, which is equal to the
number of samples in the critically sampled signal. Hence, the
number of wavelets needed to represent a record exactly is
proportional to its duration. We tried approximations with 1–8%
of the ‘‘top’’ coefficients, which correspond to 0.5–4 wavelets per
second—on the average. The approximated signal can be viewed
as unevenly subsampled (in the wavelet domain), depending on
the energy distribution in the signal, in time and in frequency [8].
3.1. Detailed results for a sample record

We illustrate detailed results for component S00E of the record
of the Imperial Valley, California, earthquake of May 18, 1940
(M ¼ 6.7) recorded at El Centro, at epicentral distance of 9.3 km
[1]. We refer to this record in this paper as ‘‘the El Centro record’’.
The duration of this record is 53.7 s.

Fig. 4 shows a wavelet map of the coefficients for the S00E of
the El Centro record of the top 8% of the wavelet coefficients. Such
maps show the wavelet coefficients (coefficients of expansion in
wavelet series) plotted as vertical bars versus the central time
(centroid in the time domain) of the corresponding wavelet, for
each of the detail subbands (d1–d6) and the remaining smooth
subband (s6). The frequency bounds indicated for each subband
are those for ideal (box) filters. The actual filters decay gradually
across the ideal bounds to avoid the Gibbs effect, and conse-
quently there is some partial overlap between these intervals for
the actual filters used. The wavelet maps, therefore, show the
position of the wavelets used for the approximation both in
time and in frequency. According to the Parseval equality (Eq. (3)),
the square of these coefficients would be the contribution of the
corresponding term in the series to the energy of the (velocity)
signal. Such a map, therefore, indicates the distribution of the
energy of the signal on the time–frequency plane. At the top of the
figure, the original and approximated velocity signals are also
shown for visual comparison.

Table 1 shows the distribution of coefficients in subbands for
approximations of the S00E component of the El Centro record, for
approximations by 1%, 2%, 3%, 4% and 8% of top coefficients in
velocity over the full length of the record. The total number of
coefficients used for the approximation is shown in the bottom
line. It can be seen that none of the coefficients from the highest
detail subband (d1, 12.5–25 Hz) contributed to these low levels of
approximation, and that the next detailed subband (d2) con-
tributed only to the 8% approximation.

Fig. 5 shows a comparison of the exact and approximated
motions for the 1% and 2% level approximations (parts (a) and (b),
respectively). For each case, the plot on the top shows the
acceleration and the one on the bottom shows the velocity time
history. To avoid clutter, only the first 30 s of the record are shown.
It can be seen that the agreement is better for the velocity than
for the acceleration signals, which is due to the fact that
the thresholding was applied to the velocity signal, from which
the acceleration was then derived by differentiation, and that the
velocity signal has less energy in the higher-frequency subbands,
leading to all or most coefficients in these subbands being
eliminated by the thresholding (see Table 1). These plots also
show that, while the low-amplitude high-frequency pulses are

smoothed in such low approximation levels, the largest amplitude

pulses are still represented quite well even in the acceleration signals.
This is characteristic to data compression by thresholding, in
which the high-frequency components are filtered where they are

small but are preserved where they are significant.
Fig. 6 compares en(t) ¼

R
0
t v(t)2 dt, which shows the growth of

energy of the input ground motion with time, for the actual (solid
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Fig. 4. The top 8% wavelet coefficients of the expansion of the velocity of component S00E of the El Centro strong motion record, plotted versus their central time for each

subband. The original signal and the reconstruction using the top 8% coefficients (214 total) are also shown on the top.

Table 1
Distribution of the top coefficients in the approximation of the velocity of the El

Centro record (S00E component) for different approximation levels

Subband Frequency range (Hz) Level of approximation

Lower Upper 1% 2% 3% 4% 8%

d1 12.50 25.00 – – – – –

d2 6.25 12.50 – – – – 2

d3 3.13 6.25 – – 3 14 35

d4 1.56 33.1 3 5 23 46 60

d5 0.78 1.56 5 9 25 39 47

d6 0.39 0.78 5 13 21 26 30

a6 0.00 0.39 13 26 35 36 40

Total number of coefficients used 26 53 107 161 214

M.I. Todorovska et al. / Soil Dynamics and Earthquake Engineering 29 (2009) 742–751746
line) and approximations (dashed lines) by 1%, 2%, 4% and 8% of
the coefficients. It can be seen that the 1, 2 and 4 approximations
represent 72%, 86% and 94% of the energy of the signal, and by
further increasing the number of coefficients by a factor of 2 (to 8%
approximation), the energy increases only by 3%, to 97% of the
energy of the exact signal.

Fig. 7 compares the power versus time for the exact signal and
the 4% approximation. The pulses in these curves represent bursts
of energy ‘‘pumped’’ into the oscillator. Only the first 15 s are
shown to avoid clutter. It can be seen that this approximation
represents quite well the peaks in the power time history, and in
particular the largest peaks.

In the linear range of response, small difference in the input
motion implies small difference in the response of the oscillator.
However, that does not hold for the nonlinear range. For the
bi-linear oscillator considered in this study, the agreement of the
time of collapse was chosen as a measure of the goodness of fit,
and a weak oscillator was chosen for this test that would fail for
most of the records in the database. Fig. 8 shows a comparison of
the relative rocking response of the oscillator, up to the time of
collapse, for the actual record (100% approximation) and several
approximations of the excitation (1%, 4% and 8%). The excitation
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Fig. 5. Comparison of the actual and approximated motions of component S00E of the El Centro record for approximations by (a) the top 1% and (b) the top 2% wavelets in

the expansion of velocity.

Fig. 6. Energy versus time for the actual record (100% approximation) and

approximated El Centro record by 1%, 2%, 4% and 8% of the wavelets.

Fig. 7. Comparison of the power of the actual (solid line) and approximated

(dashed line) El Centro record by 4% of the wavelets, during the initial 15 s after

trigger.

M.I. Todorovska et al. / Soil Dynamics and Earthquake Engineering 29 (2009) 742–751 747
for this case is the S90W component of the record of Kern County,
California, earthquake of 1952 at Caltech Athenaeum in Pasadena,
which is weaker than the El Centro record, producing collapse at a
later time and an opportunity to monitor the differences in the
response over a longer time period. The oscillator has period
T ¼ 1 s, and the yield acceleration ay ¼ 1 cm/s2. The top part of the
figure shows the ground velocity for the different level approx-
imations, and the bottom part shows the oscillator response. The
peak acceleration for this record is �52 cm/s2 occurring at 16.7 s,
and collapse of this oscillator for the exact record occurs near
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Fig. 8. Comparison of a nonlinear oscillator response (up to time of collapse) to

excitation using approximations by 1%, 4%, 8% and 100% of the wavelets. The

excitation is the S90W component of the record of the 1952 Kern County,

California earthquake at Caltech Athenaeum in Pasadena (peak accelera-

tion—52.063 cm/s2 at 16.7 s). The top part shows the ground velocity, and the

bottom part shows the response angle y. The oscillator has period is T ¼ 1 s and

yield acceleration ay ¼ 1 cm/s2.

Table 2
Number of components of motion in the database for which the error in the total

energy exceeds 10%

Top terms in the series

approximating the records (%)

Components for which the error exceeds 10%

Total number Percentage (%)

1 1373 92

2 1059 71

4 612 41

6 451 30

8 350 24

Fig. 9. Correlation plots for the total energy (left) and peak power (right) for the

EQINFOS for USA I strong motion database. Parts (a)–(e) correspond to

approximation by 1%, 2%, 4%, 6% and 8% of the wavelets in the expansion.

M.I. Todorovska et al. / Soil Dynamics and Earthquake Engineering 29 (2009) 742–751748
t ¼ 15 s. It can be seen that the 8% approximation predicts very
close to the time of collapse. The 4% approximation collapses the
oscillator sooner than the exact record by less than 2 s, while the
1% approximation collapses the oscillator about 3 s later.
3.2. Statistics for a sample database

Statistical results for the goodness of fit are shown for the
EQINFOS for USA Part I database [1], which consists of 494 three-
component accelerograms of 106 earthquakes between 1933 and
1984 recorded mainly in the western continental US. Table 2
shows different approximations, the number of components of
motion for which the error in energy exceeded 10%. It can be seen
that for 75% of the components, the top 8% terms in the series
represent 90% or more of the energy of the input motion.

Fig. 9 shows the correlation between the total energy (left) and
peak power (right) of the actual accelerogram and that of its
approximation. Parts (a)–(e) correspond to approximations by 1%,
2%, 4%, 6% and 8% of the top terms in the series. It can be seen that
the correlation is better for the total energy than for the peak
power, and that it is very good even for the crudest approximation
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Fig. 10. Correlation plots of collapse time of a nonlinear oscillator with periods T ¼ 0.2 s (top-left), 0.5 s (top-right), T ¼ 1 s (bottom-left), and T ¼ 2 s (bottom-right).

(a) Approximation by 1% of the wavelets. (b) Approximation by 8% of the wavelets.

M.I. Todorovska et al. / Soil Dynamics and Earthquake Engineering 29 (2009) 742–751 749
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Fig. 11. Correlation coefficients versus percentage of wavelets used for the

approximation for the total energy and peak power (top) and for the time of

collapse for different oscillator periods of vibration (bottom). The corresponding

correlation plots are shown in Figs. 9 and 10.

M.I. Todorovska et al. / Soil Dynamics and Earthquake Engineering 29 (2009) 742–751750
considered (by 1% of the terms in the series). Fig. 10 shows
correlation plots between the collapse times of nonlinear
oscillators excited by actual record and by its approximation.
Parts (a) and (b) correspond to approximations by 1% and 8%
terms in the series. In each part, the different plots correspond to
oscillators with periods T ¼ 0.2 s (top-left), 0.5 s (top-right), 1 s
(bottom-left) and 2 s (bottom-right).

Fig. 11 shows the trends of the coefficients of correlation,
plotted versus the percentage of terms in the series used for the
approximation, for the total energy and peak power (top) and for
the collapse time (bottom). It can be seen that the correlation for
the total energy and peak power of the oscillator input is very high
(40.99) even for the approximation by only 1% of the terms. The
correlation increases very fast with increasing level of approx-
imation, approaching 1 even for 4% approximation level. Hence,
including more terms in the approximation has an incremental
effect on the improvement of the goodness of fit in terms of total
energy and peak power. For the time of collapse, the correlation is
smaller than for the energy and peak power, but still exceeds
about 0.75 for approximations better than 2% for all the periods
considered. The correlation is best for the longest period oscillator
(T ¼ 2 s), for which it exceeds 0.8 even for the 1% approximation of
the input.
4. Discussion and conclusions

The broader objective of this work is representation of
earthquake strong motion records by a relatively small number
of pulses, which would be helpful for gaining insight in the nature
of the high-frequency radiation from the earthquake source, and
for the purpose of physically based synthesis of artificial strong
ground motion. In this paper, wavelets of the Coiflet 5 orthogonal
wavelet family were used as proxies for the pulses arriving at a
site. This family was used because the wavelets are orthogonal
(making it simple to compute the energy directly in the wavelet
transform domain), nearly symmetric (hence, minimizing phase
distortion in the approximated signal), smooth to a high degree
(hence, achieving better approximation of strong motion records
with smaller number of wavelets), and compactly supported
(hence can be used with the Fast Wavelet Transform).

The Coiflet 5 family constitutes a basis in L2, and a strong
motion record can be expanded in such a basis. Representation of
a strong motion record by ‘‘few’’ of the basis functions is an
approximation, the number of basis functions that would
represent the record exactly being equal to the number of points
in a critically sampled record. In this paper, the wavelets that
contain most of the energy of the ground motion were used for the
approximation. These are the wavelets in the expansion of velocity

(because the energy of ground motion is proportional to the time
integral of velocity squared) that are multiplied by the largest
amplitude coefficients (because the basis is orthonormal in L2).
The level of approximation was defined by the percentage of the
wavelets used for the approximation.

The goodness of the approximation was measured in terms of
the ability to represent both the input and output of a nonlinear

oscillator, reasonably well, representing a structure. For the input,
the total energy and peak power were compared, and for the
output—the time of collapse (low-yield acceleration was chosen,
so that most of the records in the database would cause collapse).
The correlation between these quantities obtained from the actual
signal and from its approximation was computed for the EQINFOS
Part I for USA database. The results show very high correlation for
the energy and peak power of the ground motion (coefficient of
correlation 40.99), even if only 1% terms were used in the
approximation. This would imply also high degree of correlation
for the output of an oscillator in the linear range of response. For
the output of a nonlinear oscillator that would collapse (due to
gravity effects and dynamic instability), the coefficient of correla-
tion for the time of collapse was smaller, but still exceeded about
0.75 for the oscillators considered (with period T ¼ 0.2, 0.5, 1 and
2 s, 5% viscous damping, and yield acceleration ay ¼ 1 cm/s2), if at
least 4% of the terms in the series were used for the approxima-
tion. For the yield acceleration chosen, the correlation was higher
for the longest period oscillator (T ¼ 2 s).

It is concluded that expansion of strong motion records in a
wavelet basis is an efficient tool for extraction of pulses from a
strong motion record, and representation of strong motion records
as a sum of a relatively small number of pulses. This efficiency
(good approximation by a small number of pulses) is due to the
fact that the basis functions are localized in time (besides in
frequency), resembling in nature the strong motion records.
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