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Abstract Nonlinear waves in a bilinear soil layer are described for excitation by
vertically arriving S-wave pulses of strong ground motion. Conditions that lead to the
nonlinear deformation are described in terms of amplitudes and wavelengths of in-
cident pulses. It is shown that the layer can fail during the first passage of the incident
wave (during a time shorter than the travel time through the layer). Peak amplitudes of
(1) transient rotations, of (2) permanent rotations (strains), and of (3) the peak duc-
tility in the layer are described in terms of the dimensionless amplitudes of incident
pulses and the places of their occurrence in the layer. Even a simple model like this
(one-dimensional propagation, simple shape of incident pulse, bilinear stress-strain
soil model) leads to very complicated response. The results presented offer only a
glimpse at the complexity in a realistic setting.

Introduction

Before the era of modern seismology (early 1900s) and
well before the first observations of strong ground motion in
1932 (Trifunac, 2008), it was known that nonlinear response
of sediments can lead to profound changes in the earthquake
ground motion relative to the basement rock (Milne, 1898).
The evidence that soils have complex nonlinear properties
also came from the laboratory experiments (Terzaghi, 1925)
involving both static and dynamic loads, but it would take
several more decades before earthquake engineers started to
investigate dynamic soil properties (e.g., Seed and Idriss,
1970; Hardin and Drnevich, 1972) and nonlinear soil re-
sponse to earthquake shaking. In contrast, the first part of
twentieth century seismological research, which focused
on the studies of the earth interior and teleseismic observa-
tion and data analysis, led to the prevailing view that most
observations of earthquake motion can be described in terms
of the linear material properties and elastic waves. It was not
until after the occurrence of the Northridge 1994, Kobe 1995,
and Nisqually 2001 earthquakes, which contributed the near-
field measurements on widespread nonlinear sediment re-
sponse, that nonlinear site response started to attract the
attention of many seismologists as well. The papers by Safak
(2001) and Hartzell et al. (2004) review the models, the non-
linear hysteretic representation of soil, and the methods of
data analysis and their interpretation in many of those re-
cent studies.

With the exception of soft (low-velocity) and cohesion-
less soils, most sites at moderate and large distances respond
to shaking by intermediate and small earthquakes in an es-
sentially linear manner, but above the strains of ∼10�5, the
nonlinear response in typical soils is initiated (Trifunac et al.,
1996, 1999; Trifunac and Ivanović, 2003a,b). Large non-

linear responses of soils near the ground surface (lique-
faction, landslides) are detected by surveys following an
earthquake, but nonlinear responses at depth are more diffi-
cult to identify. The evidence of nonlinear response of soil
deposits can be seen in the reduction of the measured peak
amplitudes of strong ground motion (Trifunac and Todorov-
ska, 1996) in the reduction of damage to buildings, in the
distribution of damaged and broken water and gas pipes
(Trifunac and Todorovska, 1998), and in the surface mani-
festations in the epicentral area (Earthquake Engineering Re-
search Institute, 1995).

Observations of the nonlinear phenomena in soil-
structure interaction show that the nonlinearity first begins
to occur in the soil surrounding the building foundation (Tri-
funac et al., 2001a,b). Complex nonlinearities in the large
blocks of soil and in the soil-structure systems also occur
when the gaps are opened in the soil or along the soil-
structure contact surfaces during large shaking amplitudes.
These gaps can remain open for extended periods of time
and when shaken by subsequent earthquakes, they can be
reactivated and changed (Trifunac and Todorovska, 2004).
The absence of recorded rotational components of strong
motion makes it impossible to infer the permanent displace-
ments and permanent tilting of the building foundations and
of the soil blocks in the heavily shaken areas after earth-
quakes. These complexities and the strong dependence of
the outcome on the time-dependent nature of each strong
earthquake shaking make the attempts to further develop
seismic zoning maps that consider nonlinear site response
a difficult challenge (Trifunac and Todorovska, 2000a,b).

Wave-propagation methods in earthquake engineering
analyses of the linear response of soil layers and of buildings
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have been used since the 1930s (Sezawa and Kanai, 1935,
1936; Kanai, 1965, 1983). In the following, the elementary
aspects of wave propagation through a homogeneous shear
layer will be used to study the relationships among the
amplitudes of incident pulses and of the layer response
with emphasis on transient and permanent rotations. One-
dimensional (1D) representation of nonlinear shear waves
will be used. Because this model also describes shear waves
in long buildings (when rocking response associated with
soil-structure interaction can be neglected), some of the re-
sults of this analysis may also be useful for understanding the
elementary aspects of nonlinear response of such buildings
(Gičev and Trifunac, 2007a,b).

The rotational components of earthquake ground motion
measured by Takeo (2006) several kilometers from the faults
of moderate earthquakes were found to be larger than what
would be predicted by numerical simulations using the clas-
sical linear theory. Takeo and Ito (1997) have shown that this
discrepancy could be reduced by considering additional
terms in the representation of the earthquake source, but ob-
servations of widespread surface deformations in the heavily
shaken epicentral regions of shallow earthquakes indicate
that nonlinear response of surface soil must also be consid-
ered in the analysis of the observed and recorded strong mo-
tion (Trifunac, 2009). To explore some elementary aspects of
this problem, we present in the following an analysis of
nonlinear shear waves in a surface layer, and we focus our
attention on transient and permanent rotations caused by
those waves.

We will illustrate only some elementary characteristics
of 1D nonlinear waves in a single layer with bilinear stiffness
properties, overlying an elastic half-space and excited by
S-wave pulses arriving vertically up through the half-space.
We assume the bilinear constitutive law because of its sim-
plicity and because it resembles the variety of constitutive
laws proposed by different authors (e.g., Joyner and Chen,
1975; Pyke, 1979; Finn, 1982; Iai et al., 1990; Vučetić, 1990;
Li and Liao, 1993; Bonilla, 2000). Our hysteresis loops fol-
low the Massing criteria (Massing, 1926; Kramer, 1996) and
are defined by three parameters: initial slope μ1, the yielding
strain in the soil εyb, and the second slope μ1 � γμ0 ≥ 0. Our
aim is to describe how the amplitudes and duration of a sim-
ple incident pulse lead to creation of large strains (rotations),
permanent deformation, and permanent tilting and to under-
stand the conditions that govern their location inside the
layer. Because most engineering structures have foundations
that are embedded several to several tens of meters, an under-
standing of the permanent deformations and tilts in a simple,
relatively soft layer of soil should provide a useful starting
point for understanding some of the observed damage in the
near field. It should also help in the development of soil-
structure models with nonlinear soil properties. Because of
the complexities of the large nonlinear response, we limit
the scope of this study to the response of one layer only.
Throughout this article we will use rotations and strains in-

terchangeably, and we will consider only small deformations
for which ε ∼ tan ε.

Model and Numerical Scheme

We study horizontal shear deformations, u, in a 1D
soil layer supported by a half-space and excited by a verti-
cally propagating shear wave represented by a half-sine-
pulse (Fig. 1). A finite difference scheme for solution of this
problem with accuracy O�Δt2;Δx2�, where Δx and Δt are
the space and time increments, leads to the exact solution
when βΔt=Δx � 1, where β is the velocity of shear waves
(Gičev and Trifunac 2007b). With a ratio of the spatial inter-
vals Δxb=Δxs � βb=βs, this requirement can be satisfied,
where x is the coordinate along the wave propagation. The
subscripts b and s designate the values in the layer with
thickness Hb and in the half-space, respectively. The equa-
tion of motion is

vt � �σ�x=ρ; (1a)

and the relation between the derivative of the strain and the
velocity is

εt � vx; (1b)

where v, ρ, σ, and ε are particle velocity, density, shear stress,
and shear strain, and the subscripts t and x represent deriva-
tives with respect to time and space.

Figure 1. Soil layer and incoming strong-motion displacement
pulse: (a) model of the soil layer and (b) the pulse in the half-space.
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The domain for analysis consists of two materials (see
Fig. 1): �2Δxs ≤ x < 0 with physical properties ρs and μs

representing the half-space and 0 < x ≤ Hb with physical
properties ρb and μb representing the soil layer. v � ∂u=∂t
and ε � ∂u=∂x are the velocity and the strain at a point, and
u is out-of-plane displacement of a particle perpendicular to
the propagation ray. It is assumed that the incoming wave is
known and that its displacement as a function of t is pre-
scribed at point 1 (x � �2Δxs). It is also assumed that the
half-space is always in the linear elastic state. The Lax-
Wendroff (1964) finite difference method for a set of simul-
taneous equations is used to solve the problem. A mesh with
different spatial intervals in the half-space and in the soil
layer is used. The spatial intervals are defined by Δxi �
βi ·Δt, where βi is the velocity of shear waves in the
half-space (i � s) or in the soil layer (i � b), and Δt is
the timestep. The soil layer is discretized into 197 spatial in-
tervals and the half-space into two, so the properties of the
mesh are

Δxb � Hb=197; and Δxs � Δxbβs=βb: (2a)

The cell length at the interface point 3 (x � 0) is

Δx3 � �Δxb �Δxs�=2; (2b)

and the initial equivalent shear modulus for this point is ob-
tained from the condition of continuity of the displacements
and the stresses at the interface as

μ3 �
μsμb�Δxs �Δxb�
μsΔxb � μbΔxs

: (3)

The yielding strain in the soil layer is εyb, and to maintain the
continuity of the stresses at the interface, the yielding strain
in contact point 3 is obtained from μbεyb � μ3εy3 (Fig. 2)

εy3 � εybμb=μ3; (4)

where μb is the shear modulus in the layer, and μ3 is the
equivalent shear modulus at contact point 3. The timestep
is constant during the analysis,

Δt � Δxb=βb � Δxs=βs: (5)

Above the top point N (free surface of the layer), an addi-
tional point N

0
is introduced at a distance of Δxb. For a

stress-free point N for all time, the velocities and the stress
at N0 are updated as

vN0 � vN�1 (6a)

σN
0 � �σN�1: (6b)

Equation (1) can be written in vector form as

∂U
∂t � ∂F

∂x ; (7)

where

U �
n v
ε

o
and F �

n σ
ρ
v

o
�

n μ�ε�·ε
ρ
v

o
: (7a)

The vector U at point i in time �j� 1�Δt expanded in Taylor
series is

Ui;j�1 � Ui;j �Δt
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i;j
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2

�∂2U
∂t2

�
i;j

�O�Δt3�;

and from equation (7)
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2

∂
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∂
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(8)

A�U� is the Jacobian matrix

A�U� � ∂F
∂U �

∂σ
ρ∂v

∂σ
ρ∂ε

∂v
∂v

∂v
∂ε

" #
� 0 1

ρ
dσ
dε

1 0

� �
: (9)

Figure 2. The constitutive laws, σ � ε, for the soil layer (solid
line) and for the interface (dotted line).
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Transparent Boundary

The transparent boundary adopted for this study follows
the formulation of Fujino and Hakuno (1978) and Gičev and
Trifunac (2007b). It is a perfect transparent boundary for 1D
waves when βΔt=Δx � 1. For the linear case at the contact
(point 3), one part of the incoming wave is transmitted into
the other medium, and one is reflected back into the same
medium. The corresponding coefficients are obtained from
the boundary conditions of continuity of the displacements
and stresses at the contact. For a transmitted wave from
medium B to medium A and for a reflected wave from me-
dium B back into medium B, these coefficients are

ktrB→A � 2�1� �ρaβa�=�ρbβb���1 (10)

and

krefB→B � �1 � �ρaβa�=�ρbβb��=�1� �ρaβa�=�ρbβb��:
(11)

For the opposite direction of propagation, the numerators and
the denominators in these fractions exchange places. For a
wave arriving from the half-space, B represents half-space
and A the soil layer. For a wave in the soil layer propagating
down, B represents the layer, and A the half-space.

Numerical Examples

For the numerical analysis, we consider a soil layer
supported by an elastic half-space. The densities of the half-
space and of the layer are assumed to be the same: ρb �
ρs � ρ � 2000 kg=m3. The velocity of the shear waves in
the half-space is taken as βs � 250 m=sec and in the layer
as βb � 100 m=sec. This example will illustrate the non-
linear response of a soft soil layer (with Hb � 10 m and
εyb � 0:02) overlying a sedimentary deposit.

To describe nonlinear response and the development of
permanent deformations in the soil layer, we introduce two
dimensionless parameters,

dimensionless amplitude α � A=�Hb · εyb�; (12)

where A is the amplitude of the pulse (Fig. 1),Hb is the thick-
ness of the layer, εyb is the yielding strain in the layer, and

dimensionless frequency

η � 2Hb=λb � 2Hb=�βb · 2td� � Hb=�βb · td�;
(13)

where λb is the wavelength of the wave in the layer, βb is the
shear-wave velocity in the layer, and td is the duration of the
incident wave represented by a half-sine pulse (Fig. 1b).

To understand the initiation of the permanent strain
in the layer, first we examine the solution for the linear
case. The displacement and the strain (rotation) in the linear
layer are

u�x; t� � A
X∞
j�1

kj

�
sin

π
td

�
t � tj�1 �

x

βb

�

×
�
H

�
t � tj�1 �

x

βb

�
�H

�
t � tj�1 �

x

βb

� td

��

� sin
π
td

�
t � tj �

x

βb

��
H

�
t � tj �

x

βb

�

�H

�
t � tj �

x

βb

� td

���
(14)

and

ε�x; t� � A
π

βbtd

X∞
j�1

kj

�
� cos

π
td

�
t � tj�1 �

x
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�

×
�
H

�
t � tj�1 �
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��
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�
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��
H

�
t � tj �

x

βb

�

�H

�
t � tj �

x

βb

� td

���
; (15)

where j is the order number of the passage of the wave on
the path bottom-top-bottom in the layer, tj � 2jHb=βb �j �
0; 1; 2; 3;…; � is the time required for the wave to pass j
times the path bottom-top-bottom (two heights), and

kj � ktk
j�1
r (16)

is the amplitude factor of the pulse in the half-space during
its jth passage along the path bottom-top-bottom through the
layer with kt and kr defined by equations (10) and (11).

The odd terms in the series of equations (14) and (15)
describe the response to the pulse coming from below, while
the even terms describe the response for the pulse arriving
from above. For the shear-wave velocities in our example
(βs � 250 m=sec and βb � 100 m=sec), kt � 10=7, and
kr � �3=7. In equation (14) the displacement is positive
for odd passages and negative for even passages. The dis-
placement and velocity change sign after reflection from the
layer-half-space interface and do not change sign after reflec-
tion from the top of the layer. The strain changes sign after
reflection from the top of the layer and does not change sign
after reflection from the half-space (Fig. 3a). Figure 3b,c il-
lustrates the changes in the nonlinear response when α � 0:1
and 0.3. The constant that multiplies the series in equa-
tion (15) in terms of dimensionless amplitude and dimen-
sionless frequency is

Aπ=�βbtd� � Aε � παηεyb: (17)

To analyze the occurrence of permanent strain, we consider
two characteristic points in the layer: point B �x � 0� at the
layer-half-space interface (point 3 in the finite difference
grid, see Fig. 1) and point T �x � Hb � βbtd=2�, where the
amplitudes of the strain with the same sign meet after reflec-
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tion from the top of the layer. The location of this point de-
pends upon the duration (wavelength) of the pulse. To find
the location of this point and the time of occurrence of the
local maximum strain, we use equation (15). The first term in
equation (15) is one if the argument of the cosine function is
equal to td�t � t0 � x=βb � td�, and the second term is one if

the argument of the second cosine function is equal to zero
(t � t1 � x=βb � 0). We then solve the system of two equa-
tions for x and t bearing in mind t0 � 0 and t1 � 2Hb=βb.

The position of point T, where the rotation (strain) am-
plitude is two times larger than the rotation (strain) entering
the layer, is at x � Hb � βb · td=2, and the time when this
occurs is t � Hb=βb � td=2. From equation (15) during the
first passage of the pulse t < 2Hb=βb and at point B, only
the first term in the series exists. The strain at point B reaches
its absolute maximum at the very beginning during the en-
trance of the pulse into the layer, and its value is

jε1Bmaxj � παηεybkt: (18)

If the strain in equation (18) is greater than the yielding strain
in the layer, a permanent strain at the interface will develop.
The condition for occurrence of permanent strain at this point
is jε1Bmaxj > εyb or in terms of the dimensionless parameters

αη > �πkt��1 � �ρbβb � ρsβs�=�2πρsβs� � CB: (19)

At point T (this point does not exist if td > 2Hb=βb, and it
coincides with point B if td � 2Hb=βb) from equation (15),
the maximum strain during the first passage occurs at t �
Hb=βb � td=2, and its amplitude is 2Aε · kt. The condition
for occurrence of the permanent strain is

αη > �2πkt��1 � �ρbβb � ρsβs�=�4πρsβs� � CT � CB=2:

(20)

For the shear-wave velocities in our example, CB � 0:2228
and CT � 0:1114.

When the reflected wave from the top of the layer
reaches the soil-half-space interface (t � t1), the wave be-
gins the second passage. The linear solution for the strain
in equation (15) at B now involves three terms in the series
if the duration of the pulse is longer than 2Hb=βb and two
terms for shorter pulses. Recalling equations (15) and (17),
the solution at time t � 2Hb=βb � t1 is

ε�0; t1� � Aεfk1�� cos�2πHb=�βbtd�� � cos 0� � k2 · cos 0g
(21)

or

ε�0; t1� � παηεybkt�1 � cos 2πη � kr� (22)

when td > 2Hb=βb �η < 1=2�, and

ε�0; t1� � Aε�k1 · cos 0 � k2 · cos 0�; (23)

or

ε�0; t1� � παηεybkt�1 � kr� (24)

when td < 2Hb=βb �η > 1=2�.
Comparing equations (18) and (24) because kr < 0 for

short pulses (η > 0:5), it is seen that the strain at point B at

Figure 3. Comparison of displacements along the normalized
length of the beam, χ � x=Hb, versus normalized time τ �
βbt=2Hb for dimensionless frequency η � 3 for (a) linear response
when dimensionless pulse has amplitude α � 0:03 and nonlinear
responses when dimensionless pulse has amplitude (b) α � 0:1
and (c) α � 0:3.
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the beginning of the second passage is always larger
(1� jkrj), and thus for our example, 10=7 times larger than
the strain Aε · kt at the beginning of the first passage. How-
ever, it is still smaller than the strain at T in the first passage
�2Aε · kt�. For short pulses (η > 0:5) it can be concluded that
if there is no occurrence of permanent strain during the first
passage at point T, the response of the layer will be linear for
all time.

For long pulses (η < 0:5) comparing equations (18)
and (22) and for η < �2π��1 arccos�jkrj�, the strain at point
B at the beginning of the second passage is smaller than
the strain at the beginning of the first passage, and for
η > �2π��1 arccos�jkrj�, the former strain is larger than
the later one. For our example (kr � �3=7), η > 0:18 always
gives larger strain at the interface point at the beginning of
the second passage than the strain at the beginning of the first
passage.

The largest amplification of the rotation (strain) at B is
for η � 0:5 when at the beginning of the second passage, the
strain is (2� jkrj) times larger than the strain during the first
passage. For our example the amplification is 17=7 (� 2:43
for α < 0:187), which gives larger strain than the strain at
point T during the first passage �2Aε · kt�. Therefore, for long
pulses (η ≤ 0:5) the first permanent strain can occur later in
time. This means that in addition to conditions (19) and (20),
there is one further condition for the occurrence of permanent
strain, which is valid only in zone 1, namely

αη >
1

πkt�2� jkrj�
� ρbβb � ρsβs

2πρsβs�2� jkrj�
� CB

2� jkrj
: (25)

In further discussions, the region �η; x� will be divided
into three zones—zone 1: Z1 � ��η; x�jη < 0:5;∀x�,
zone 2: Z2 � ��η; x�j0:5 ≤ η; x ∼ 0�, and zone 3: Z3 �
��η; x�j0:5 ≤ η; x > 0�. In the numerical simulations in this
article, the boundary between zones 2 and 3 is taken close
to the layer-half-space contact, and for convenience we have
selected it to be at x � 1.

In the following, we consider the normalized maximum
strain in the layer, εmax. This strain is the absolute maximum
of the strain occurring in the layer at any time of its response.
To represent it in dimensionless terms, we consider the quan-
tity vlin � vlinentr, which is the maximum velocity entering the
layer (supposing that it is linear) for the considered frequency
of the pulse. The vlin is linear in η, which follows from

vlin � πA · kt=td � παηεybβbkt: (26)

Then, instead of describing the absolute maximum of the
strain, we will consider the normalized maximum strain,

εmax
norm � εmaxβb=vlin � εmax=εlin: (27)

This quantity will show the degree of nonlinearity in the
layer response and the effects of the interference on the
amplification of the linear entry strain. This strain is always

larger than one. Wewill also describe the normalized strain at
the end of the analysis in terms of the ratio

εendnorm � εendβb=vlin � εend=εlin: (28)

This quantity will show the amplitude of the permanent
strain (rotation) after all of the wave energy exits the layer,
relative to the linear entry strain. This strain can be larger or
smaller than one, and for linear waves (when neither con-
dition 20 nor condition 25 are satisfied), it is zero. We will
also consider the maximum strain normalized by the yield-
ing strain

εynorm � εmax=εyb: (29)

In analogy with the response studies of engineering struc-
tures, if this quantity at some point of the soil layer is larger
than the maximum allowed ductility μ � εfail=εyb, where εfail
is the largest strain that can occur in the system, the layer
may collapse. For linear waves this normalized strain is smal-
ler than one.

For α � 0:01, the condition (25) is not satisfied in
the zone Z1 (η ≤ 0:5) because in our example η >
CB=�17α=7� � 0:2228 · 7=�17 · 0:01� � 9:174 > 0:5, and
so there is no permanent strain in this region. The
condition (20) gives η > CB=�2α� � 0:2228=�2 · 0:01� �
11:14 > 5, which means that in the range 0:06 ≤ η ≤ 5,
the response of the layer for α � 0:01 is always linear.
The absolute maximum occurs in zone Z1 for η close to 0.5
at the bottom of the layer. Its value is 2.43. For η > 0:5 this
normalized strain is constant and equal to two. In zone Z2 the
largest normalized strain occurs at the beginning of the sec-
ond wave passage, and its theoretical value in our example is
1� jkrj � 10=7 � 1:43. The finite difference calculations
also give 1.43.

To illustrate the dependence of the strain (rotations) on
γ, we show Figure 4, where the propagation of the displace-
ment along the dimensionless length of the layer χ � x=Hb

in dimensionless time τ � βbt=�2Hb� is shown for the first
two and a half passages of the wave on the path bottom-top-
bottom of the layer. The dimensionless amplitude is α � 0:3,
and the dimensionless frequency is η � 3. At the top of
this figure the motion is shown for elastoplastic material,
γ � 0:0, and at the bottom for material with γ � 0:3. Com-
paring the top and bottom plots, it is seen that increasing γ
reduces the strain. Also, large strains for γ � 0:0 are local-
ized, while for γ � 0:3 the nonlinear zone has a transition
zone, which results from spreading of the zone with strain
localization when γ is greater than zero. This is because for
the modulus μ1 � γμ0 > 0 (Fig. 2), the permanent strain can
propagate with velocity βb1 � ���

γ
p

· βb. For elastoplastic ma-
terial γ � 0 the permanent strain does not propagate but is
accumulated in narrow zones of the layer, and the value of
the strain at the point changes only when the pulse occupies
the point. When γ > 0 with propagation of the permanent
strain, there is less accumulation of large strains at a point
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with each passage of the wave through that point. Thus, as
γ increases, the strain ordinates decrease, and the zones of
the permanent strain become wider.

In Figure 4 the maximum strain occurs at the beginning
of the wave entering the layer. For elastoplastic material, this
strain is high. After reflecting from the top, almost the whole
energy of the input wave is captured and spent for developing
permanent strain in narrow zones, and only elastic strain con-
tinues to propagate along the layer. For the material with γ �
0:3 with the development of permanent strain at the top, this
strain does not remain at the point but propagates with ve-
locity βb1, which causes a substantial amount of energy to
continue to spread out, up, and down the layer. For longer
pulses this is not so obvious (Gičev and Trifunac, 2007b).
The permanent strain occurs in the beginning of the second
passage of the wave along the layer thickness. It can be
shown that for the elastoplastic material the permanent strain
at the bottom is large while for the material with γ � 0:3, this
permanent strain may not even be noticeable, and it may ap-
pear as if the layer is in a linear state.

Figure 5 illustrates the space-frequency (x � η) depen-
dence of normalized peak strain εmaxβb=v

lin
entr for four nor-

malized excitation amplitudes α � 0:05, 0.1, 0.2, and 0.3.
The normalized strain in the soil layer is plotted at the instant

when the absolute maximum of the normalized strain occurs
for a given frequency η. This is done for all frequencies con-
sidered in this work. Figure 6 illustrates the dependence of
εmaxβb=v

lin
entr on γ � 0:0, 0.1, 0.2, and 0.3 for the normalized

amplitude of excitation α � 0:1. Figures 5 and 6 also show
the peak amplitudes in zones 1, 2, and 3.

The normalized strains versus dimensionless amplitude
α are illustrated in the subsequent figures for the four values
of γ � 0:0, 0.1, 0.2, and 0.3 in the three zones Z1, Z2, and
Z3, respectively, using a semilogarithmic scale. From condi-
tion (25), the first nonlinear strain in zone 1 occurs for

α1 > 0:09174=ηmax � 0:09174=0:5 � 0:1835: (30)

As can be seen in zone 1 (Fig. 7a), while the strain is linear
(α ≤ α1), there is no dependence upon γ, and all of the
curves coincide. The normalized maximum strain εmax

norm

(see equation 27) is constant, and for our example its value
is 17=7 � 2:43 corresponding to the summation of the three
strains at the beginning of the second passage. Because the
response is linear, in this interval εmax

norm shows only the effect
of the interference on amplification of the linear entry strain.
The normalized end strain εendnorm in this interval is zero,
showing that the strains are reversible and that the resistance
capacity of the layer for some future excitation is not dimin-
ished. The normalized strain εynorm � εmax=εyb approaches
zero as α approaches zero. With increasing α beyond α1,
the response at the bottom of the layer becomes nonlinear
at the beginning of the second passage, the curves for differ-
ent values of γ separate, and the normalized strains increase
with decreasing γ being the largest for elastoplastic mate-
rial, γ � 0: The normalized strain εmax

norm reaches its maximum
values for largest α shown in the plots for elastoplastic ma-
terial. In this case the effect of the nonlinearity of the layer
response dominates over the effect of constructive interfer-
ence of the three strains at the bottom. After the wave exits
the layer completely, the remaining normalized permanent
strain at the end εendnorm has almost the same amplitudes for
the elastoplastic material, and the normalized strain εynorm
is also larger, indicating that the layer will fail at large
values of α.

In Figure 7b the normalized strains versus α in zone 2
are shown again using the semilogarithmic scale. It can be
seen that for small amplitudes α ≤ 0:05, all of the curves
converge to zero. As α increases, all normalized strains in-
crease. For α larger than 0.1, the dependence of all of the
normalized strains on α for elastoplastic material γ � 0 in
this scale resemble a logarithmic function, which means that
the normalized strains for elastoplastic material are linear
functions of α. For materials with γ ≠ 0, the normalized
strains εendnorm seem to become independent of α, while the
normalized strains εmax

norm and εynorm are approximately linear
with the slope ∂εmax

norm=∂α smaller than the slope ∂εynorm=∂α.
In Figure 7c the normalized strains versus α in zone 3

are shown. For any γ the normalized strains εmax
norm and εynorm

approach 2 and 0, respectively, as α approaches 0. The nor-

Figure 4. Plot of the displacements along the normalized length
of the beam, χ, versus normalized time, τ , for dimensionless am-
plitude, α � 0:3, η � 3, and for γ � 0 and γ � 0:3.
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malized strain εendnorm depends only on γ and is independent of
α. The lowest amplitude when the permanent strain occurs
can be found from condition (20) at the highest considered η
as αmin > 0:1114=5 � 0:02228. For α ≤ αmin, εendnorm � 0.

Figure 8 shows the zones of the layer in which the
maximum strains (rotations) occur versus the dimensionless
amplitude of the strong-motion pulse α in the range from
0.0 to 0.6, for γ � 0:0 and 0.3. For all normalized strains,
εmaxβb=vlin, εendβb=vlin, and εmax=εyb, and for α increasing
from 0, essentially all peaks first occur in zone 3 of the layer.
The only exception to this for εmaxβb=vlin is for small values
of α for which the response is linear and for which the peak
of this strain occurs in zone 1. For εmax=εyb and for γ � 0:0
beyond α ∼ 0:15, the peak rotations begin to occur in zone 2
with negative signs for all α < 0:6 considered in this article.
For γ � 0:3 beyond α ∼ 0:1, the peak rotations εmax=εyb be-
gin to occur in zone 2 and are negative up to α ∼ 0:25; they
change sign to positive for α beyond 0.25 for all α < 0:6
considered in this article.

For the largest normalized pulse amplitudes we consid-
ered in this work, α ∼ 0:6, and assuming motions close to the
moving fault such that vlin ∼ 100 cm=sec, for example, the

results in Figure 8 imply permanent shearing of the parts
of the layer, which would lead to permanent tilting of the
deep embedded foundations in the range from ∼0:6° (when
γ � 0:3) to ∼57° (when γ � 0:0). The latter result for γ �
0:0 exceeds the range of the response amplitudes (ε ∼ tan ε),
which can be calculated reliably with our model, but it shows
nevertheless that the strains can become very large. The ad-
verse consequences of such large shearing deformations on
deep foundations and foundations on piles are obvious.

Discussion and Conclusions

In this article we described the consequences of earth-
quake energy flow into a soil layer with the objective of pro-
viding some understanding of the resulting response for
excitation by powerful transient pulses. Starting with a linear
strong-motion pulse in the half-space and ending with non-
linear waves propagating through a soil layer, we identified
the peak transient and permanent rotations (strains) occurring
during various stages of excitation.

For incident short pulses (η > 0:5), which lead to linear
response of the layer, the amplification of a pulse with nor-
malized pulse amplitude α [α � A=�Hbεyb� and represents a

Figure 5. Normalized strains along the beam when its maximum occurs versus dimensionless frequency, η, for γ � 0 and for four
dimensionless amplitudes.
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ratio of the average drift in the layer A=Hb and of the yield-
ing strain in the soil material εyb] is equal to two. It results
from interference of the upward-propagating wave with the
wave reflected from the free layer surface and propagating
down. For long pulses (η ≤ 0:5), the amplification depends
upon the impedance ratio between the half-space and the
layer material, and depending upon the duration of the pulse,
it can occur during first, second, or higher-order passes of the
wave up and down the layer. In the example presented in this
article, it occurs at the beginning of the second pass and is
equal to 2.43.

For large values of α, which lead to nonlinear wave mo-
tion in the layer, amplification of peak rotations (strains) is a
strong function of the second slope γ in the bilinear repre-
sentation of the stress-strain relationship of the layer. For
γ � 0:0 the amplification of all peak rotations and strains
grows rapidly with α while for γ � 0:3 and larger, it is only
slightly above the amplification for linear wave motion.

With increasing α and the first appearance of the
nonlinear response, the maxima of all normalized strains
εmaxβb=vlin, εendβb=vlin, and εmax=εyb first occur in zone 3
of the layer (η > 0:5 and 0 < x ≤ Hb; Fig. 8). This corre-
sponds to interference of up- and downward-propagating

short waves after reflection from the layer surface, and it oc-
curs for α in the vicinity of 0.2. Beyond α ∼ 0:2, the peaks of
εmax=εyb occur just above the interface of the layer and the
half-space (in zone 2: η > 0:5, and x ∼ 0). The peaks of
εmaxβb=vlin and εendβb=vlin occur in zone 3 (η > 0:5, and
0 < x ≤ Hb) for γ � 0:3 and in zone 1 (η ≤ 0:5, and ∀x)
for γ � 0:0.

The description of the peak rotations and peak strains in
nonlinear response is for the example of soil layer in this
article only. For layers with constant shear-wave velocities,
densities, and εyb different than those considered in our ex-
ample, the scales of the coordinate axis in Figure 7a,b,c and
Figure 8 will shrink or extend, but the overall nature of the
results will remain similar. For the layers with variable shear-
wave velocities and densities, the general appearance of the
peaks of εmaxβb=vlin, εendβb=vlin, and εmax=εyb will remain
similar, but they may include additional complexities, which
will result from reflection and refraction from the jumps
caused by changes in the shear-wave velocity. Some aspects
of those complexities can be seen in the related analysis of
the nonlinear waves in a seven-story hotel building in Van
Nuys, California, which was damaged by the 1994 North-
ridge earthquake (Gičev and Trifunac, 2007a).

Figure 6. Normalized strains along the beam when its maximum occurs versus dimensionless frequency, η, and for dimensionless am-
plitude, α � 0:1.
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Figure 7. Normalized strains versus the dimensionless amplitude, α, for four different values of γ � 0:0, 0.1, 0.2, and 0.3, in (a) zone 1 ,
(b) zone 2, and (c) zone 3.
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The strain localization, which can occur almost any
place in the layer depending upon the α and η of the pulses
(as the examples discussed previously show), implies that
liquefaction and lateral spreading, for example, can be ini-
tiated at any depth of the layer. Thus, the final outcome
will always depend upon the nature of the excitation and
upon how many energetic peaks, and of what sizes, are
present in the train of strong ground motion (Todorovska
et al., 2008).

A review of Figure 7a,b,c might suggest that the normal-
ized peak rotations (strains), εmaxβb=vlin, εendβb=vlin, and
εmax=εyb converge to an asymptote or to a monotonically in-
creasing trend when α → ∞. However, this is not the case.
First, positive and negative peak strains dominate the max-
ima in a manner that is not simple. In zones 1 and 3, most
maxima are positive, but in zone 2 positive and negative
peaks appear and disappear in a manner that is not simple
and recognizable. Second, with increasing α beyond ∼0:2
in our example, what at first would seem to be a monotonic
trend begins to fluctuate, and in some instances the peak dis-
appears. This can be seen for the curves in Figure 7c, for
example, where some curves are interrupted near α � 0:5
(for εmaxβb=vlin and for εmax=εyb, both for γ � 0:0), some
suddenly begin to decrease beyond α ∼ 0:4 (εmaxβb=vlin

for γ � 0:1, 0.2, and 0.3), and some just oscillate up and
down departing from a monotonic trend (εendβb=vlin for
γ � 0:1, 0.2, and 0.3). Our numerical algorithm has been
formulated to work with small strains when ε ∼ tan ε, and so
we cannot obtain reliable results for large nonlinear deforma-
tions. Furthermore, the differential equations we chose for
describing 1D shear waves are also linear and do not include
higher-order terms associated with geometric nonlinearities,
gravity effects, and dynamic instabilities. Yet the nature of
the problem we study is characterized by large nonlinearities,
and therefore, it is expected to display the characteristics of
chaotic response.

The completeness of the linear differential equations has
led to their dominance in the mathematical training of engi-
neers and seismologists during most of the twentieth century,
which means that the recognition that chaotic motions are
inherent in most nonlinear physical phenomena has had lit-
tle, if any, effect on the research in earthquake engineering
thus far. In the past, the analysis of site response has been
kept mainly within the realm of linear or equivalent linear
mechanics (Safak, 2001; Hartzell et al., 2004). However, if
an engineer chooses parameters that produce chaotic out-
put, he loses reliable predictability. The chaotic behavior
of nonlinear systems does not exclude predictability of the
response but rather introduces upper bounds (prediction hori-
zons) (Lighthill, 1994) and renders the predictions probabi-
listic. The important question is then over what timescale the
forecasts are reliable given the current state and knowledge
of the system. Another key ingredient for prediction is an
adequate physical model. At present, because of the multi-
tude of interacting phenomena and the absence of physically
complete equations of motion, there exists no adequate gen-
eral model of the complete earthquake response process; and
therefore, the practical outcome of most work in earthquake
engineering remains empirically based.

The aforementioned information implies that there is a
conflict in the classical engineering description of the world.
One aspect of this conflict is the assumption that nature is
moving forward according to deterministic laws. Another is
that an engineer attempting to model portions of the world
from finite data projects unverifiable structure onto the lo-
cal environment. The conflict is that these two views do not
match, leading to a question, What are models good for?
There are many systems in nature that are observed to be
chaotic and for which no adequate physical model exists.
Whether a model is adequate or not depends, of course, on
the questions asked (Crutchfield, 1992). Unfortunately, the
art of dynamical modeling is often neglected in discussions
of nonlinear and chaotic systems, in spite of its crucial im-
portance (Beltrami, 1987).

Stochastic processes have been introduced to describe
irregular phenomena in deterministic systems that are too
complicated or have too many variables to be fully described
in detail. For example, stochastic processes have been used
to model site response to earthquake shaking, which is de-
terministic and thus, in principle, could be completely de-

Figure 8. Dependence of the largest normalized strains versus
the dimensionless pulse amplitude, α, showing the zone where the
largest peak occurs for γ � 0:0 and 0.3.
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scribed. In practice, the stochastic modeling has also been
used as an approximate description of a deterministic system,
which has unknown initial conditions and may be highly sen-
sitive to the initial conditions. In trying to model real sys-
tems, as a result of the modeling process, we sometimes
obtain a model that shows very regular behavior while the
real system has very irregular behavior. In that case random
noise is added to the model, but this represents no more than
our lack of knowledge of the system structure or the in-
adequacy of the identification procedure (Kapitaniak, 1991;
Biot, 2007).

It has been argued that advances in science occur not
so much when new theories are advanced as when the sim-
ple models with which scientists conceptualize a theory are
changed (Kuhn, 1962). In the analysis of site conditions,
such a conceptual model that embodies the major features
of a whole class of problems is the single layer of soil over
a semi-infinite half-space. Lessons emerging from studies of
this simple model may serve as conceptual starting points for
generalizations and also as a guide to further studies of more
complex models in earthquake engineering and strong-
motion seismology.

Data and Resources

No data were used in this article. Parts of some of the
plots used in this article came from published sources listed
in the references.
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