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Abstract It is shown that the pseudorelative spectral velocity (PSV) of an equiva-
lent oscillator, which can be represented by a single degree-of-freedom system for
excitation by synchronous horizontal excitation, can be extended to describe the
PSV spectra of the same oscillator when excited by simultaneous action of horizontal,
vertical, and rocking components of strong ground motion. At short periods, the new
spectra are governed by differential ground motion and peak ground velocity, and they
depend on the transit time of the waves along the length of the structure and on the
oscillator frequency. At long periods, PSV spectral amplitudes tend toward an asymp-
tote with amplitude proportional to the maximum rocking angle of ground motion.

Introduction

Since its introduction in the early 1930s (Trifunac,
2007), the response spectrum method (RSM) has become
the principal vehicle for research and design work in earth-
quake engineering. The response spectra are used (1) to de-
scribe the amplitudes and frequency content of strong ground
motion, (2) to serve as the starting point for the development
of design codes (Freeman, 2007) and as scaling functions
for frequency-dependent seismic zoning (Gupta, 2007), and
(3) for selection of advanced design criteria of important
structures. The first response spectra were defined for excita-
tion by horizontal or vertical ground motions only, with other
contributions to the relative response, which result from
rocking and torsional components of strong ground mo-
tion (Gupta and Trifunac, 1989) having been considered only
recently.

Analyses of two-dimensional models of long build-
ings show that when a=λ < 10�4, where a is the wave
amplitude of ground motion and λ is the corresponding
wavelength, the wave-propagation effects on the response
of simple structures can be neglected (Todorovska and Tri-
funac, 1990). For shorter waves—but those still longer than
the characteristic dimensions of the structure—the common
response spectrum method for synchronous ground mo-
tion can be extended to make it applicable for earthquake
response analyses of extended structures experiencing dif-
ferential in-plane and out-of-plane ground motion (Zem-
baty, 2007).

When engineering design is formulated via pushover
analyses, the design is governed by target displacements de-
termined from the inelastic response spectra of the corre-
sponding single-degree-of-freedom (SDOF) system (Applied
Technology Council [ATC], 1996; Federal Emergency Man-
agement Agency [FEMA], 1997, 2000; Aydinoglu, 2007).
For estimation of the maximum nonlinear response of an

SDOF system, um, in terms of the maximum linear response,
u0 (Fig. 1a), it is necessary to specify a relation between um
and u0. By defining the yield-strength-reduction factor as
Ry � u0=uy, where uy is the yielding displacement of the
SDOF system-equivalent spring, and defining ductility as
μ � um=uy, for the same ground motion the ratio um=u0
is then equal to μ=Ry. Veletsos and Newmark (1960) showed
that (1) for a long-period SDOF system, when its natural pe-
riod Tn becomes very long, um=u0 tends to 1 and Ry ap-
proaches μ (equal deformation rule); (2) for the response
amplitudes governed mainly by the peak excitation veloci-
ties, um=u0 can be approximated by μ=

��������������
2μ � 1

p
and Ry

by
��������������
2μ � 1

p
(equal strain energy rule); and (3) for a high-

frequency (stiff) system when Tn ∼ 0, Ry ∼ 1. Departures
from these rules have been described by Riddell and New-
mark (1979) and were reviewed more recently by Jalali and
Trifunac (2007, 2008). With reference to the more recent de-
velopments, we note that inelastic spectrum for constant tar-
get ductility is associated with the traditional strength-based
design. The emerging deformation-based design via push-
over analysis is associated with the inelastic displace-
ment spectrum for specified yield-strength-reduction factor,
which is obtained from the pushover analysis (Priestley
et al., 2007).

The first step in the engineering design of earthquake-
resistant structures that use the RSM is the selection of the
response spectrum shape and its amplitudes. In the begin-
ning, this was accomplished by fitting, by hand, an envelope
to a small number of the response spectra computed from
several recorded accelerograms (Biot, 1934, 1941). Since
the mid-1970s, following the systematic processing and ar-
chiving of recorded strong-motion accelerograms (Hudson,
1976), it became possible to develop empirical scaling equa-
tions, which directly give spectral amplitudes in terms of the
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relevant scaling parameters (Lee, 2002, 2007; Douglas,
2003) or in terms of the given Fourier amplitude spectra
(Udwadia and Trifunac, 1974). Because the recorded strong-
motion data are relatively abundant only for fault-to-site dis-
tances in the range from several tens of kilometers to about
100 km, the empirical equations for scaling the spectral am-
plitudes are reliable and work well for the same distance

range. Severe damage to structures, however, usually occurs
in the near field of shallow earthquakes at distances that are
less than 20–30 km. The strong ground motion near faults
also includes near-field terms (Haskell, 1969) and strong-
motion pulses, with large peak velocities and strong and
sudden rotations (Trifunac, 2009) that change not only the
spectral amplitudes but also their shape.

The purpose of this article is to describe how the spectral
amplitudes for a simple representation of near-fault (at or
close to the fault surface) motions differ from the familiar
spectral shapes of motions at some distance (several tens
of kilometers) from faults; we also describe how they depend
on the differential motion of individual foundations and on
large peak velocities and large rocking of ground motion for
a simple structure subjected to these motions. Analyses of the
consequences of other more complex aspects of near-fault
motions, such as those caused by nonuniform soil properties,
nonlinear transient and permanent soil deformations, soil-
structure interaction, and lateral spreading, for example,
are beyond the scope of this article.

Together with several previous studies of the effects of
differential strong motion on the response of simple struc-
tures (Trifunac and Todorovska, 1997; Trifunac and Gičev,
2006) and of how the strength-reduction factors are affected
by the proximity to the earthquake fault (Jalali and Trifunac,
2007, 2008; Jalali et al., 2007), this article also aims to show
how the classical response spectrum method can be extended
to apply for physical conditions that are well beyond its orig-
inal formulation. The role of simultaneous action of all six
components of ground motion (three translations and three
rotations; Trifunac and Todorovska, 2001) is still rarely con-
sidered in engineering design (Trifunac, 2006), even though
it has been 75 years since the response spectrum method was
formulated and about 40 years since it became the principal
tool in engineering design (Trifunac, 2003). Because the re-
sponse spectrum method has become an essential part of en-
gineering design, we hope that the present work will help in
providing further understanding and extension of its limits of
applicability.

The Model

The nature of relative motion of individual column foun-
dations or of the entire foundation-structure system will de-
pend upon the type of foundation, the soil surrounding the
foundation, the type of incident waves, and the direction of
wave arrival so that at the base of each column the motion
has six degrees of freedom. In this article, we consider only
the in-plane horizontal, vertical, and rocking components of
motion of column foundations and perform analysis for a
simple model of a structure supported by just two isolated
foundations. We assume that the structure is near the fault
and that the longitudinal axis of the structure (x axis) coin-
cides with the radial direction of the propagation of waves
from the earthquake source so that the displacements at the
base of the columns are different as a result of the wave pas-

Figure 1. (a) Force-displacement (F; u) and moment-rotation
(Φ;ϕ) relationships for bilinear spring. (b) Relative responses of the
system excited by differential ground motions ug1 , vg1 , θg1 , ug2 , vg2 ,
θg2 at the base of its two columns 1 and 2. (c) The system deformed
by the wave, propagating from left to right, with phase velocity Cx,
for the case of �vgi (up motion).
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sage. We suppose that the excitations at the piers have the
same amplitude but different phases. The phase difference
(or time delay) will depend only upon the distance between
the piers and the horizontal phase velocity of the inci-
dent waves.

The model we employ in this article is described in Fig-
ure 1b,c. It represents a one-story structure consisting of a
rigid mass, m, with length L, supported by two rigid mass-
less columns with height h, which are connected at the top
to the mass and at the bottom to the ground by rotational
springs (Fig. 1b). The stiffness of the springs, kϕ, can in gen-
eral be nonlinear (Jalali and Trifunac, 2007, 2008), as sug-
gested in Figure 1a; however, in this article, we will consider
the linear kϕ only. The massless columns are connected to the
ground and to the rigid mass by rotational dashpots, cϕ, pro-
viding a fraction of critical damping equal to 5%. Rotation of
the columns, ϕi, i � 1, 2, which is not assumed to be small,
allows us to consider the geometric nonlinearity. The mass is
acted upon by the acceleration of gravity, g, and is excited by
differential horizontal, vertical, and rocking ground motions,
ugi , vgi , and θgi , i � 1, 2 (Fig. 1c) at two bases, so that

ug2�t� � ug1�t � 2τ� ; vg2�t� � vg1�t � 2τ�;
θg2�t� � θg1�t � 2τ�; τ � L=�2Cx�;

(1)

where 2τ is the time delay between motions at the two piers
and Cx is the horizontal phase velocity of incident waves.
The functional forms of ugi , vgi , and θgi are defined by near-
source ground motions dF and dN , which are described in the
next section. The governing differential equation for the sys-
tem in Figure 1b,c is then (Jalali and Trifunac 2007)

�
A� �B cosϕ1 � C sinϕ1�

�B cosϕ2 � C sinϕ2�
D

�
�ϕ1�t�

�
�
F � E

�B cosϕ2 � C sinϕ2�
D

�
� 0;

�L� ug2 � h sinϕ2 � ug1 � h sinϕ1�2

� �vg2 � h�1 � cosϕ2� � vg1 � h�1 � cosϕ1��2 � L2 � 0;

(2)

where

θG � sin�1
�
vg1 � vg2 � h�1 � cosϕ1� � h�1 � cosϕ2�

L

�
;

_θG � _vg1 � _vg2 � h sinϕ1
_ϕ1 � h sinϕ2

_ϕ2

L cos θG
; (3a)

A � � 1

2
�

�
� 1

4
sinϕ1 cos�ϕ1 � θG� �

sinϕ1 cosϕ1

12 cos θG

�

×
�

sin�ϕ2 � ϕ1�
cos θG cosϕ1 cosϕ2 � 1

2
sin θG sin�ϕ1 � ϕ2�

�
;

(3b)

B � L� ug2 � ug1
h

� sinϕ2 � sinϕ1;

C � vg2 � vg1
h

� cosϕ2 � cosϕ1;

(3c)

D � � 1

2
cos�ϕ2 � ϕ1�

�
�
� 1

4
sinϕ2 cos�ϕ1 � θG� �

sinϕ2 cosϕ1

12 cos θG

�

×
�

sin�ϕ2 � ϕ1�
cos θG cosϕ1 cosϕ2 � 1

2
sin θG sin�ϕ1 � ϕ2�

�
;

(3d)

E �
�
_ug2 � _ug1

h
� cosϕ1

_ϕ1 � cosϕ2
_ϕ2

�
2

�
�
_vg2 � _vg1

h
� sinϕ1

_ϕ1 � sinϕ2
_ϕ2

�
2

� B

�
�ug2 � �ug1

h
� sinϕ1

_ϕ2
1 � sinϕ2

_ϕ2
2

�

� C

�
�vg2 � �vg1

h
� cosϕ1

_ϕ2
1 � cosϕ2

_ϕ2
2

�
; (3e)

F � � 1

2
cosϕ1

�
�ug2 � �ug1

h
� sinϕ1

_ϕ2
1 � sinϕ2

_ϕ2
2

�

�
�
g

h
� 1

2

�
�vg2 � �vg1

h
� cosϕ1

_ϕ2
1 � cosϕ2

_ϕ2
2

���
sinϕ1

� 1

2

cos�ϕ1 � θG� sin�ϕ2 � ϕ1�
cos θG cosϕ1 cosϕ2 � 1

2
sin θG sin�ϕ1 � ϕ2�

�

� 1

12

L cosϕ1

h cos θG

�
h

L

�
�vg1 � �vg2

h
� cosϕ1

_ϕ2
1 � cosϕ2

_ϕ2
2

�

� sin θG _θ
2
G

�

×
�

sin�ϕ2 � ϕ1�
cos θG cosϕ1 cosϕ2 � 1

2
sin θG sin�ϕ1 � ϕ2�

�

�
�
�M1 �M2� cosϕ1 �

L

2h
sin θG

�
�M2 �M0

2�
cosϕ1

cosϕ2

� �M1 �M0
1�
��

×
�
h

L

sin�ϕ2 � ϕ1�
cos θG cosϕ1 cosϕ2 � 1

2
sin θG sin�ϕ1 � ϕ2�

�

� �M2 �M0
2�
cosϕ1

cosϕ2

�M1 �M0
1; (3f)
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M1 �
ω2
n

4
Φ�ϕ1 � θG� �

1

2
ςωn� _ϕ1 � _θG�;

M2 �
ω2
n

4
Φ�ϕ2 � θG� �

1

2
ςωn� _ϕ2 � _θG�;

M0
1 �

ω2
n

4
Φ�ϕ1 � θg1� �

1

2
ςωn� _ϕ1 � _θg1�;

M0
2 �

ω2
n

4
Φ�ϕ2 � θg2� �

1

2
ςωn� _ϕ2 � _θg2�:

(3g)

In equation (3), when τ � 0, ωn and ς become the circular
natural frequency and damping ratio of the equivalent SDOF
system; Φ�ϕ� is, in general, a nonlinear function of the type
described in Figure 1a. For τ ≠ 0, the rigid mass with length
L behaves as a three-degrees-of-freedom (3DOF) system ex-
periencing horizontal and vertical translations of G and rota-
tion θG (see Fig. 1b,c). Through relative rotations between
the mass and the two columns, which give rise to different
axial forces and moments in two columns, the two inertial
forces from two translations, and the inertial moment asso-
ciated with �θG, the rigid mass behaves like a 3DOF system.
Because of the assumed continuity of soil between the two
foundations, along with a priori specified motion at the two
supports (we are assuming that there is no soil-foundation-
column interaction at two foundations), geometrical con-
straints enable a description of this dynamic problem in
terms of only one function of time [ϕ1�t� or ϕ2�t�].

Near-Source Ground Motion

We cannot predict the details of the near-fault (close to
and on the fault surface) ground motion due to unknown and
irregular distribution of fault slip and geologic rigidities sur-
rounding the fault, nonuniform distribution of stress and of
stress drop on the fault, and complex nonlinear processes that
accompany the faulting (e.g., Takeo and Ito, 1997). In the
current article, we adopt a simplified approach and illustrate
these motions by working with their substitutes that have
carefully chosen amplitudes and durations and that have
been compared with and calibrated against the observed fault
slip and the recorded strong motions in terms of their peak
amplitudes in time and their spectral contents (Trifunac,
1993a, 2009).

Figure 2 schematically shows a plan view of the vertical
strike-slip fault and two motions, dN and dF, which illustrate
fault-parallel displacement and a fault-normal pulse. We rep-
resent the fault-normal pulse with (Fig. 2, center)

dF�t� � AFte
�αFt; (4)

where the typical values of AF and αF for different earth-
quake magnitudes are shown in Table 1 (Trifunac, 2009).
Because the recorded strong-motion data are abundant only
up to aboutM 6:5, the values of αF and AF, forM 7 and 8, in
Tables 1 and 2, are enclosed by parentheses to emphasize that

these are based on extrapolation. We represent the near-fault-
parallel displacement with (Fig. 2, bottom)

dN�t� �
AN

2
�1 � e�t=τN �: (5)

The values of AN and τN are given in Table 2.
The amplitudes analogous to dF and dN have been stud-

ied in many regression analyses of recorded peak displace-
ments at various distances from the fault and in terms of the
observed surface expressions of fault slip. In seismological
papers, the dN amplitudes are traditionally presented in terms

Figure 2. Fault-parallel, dN�t�, and fault-normal (pulse), dF�t�,
displacements adopted to represent near-fault motions in this study.

Table 1
Characteristics of Fault-Normal Pulse Displacement

M αF (1=sec) AF (cm=sec) dF;max (cm) _dF;max (cm=sec)

4 14.04 56.48 1.5 56.5
5 7.90 151.61 7.1 152.
6 4.44 546.97 45.3 547.
7 (2.50) (860.34) (127.) (860.)
8 (1.40) (1560.29) (410.) (1560.)
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of average dislocation amplitudes, �u, which are related to dN ,
as �u � 2dN (Fig. 2, top). Average dislocation is the value of
dislocation amplitudes averaged over the fault surface and
is the quantity used in spectral interpretations of near-field
(extending to about one source dimension from the fault)
motions and of the body-wave amplitudes in the far field (be-
yond about ten source dimensions).

An important property of the dF and dN for this article
lies in their initial velocity, _dF ∼ σβ=μ, where σ is the effec-
tive stress (∼stress drop) on the fault surface, β is the velocity
of shear waves in the fault zone, and μ is the rigidity of rocks
surrounding the fault. For _dN it can be shown that _dN �
0:5C0σβ=μ at t � 0, where typical values of C0 are 0.6,
0.65, 1.00, 1.52, and 1.52 forM 4, 5, 6, 7, and 8, respectively
(Trifunac, 1998, 2009).

Amplitudes of the pseudorelative spectral velocity (PSV)
of the linear response of SDOF systems can be viewed and
scaled in three period ranges, where the PSV amplitudes are
dominated by (1) peak ground acceleration, (2) peak ground
velocity, and (3) peak ground displacement (Veletsos et al.,
1965). The boundaries between these three period ranges de-
pend on the size of the earthquake, the epicentral distance
(via frequency-dependent attenuation), and local site condi-
tions. The velocity period range, for example, is centered
near the peak spectral amplitudes and moves from near 1 Hz
for M ∼ 8 to 6 Hz for M ∼ 4 (Trifunac, 1993b, 1994). When
the fault motions dF and dN begin with a sudden jump in
ground velocity (caused by a sudden stress drop on the fault
surface), this large initial velocity will dominate the spec-
tral amplitudes; for the short periods of the oscillator, the
acceleration-dominated zone of PSV amplitudes will disap-
pear. This will result in essentially constant PSV amplitudes
in the short-period range (wide gray lines in Fig. 3a,b).

An example of the ground-displacement pulse perpen-
dicular to the fault—which was recorded at station 2 of the
five-station array at Sholame during the Parkfield, Califor-
nia, earthquake of 1966 (Housner and Trifunac, 1967) about
3 km above and about 10 km southeast from the principal
fault slip (Trifunac and Udwadia, 1974)—is a near-field
(not near-fault) pulselike ground motion that may have left

Table 2
Characteristics of Fault-Parallel Displacement

M τN (sec) AN (cm) dN;max (cm) _dN;max (cm=sec)

4 0.55 4.9 2.5 4.5
5 1.2 29.2 14.6 12.2
6 1.8 245.5 123. 68.2
7 (3.0) (1288.0) (644.) (215.)
8 (5.0) (4169.0) (2084.) (417.)

Figure 3. Comparison of PSV spectra for (a) dF, fault-normal pulse (wide gray lines) and for (b) dN , fault-parallel displacement (wide
gray lines), with average PSV spectra at fault, based upon regression analysis of recorded strong ground motion (Trifunac, 1978), for sites on
sediments (s � 0) and on basement rock (s � 2).
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the fault surface as dF but was subsequently attenuated and
filtered along its 11 km path between the southeastern end of
the fault slip and the recording station. The ground displace-
ment recorded at the Pacoima Dam, several kilometers above
the fault, during the San Fernando, California, earthquake of
1971 (Trifunac, 1974) can serve as an illustration of a fault-
parallel motion, dN , recorded above a thrust fault (but not on
the fault). These two examples lend support to our choice of
the simple fault displacement functions dF and dN . The func-
tions dF and dN model the displacement time histories in the
fault-normal and fault-parallel directions. For vertical strike-
slip faults, dF and dN will also represent strike-normal and
strike-parallel motions along the surface expression of the
fault. For dip-slip faults, a linear combination of dF and
dN will contribute only to the vertical and strike-normal
displacements on the ground surface. For a general fault
orientation, both dF and dN will contribute to the surface
displacements, as determined by their projections onto hori-
zontal and vertical motions on the ground surface (Mavroei-
dis and Papageorgiou, 2003). In the following, we will refer
to dF and dN in the context of vertical strike-slip faults only.

For simplicity, in this article we assume that the vertical
ground motion vgi�t� � �ugi�t� and the functional form of
ugi�t� is defined by equations (4) and (5) for the fault-normal
pulse and fault-parallel displacement, respectively. In the fol-
lowing, we will refer to the results for�vgi as up and to those
for �vgi as down. The rocking component of the ground mo-
tion will be approximated by (Trifunac, 1982; Lee and Tri-
funac, 1987)

θgi�t� �
�
� 1

Cx

�
_vgi�t�; (6)

where _vgi�t� is the vertical velocity of the ground motion. Of
course, in modeling with more detail, the ratio of vgi to ugi
amplitudes will depend upon the incident angle and the char-
acter of incident waves, while the associated rocking θgi will
be described by a superposition of rocking angles associated
with incident body and dispersed surface waves (Trifunac,
1971; Wong and Trifunac, 1979).

To emphasize how different the PSV spectral amplitudes
and shapes are for dF and dN excitations, we superimpose the
average PSV spectra estimated by regression analysis of PSV
spectral amplitudes computed from recorded accelerograms
in the western United States in Figure 3a,b. Those are for
motions on sediments (s � 0) or on geological basement
rock (s � 2) for a fraction of critical damping ς � 0:05 at
epicentral distance R � 0 km and for magnitudes M 4:5,
5.5, 6.5, 7.5, and 8.5 (Trifunac, 1978).

PSV Spectra for Near-Fault Strong Ground Motions

In the following, we describe the PSVof linear response
to ground motions dF and dN . To avoid clutter, we present
the spectral curves for M 4, 6, and 8 only for 5% critical
damping and for periods 0.05–20 sec. To show the relative

significance of two translations and one rotation (rocking),
we compare spectra for (1) horizontal motion only (ug),
(2) simultaneous action of horizontal and vertical motions
(ug and vg), and (3) simultaneous action of horizontal and
vertical translations and of rocking (ug, vg, and θg). We il-
lustrate the spectral amplitudes of in-plane response only.
Analysis of the response spectra for coupled in- and out-of-
plane excitation and response, along with analysis for non-
linear (material) response, is beyond the scope of this article.

For the model shown in Figure 1b,c, we define the PSV
spectrum amplitudes at the top and at the bottom corners of
the model as follows:

at i th top corner∶ PSVi � ωnSDi � ωnh sin�ϕi � θG�
(7a)

and at i th bottom corner∶
PSVi � ωnSDi � ωnh sin�ϕi � θgi�;

(7b)

where ϕi is the rotation of the ith column, computed from the
solution of differential equations of the system response
(equations 2 and 3). θgi is the ground rocking at the base
of the ith column, and θG is the rotation of the beam

θG � sin�1f�vg1 � vg2 � h�1 � cosϕ1�
� h�1 � cosϕ2��=Lg: (8)

It can be seen that the rotation of the beam, θG, directly
depends upon the differential vertical ground motion �vg1 �
vg2� and on the length of the model L. The PSV spectrum
amplitudes at the top and bottom corners depend upon θG
and θgi , respectively.

The spectral amplitudes in Figure 4a,b were calculated
for the fault-normal pulse dF and for fault-parallel displace-
ment dN , respectively, with their amplitudes as shown in
Tables 1 and 2. In all calculations, we employed nonlinear
geometric characteristics of the system, as shown in equa-
tions (3) and (4); however, we assumed that the helical
springs at the four corners, kϕ, remain linear. We chose
the parameters of the system shown in Figure 1b,c so that
it represents an equivalent single-degree-of-freedom oscilla-
tor representing the fundamental mode of an N-degree-of-
freedom building with N stories. Specifically, we selected
the equivalent period of the oscillator to be T � 0:1 × N
(seconds) and h � 3:5 × N × 0:64 (meters), where 3.5 is
the height of an average story in meters and the factor
0.64 is the equivalent height factor for the sinusoidal mode
shape (Trifunac and Todorovska, 1997). All of the calcula-
tions were carried out for a structure with L � 20 m.

In Figure 4a,b, we illustrate all spectra for vertical
ground motion up (Fig. 1c). The spectra for vertical ground
motion down show some differences, but for all periods they
fluctuate about the shown spectra for up motions with only
minor differences. For brevity’s sake, we show only the spec-
tra for vertical motions up.
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PSV Spectra at Long Periods

For soft kϕ (long natural periods T), the rotation of
the two columns (ϕ1 and ϕ2) becomes nearly the same for
all three excitations considered in this article: (1) ug,
(2) ug � vg, and (3) ug � vg � θg ; it is very small, thus
the effects of the vertical and rocking components of the
ground motion on the response (ϕ1 and ϕ2) also become
relatively small. For excitation by horizontal differential

ground motion (ug), the rocking of the beam is small rela-
tive to ϕ1 and ϕ2, so the relative rotation of the columns
at the top and bottom becomes almost the same (top rows
in Fig. 4a,b). For excitation by simultaneous horizontal and
vertical ground motion ug � vg, because of the axial rigidity
of the two columns and the differential vertical ground mo-
tion at the two piers �vg1 � vg2�, the rotation of the beam (θG)
becomes large relative to ϕ1 and ϕ2 (center rows in Fig. 4a,b),

Figure 4. Matrix-type comparison for PSV spectra, for excitation by (a) dF pulse and by (b) dN , fault-parallel motion, for three wave
transit times, from left to right foundation, equal to 2τ � 0:01, 0.05, and 0.10 (in three columns of the matrix, left to right), for three
magnitudes M 4, 6, and 8, and for three excitations (1) by horizontal ground motion only (ug), (2) by horizontal and vertical translations
(ug and vg), and (3) with two translations (ug and vg) and one in-plane rocking (θg). Spectral amplitudes at the top corners of the model (where
the columns meet the rigid mass) are shown with solid lines; the spectra at the bottom corners (where the columns are connected to the
ground) are shown with dashed lines. (Continued)
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so that the relative rotation of the columns at the top becomes
larger than at the bottom. That is, at the bottom the relative
rotation of columns does not change relative to the case (1)
with ug, corresponding to the horizontal excitation only (top
rows in Fig. 4a,b). For simultaneous excitation by horizontal,
vertical, and rocking ground motion, (3) ug � vg � θg , the
rocking of the beam, θG, and the rotation of the two columns,
ϕ1 and ϕ2, do not change significantly relative to cases (1)
and (2); however, because of the ground rocking (θgi ), the
relative rotation of both columns at the bottom changes (bot-
tom row in Fig. 4a,b). The aforementioned trends are es-

sentially the same for both upward and downward excita-
tion by vg.

The results show that for nearly synchronous ground
motion (small τ ), the effect of the vertical and rocking com-
ponents on the linear response of a long-period system is
small (for zero time delay, the phase velocity is infinite;
therefore, the rocking component of the ground motion at the
two piers is equal to zero). The differential vertical ground
motion mostly affects the relative rotation at the top corners;
the rocking component of the ground motion mostly affects
the relative rotation of columns at the bottom corners. These

Figure 4. Continued.
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trends are a direct consequence of the assumptions made in
our model, wherein we assume that the beam and the col-
umns are rigid and that the columns have separate and inde-
pendent foundations. Consequently, the differential vertical
ground motion at the two foundations is transferred directly
to the top; for a long-period system, this results in the rota-
tion of the top beam.

The consequences of the described trends are that for
long periods, the PSVamplitudes as defined by equations (7a)
and (7b) tend toward constant asymptotes

PSVT→∞ � ωnh sin θg;max (9)

at the base of the columns and toward

PSVT→∞ � ωnh sin θG;max (10)

at the top of the columns. In equation (9), θg;max is the peak of
the rocking angle of ground motion; in equation (10), when
T → ∞, θG → �vg1 � vg2�=L. Selected examples based di-
rectly on these asymptotic values are shown in Figure 4a,b by
open circles at T ∼ 20 sec for θg;max at the bottom of columns
and at T � 5 sec for θG;max at the top of the columns. The
asymptotic values in equation (9) are essentially reached for
T ∼ 20 sec and θg;max in all examples shown in Figure 4a,b,
except for τ � 0:005 and 0.025 in Figure 4b. The asymptotic
amplitudes based on equation (10) are shown in Figure 4a at
T � 5 sec only for M 4 and τ � 0:050 and in Figure 4a for
allM except forM 6 and 8 and τ � 0:005 because the spec-
tra reach those asymptotes beyond T ∼ 20 sec. It is seen that
these asymptotic amplitudes are in excellent agreement with
the calculated PSV amplitudes using equations (2) and (3).

PSV Spectra at Short Periods

It has been shown (Trifunac and Todorovska, 1997) that
the relative displacement spectra at short periods (stiff struc-
tures) for in-plane differential horizontal ground motion (pre-
dominantly P, SV, and Rayleigh waves propagating along
the longitudinal axis of the structure) become constant and
equal to _ug;maxτ , where _ug;max is the peak velocity of in-plane
horizontal ground motion and τ is the travel time of the
strong-motion waves from the extreme column to the center
of the plane of the building [τ � L=�2Cx�]. For out-of-plane
excitation (predominantly SH and Love waves propagating
along the longitudinal axis of a structure) and the resulting
out-of-plane response (assuming that there is no coupling
with in-plane excitation and in-plane response), it was shown
that the relative displacement spectral amplitudes become
∼2 _ug;maxτ , where _ug;max is the peak velocity of out-of-plane
horizontal ground motion (Trifunac and Gičev, 2006). To cal-
culate the PSV spectral amplitudes, we multiply the afore-
mentioned values by ωn.

The aforesaid estimates of the effects of differential
ground motion on the high-frequency relative displacement
spectrum amplitudes are based on the Taylor series approxi-
mation of ground strains and work well for excitation by long

waves. When this assumption does not hold—that is, for ex-
citation by short waves—the point derivative _ug;max becomes
an upper bound estimate and should be replaced by

_�ug;max � �ug2�t� L=Cx� � ug1�t��=�L=Cx�; (11)

where _�ug;max is the largest value of _�ug during excitation. Con-
sequently, at short periods, the PSV amplitudes for the fault-
normal pulse dF and for fault-parallel displacement dN will
be dominated by

PSVT→∞ � ωn
_�ug;maxτ (12)

for in-plane excitation, and by

PSVT→∞ � ωn2_�ug;maxτ (13)

for out-of-plane excitation.
For our example, with displacements dF and dN

(see equations 4 and 5), the reduction factors are
equal to _�ug;max= _ug;max � exp��αF2τ� and _�ug;max= _ug;max �
�τN=2τ��1 � exp��2τ=τN��, respectively. For M 8, these
reduction factors are 0.86 and 0.99, for the time delay
2τ � L=Cx � 0:1. For M 4, the corresponding reduction
factors are 0.25 and 0.91, respectively. The example illus-
trated in Figure 5 shows how well the asymptotes in equa-
tion (12) describe the PSV amplitudes for excitation by ug
only and for τ � 0:025 and 0.050 as T → 0. For irregular
and more complex ground motion, relative to our examples
of dF and dN , it is more conservative to work with the upper
bounds based on _ug;max—that is, to use

PSVT→∞ � ωn _ug;maxτ (14)

for in-plane excitation and

PSVT→∞ � ωn2 _ug;maxτ (15)

for out-of-plane excitation.
In this article, at short periods the relative displace-

ment of the system tends toward zero, while the relative ve-
locity is not zero but rather equal to the initial velocity of the
ground, _ug�t � 0�. Thus, there are two velocities contribut-
ing to the spectral amplitudes at short periods: initial veloc-
ity for synchronous motion, _ug�t � 0�, and the velocity for
differential motion of the system, ωn _ug;maxτ . The maximum
velocity of the system, subjected to horizontal differential
ground motion at short periods, is PSVT→∞ � � _u2g�t � 0� �
�ω _ug;maxτ�2�1=2 by the square root of the sum of squares
(SRSS) rule, where the first term is due to the synchronous
horizontal ground motion and the second term is due to the
horizontal differential ground motion. As can be seen from
Figure 5, when τ → 0 (e.g., τ � 0:005), the PSV ampli-
tude tends to the asymptote _ug�t � 0�, the initial velocity
of the ground. For out-of-plane excitation, we would have
PSVT→∞ � � _u2g�t � 0� � �2ω _ug;maxτ�2�1=2.
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Complete PSV Spectra for All Periods

A simple approximation, which combines the effects of
all of the motions contributing to the PSV spectral ampli-
tudes, is to use the SRSS combination rule (Goodman et al.,
1958) as follows

PSVbase � �PSV2�τ � 0; θg � 0� � �fωn _ug;maxτ�2

� �ωnh sin θg;max�2�1=2 (16)

at the base of the columns and

PSVtop � �PSV2�τ � 0; θg � 0� � �fωn _ug;maxτ�2

� �ωnh sin θG;max�2�1=2 (17)

at the top of the columns, where PSV�τ � 0; θg � 0� is the
PSV for a given horizontal ground motion, which has peak
ground velocity _ug;max. The peak rocking angle accompany-
ing this motion can be approximated as in equation (6).
Equation (17) can be used only if θG → �vg1 � vg2�=L
can be estimated from some other knowledge of vertical mo-
tions at the column supports vg1 and vg2 . A conservative ap-
proximation is to assume that PSVtop ∼ PSVbase. Perusal of
Figure 4a,b shows that for large motions, this is a fair ap-
proximation and that PSVtop becomes significantly smaller
than PSVbase only for short pulses, which in our examples
corresponds to M 4.

The emphasis in this article has been on the analysis of
in-plane response in the case when the seismic waves prop-
agate essentially along the longitudinal axis of the structure.
For this case, in equations (16) and (17), f � 1. In the sim-
plest case, the corresponding out-of-plane excitation consists
of SH and Love waves only; hence it should have ground
rocking in and about the propagation direction equal to zero,
with θg;max ∼ 0. However, real earth materials are inhomo-
geneous and do not consist of parallel layers of constant
thickness; long structures are not oriented along the radial
direction of the waves propagating from the earthquake
source. Consequently, the mixing of different wave types
and the three-dimensional scattering will result in θg;max,
which may not be small. Therefore, to approximate the re-
sponse spectra for out-of-plane response, which now also
must include torsional excitation of the rigid mass, we take
f � 2 (Trifunac and Gičev, 2006). This approximation is
valid only for excitation by waves with wavelengths much
longer than L and for cases in which the geometry of the
structure does not lead to strong coupling of the in-plane
and out-of-plane responses. Analysis of the out-of-plane re-
sponse for intermediate and short waves, with wavelengths
comparable to L, will be addressed in our future work.

Conclusions

We have shown that the PSV spectral amplitudes of
linear response for excitation by horizontal, vertical, and
rocking strong ground motion can be represented by super-
position of three terms. The first term is the classical PSV
spectrum for horizontal excitation only (ug). For motions
at some distance from the fault, when initial velocity in
the response calculations can be assumed to be small, this
term can be estimated via empirical scaling equations based
on the recorded strong-motion data (Lee, 2002, 2007; Doug-
las, 2003). The second term, which will dominate at short
periods, describes the consequences of excitation by differ-
ential ground motion and by large initial ground velocity. It is
proportional to the natural frequency of the oscillator, peak
horizontal ground velocity, and the transit time of the waves

Figure 5. An example of how the computed PSV spectra (con-
tinuous light lines for left column and heavy continuous lines for
right column) for excitation with a dF pulse, along withM 4, 6, and
8, approach the asymptotes PSVT→0 � ωn _ug;maxτ for τ � 0:025 and
0.05. Upper bounds in terms of ωn _ug;maxτ are shown with light
dotted lines; the asymptotes in terms of PSV T→0 � ωn

_�ug;maxτ
are shown with dash-dotted-dash lines.
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along the length of the structure. The third term dominates
the PSV spectral amplitudes at long periods and is propor-
tional to the largest rocking angle of strong ground motion.

As the recording station moves away from the fault and
the near-field terms in the ground motion diminish with dis-
tance, the spectral shapes of the motions at the fault, which
are dominated by large initial peak ground velocities, will
gradually and monotonically tend toward the amplitudes
of spectra that are described by the familiar empirical scaling
equations based on the recorded strong motion.

Data and Resources

No data were used in this article. Parts of some of the
plots used in this article came from published sources listed
in the references.
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