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Abstract Many empirical scaling equations have been developed for scaling Fou-
rier spectrum amplitudes of strong earthquake accelerations and for generation of
artificial strong-motion accelerograms for the translational, torsional, and rocking
components of strong motion. It has also been shown that rotational components
of strong motion significantly contribute to the overall response of structures; how-
ever, little progress has been made in the development and deployment of strong-
motion instruments to measure rotations. This article presents a simple approximate
algorithm for generating torsional and rocking Fourier spectral amplitudes from the
corresponding translational motions. The method can be used to generate torsion and
rocking spectra from the translational Fourier spectra of actual records. Inverse Fourier
transform can be used to generate torsional and rocking time histories.

Introduction

After 75 years of strong-motion recording programs in
the western United States and up to 40 years in many other
parts of the world, several thousand strong-motion accel-
erograms have been recorded, processed, and made avail-
able for distribution (Trifunac, 2007). The observational
strong-motion programs evolved in the early 1900s from
the realization that it is essential to record strong ground mo-
tions during actual earthquakes (Hudson, 1983a,b; Trifunac,
2009a) to guide the development of the methods for analy-
sis and prediction of structural response and to provide a ba-
sis for experimental verification of the theoretical models.
The strong-motion database accumulated so far allows earth-
quake engineers to (1) study the strong motion in different
parts of the world to gain understanding of its characteris-
tics and destructive potential in relation to the tectonic char-
acteristics of the areas where earthquakes occur, (2) analyze
and interpret the dynamic response of structures during
earthquakes, (3) identify and quantify the earthquake strong-
motion parameters associated with generation and transmis-
sion of strong-motion waves, and (4) provide a data bank for
future studies.

While the recorded data are invaluable for research and
analyses of strong motion, they still do not cover many dif-
ferent recording conditions, which are needed for engineer-
ing design. This is particularly true in those areas that have
low seismic activity and have thus not yet accumulated an
adequate strong-motion database. It is also often necessary
to estimate future shaking at sites, which may have charac-
teristics outside the range of parameters for which the re-
corded data are now available. It was for these reasons that
serious development of modern empirical scaling equations
for direct scaling of Fourier and response-spectral amplitudes

began following the successful recording of the San Fer-
nando, California, earthquake of 1971 (Trifunac, 1976; Lee,
2002a,b, 2007). The work on direct empirical scaling of
spectral amplitudes also facilitated the development of the
algorithms for generation of synthetic strong-motion accel-
erograms of translational components of strong motion (Tri-
funac, 1971; Wong and Trifunac, 1979). In addition, it was
recognized that the torsional and rocking components of
strong motion, acting together with the translations, signifi-
cantly contribute to the overall response of structures during
strong shaking (Kobori and Shinozaki, 1973; Luco, 1976;
Lee, 1979). In the absence of programs to develop instru-
ments to record the rotational components of strong motion,
it became necessary to estimate the rotational motions in
terms of the corresponding translational motions. Trifunac
(1982) showed how the torsion and rocking of the ground
surface associated with incident body waves can be deter-
mined in terms of the corresponding translational amplitudes
of motion. Then, a few years later, Lee and Trifunac (1985,
1987) showed how to generate synthetic torsional and rock-
ing accelrograms, along with their Fourier and response
spectra, starting from the amplitudes of horizontal motions.

During the past two decades, in spite of the fact that en-
gineering studies have continued to show the significance of
the rotational components in strong-motion excitation for the
response of structures (Kalkan and Graizer, 2007a,b; Trifu-
nac, 2006, 2008), the progress in developing and deploying
strong-motion instruments that can also record rotational
components of earthquake waves has continued to be slow.
In this article, we first briefly review our approach for the
generation of artificial translational and rotational accelero-
grams; then we present an approximate method for its exten-
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sion to generation of rotational Fourier spectra of strong
earthquake motion. We also present examples of the empiri-
cal scaling equations of torsional and rocking spectra, along
with the corresponding rotational time histories.

Synthetic Translational, Torsional,
and Rocking Accelerograms

A review of our method for the generation of synthetic
accelerograms can be found in Lee (2002b). It is based on the
superposition of dispersed elastic waves, and it generates the
rotational components of motion, the strains, and the curva-
tures in terms of their analytic relationship to the amplitudes
of the translational motions. The synthetic translational com-
ponents of acceleration are constructed to have the required
Fourier amplitude spectrum, FS�ω�, and a given duration
(Trifunac, 1971; Wong and Trifunac, 1979).

Dispersion Curves

For a given site, a model of its geological characteristics
in terms of an equivalent layered medium is first selected. A
model can have L layers, and for each layer i, with i � 1 to
L, the parameters hi, αi, βi, and ρi, the thickness, the P-wave
velocity, the S-wave velocity, and the density, with the bot-
tom (i � L) medium of infinite thickness, must be specified.
In a layered medium, surface waves travel in a dispersive
manner, while the phase velocities of body waves can be de-
termined from path geometry. The dispersion curves of the
Rayleigh and Love surface waves are then evaluated; the re-
sults consist of m � 1; 2; 3…;M phase and group velocities,
Cm�ωn� and Um�ωn�, determined at a discrete set of frequen-
cies, ωn, n � 1; 2;…; N.

Arrival Times

The arrival time of the energy in the mth mode at fre-
quency ωn can be written as t�nm � R=Um�ωn�, where R is
epicentral or some representative distance from the source
to the site. For computational efficiency, this arrival time
t�nm is assumed to hold for a frequency band ωn �Δωn, nar-
row enough for Um�ωn� to be approximated by a constant.
Furthermore, for simplicity in formulation of the algorithms,
we treat the body P and S waves as M� 1st modes of sur-
face waves, but with frequency-independent (i.e., constant)
velocities.

Contribution of the Modes at a Given
Frequency Band

Within the frequency band ωn �Δωn, the mth mode of
surface waves with relative amplitude Anm has a Fourier
transform (Trifunac, 1971; Wong and Trifunac, 1979)

Anm�ω� �
8<
:

π
2
Anm exp��i�ω � ωn�t�nm � iϕn	

for jω � ωnj ≤ Δωn;
0; otherwise:

(1)

All Fourier transforms considered in this article are from
real-valued functions that satisfy the implicit identity
Anm��ω� � A�

nm�ω�; thus, they need to be defined only for
ω > 0. The phase ϕn is taken as random, between �π and
�π, and is introduced to model the source and randomness
encountered along the wave path. At the site, t�nm is the arrival
time of the mth mode at frequency ωn. Anm is the relative
amplitude of the mth mode at the same frequency.

The inverse transform of equation (1) is

anm�t� �
1

2π

Z ∞
�∞

Anm�ω�eiωtdω

� Anm

sinΔωn�t � t�nm�
�t � t�nm�

cos�ωnt� ϕn�; (2)

which represents the contribution to the time signal of the
mth mode at frequency ωn. The total contribution of all
the modes is

an�t� �
XM
m�1

αnanm�t�

�
XM
m�1

αnAnm

sinΔωn�t � t�nm�
�t � t�nm�

cos�ωnt� ϕn�; (3)

where M is the total number of surface wave modes to be
considered, and αn is the scaling factor that will be used
to determine the final amplitude of FS�ωn�.

Determination of Anm and αn

The relative amplitudes of different modes of contribut-
ing surface waves, Anm, depend upon the source mechanism
and the propagation path; they cannot be deterministically
estimated due to the unknown fine structure of the medium
through which the waves propagate. Thus, we qualitatively
estimate these amplitudes on the basis of past recordings.
The following empirical estimates forAnm were proposed by
Trifunac (1971) and will be used in the examples of this ar-
ticle as well.

Anm � Anm�ωn� � A1�m�A2�ωn�;

where
�
A1�m� � j exp���m �m0�2=2C2

0	 � CRXmj
A2�ωn� � jB0 exp���ω � ωp�2=2ω2

B	 � BRXnj ;

(4)

with Xm and Xn random numbers in ��1; 1	. Example values
of the scaling coefficients are given in Table 1.

The scaling factor αn is determined so that the spectra of
synthesized accelerograms agree with some given or empiri-
cally determined Fourier amplitudes. The Fourier amplitude
of the transform of an�t� in equation (3) is
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An�ω� �
8<
:
P

M
m�1

π
2
αnAnm exp��i�ω � ωn�t�nm � iϕn	
for jω � ωnj ≤ Δωn;

0; otherwise

(5)

for 0 ≤ ω < ∞, and jAn��ω�j � jAn�ω�j. jAn�ω�j is de-
fined only over the frequency band ωn �Δωn of width
2Δωn. Its mean amplitude over this range, jAn�ω�j �
1

2Δω

R ωn�Δωn

ωn�Δωn
jAn�ω�jdω, is then set to agree with the given

or empirically determined Fourier amplitude,cFS�ωn�. Setting
jAn�ω�j � cFS�ωn� gives

αn � 2Δωn
cFS�ωn�=

π
2

×
Z

ωn�Δωn

ωn�Δωn

����XM
m�1

Anm exp��i�ω � ωn�t�nm � iϕn	
���� dω:

(6)

The Fourier amplitude cFS�ωn� at frequency ωn may be esti-
mated from the empirical scaling equations and by using the
parameters that describe the site (Trifunac, 1976, 1989a,b,
1990, 1991; Lee and Trifunac, 1995).

Total Translational Accelerogram

The total Fourier transform and the total acceleration-
time history are then expressed as

A�ω� �
XN
n�1

An�ω� and

a�t� �
XN
n�1

an�t� �
XN
n�1

XM
m�1

αnanm�t�

�
XN
n�1

αn

�XM
m�1

Anm

sinΔωn�t � t�nm�
�t � t�nm�

�
cos�ωnt� ϕn�;

(7)

with N the total number of frequency bands.

Generation of Synthetic Torsional Accelerograms

Lee and Trifunac (1985) extended the aforementioned
approach to empirical estimation of torsional accelerograms.

The results in Trifunac (1982) were used to calculate torsion
from body SH and surface Love waves. The torsional motion
ψ�x; y; t� at ground surface (y � 0) is related to the trans-
verse displacement w�x; y; t� of SH and Love waves by (Tri-
funac, 1982)

ψjy�0 �
�iω
2cx

w

����
y�0

; (8)

where ω and cx are the frequency and horizontal phase ve-
locity of the waves. With given Fourier amplitude of the
translational motions, the Fourier spectrum of the corre-
sponding torsional motion can be determined by using equa-
tion (8). Starting with the Fourier transform of the mth mode
of surface waves in the frequency band ωn �Δωn, which is
given by equation (2), the corresponding torsional motion
becomes

Ψnm�ω� �
8<
:

�iωπ
4cnm

Anm exp��i�ω � ωn�t�nm � iϕn	
for jω � ωnj ≤ Δωn;

0 otherwise;
(9)

with Ψnm��ω� � Ψ�
nm�ω�, where cnm � cm�ωn� is the phase

velocity of the mth mode of Love waves, assumed to be con-
stant within the frequency band ωn �Δωn. Combining all of
the modes of Love waves and body SH waves, the rotational
motion in this frequency band is

Ψn�ω� �
8<
:

�iωπ
4

αn

P
M
m�1

Anm

cnm
exp��i�ω � ωn�t�nm � iϕn	

for jω� ωnj ≤ Δωn;
0 otherwise;

(10)

where αn is the scaling factor given in equation (6). The
total Fourier transform of the torsional accelerogram is
then Ψ�ω� � P

N
n�1 Ψn�ω�. The corresponding torsional

time histories ψ�t� can then be computed by inverse Fou-
rier transform.

Generation of Rocking Accelerograms

Lee and Trifunac (1987) next extended this approach
to the generation of rocking accelerations in terms of rock-
ing motion ϕ�x; y; t� at the ground surface (y � 0) and ver-
tical displacement v�x; y; t� corresponding to body P and
SV waves and to surface Rayleigh waves:

ϕjy�0 �
iω
cx

v

����
y�0

: (11)

Starting with the Fourier transform of the vertical translation,
as given by equation (2), the mth mode of rocking within the
frequency band ωn �Δωn is

Table 1
Empirical Scaling Coefficients for Equation (4)

Mode C0 m0 CR B0 ωP ωB BR

1 3 5 0.2 1.5 10 5 0.1
2 3 5 0.2 1.5 10 5 0.1
3 3 5 0.2 1.5 10 5 0.1
4 3 5 0.2 2.0 25 15 0.1
5 3 5 0.2 2.0 25 15 0.1
6 3 6 0.2 3.0 30 10 0.3
7 3 7 0.2 1.5 30 5 0.25

From Trifunac (1971).
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Φnm�ω� �
8<
:

iωπ
2cnm

Anm exp��i�ω � ωn�t�nm � iϕn	
for jω � ωnj ≤ Δωn;

0 otherwise;
(12)

with Φnm��ω� � Φ�
nm�ω�, where cnm � cm�ωn� is the phase

velocity of the body waves or of the mth mode of surface
Rayleigh waves. It is assumed that it is constant within the
frequency band ωn �Δωn. Combining all of the contribut-
ing modes of Rayleigh and body S and P waves, the rocking
motion in this frequency band then becomes

Φn�ω� �
8<
:

iωπ
2
αn

P
M
m�1

Anm

cnm
exp��i�ω� ωn�t�nm � iϕn	

for jω� ωnj ≤ Δωn;
0; otherwise;

(13)

where αn is the scaling factor given in equation (6), now
with respect to the vertical component of motion. The total
Fourier transform of the rocking accelerogram is Φ�ω� �P

N
n�1Φn�ω�, with the corresponding rocking time histories

ϕ�t� by inverse Fourier transform.

The Ratios of Rotational to Translational
Fourier Spectra

Having summarized the relationships among the empiri-
cal scaling equations of the rotational and translational Fou-
rier spectra allows us to generate the time histories of the
rotational components from the corresponding translational
components of strong motion. Once the rotational time his-
tories are generated, the corresponding rotational response
spectra can also be calculated.

Ratio of Torsional to Horizontal
Transverse Fourier Spectra

Equation (9) shows that the ratio of the torsional mo-
tion, Ψ�ω�, to the corresponding transverse horizontal mo-
tion, H�ω�, is

Ψ�ω�
H�ω� �

�iω
2c�ω� ; with amplitude

����Ψ�ω�
H�ω�

����� ω
2c�ω� ; (14)

where c�ω� is the horizontal phase velocity.
As an illustration, we consider a seven-layer model

(Table 2) that corresponds to a site in El Centro, California.
Dispersion curves for this site were computed using the
Haskell–Thomson matrix method (Thomson, 1950; Haskell,
1953), which generated the phase and group velocity curves
for Rayleigh and Love waves. The five solid curves in Fig-
ure 1 from the right are for the first five modes of the Ray-
leigh waves. Mode 1 is the right-most solid curve, followed
by modes 2–5 to the left. The same holds for the five modes
of Love waves, which are plotted with dashed lines. At short
periods, all curves approach the minimum S-wave velocity
(in this example, 0:30 km=sec). The two left-most curves

model body waves, with the dashed S wave below the solid
P wave on top. The body S wave is chosen to start at the
minimum cβ , in this example, 0:30 km=sec at period near
0.1 sec, and to quickly rise to the maximum cβ at
3:7 km=sec. The body P wave similarly starts at the mini-
mum cα, 0:6 km=sec, and quickly rises to the maximum
cα at 6:4 km=sec. Both are included in this figure and in
the calculations as the sixth and seventh modes of sur-
face waves.

Next we consider the transverse components of Love
waves and the corresponding torsional waves. From equa-
tions (5) and (10), the waves corresponding to their mth
mode, for frequencies within jω � ωnj ≤ Δωn, are

Hnm�ω� � Anm�ω� �
π
2
Anm exp��i�ω � ωn�t�nm	 exp�iϕn�;

Ψnm�ω� �
π
2

��iω
2cnm

�
Anm exp��i�ω � ωn�t�nm	 exp�iϕn�;

(15)

where cnm � cm�ωn� is the Love-wave phase velocity of the
mth mode at frequency ω � ωn. From equation (15), their
ratio takes the following form, as in equation (14):

Table 2
Layered Medium near El Centro, California

Layer Number Depth (km) α β Density (g=cc)

1 0.05 0.60 0.30 1.20
2 0.13 1.70 0.98 1.28
3 0.55 1.96 1.13 1.36
4 0.98 2.71 1.57 1.59
5 1.19 3.76 2.17 1.91
6 2.68 4.69 2.71 2.19
7 ∞ 6.40 3.70 2.71

From Lee and Trifunac (1985) and (1987).
α, β: P- and S-wave velocities (km=sec).

Figure 1. Love (dashed lines) and Rayleigh (solid lines) surface
wave phase velocity curves for the El Centro site in California.
Model P- and S-wave velocities are also shown.
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Ψnm�ω�
Hnm�ω�

� �iω
2cnm

; with amplitude

����Ψnm�ω�
Hnm�ω�

����� ω
2cnm

:

(16)

Figure 2 shows a plot of these ratios, ω=2cm�ω�, for the
five modes of Love waves plus body S waves as the sixth
mode. The curves for the six modes all have similar slopes,
especially at high frequency, along the straight dashed line
joining the limits of ω=2βmax at the low-frequency end
and ω=2βmin at the high-frequency end. This is an important
linear trend that we exploit further in this article.

A simple way to characterize the ratio,Ψ�ω�=H�ω�, with
all of the modes of Love waves and body S waves combined,
can be derived from their definition. In each of the n fre-
quency bands, ωn �Δωn, considering M modes, within
jω � ωnj ≤ Δωn, we have

Hn�ω� � An�ω�

� π
2
αn

�XM
m�1

Anm exp��i�ω � ωn�t�nm	
�
exp�iϕn�;

Ψn�ω� �
π
2
αn

�XM
m�1

��iω
2cnm

�
Anm exp��i�ω � ωn�t�nm	

�

× exp�iϕn�: (17)

Equation (17) can be used to compute the ratio Ψ�ω�=H�ω�
within ωn �Δωn:

Ψ�ω�
H�ω�

����
ω�ωn

� Ψ�ωn�
H�ωn�

� Ψn�ω�
Hn�ω�

����
ω�ωn

� �iωn

2

�P
M
m�1

�Anm=cnmP
M
m�1

�Anm

�
or

� �iωn

2�cn
; (18)

where �cn � �c�ωn�, and 1= �cn represents the weighted average
of the phase velocities of all the modes of Love waves at
frequency ωn. �Anm is the average relative amplitude of the
mth mode at frequency ωn (equation 4). Note that the phases,
being identical, cancel out in the ratio, which is thus depen-
dent only on the frequency and the local phase velocity spec-
tra of Love waves. �cn can be viewed as the weighted average
of the phase velocities cnm � cm�ωn� at frequency ω � ωn of
the modes of surface Love waves plus body S waves. The
ratio of amplitudes ω=2�c�ω� will thus be running along the
dashed line from ω=2βmax at low frequencies to ω=2βmin at
high frequencies.

The Straight Line between the
Limits ω=2βmax and ω=2βmin

Perusal of Figure 8 in Lee and Trifunac (1985) shows
that the ratio closely follows a straight line in the log-log plot
and joins the limits ω=2c�ω� at the low- and high-frequency
ends. We also recall equations (26) and (27) in Lee and Tri-
funac (1985), which state that

����Ψ�ωn�
H�ωn�

����→ ωn

2βmax
as ωn → 0;����Ψ�ωn�

H�ωn�

����→ ωn

2βmin
as ωn → ∞:

(19)

This shows that the ratio can be approximated by the
dashed line in Figure 2. Taking the lower limit at f0 �
ω0=2π � 0:025 Hz and the upper limit at f1 � ω1=2π �
50:0 Hz, the equation of this straight dashed line in the
logarithmic scale is

log
�jΨ�ω�j
jH�ω�j

�
∼ log

�
ω0

2βmax

�
�

log�ω1βmax
ω0βmin

�
log�ω1

ω0
� log

�
ω
ω0

�

� ratio1�ω�: (20)

In terms of periods, where T � 2π=ω, with T0 � 2π=ω1 �
0:02 sec and T1 � 2π=ω0 � 40:00 sec, with FSΨ�T� �
Ψ�ω� and FSH�T� � H�ω�, the line ratio1�ω� becomes

Figure 2. Ratio of frequency to phase velocities for the five
modes (1–5) of Love waves, and for S waves as sixth mode (6),
for a 7-layer velocity model.
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log
�jFSΨ�T�j
jFSH�T�j

�
∼ log

�
π

T1βmax

�
�

log�T1βmax
T0βmin

�
log�T1

T0
� log

�
T1

T

�

� ratio1�T�: (21)

Equation (21) can be viewed as an approximate empirical
scaling equation for Fourier spectra of torsional motions
in terms of the Fourier spectra of translational horizontal mo-
tion. The log�jFSH�T�j� can also be the logarithm of the
Fourier spectrum of some recorded translational horizontal
component of motion.

The straight-line approximation of the ω=2�c�ω� is crude
and less physical than the function defined in the previous
section; however, it may serve as a first approximation. It
does not require detailed knowledge of the physical proper-
ties of the layers at the site, except for the minimum and
maximum shear-wave velocities, βmin and βmax.

Ratio of Rocking to Vertical Fourier Spectra

We consider next the spectra of rocking, Φ�ω�, in terms
of the spectra of the vertical translation, V�ω�. The Fourier
spectrum of vertical motion is determined by the contribution
from the modes of Rayleigh surface waves and body P and
S waves. Let cm�ω� be the phase velocity of the mth mode of
surface Rayleigh or of body S and P waves at frequency ω.
We recall that the mth mode of surface waves at the nth fre-
quency band ωn �Δωn gives the Fourier spectra of vertical
translation and of rocking as

Vnm�ω� � Anm�ω�
� π

2
Anm exp��i�ω� ωn�t�nm	 exp�iϕn�;

Φnm�ω� �
π
2

�
iω
cnm

�
Anm exp��i�ω � ωn�t�nm	 exp�iϕn�; (22)

and as zero otherwise. Within the frequency band jω� ωnj ≤
Δωn, their ratio is

Φnm�ω�
Vnm�ω�

� iω
cnm

; with amplitude

����Φnm�ω�
Vnm�ω�

����� ω
cnm

: (23)

Figure 3 shows a plot of this ratio, ω=cm�ω�, for the five
modes (1–5) of Rayleigh and body S and P (6 and 7) waves.
It has the same form as equation (16), except for the factor of
1
2
. The curves for all seven modes have similar slopes, and
more so at the high-frequency end, along the dashed line that
joins the ω=βmax at the low frequency with ω=βmin at the
high-frequency end. Combining all of the modes of Rayleigh
waves and the body S and P waves, their Fourier amplitudes
in the frequency domain (Lee and Trifunac, 1987) take on the

same form in each of the n frequency bands ωn �Δωn, as
in the case of torsional spectra; their ratio Φ�ω�=V�ω� is
also similar.

In particular, at ω � ωn:

Φ�ω�
V�ω�

����
ω�ωn

� Φn�ω�
Vn�ω�

����
ω�ωn

� iωn

�P
M
m�1

�Anm=cnmP
M
m�1

�Anm

�
� iωn

�cn
;

with amplitude����Φ�ω�V�ω�

����
ω�ωn

�
����Φ�ωn�
V�ωn�

����� ωn

�c�ωn�
� ratio2 �ω�jω�ωn

;

or with logarithmic scales

log jΦ�ωn�j � log jV�ωn�j � log�ωn= �c�ωn�	;

(24)

where �cn � �c�ωn� represents the weighted average of the
modes of Rayleigh and body S and P waves. The amplitudes
ω= �c�ω� run close to the straight dashed line from ω=βmax at
low frequencies to ω=βmin at high frequencies.

Figure 3. Ratio of frequency to phase velocities for the five
modes (1–5) of Rayleigh waves, and for S and P waves (6 and 7),
of a 7-layer velocity model.
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The Straight Line between the
Limits ω=βmax and ω=βmin

As for torsional motions, the empirical scaling equation
of rocking Fourier amplitudes, Φ�T�, can be derived from����Φ�ωn�

H�ωn�

����→ ωn

βmax
as ωn → 0;����Φ�ωn�

H�ωn�

����→ ωn

βmin
as ωn → ∞:

(25)

The limits are the same as in the torsional case, except
for the factor of 1

2
, which is absent here. Taking the lower

limit at ω0=2π � 0:025 Hz and the upper limit at ω1=2π �
50:0 Hz, the equation of the straight line in logarithmic scale
becomes

log
�jΦ�ω�j
jV�ω�j

�
∼ log

�
ω0

βmax

�
�

log�ω1βmax
ω0βmin

�
log�ω1

ω0
� log

�
ω
ω0

�

� ratio2�ω�; (26)

or in terms of period T � 2π=ω:

log
�jFSΦ�T�j
jFSV�T�j

�
∼ log

�
2π

T1βmax

�
�

log�T1βmax
T0βmin

�
log�T1

T0
� log

�
T1

T

�

� ratio2�T� (27)

for T0 � 2π=ω1 � 0:02 sec and T1 � 2π=ω0 � 40:00 sec.
Equation (27) then gives an approximate empirical scaling
equation for the rocking Fourier amplitude spectra in terms
of the vertical translational Fourier spectra, with simple
addition approximated by ratio2�T�. As for torsion, this
straight-line approximation of ω= �c�ω� does not require de-
tailed knowledge of the physical properties of layers at the
site, except for the minimum and maximum shear-wave ve-
locities, βmin and βmax.

To see how well the straight lines approximate the
rotation-to-translation Fourier spectral ratios, four layered
velocity models have been considered. They are all the same
except that the top layer is modified to have different shear-
wave velocities (Table 3). Model 1 has six layers, with the
top layer 0.18 km thick and with a shear-wave velocity of
0:98 km=sec. Models 2, 3, and 4 are derived from model

1 by carving the top 50 m (0.05 km) of the first layer to have
shear-wave velocities equal to 0.5, 0.30, and 0:10 km=sec,
leaving the remaining 0.13 km as the second layer.

Figure 4 shows the ratio of spectra of torsion to trans-
verse horizontal translations, equation (19), for models 1 and
2, while Figure 5 shows the ratio of rocking to vertical Fou-
rier spectral amplitudes, equation (25), for models 3 and 4.
The two sets of ratios for torsion and rocking differ only by a
factor of 1

2
. In each graph, the straight lines between ω=2βmax

and ω=2βmin for torsion and between ω=βmax and ω=βmin for
rocking are also plotted to illustrate how close the ratios are
to the straight lines.

Empirical Scaling of Torsional and Rocking Spectra
of Strong Motion

We illustrate the empirical scaling of rotational spectra
of strong motion in this article in terms of what we call the
third-generation scaling equations (Lee and Trifunac, 1995)
for spectral amplitudes of translational accelerations.

Empirical Scaling of Torsional Spectra

The empirical ratio of torsional to horizontal trans-
verse Fourier spectra of strong-motion acceleration, namely,
jΨ�ω�=H�ω�j � ω=2�c�ω�, or from equation (20) in the pre-
vious section, log jΨ�ωn�j � log jH�ωn�j � log�ωn=2�c�ωn�	,
is first written in terms of the period of the mo-
tions. Then, with ω � 2πf � 2π=T, FSΨ�T� � Ψ�ω� and
FSH�T� � H�ω�:

log jFSΨ�T�j � log jFSH�T�j � log�π=T �c�2π=T�	: (28)

Four different versions of the empirical scaling equa-
tions for FSH�T� are described in Lee and Trifunac (1995)
for the horizontal motion (v � 0). Here, we will use the same
notation as in that paper, where Att�Δ;M; T� is a magnitude-
frequency-dependent attenuation function that depends upon
the representative distance Δ from the source to the site for
an earthquake with magnitude M and for period T of strong
motion. s stands for geological site condition, s � 0 for sites
on sediments, s � 1 for intermediate sites, and s � 2 for
sites on basement rock; h represents the depth of sediments
beneath the recording site in kilometers; v stands for the
component direction, v � 0 for the horizontal direction,

Table 3
Properties of Top Soil Layer for Soil Models 1–4

Model Number Top Layer Depth (km) P-Wave Velocity (km=sec) S-Wave Velocity (km=sec) Density (g=cc)

1 0.18 1.70 0.98 1.28
2 0.05 1.00 0.50 1.20

0.13 1.70 0.98 1.28
3 0.05 0.60 0.30 1.20

0.13 1.70 0.98 1.28
4 0.05 0.21 0.10 1.20

0.13 1.70 0.98 1.28
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and v � 1 for the vertical motions; sL stands for the soil type
at the site, sL � 0 for the rock soil site, sL � 1 for the stiff
soil site, and sL � 2 for the deep soil site; it is represented by
the indicator variables S�i�L for i � 0, 1, and 2, � 1 when
sL � i and 0 otherwise; r represents the ratio �0 ≤ r ≤ 1�
of the distance traveled through geological basement rock
to the length traveled through sediments along the wave
path from the earthquake source to the site; R< represents
R< � min�R;Rmax�, where R is the epicentral distance, up
to Rmax in kilometers.

Only the scaling equations for models (i) and (ii) will be
used in illustrations here. Model (i) is the model in which the
geological site conditions are specified in terms of s � 0, 1,
or 2, while model (ii) uses the depth of sediments to describe
the effects of local geology:

Models �i� or �ii�∶ Mag � site or depth � soil

� % rock path multistep model �v � 0�;
log FSΨ�T� � M� Att�Δ;M; T� � b1�T�M

� b2�T�00s or h00 � b4�T� � b5�T�M2

�
X
i

b�i�6 �T�S�i�L � �b70�T�r� b71�T�

× �1 � r�	R< � log�π=T �c�2π=T�	: (29)

In the aforesaid models, the term b3�T�v is absent because of
the prediction of torsional spectra v � 0. A detailed descrip-
tion of all of the models, (i)–(iv), for Fourier spectral ampli-
tudes of horizontal and vertical translations, can be found in
the report by Lee and Trifunac (1995).

In the following examples of the estimated spectra of
rotational strong motion, the site is assumed to have the mini-
mum and maximum shear-wave velocities, βmin and βmax,
equal to 0:30 km=sec and 3:70 km=sec, respectively, unless
otherwise stated. Figure 6 illustrates four plots of estimated
Fourier amplitude spectra, FSΨ�T�, of torsion, using equa-
tion (29) and model (ii). The top two plots show exam-
ples of FSΨ�T�, the spectral amplitudes for torsion, and are
computed from the horizontal transverse components of
acceleration-time histories from earthquakes with M 3:5,
4.5, 5.5, 6.5, and 7.5, with focal depth H � 5 km, at the epi-
center (R � 0 km).

The left top plot is for the sites with stiff soil conditions
(sL � 1) and with geological site conditions corresponding
to basement rocks (solid lines, h � 0 km) and sediments
(dashed line, h � 2 km). The estimated torsional spectra
are practically indistinguishable between sites on sediments
(h � 2 km) and basement rocks (h � 0 km) at the low-
period end (T < 0:15 sec). Beyond about 0.15 sec, from
intermediate to long periods, the torsional spectra be-
come larger on sediments (h � 2 km) than on bedrock

Figure 4. Ratio of Fourier spectra of torsion and of horizontal
transverse translation for site models 1 and 2 in Table 3.

Figure 5. Ratio of Fourier spectra of rocking and of vertical
translation for site models 3 and 4 in Table 3.
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(h � 0 km). This is the same as the trends observed for the
most previous analyses of translational Fourier spectra (Lee
and Trifunac, 1995). The top right plot is for sites on sedi-
ments (h � 2 km) and with rock and deep soil site condi-
tions (solid and dashed lines for sL � 0 and 2). It can be
seen that the estimated torsional spectra are larger on deep
soil (sL � 2) sites than on rock soil sites (sL � 0) in the pe-
riod range from 0.04 to 8.0 sec, with the differences being
small at short periods (high frequencies). This is again the
consequence of the trends observed in our previous analyses
of translational spectra. The bottom left and right plots are
the estimated FSΨ�T� of torsion for sites with the same geo-
logical and soil types as the corresponding left and right plots
on top. Here, the graphs illustrate the effect of epicentral dis-
tance R on the changes in torsional spectral amplitudes from
earthquakes with M 6:5 and at focal depth H � 5 km. The
four sets of curves with decreasing amplitudes correspond to

epicentral distances of R � 0, 25, 50, and 100 km. The di-
agonal dashed lines with negative slope at the bottom of
each of the spectral plots are the estimates of the FSΨ�T� am-
plitudes of recording and processing noise, which are ob-
tained from the corresponding FSH�T� spectral amplitudes
of digitization and processing noise by addition of the term
log�ω=2�c�ω�	 as in equation (29). As for the translational
case, the amplitudes of all FSΨ�T� are only valid for those
periods in which the signal-to-noise ratio is not less than one.

Empirical Scaling Equations for Rocking

The empirical ratio of rocking to vertical translational
Fourier spectra, jΦ�ω�=V�ω�j � ω= �c�ω�, or log jΦ�ωn�j �
log jV�ωn�j � log�ωn= �c�ωn�	, can be written in terms of
the period with ω � 2πf � 2π=T. Then, denoting FSΦ�T� �
Φ�ω� and FSV�T� � V�ω� gives

log jFSΦ�T�j � log jFSV�T�j � log�2π=T �c�2π=T�	: (30)

In the scaling equations of FSV�T� for the vertical motion,
v � 1, so that the term b3�T�v becomes just b3�T�. With
all other scaling variables defined as before:

Models �i� or �ii�∶ Mag � site or depth � soil

� % rock path multistep model �for v � 1�;
log FSϕ�T� � M� Att�Δ;M; T� � b1�T�M

� b2�T�00s or h00 � b3�T� � b4�T�
� b5�T�M2 �

X
i

b�i�6 �T�S�i�L � �b70�T�r

� b71�T��1 � r�	R< � log�2π=T �c�2π=T�	:
(31)

Figure 7 illustrates four plots of estimated Fourier am-
plitude spectra, FSΦ�T�, of rocking, this time using equa-
tion (31) for model (i). The top two plots show examples
of FSΦ�T� for rocking computed from the vertical compo-
nents of acceleration-time histories from earthquakes with
M 3:5–7:5, for focal depth H � 5 km, and at the fault
(R � 0 km).

The top left plot is for the sites with stiff soil conditions
(sL � 1) and with geological site conditions corresponding
to sediments (solid lines, s � 0) and basement rocks (dashed
line, s � 2). The estimated rocking spectra are slightly
higher on basement rocks (s � 2) than on sediments (s � 0)
at the short period end for T < 0:15 sec. For long periods,
this trend is reversed, and the spectra become larger on sedi-
ments (s � 0) than on bedrock (s � 2). This is again the
consequence of the trends observed in our previous analyses
of translational Fourier spectra (Lee and Trifunac, 1995). The
top right plot is for the sites on sediments (s � 0) and on rock
soil (solid lines, sL � 0) or deep soil (dashed lines, sL � 2)
sites. The estimated spectra are higher on deep soil (sL � 2)

Figure 6. Estimated Fourier spectra of torsion for the Mag�
depth� soil�% rock path empirical scaling model.
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sites than on rock soil sites (sL � 0) in the entire period
range from 0.04 to 8.0 sec, with the differences being minor
at the short period end. The bottom left and right plots show
the estimated FSΦ�T� of rocking for sites with the same geo-
logical and soil types as the previously mentioned corre-
sponding left and right plots. Here, the graphs illustrate
the effect of epicentral distance R on the changes of rocking
spectral amplitudes, from earthquakes with M 6:5 and focal
depth H � 5 km. The four sets of curves with decreasing
amplitudes correspond to epicentral distances R � 0, 25,
50, and 100 km. The lower right plot shows that at all dis-
tances considered, the spectral amplitudes of rocking are
larger on deep soil (sL � 2) sites than on rock (sL � 0) soil
sites at all periods, although the difference is only slight at
short periods. The diagonal dashed lines with negative slope
at the bottom of each of the spectral plots represent the aver-
age FSΦ�T� spectral amplitudes of recording and proces-
sing noise.

Rotational Spectra at Pacoima Dam Site

Next, we consider the estimation of rotational spectra
from the translational components of the Fourier spectra of
recorded strong motion. We illustrate this for accelerograms
recorded at Pacoima Dam, in California, during the 9 Feb-
ruary 1971 San Fernando earthquake. The S74° W (horizon-
tal) component had a peak acceleration of 1055 cm=sec2 and
a peak displacement of 10.82 cm, while the vertical com-
ponent had a peak acceleration of 696 cm=sec2 and a peak
displacement of 19.3 cm. The Fourier spectra of these two
components are next used to estimate the corresponding tor-
sional and rocking components of motion. Figure 8 shows
the Fourier amplitudes of the horizontal component S74° W
in units of in=sec and of the corresponding torsional compo-
nent in units of mrad=sec (� 10�3 rad=sec). Figure 9 shows
the Fourier amplitudes of the vertical acceleration and the
corresponding rocking component. The minimum and maxi-
mum shear-wave velocities chosen for this illustration, βmin

and βmax, are 0:30 km=sec and 3:70 km=sec.
Figure 10 shows the torsional (left) and rocking (right)

time histories obtained from the inverse Fourier transform of
the corresponding rotational spectra. The peak rotations of
0.3 mrad for torsion and 0.6 mrad for rocking are obtained
from the calculations. It is seen that one can use this proce-
dure to generate approximate torsional and rocking motions
for every recorded translational accelerogram for which site
data on βmin and βmax are available.

Discussion and Conclusions

Our estimates of peak ground rotations are based on
idealized linear representation of wave motion in the homo-
geneous, isotropic, and horizontally layered medium and on
the assumption that the representative phase velocities at the
site can be approximated by a simple straight line between
minimum and maximum velocities at the site when the data
on βmin and βmax are available. For large amplitudes of strong
motion, surface soil, sediments, and weathered rock will
undergo nonlinear deformations, which will further increase
the amplitudes and the complexity of the observed ground
deformations and rotations. This can be illustrated in the
accelerograph site at the Pacoima Dam, California. During
the 1971 San Fernando earthquake (ML 6:6), a peak ground
velocity of 115 cm=sec in the N16ºW direction was recorded
by an AR-240 accelerograph that was located on a rocky
spine adjacent to the southern Dam abutment. Cracking of
the gneissic granite-diorite and a small rock slide were ob-
served adjacent to the instrument housing after the earth-
quake (fig. 5 in Trifunac and Hudson [1971]). After the
earthquake, the instrument base was permanently tilted to the
northwest through an angle of about 0.5º. This accelerograph
site was shaken again during the 1994 Northridge earthquake
(ML 6:4,Mw 6:7) and experienced a further permanent tilt of
about 3.5° in the northeast direction (Graizer, 2006).

Figure 7. Estimated Fourier spectra of rocking for the Mag�
site� soil�% rock path empirical scaling model.
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The permanent tilts from the aforementioned examples
illustrate how large the rotations associated with the non-
linear response of near-surface deposits can be. These obser-
vations cannot be extended to predictions for other sites, as
nonlinear response depends on numerous site-specific and
excitation-specific factors. Nevertheless, this emphasizes the
need to cautiously treat the inferences that are made only on
the basis of numerical simulations and linear theory. For
example, in their study of the simulations of the San Fer-
nando earthquake, Bouchon and Aki (1982) found the maxi-
mum tilt a few kilometers from the fault to be only about
0.0007 rad and concluded that its contribution to earthquake
damage is small compared to the contribution from strong-
motion translations. In this article, our approximate linear
analysis of the Pacoima Dam accelerogram suggests a maxi-
mum transient rocking of about 0.0006 rad. A comparison
with the observed tilts at the Pacoima Dam accelerograph
site suggests that the linear simulations of rotational strong-
motion amplitudes, as in Bouchon and Aki’s paper and this
article, can underestimate the total strong-motion rotations
by orders of magnitude whenever nonlinear site response
can occur.

While studying large rotational velocities recorded a few
kilometers away from an earthquake swarm in 1997, offshore
from the Izu Peninsula in Japan, Takeo (1998, 2006) ob-
served that those were several times larger than the rotational
velocities in the numerical simulations by Bouchon and
Aki (1982). However, the earthquakes that he recorded were
at larger epicentral distances and had two orders of magni-
tude smaller seismic moments than the corresponding earth-
quakes in the simulation used by Bouchon and Aki (1982).
Takeo (2006) proposed that “...one possible answer is that
the large rotational velocities are caused by heterogeneity
of slip velocity on the fault...,” which is typically excluded
in most numerical simulations. Takeo and Ito (1997) derived
a general expression for rotational velocities of seismic
waves in terms of additional torsional and curvature tensors
at the earthquake source, which could explain the observa-
tions; however, this required going beyond the usual formu-
lation of the linear theory, which is used in common forward
simulations. Beyond the results of linear theory, in the near
field, the nonlinear response of soil, and ultimately soil fail-
ure and liquefaction, can lead to large transient and perma-
nent rotations, as the aforesaid example illustrates.

Figure 8. Fourier amplitudes of the horizontal S74°Wand of the
corresponding estimated torsional accelerations at Pacoima Dam
during the 1971 San Fernando earthquake.

Figure 9. Fourier amplitudes of the vertical and the correspond-
ing estimated rocking accelerations at Pacoima Dam during the
1971 San Fernando earthquake.
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Although we used the empirical scaling equations of
translational Fourier amplitude spectra at R � 0 km in the
previous examples, this does not mean that our spectra de-
scribe the complete motion on the fault. All of our empiri-
cal scaling equations are based on the band-pass-filtered
recorded strong-motion data, typically recorded at distances
from several tens of kilometers to about 100 km from
the earthquake source. Consequently, the available strong-
motion data, which served as a basis for the development
of all existing empirical scaling equations, essentially do
not contain near-field terms, which are associated with per-
manent fault offset and with large fault normal pulses (Tri-
funac, 2009b). Therefore, our results in this article only
illustrate the common rotational strong-motion amplitudes
beyond the distances of several tens of kilometers from
the fault and do not include large rotations and large peak
velocities associated with the fault slip in strong motion close
to the fault.

Data and Resources

No data were used in this article. Parts of some of the
plots used in this article came from published sources listed
in the references.
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