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Glossary 

 

Meta-stability of man-made structures is the consequence of their upright construction above ground. 

For excessive dynamic (earthquake) loads, when the lateral deflection exceeds some critical value (this is 

normally accompanied by softening nonlinear behavior of the structural members), the overturning moment 

of the gravity forces becomes larger than the restoring moment, and the structure becomes unstable and 

moves exponentially toward collapse. 
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Complex and evolving structural systems are structures with a large number of degrees of freedom and 

many structural members, which for given loads experience softening nonlinear deformations. During 

strong excitation, continuous changes (typically decreases) in effective stiffness and time-dependent 

changes in boundary conditions result in a system whose properties are changing with time. 

 

Soil-structure interaction is a process in which the soil and the structure contribute to mutual 

deformations while undergoing dynamic response. In time, with continuously changing contact area 

between the foundation and the soil (opening and closing of gaps), when the deformations are large, soil-

structure interaction is characterized by nonlinear geometry and nonlinear material properties in both the 

soil and in the structure. 

 

 

 

I. Definition of the Subject  

Nonlinear problems in structural earthquake engineering deal with the dynamic response of meta-stable, 

man-made buildings subjected to strong earthquake shaking. During earthquakes, structures constructed on 

soft sediments and soils deform together with the underlying soil in the dynamic process called soil-

structure interaction. Strong shaking forces the soil-structure systems to evolve through different levels of 

nonlinear response, with continuously changing properties that depend upon the time history of excitation 

and on the progression and degree of damage. Thus far, the analyses of this response have used the 

vibrational approach and lumped mass discrete models to represent real structures. Loss of life and 

property, however, continue to be high during strong shaking in the vicinity of the faults responsible for 

earthquakes. This calls for new, more physically refined methods of analysis, which can be based on 

nonlinear wave propagation, and for balancing of the structural capacities with the power carried by the 

earthquake waves. 

 

After a brief discussion of the literature on the complex and chaotic dynamics of simple mechanical 

oscillators, the dynamic characteristics and governing equations in the meta-stable structural dynamics of 

earthquake engineering are introduced. The nature of the solutions of the governing equations in terms of 

both the vibrational and the wave representations is discussed, and the dynamic instability, material and 

geometric nonlinearities, and complexities of the governing equations associated with nonlinear soil-

structure interaction are described. Collectively, the examples presented reflect the complex physical nature 

of meta-stable structural systems that experience nonlinear dynamic response, the characteristics of which 

change and evolve during earthquake excitation. 

 

II. Introduction 
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Earthquake engineering, through a cooperation of structural and geotechnical engineers with seismologists 

and geologists, aims to develop methods for safer design of man-made structures to withstand shaking near 

intermediate and large earthquakes. This requires addressing the problems of predictability of the response 

of complicated nonlinear systems, which is one of the important subjects of modern nonlinear science. 

Through the studies of the dynamic response, earthquake engineers address complex physical problems and 

issues with important social implications. 

 

The completeness and beauty of the linear differential equations appear to have led to their dominance in 

the mathematical training of engineers and scientists during most of the 20th century. The recognition that 

chaotic dynamics is inherent in all nonlinear physical phenomena, which has created a sense of revolution 

in applied mechanics and physics today, so far has had little if any effect on the research and design of 

earthquake-resistant structures. In the past, the designs in structural engineering and control systems were 

kept within the realm of linear system dynamics. However, the needs of modern technology have pushed 

the design into the nonlinear regimes of large deformations, which has increased the possibility of 

encountering chaotic dynamic phenomena in structural response. Even a cursory review of papers on 

chaotic vibrations in mechanical systems leads to the conclusion that chaotic dynamics is not a small, 

insignificant class of motions and that chaotic oscillations occur in many nonlinear systems and for a wide 

range of values of the parameters.  

 

If an engineer chooses parameters that produce chaotic output, then he or she loses predictability. However, 

the chaotic behavior of nonlinear systems does not exclude predictability of the response but rather 

introduces upper bounds (prediction horizons) (Lighthill 1994) and renders the predictions probabilistic. 

The important question is then over what time-scale are the forecasts reliable, given the current state and 

knowledge of the system. Another key ingredient for prediction is an adequate physical model. At present, 

because of the multitude of interacting phenomena and the absence of physically complete equations of 

motion, there exists no adequate general model of the complete earthquake response process. While the 

practical outcome of most work in earthquake engineering remains empirically based, the nonlinear 

methods are gaining popularity, aiming to decipher the governing phenomena and to assess the reliability 

of the models. It appears now that the broad-based revolution in the worldview of science that begun in the 

twentieth century will be associated with chaotic dynamics (Rasband 1990). This revolution should 

eventually also contribute to better understanding and more complete representation of the response 

analyses in earthquake engineering.  

 

It has been argued that major changes in science occur not so much when new theories are advanced but 

when the simple models with which scientists conceptualize a theory are changed (Kuhn 1962). In 

vibrations, such a conceptual model that embodies the major features of a whole class of problems is the 

spring-mass system. Lessons emerging from studies of the spring-mass model and several other relevant 
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models can serve as conceptual starting points for generalizations and also as a guide to further studies of 

more complex models in earthquake engineering and structural dynamics. 

 

Studies of forced vibrations of a pendulum have revealed complex dynamics and chaotic vibrations 

(Hackett and Holmes 1985; Gwinn and Westervelt 1985). A simply supported beam with sub-buckling 

axial compression modeled by a single mode approximation yields a Mathieu type equation and for certain 

values of the parameters leads to unstable solutions. When nonlinearities are added, these vibrations result 

in a limit cycle. A related problem is a classical pendulum with a vibrating pivot support, which also leads 

to chaotic vibrations (Levin and Koch 1981; McLaughlin 1981). Chaotic motions in a double pendulum 

have been studied by Richter and Scholz (1984), and the complex dynamics and chaotic solutions for a 

spherical pendulum with two degrees of freedom have been described by Miles (1984a). 

 

Impact-type problems result in explicit difference equations or maps, which can yield chaotic vibrations for 

certain values of the governing parameters (Lichtenberg and Lieberman 1983). A mass vibrating in a gap 

between two stiff springs on either side (Holmes 1982; Shaw and Holmes 1983; Shaw 1985) is a simple 

related model, which suggests a starting points for research in nonlinear vibration of piles, and for impact-

type interaction of adjacent buildings, excited by strong earthquake ground motion. The reader can find 

examples of such problems in the description of damage in Mexico City, for example, during several 

earthquakes (Lomnitz and Castanos 2006). 

 

Chaotic motions of an elasto-plastic arch have been studied by Poddar et al. (1986). Forced vibrations of a 

buckled beam, modeled by the Duffing equation, showed that chaotic vibrations are possible (Holmes 

1979). Forced vibrations described by a Duffing equation with viscous damping and nonlinear (cubic) 

elastic (stiffening) spring were studied by Ueda (1980). Fig. 1 summarizes his results and describes the 

regions of chaotic, periodic (I, II, etc.), and subharmonic (m/n) motions as functions of the damping and 

forcing amplitudes. This simple equation, representing a hardening spring system, has direct analogues in 

the dynamics of piles and in the rocking of buildings, both following the strong-motion phase of earthquake 

shaking after horizontal gaps have been created between the pile (foundation walls) and the soil (Trifunac 

et al. 2001b).  

 

A mechanical system with a nonlinear restoring force and with a control force added to move the system 

according to some prescribed signal has been studied by Holmes and Moon (1983) and Holmes (1985). It 

was shown that such a system exhibits both periodic limit-cycle oscillation and chaotic motions. Chaotic 

vibrations in continuous beams have been studied for nonlinear body forces and nonlinear boundary 

conditions (that depend on the motion), and for motions large enough for the nonlinear terms in the 

equations of motion to be significant (Moon and Holmes 1979; 1985; Moon 1980a,b; Moon and Shaw 
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1983). Forced planar vibrations of nonlinear elastica (Miles 1984a,b), were shown to become unstable and 

exhibit chaotic motions under certain conditions. 

 

The above-mentioned studies imply that there is a conflict in the classical engineering description of the 

world. One aspect of this conflict is the assumption that nature is a deductive system, moving forward in 

time according to deterministic laws. Another aspect is that a scientist attempting to model portions of the 

world from finite data projects unverifiable structure onto the local environment. The conflict is that these 

two views do not match, leaving us with a question: what are models good for? There are many systems in 

nature that are observed to be chaotic, and for which no adequate physical model exists. Whether a model 

is adequate or not depends, of course, on the questions asked (Crutchfield 1992). Unfortunately, the art of 

dynamical modeling is often neglected in discussions of nonlinear and chaotic systems, in spite of its 

crucial importance (Beltrami 1987). In the following, the modeling problem in earthquake engineering will 

be illustrated using two common approaches to the solution, one based on an equivalent oscillator and the 

other one using wave representation. 

 

Stochastic processes have been developed to describe irregular phenomena in deterministic systems that are 

too complicated or have too many variables to be fully described in detail. For example, stochastic 

processes have been used to model the response of structures to earthquake and wind forces, which are 

deterministic, and in principle could be completely described. In practice, the stochastic modeling has been 

used also as an approximate description of a deterministic system that has unknown initial conditions and 

may be highly sensitive to the initial conditions. In trying to model real systems, as a result of the modeling 

process, we sometimes obtain a model that shows very regular behavior, while the real system has very 

irregular behavior. In that case, random noise is added to the model, but this represents no more than our 

lack of knowledge of the system structure or the inadequacy of the identification procedure (Kapitaniak 

1991). 

 

In earthquake engineering, the complexity of the multi-dimensional real world is reduced to a sub-space, 

which is defined by (1) the dimensions and properties of the adopted mathematical models, (2) the nature 

of the adopted boundary conditions, and (3) the method of solution. A linear mechanical system cannot 

exhibit chaotic vibrations, and for periodic inputs it produces periodic outputs. The chaotic system must 

have nonlinear elements or properties, which can include, for example, (1) nonlinear elastic or spring 

elements; (2) nonlinear damping (such as stick-slip friction); (3) backlash, play, or bilinear springs; and (4) 

nonlinear boundary conditions. The nonlinear effects can be associated with the material properties, with 

the geometric effects, or both. In the following, the consequences of unorthodox boundary conditions and 

nonlinear waves in a building will be used to illustrate the extensions and complexities associated with 

evolving systems. The utility of this complexity can be viewed as the arbiter of the order and randomness.  
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III. Vibrational Representation of Response 

 

The first modern uses of mechanics in problems of earthquake engineering appeared during the early 

1900s, following the earthquake disasters in San Francisco (1906), Messina-Reggio (1908), and Tokyo 

(1923) and the realization that something needed to be done to prevent such losses of life and property 

during future events. The first practical steps consisted of introducing the seismic coefficient (shindo in 

Japan, and rapporto sismico in Italy). This was followed by earthquake-resistant design codes, first adopted 

in Japan in 1923, and then in California in 1934 (Reitherman 2006). During the same period, there also 

appeared the first studies of the effects of earthquake shaking on structures in terms of simple mechanical 

oscillators (Sorrentino 2007), and in the early 1930s the modern theory based on the response spectrum 

method was introduced (Biot 1932; 1933; 1934). These early developments follow the deterministic 

formulations of Newtonian mechanics and employ linear models and equations of motion. 

 

III.1. Elementary Vibrational Representation of Response 

 

The basic model employed to describe the response of a simple structure to only horizontal earthquake 

ground acceleration, xΔ , is a single-degree-of-freedom system (SDOF) that experiences rocking rψ  

relative to the normal to the ground surface.The model also assumes that the ground does not deform in the 

vicinity of the foundation—that is, it neglects the soil-structure interaction (Fig. 2). The rotation rψ is 

restrained by a spring with stiffness  and by a dashpot with rocking damping constant , providing 

the fraction of critical damping 

rK rC

rς . The natural frequency of this system is ( )1/
m

22/r r bK hω = , and for 

small rocking angles it is governed by the linear ordinary differential equation 

 
22 /r r r r r r x hψ ω ς ψ ω ψ+ + = − Δ  .              (1) 

 

For any initial conditions, and for arbitrary excitation, this system always leads to a deterministic and 

predictable response. Eq. (1) was used originally to develop the concept of relative response spectrum and 

continues to this day as the main vehicle in formulation of most earthquake engineering analyses of 

response (Trifunac 2003). If the gravity force is considered, rω in Eq. (1) has to be reduced (Biot 2006). 

The system described by Eq. (1) is meta-stable for rψ  smaller than its critical value. At the critical value of 

rψ , the overturning moment of the gravity force is just balanced by the elastic moment in the restraining 

spring, and for values greater than the critical value the system becomes unstable. 

 

III.2. Advanced Vibrational Representation of Response 
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In more advanced vibrational representations of the response, additional components of the earthquake 

excitation, structural dynamic instability, soil-structure interaction, spatial and temporal variations of the 

excitation, differential motions at different support points, and nonlinear behavior of the stiffness  can 

be considered, but the structure usually continues to be modeled by mass-less columns, springs, and 

dashpots, and with a rigid mass . In the following, we illustrate some of the above-mentioned cases. 

rK

bm

 

Dynamic instability. An example of a simple model that includes instability is shown in Fig. 3. It 

experiences horizontal, vertical, and rocking excitations, which can result, for example, from incident P and 

SV waves. The structure is represented by an equivalent single-degree-of-freedom system, with a 

concentrated mass at height h above the foundation. It has a radius of gyration and a moment of 

inertia 

bm

b

br
2

b bI m r=  about point O. The degree-of-freedom in the model is chosen to correspond to the 

relative rocking angle rψ . This rotation is restrained by a spring with rocking stiffness  and by a 

dashpot with rocking damping  (both not shown in Fig. 3), and the gravitational force  is 

considered. Taking moments about B results in the equation of motion 

rK

rC bm g

 

( ) ( ){22 / coy r r r r r r x y ra sφ ψ ω ς ψ ω ψ φ ψ+ + + = − Δ + ( ) ( )}2 / sin /r g z y raω ε φ ψ+ + Δ + ε ,  (2)    

                                    

where , ( )( )21 / /bh r hε = + a ( )2 2/r r bK m h rω 2⎡ ⎤= +⎣ ⎦ , rω is the natural frequency of rocking, rζ is 

a fraction of critical damping in ( )2
br

22 /r r rC m hω ς ⎡ ⎤= +⎣ ⎦ ,  and  22 /g r aε ω= . Eq. (2) is a 

differential equation coupling the rocking of the foundation, yφ , and of the structure, rψ , with the 

horizontal and vertical motions of the foundation. It is a nonlinear equation the solution to which requires 

numerical analysis. In this example, we will discuss only the case in which y rφ ψ+ is small. Then,  

( ){ }22 1 / /r r r r r g z raψ ω ς ψ ω ε ε ε ψ+ + − − Δ = ( ){ }2/ /y x r g z ya a /φ ω ε φ ε− + −Δ + + Δ .       (3)             

 

For steady-state excitation by incident P and SV waves with frequency ω , ,x yφΔ , and , and therefore 

the forcing function of Eq. (3), will be periodic. Equation (3) is then a special form of the Hill's equation. 

Analysis of the stability of this equation can be found in the work of Lee (1979). For general earthquake 

excitation,

zΔ

,x yφΔ , and will be determined by the recorded components of motion, and in predictive 

analyses by simulated ground motions (Lee and Trifunac 1985; 1987; Wong and Trifunac 1979). 

zΔ
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In Eq. (3), yφ describes rocking of the foundation to which the structure is attached. In analyses that do not 

consider soil-structure interaction, yφ will be determined directly by the rocking component of strong 

ground motion (Lee and Trifunac 1987; Jalali and Trifunac 2007), and in studies that consider soil-structure 

interaction yφ  will be one of the variables to be determined by the analysis (Lee 1979). 

 

Soil-Structure Interaction. The problem of linear soil-structure interaction embodies the phenomena that 

result from (1) the presence of an inclusion (foundation, Fig. 4) in the soil (Lee and Trifunac 1982), and (2) 

the vibration of the structure supported by the foundation, which exerts dynamic forces on the foundation 

(Lee 1979). Examples and a discussion of the non-linear aspects of soil-structure interaction can be found 

in Gicev (2005) and in a review of observations of response to earthquake shaking in full-scale structures in 

Trifunac et al. (2001a,b,c). 

 

The dynamic response of a rigid, embedded foundation to seismic waves can be separated into two parts. 

The first part corresponds to the determination of the restraining forces due to the motion of the inclusion, 

usually assumed to be a rigid body. The second part deals with the evaluation of the driving forces due to 

scattering of the incident waves by the inclusion, which is presumed to be immobile. This can be illustrated 

by considering a foundation embedded in an elastic medium and supporting an elastic 

superstructure. The steady-state harmonic motion of the foundation having frequency ω  can be 

described by a vector { } , ,  , , ,
T

x y z x y zφ φ φΔ Δ Δ  (Fig. 4), where xΔ  and  are horizontal 

translations,  is vertical translation, 

yΔ

zΔ xφ and yφ  are rotations about horizontal axes, and zφ  is torsion 

about the vertical axis. Using superposition, displacement of the foundation is the sum of two 

displacements: 

 

{ } { } { }0*U U U= + ,                                               (4)  

where { }*U  is the foundation input motion corresponding to the displacement of the foundation under the 

action of the incident waves in the absence of external forces, and { }0U  is the relative displacement 

corresponding to the displacement of the foundation under the action of the external forces in the absence 

of incident wave excitation. 

 

The interaction force { }sF  generates the relative displacement { }0U , which corresponds to the force that 

the foundation exerts on the soil and that is related to { }0U  by { } ( ) { }0s sF K Uω= ⎡ ⎤⎣ ⎦ , where 

( )sK ω⎡⎣ ⎤⎦  is the 6 x 6 complex stiffness matrix of the embedded foundation. It depends upon the material 
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properties of the soil medium, the characteristics and shape of the foundation, and the frequency of the 

harmonic motion, and it describes the force-displacement relationship between the rigid foundation and 

the soil medium. 

 

The driving force of the incident waves is equal to { } { }* [ ]s sF K U= * , where the input motion { }*U  

is measured relative to an inertial frame. The "driving force" is the force that the ground exerts on the 

foundation when the rigid foundation is kept fixed under the action of the incident waves. It depends 

upon the properties of the foundation and the soil and on the nature of excitation. 

 

 

The displacement { }U is related to the interaction and driving forces via { } { } { }*[ ]s s sK U F F= + .  

For a rigid foundation having a mass matrix [ ]0M and subjected to a periodic external force, { }extF , 

the dynamic equilibrium equation is  

 

[ ]{ } { } { }0 s extM U F F= − + , (5) 

where { }extF =  { }, , , , ,bx by bz bx by bzF F F M M M  is the force the structure exerts on the foundation (Fig. 

4). Then, Eq. (5) becomes  

[ ]{ } [ ]{ } { } { }0 *s exts
M U K U F F+ = + . (6) 

The solution of { }U  requires the determination of the mass matrix, the impedance matrix, the driving 

forces, and the external forces (Lee 1979). 

 

After the mass matrix [ ]0M , the stiffness matrix [ ]sK , and the force { }*
sF  have all been evaluated, they 

can be used to determine the foundation displacement { }U . For in-plane response excited by P and SV 

waves, for example, the relative response rψ is then given by Eq. (3) 

 

Differential motions. Common use of the response spectrum method (Trifunac 2003) and many dynamic 

analyses in earthquake engineering implicitly assume that all points of building foundations move 

synchronously and with the same amplitudes. This, in effect, implies that the wave propagation in the soil 

is neglected. Unless the structure is long (e.g., a bridge with long spans, a dam, a tunnel) or “stiff” relative 

to the underlying soil, these simplifications are justified and can lead to a selection of approximate design 

forces if the effects of soil-foundation interaction in the presence of differential ground motions can be 

neglected (Bycroft 1980). Simple analyses of two-dimensional models of long buildings suggest that when   
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a/λ < 10-4, where a is wave amplitude and λ is the corresponding wavelength, the wave propagation effects 

on the response of simple structures can be neglected (Todorovska and Trifunac, 1990).  

 

Figure 5 illustrates the “short” waves propagating along the longitudinal axis of a long building or a 

multiple-span bridge. For simplicity, the incident wave motion has been separated into out-of-plane motion 

(Fig. 5, top), consisting of SH and Love waves, and in-plane motion (Fig. 5, bottom) consisting of P, SV, 

and Rayleigh waves. The in-plane motion can further be separated into horizontal (longitudinal), vertical, 

and rocking components, while out-of-plane motion consists of horizontal motion in the transverse 

direction and torsion along the vertical axis. Trifunac and Todorovska (1997) analyzed the effects of the 

horizontal in-plane components of differential motion for buildings with models that are analogous to the 

sketch in Fig. 5 (bottom), and they showed how the response spectrum method can be modified to include 

the first-order effects of differential motions. Trifunac and Gicev (2006) showed how to modify the spectra 

of translational motions, into a spectrum that approximates the total (translational and torsional) responses, 

and how this approximation is valid for strong motion waves an order of magnitude longer than the 

structure ( Lλ >> ). 

 

As can be seen from the above examples the differential motions lead to complex excitation and 

deformation of the structural members (columns, shear walls, beams, braces), increase the dimensions of 

the governing differential equations, lead to thee-dimensional dynamic instability problems, and can lead to 

nonlinear boundary conditions. These are all conditions that create an environment in which, even with the 

most detailed numerical simulations, it is difficult to predict all of the complexities of the possible 

responses. 

 

III.3. Nonlinear Vibrational Analyses of Response 

 

For engineering estimation of the maximum nonlinear response of a SDOF system, , in terms of the 

maximum linear response, , it is customary to specify a relation between and  (Fig. 6). By 

defining the yield-strength reduction factor as 

mu

u0u mu 0

0 /y yR u u= , where  is the yielding displacement of the 

SDOF system equivalent spring, and ductility as 

yu

/m yuuμ = , for the same ground motion the ratio 

 is then equal to 0/mu u / yRμ . Veletsos and Newmark (1960,1964) showed that (1) for a long-period 

SDOF system when its natural period T 2 /n nπ ω=  becomes very long, tends toward 1 and 0u/mu yR  

approaches μ  (equal deformation rule); (2) for the response amplitudes governed mainly by the peak 

excitation velocities,  can be approximated by 0u/mu / 2 1μ μ −  and yR  by 2μ −1  (equal strain 

energy rule); and (3) for a high-frequency (stiff) system when , .  ~0nT ~ 1yR
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Complexities of simultaneous action of dynamic instability, nonlinearity, and kinematic boundary 

conditions—example. The model we illustrate next is an SDOF when it is excited by synchronous 

horizontal ground motion at its two supports (1 and 2 in Fig. 7), but it behaves like a three-degree-of-

freedom (3DOF) system when excited by propagating horizontal, vertical, and rocking ground motions. For 

such a system, the above classical equal energy and equal displacement rules for SDOF system will not 

apply.  

 

The goals here are to describe the effects of differential motion on strength-reduction factors yR  of the 

simple structure shown in Figure 7 when it is subjected to all of the components of near-source ground 

motions, and to illustrate the resulting complexities of nonlinear response. Analyses of the consequences of 

the differences in ground motion at structural supports, caused by non-uniform soil properties, soil-

structure interaction, and lateral spreading, for example, will further contribute to the complexities of the 

response, but these factors will not be discussed here. 

  

The original response spectrum method was formulated using a vibrational solution of the differential 

equation of an SDOF system excited by synchronous, and only horizontal (one component), ground 

motion. The consequences of simultaneous action of all six components of ground motion (three 

translations and three rotations) on the relative response of an SDOF system are still rarely considered in 

modern engineering design (Trifunac 2006), even though it has been 75 years since the original response 

spectrum method was formulated and about 40 years since it became the principal tool in engineering 

design (Trifunac 2003). Because the response spectrum method has become an essential part of the design 

process and of the description of how strong motion should be specified for a broad range of design 

applications (Todorovska et al. 1995), we hope that the present examples will help to further understanding 

of the complexities of response in more realistic models of structures. 

   

The nature of the relative motion of individual column foundations or of the entire foundation system will 

depend upon the type of foundation, the characteristics of the soil surrounding the foundation, the type of 

incident waves, and the direction of wave arrival, with the motion at the base of each column having six 

degrees of freedom. In the following example, we assume that the effects of soil-structure interaction are 

negligible; consider only the in-plane horizontal, vertical, and rocking components of the motion of column 

foundations; and show selected results of the analysis for a structure on only two separate foundations. We 

assume that the structure is near the fault and that the longitudinal axis of the structure (X axis) coincides 

with the radial direction (r axis) of the propagation of waves from the earthquake source, so that the 

displacements at the base of columns are different as a result of the wave passage alone. We suppose that 

the excitations at the piers have the same amplitude but different phases and that the phase difference (or 
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time delay) will depend upon the distance between the piers and the horizontal phase velocity of the 

incident waves.  

 

The simple model we consider, which is described in Fig. 7, represents a one-story structure consisting of a 

rigid mass, m, with length L, supported by two rigid, mass-less columns with height h, which are connected 

at the top to the mass and at the bottom to the ground by rotational springs (not shown in Fig.7). The 

stiffness of the springs, kφ , is assumed to be elastic-plastic, as in Fig. 6, without hardening ( 0α =

c

). The 

mass-less columns are connected to the ground and to the rigid mass by rotational dashpots, φ , providing 

a fraction of critical damping equal to 5 percent. Rotation of the columns, i gi iφ θ ψ= +  for i = 1,2, which 

is assumed to be not small, leads us to consider the geometric nonlinearity. The mass is acted upon by the 

acceleration of gravity, g, and is excited by differential horizontal, vertical, and rocking ground motions, 

,
i i

,g gu v  and ,
ig i 1,2θ =  (Fig. 7) at the two bases, so that 

2 1 2 1 2 1
( ) ( ) ; ( ) ( ) ; ( ) ( ) ;g g g g g gu t u t v t v t t t L Cxτ τ θ θ τ τ= − = − = − = ,                   

with τ  being the time delay between the motions at the two piers and xC  the horizontal phase velocity of 

the incident waves. The functional forms of ,
i i

,g gu v and 
igθ  are defined by the near-source ground 

motions (Jalali and Trifunac 2007),and the rocking component of the ground motion is approximated by 

(Lee and Trifunac 1987) ( ) ( ) /
i ig gt v t xCθ = − , where  is the vertical velocity of the ground motion 

at the i-th column. Of course, in a more accurate modeling, the ratio of the 

( )t
igv

igv to 
igu amplitudes will 

depend upon the incident angle and the character of incident waves, while the associated rocking 
igθ will 

be described by a superposition of the rocking angles associated with incident body and dispersed surface 

waves (Lee and Trifunac 1987). 

 

The yield-strength reduction factor for the system subjected to synchronous ground motion is 

0 0/y y / yR f f u u= =

( )
i

, where all of the quantities are defined in Fig. 6. In this example, for the assumed 

model and because of the differential ground motions and rotation of the beams, the relative rotation for the 

two columns at their top and bottom will be different. Therefore, it is necessary to define the R-factor and 

ductility for each corner of the system, instead of one factor for the entire system. In all calculations here, 

we consider the actions of the horizontal, vertical, and rocking components of the ground motion, the 

effects of gravity force, dynamic instability, and geometric nonlinearity. For the structure in Fig. 7, we 

calculate maximum linear and nonlinear relative rotations at four corners of the system under downward 

gv− , radial, and rocking, and upward ( )
igv+ , radial and rocking near-source differential ground 
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motions corresponding to a given earthquake magnitude, ductility μ , and for different time delays, τ . 

Then we plot yR  versus  for the four corners of the system.  nT

 

Fig. 8 illustrates typical results for yR  versus the oscillator period for near-source, fault-parallel 

displacement  (Jalali and Trifunac 2007), with downward vertical ground 

displacement, magnitude M = 8, for a ductility ratio of 8 and a time delay of 

/( ) 1 Ntd t e τ−= −(N NA ) / 2

0.05τ =  s. It shows the 

results for the top-left, top-right, bottom-left, and bottom-right corners of the system, assuming wave 

propagation from left to right (see Fig. 7). For reference and easier comparison with the previously 

published results, we also plot one of the oldest estimates of yR  versus period, using piecewise straight 

lines (Jalali and Trifunac 2007). The curve  shows the minimum values of min( )yR yR  for  motion 

with 

( )Nd t

igv− , and for M = 8, μ  = 8, and τ  = 0.05 s. 

 

For periods longer than 5 to 10 s, yR  curves approach “collapse boundaries” (Jalali and Trifunac 2007). 

This is implied in Fig. 8 by the rapid decrease of yR  versus period for periods longer than about 7 s. At or 

beyond these boundaries, the nonlinear system collapses due to the action of gravity loads and dynamic 

instability. 

 

The complex results illustrated in Fig. 8 can be simplified by keeping only , since it is only the 

minimum value of 

min( )yR

yR  that is needed for engineering design. By mapping versus period of the 

oscillator for different earthquake magnitudes, M, different ductilities, 

min( )yR

μ , and different delay times, τ , 

design criteria can be formulated for design of simple structures to withstand near-fault differential ground 

motions (Jalali and Trifunac 2007). Nevertheless, the above shows how complicated the response becomes 

even for as simple a structure as the one shown by the model in Fig. 7, when differential ground motion 

with all of the components of motion is considered. In this example, this complexity results from 

simultaneous consideration of material and geometric nonlinearities, dynamic instability, and kinematic 

boundary conditions. 

 

IV. Response in Terms of Wave Propagation—An Example 

 

The vibrational representation of the solution of response of a multi-degree-of-freedom system subjected to 

earthquake shaking is frequently simplified by considering only the fundamental and, occasionally, a few 

of the lowest frequencies of the system. Doing so is analogous to low-pass filtering of the complete 

solution (Trifunac 2003; 2005), but it can work well when the excitation amplitudes are small and the 
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motions are associated with long waves. However, during strong earthquakes, the ground motion contains 

large displacement pulses, the duration of which can be shorter than the fundamental period of the 

structure. For this type of excitation, the vibrational representation of response and the response spectrum 

superposition method cease to be suitable and should be replaced by a solution in terms of propagating 

waves. For short impulsive ground motions, the damage can occur before the wave entering the structure 

completes its travel up and down the structure, and well before the wave interference can occur—that is, 

well before the physical conditions can lead to the interference of waves and creation of the mode shapes. 

 

To illustrate the phenomena that can occur during nonlinear wave propagation in a building, we describe 

horizontal motions, u , in a one-dimensional shear beam, supported by one-dimensional half space and 

excited by a vertically propagating shear wave described by a half-sine-pulse (Fig. 9). A finite-difference 

scheme for solution of this problem with accuracy, , where ),( 22 xtO ΔΔ xΔ and are the space and 

time increments, leads to the exact solution for 

tΔ

/ 1t xβΔ Δ = , where β  is the velocity of shear waves. For 

simplicity, the incident displacement in the soil is chosen to be a sinusoidal pulse with the characteristics 

shown on Fig. 9.  

 

A mesh with different spatial intervals in the soil and in the building will be used. The equation of motion 

is 

( ) /  ,t xv σ ρ=                                (7a) 

and the relation between the derivative of the strain and the velocity is 

xt v=ε   ,         (7b) 

where , v ρ , σ , and ε  are particle velocity, density, shear stress, and shear strain, respectively, and the 

subscripts t and x represent derivatives with regard to time and space. 

 

The domain consists of two materials (Fig. 9): (1) 02 <≤Δ− xxs  with physical properties sρ  and μs , 

representing foundation soil, and (2) bHx ≤<0  with physical properties bρ   and bμ  for linear 

response, where iρ  is the density and μi is the shear modulus in the soil (i = s) or in the building (i = b). 

  and  /v u= ∂ ∂t /u xε = ∂ ∂  are the velocity and the strain of a particle, and u is out-of-plane 

displacement of a particle perpendicular to the propagation ray. 

 

It is assumed that the incoming wave is known and that its displacement as a function of time is prescribed 

at the point 1 in the soil ( ). Also, it is assumed that the soil is always in the linear elastic state. 

The finite difference method for a set of simultaneous equations is used to solve the problem, and spatial 

intervals are defined by 

sxx Δ−= 2

i i ,x tβΔ = ⋅Δ where βi is the velocity of shear waves in the soil (i = s) or in the 
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building (i = b) and Δt  is the time step. The transparent boundary adopted for this study, which is described 

in Fujino and Hakuno (1978), is a perfect, transparent boundary for one-dimensional waves when 

/ 1x tβΔ Δ =

2 /trB Ak →

. Point 1 is where the prescribed displacement is applied, and we assume that this 

displacement travels upward in each time step. Point 2 is the boundary point of the model, where the 

quantities of motion are updated in each time step, and point 3 is the first spatial point, where the motion is 

computed using finite differences.  

 

For the linear case at the contact (point 3 in Fig. 9), one part of the incoming wave is transmitted into the 

other medium and one is reflected back into the same medium. The corresponding coefficients are obtained 

from the boundary conditions of continuity of the displacements and stresses at the contact. For a 

transmitted wave from medium B to medium A, the transmission coefficient is equal to 

. For a reflected wave from medium A back into medium B, this 

coefficient is 

( )1 /a a b bρ β ρ β= +⎡⎣ ⎤⎦

( ) ( )1 / / 1 /b b a a b brefB B a ak ρ β ρ β ρ β ρ β⎡ ⎤ ⎡ +⎣ ⎦ ⎣→ = − ⎤⎦ . For the opposite direction of 

propagation, the numerators and the denominators in these fractions exchange places.  

 

Numerical Examples. We consider a shear beam supported by elastic soil, as shown in Fig. 9. The 

densities of the soil and of the beam are assumed to be the same: ρρρ == sb

sm /

= 2000 kg/m3. The 

velocity of the shear waves in the soil is taken as s 250=β , and in the building as 

smb / 100=β .  

 

To describe nonlinear response and the development of permanent deformations in the beam, we introduce 

two dimensionless parameters: (1) dimensionless amplitude ( )/  ,b bA Hα ε=

yb

 where  is the amplitude 

of the pulse (Fig. 9),  is the height of the building, and 

A

bH ε  is the yielding strain in the building, and 

(2) dimensionless frequency ( )b/  b bH tη β= ,  where b dtβ  is one half of the wavelength of the wave in 

the building, b  is the shear-wave velocity in the building, and  is the duration of the half-sine pulse. dtβ

 

To understand the development of the permanent strain in the nonlinear beam, we describe first the solution 

for the linear beam. The displacement and the strain for the linear beam are:   
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and 

1 1 1

1

cos

( , )
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j j j
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j j j d
d b b b

x x xt t H t t H t t t
t

x t A k
t x x xt t H t t H t t t

t

π
β β βπε

β π
β β β

− − −
∞

=

⎧ ⎫
d

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛
− − − − − − − − −⎪ ⎪

⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦= ⎨ ⎬

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪+ − + − + − − + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

∑ (9) 

 where j is the order number of the passage of the wave on the path bottom-top-bottom in the building, 

2 /j bt jH bβ=

refB Bk →

  (j = 0,1,2,3,….,) is the time required for the wave to pass j times over the path bottom-

top-bottom (two heights),  is the amplitude factor of the pulse in the soil in its j-th passage 

along the path bottom-top-bottom through the building, and  and are coefficients defined by  

and  above.  

1−= j
rtj kkk

tk rk trB Ak →

 

The odd terms in Eq. (8) and Eq. (9) describe the response to the pulse coming from below, while the even 

terms describe the response to the pulse arriving from above. For the shear-wave velocities in our example, 

 and . In Eq. (8) the displacement is positive for odd passages and negative for 

even passages. The displacement and velocity change sign after reflection from the soil-building interface 

and do not change sign after reflection from the top of the building. The strain changes sign after reflection 

from the top of the building and does not change sign after reflection from the building-soil interface. The 

constant that multiplies the series in Eq. (8) in terms of dimensionless amplitude and dimensionless 

frequency is 

10 / 7tk = 3/ 7rk = −

/( )b dA t ybAεπ β πα= = ηε

)
/ 2)

. 

 

To describe the occurrence of permanent strain, we consider two characteristic points in the building: (1) 

Point B (  at the soil-building interface (point 3 in the grid, see Fig. 9), and (2) point T 0=x

b b bt(x H β= − , where the amplitudes of the strain with the same sign meet after reflection from the 

top of the building. The location of this point is dependent upon the duration (wavelength) of the pulse. The 

first term in Eq. (8) is one if the argument of the cosine function is equal to   (dt 0 / b dt t x tβ− − =

1 bt t x

), and 

the second term is one if the argument of the second cosine function is equal to 0  ( / 0β− + = ). 

The position of point T, where the strain amplitude is two times larger than the strain entering the beam, is 

at / 2db bx H tβ= − , and the time when this occurs is t H /b b / 2dtβ= + . From Eq. (9) in the first 

passage of the pulse, 2 /bt H bβ< , and only the first term in the series exists. The strain at point B 

reaches its absolute maximum at the very beginning, during the entrance of the pulse into the building, and 

its value is tybkπαηεBε =1
max . If this strain is greater than the yielding strain in the building, ybε , a 
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permanent strain at the interface will develop, and the condition for occurrence of permanent strain at this 

point is ybB εε >1
max , or, in terms of the dimensionless parameters, 

 
1( ) ( ) /(2 )t b s skαη π β β πβ−> = + = BC

b

 .   (10B) 

 

At point T (this point does not exist if 2 /d bt H β> , and it coincides with point B if 2d bt H bβ=

/ 2

), from 

Eq. (9), the maximum strain during the first passage occurs at /b b dt H tβ= + , and its amplitude is 

2Aε tk⋅ . The condition for occurrence of the permanent strain is 

  .  (10T) 1(2 ) ( ) /(4 ) / 2t b s s Bkαη π β β πβ−> = + = = TC C

For the shear-wave velocities in our example 2228.0=BC  and 1114.0=TC . 

 

For the above simple model, the occurrence, development, and amplitudes of permanent strains and 

displacements have been studied by Gicev and Trifunac (2006a,b). They found that for large ground-

displacement pulses (largeα ) the maximum permanent strains occur mainly at the interface of the building 

with the soil, while for smaller amplitudes of pulses permanent strains occur closer to the top of the 

building. They distinguished three zones of the permanently deformed beam: (1) a permanently deformed 

zone at the bottom; (2) an intermediate zone, which is not deformed at its bottom part and is deformed in 

the top part; and (3) a non-deformed zone at the top of the beam. The occurrence and development of these 

zones depends upon the dimensionless excitation amplitudes and the dimensionless frequencies, and in 

particular on the conditions that lead to the occurrence of the first permanent strain (see Eqs. (10B) and 

(10T)). For large and long strong-motion pulses ( 0.5η ≤ ; first, the condition in Eq. (10B) is relevant), 

only zones 1 and 3 are present in the beam. For large amplitudes and short strong-motion pulses, all three 

zones develop and are present. For smaller excitation amplitudes (when the condition in Eq. (10B) cannot 

be satisfied for long pulses, and when the condition in Eq. (10T) is satisfied), only zones 2 and 3 exist in 

the beam. For larger values of η  (when the condition in Eq. (10B) is satisfied) all three zones exist.  

 

Gicev and Trifunac (2006a,b) found a similar situation for the occurrence of the maximum strains. For 

large and long pulses, maximum strain is located at the bottom of the building, and, as the pulses become 

shorter, peak strains occur at higher positions in the building. For some high frequencies of excitation, the 

maximum strain again appears at the bottom of the building because the loss of energy due to the 

development of the permanent strain at the bottom overcomes the effects of the wave reflections from the 

top of the building (Fig. 10). 
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Creation of large permanent deformation zones in the building by the incident waves absorbs some or most 

of the incident wave energy and can reduce or eliminate further wave propagation and the associated 

energy transport (Figs. 11 and 12). To the extent that the locations of the plastic deformation zones can be 

controlled by the design process, absorption of the incident-wave energy by structural members may 

become a new and powerful tool for performance-based design. To take advantage of such possibilities, the 

governing differential equations must be solved by the wave-propagation method.  

 

Examples illustrated here show that for excitation of structures by large, near-field displacement pulses 

failure can occur anywhere in the building before the incident wave has completed its first travel from the 

foundation to the top of the building and back to the foundation ( 2 /b bH β ). Because this travel time is 

shorter (by ½) than the natural period of the structure on the fixed base, it is seen that the common response 

spectrum method of analysis (based on the vibrational formulation of the solution) cannot provide the 

required details for the design of structures for such excitation. The complexity of the outcome increases 

with amplitudes of excitation and depends upon the pulse duration. Because actual strong ground motion in 

the near field has at least several strong pulses, it can be seen that the complexity in real structures 

responding to strong earthquake motions will be even greater. In engineering approximation based on the 

vibrational solution of the problem and on the SDOF models, where the location of ductile response is 

predetermined by the simple modeling assumptions, this complexity cannot be included because of the 

modeling constraints. The outcome is that it is virtually impossible for simplified models to identify or to 

predict the location of damage. In contrast, for properly chosen wave propagation models, prediction and 

identification of damage is a natural and logical outcome of interaction between excitation and model 

properties. A good example of this can be found in Gicev and Trifunac (2007), who showed how a simple 

wave-propagation model can predict the actually observed location of damage. 

 

V. Observations of Nonlinear Response 

Invaluable for understanding and proper treatment of the actual nonlinear response, and for validation of 

vibration monitoring and analysis methods for real-life problems, are earthquake response data from well-

instrumented, full-scale structures that have been damaged by an earthquake. Such data are rare and are not 

always freely available. An example of an instrumented building that has been damaged by an earthquake, 

and for which information about the damage and strong-motion data on the causative earthquake are 

available, is the former Imperial County Services Building in El Centro, California, which was severely 

damaged by the magnitude 6.6 Imperial Valley earthquake of October 15, 1979, and later demolished 

(Kojić et al. 1984; Todorovska and Trifunac 2007). Its transverse (NS) response was recorded by three 

vertical arrays (recording channels 1, 3, 7, 9, 10, and 11; see Fig. 13), and its longitudinal (EW) response 

was recorded by one vertical array (recording channels 4, 5, 6, and 13, also shown in Fig. 13).  
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For a simplified soil-structure interaction model of a building supported by a rigid foundation, the 

difference between the roof and base horizontal displacements during earthquake shaking is the sum of the 

horizontal displacements due to (1) horizontal deformation of the soil, (2) rigid-body rocking of the 

foundation, and (3) deformation of the structure. The estimated frequency from such data is referred to as 

system or “apparent” frequency, which differs from the fixed-base frequency of the building. While the 

fixed-base frequency depends only upon the properties of the structure, the apparent frequency depends 

also upon the stiffness of the foundation soil. The following relationship holds:  

2 2 2
1

1 1 1
2

1

sys H Rω ω ω ω
= + + ,  (11) 

where 2sys sysω πν=  is the soil-structure system frequency, 1ω  is the fundamental fixed-base frequency 

of the structure, and Hω  and Rω  are the horizontal and rocking frequencies, respectively, of a rigid 

structure on flexible soil (Luco et al. 1986). 

Figure 14c shows that during earthquake shaking (Fig. 14a) the NS frequency of relative system response 

(Fig. 14b) dropped from ν ≈ 2.12 Hz in the early stage of response (at 2t ≈  s) to ν ≈ 1.52 Hz at t ≈ 6.8 s 

( νΔ ≈ 0.6 Hz ,  /ν νΔ ≈ 28%), that it was constant during the interval t ≈ 6.8–8.5 s, and that it dropped 

further to ν ≈ 0.85 Hz  at t 12 s (≈ νΔ ≈ 0.67 Hz , /ν νΔ ≈  44%).  Then, toward the end of the 

recorded shaking, the frequency increased to ν ≈ 1.15 Hz ( νΔ ≈ 0.3 Hz; /ν νΔ ≈ 35%). Early in the 

response ( 7 s), the amplitudes of the first story drifts in the building were relatively small (< 0.5%), and 

the observed decrease of system frequency is believed to be due to changes in the soil and bonding between 

the soil and foundation. This was followed by a further decrease in the system frequency of about 44% 

(between 8 and 12 s). The first-story drifts in the building were large when this occurred (> 0.5% for NS), 

and the principal cause for this change is believed to be the damage, with the most severe damage occurring 

between 8 and 12 s after trigger. Near the end of the shaking, a 35% increase in system frequency was 

observed, suggesting system hardening, which is believed to be due to changes in the soil (Todorovska and 

Trifunac 2007). 

t <

Changes similar to what is shown in Fig. 14c were first observed following the San Fernando earthquake in 

California in 1971 (Udwadia and Trifunac 1974) and then during many subsequent earthquakes. It is 

known at present that many different factors can contribute to fluctuations of the system frequency, 

including rainfall, temperature fluctuations, changes in occupancy, remodeling and strengthening of 

buildings, wind, and earthquakes (Todorovska and Al Rjoub 2006). The simultaneous action of some of 

these factors and the associated time-dependent changes in the physical model contribute to complex and 

evolving system changes that make predictions of the dynamic response difficult. 

VI. Future Directions 
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Well-designed structures are expected to have ductile behavior during the largest credible shaking, and a 

large energy reserve to at least delay failure if it cannot be avoided. As the structure finally enters large 

nonlinear levels of response, it absorbs the excess of the input energy through ductile deformation of its 

components. Thus, it is logical to formulate future earthquake-resistant design procedures in terms of the 

energy driving this process. From the mechanics point of view, this introduces nothing new, because the 

energy equations can be derived directly from the dynamic equilibrium equations. The advantage of using 

energy is that the duration of strong motion, the number of cycles to failure, and dynamic instability all can 

be addressed directly and explicitly. This, of course, requires scaling of the earthquake source and of the 

attenuation of strong motion described in terms of its wave energy. Trifunac et al. (2001d) reviewed the 

seismological aspects of empirical scaling of seismic wave energy, Es, and showed how the radiated energy 

can be represented by the functionals of strong ground motion (Trifunac, 1989; 1993; 1994). They 

described the energy propagation and attenuation with distance and illustrated it for the three-dimensional 

geological structure of the Los Angeles basin during the 1994 Northridge, CA earthquake, then they 

described the seismic energy flow through the response of soil-foundation-structure systems, analyzed the 

energy available to excite the structure, and finally examined the relative response of the structure.  

 

VI.1. Power Design 

 

Figure 15 illustrates the cumulative wave energies recorded at a building site during two hypothetical 

earthquakes, E1 an E2, and presents a conceptual framework that can be used for development of the power 

design method. E1 results in a larger total shaking energy at the site and has a long duration of shaking, 

leading to relatively small average power, P1. E2 leads to smaller total shaking energy at the site but has 

short duration and thus greater power, P2. The power capacity of a structure cannot be described by one 

unique cumulative curve, as this depends upon the time history of shaking. For the purposes of this 

illustration, the line labeled “capacity envelope of the structure” can be thought of as an envelope of all 

possible cumulative energy paths for the response of this structure. Figure 15 implies that E1 will not 

damage this structure, but E2 will. Hence, for a given structure, it is not the total energy of an earthquake 

event (and the equivalent energy-compatible relative velocity spectrum) but the rate with which this energy 

arrives and shakes the structure that is essential for the design of the required power capacity of the 

structure to withstand this shaking and to control the level of damage. 

 

Trifunac (2005) outlined the elementary aspects of such design based on the power of the incident wave 

pulses. He showed how this power can be compared with the capacity of the structure to absorb the incident 

wave energy and described the advantages of using the computed power of incident strong motion for 

design. Power (amplitude and duration) of the strong near-field pulses will determine whether the wave 

entering the structure will continue to propagate through the structure as a linear wave or will begin to 

create nonlinear zones (at first near the top and/or near the base of the structure; Gicev and Trifunac 
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2006a,b; 2007). For high-frequency pulses, the nonlinear zone, with permanent strains, can be created 

before the wave motion reaches the top of the structure—that is, before the interference of waves has even 

started to occur and lead to formation of mode shapes. Overall duration of strong motion (Trifunac and 

Novikova 1994) will determine the number of times the structure may be able to complete full cycles of 

response and the associated number of “minor” excursions into the nonlinear response range when the 

response is weakly non-linear (Gupta and Trifunac 1996), while the presence of powerful pulses of strong 

motion will determine the extent to which the one-directional quarter period responses (Trifunac 2005) may 

lead to excessive ductility demand, leading to dynamic instability and failure, precipitated by the gravity 

loads (Husid 1967). All of these possibilities can be examined and quantified deterministically by 

computation of the associated power capacities and power demands for different scenarios, for given 

recorded or synthesized strong-motion accelerograms, or probabilistically by using the methods developed 

for Uniform Hazard Analysis (Todorovska et al. 1995).  
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FIGURE CAPTIONS 

 

 

Fig. 1.   Chaos diagram showing regions of chaotic, chaotic and periodic, periodic (I, II, III, etc), and sub-

harmonic (4/3, 3/2, 5/3, etc.) motions for a nonlinear equation as functions of non-dimensionalized 

damping and forcing amplitude (from Ueda 1980). 

 

Fig. 2.  Single-degree-of-freedom system (SDOF) representation of a building (inverted pendulum) with 

equivalent mass and mass-less column height , experiencing rocking bm h rψ  due to horizontal motion of 

its base xΔ . 

 

Fig. 3.  Single-degree-of-freedom system (SDOF) representation of a building (inverted pendulum), with 

equivalent mass , moment of inertia (about O ) bm bI , and a mass-less column of height , experiencing 

relative rocking 

h

rψ  due to horizontal, vertical, and rocking motions of its foundation ( xΔ , , and zΔ yφ ), 

which result from soil-structure interaction when excited by incident wave motion. 

 

Fig. 4.  Six components of motion (three translations and three rotations) { } , ,  , , ,x y z x y zφ φ φΔ Δ Δ of 

point B , and six components of force (three forces and three moments) { }extF =  

{ }, ,by , , ,bx bz bx by bzF F F M M M , that the structure exerts on the foundation at B . 

 

 27



Fig. 5.  Schematic representation of the deformation of columns accompanying differential wave excitation 

of long structures for out-of-plane response (top) and in-plane response (bottom) when SH or Lave waves 

(top) or Rayleigh waves (bottom) propagate along the longitudinal axis of a structure. 

 

Fig. 6.  Bi-linear representation of stiffness (yielding at ), overturning moment of gravity force  

(

( , )y yu f

sinbm g ψ ), critical rocking angle ,r crψ , and meta-stable region ( ,0 r r<ψ ψ cr< ) for an SDOF system. 

 

Fig. 7. The structure deformed by the wave, propagating from left to right, with phase velocity xC , for 

the case of 
igv+ (“up” motion). Different column rotations 1ψ  and 2ψ  result from different translations 

and rotations at supports 1 and 2 (from Jalali and Trifunac 2007). 
 

 

Fig. 8  Example of the effects of the differential ground motion on the strength-reduction factors yR  at the 
four corners of the structure in Fig. 7, subjected to horizontal, vertical, and rocking components of the fault-
parallel displacement, for downward vertical motion (

igv− ) for earthquake magnitude M = 8, ductility 

8μ = , and delay at the right support 0.05τ =  s. The amplitudes of the piecewise straight representation 

of the classical yR  are shown for comparison (Jalali and Trifunac 2007).  shows the smallest 
values of the R-factors, which for the set of conditions in this example are determined by the response at 
the top left corner (for periods shorter than 0.1 s), at the bottom right corner (for periods between 0.1 and 
0.35 s), and at the top right corner (for periods longer than 0.35 s). 

min( )yR

 

Fig. 9.  Shear beam (building) (left) and incoming strong-motion displacement pulse (right) in the soil. 

 

Fig. 10.  Permanent displacements ( max 0.126u m= ) (top), and permanent strains 

( 1 2 30.31, 0.32, 0.20ε ε ε= = = ) (bottom), along the building versus dimensionless frequency η  and 

for dimensionless amplitude  = 0.3.α   

 

Fig. 11.  Linear displacements along the normalized length of the beam, = / bx Hχ , versus normalized 

time b = / 2 bt Hτ β , for dimensionless pulse amplitude = 0.03α  and dimensionless frequency = 3η . 

 

Fig. 12.   Nonlinear displacements along the normalized length of the beam, = / bx Hχ , versus 

normalized time b = / 2 bt Hτ β  for dimensionless pulse amplitude = 0.3α  and dimensionless 

frequencies  = 3η  (top) and  = 0.41η  (bottom). 

 

Fig. 13. Layout of the seismic monitoring array in the ICS building (dots, without arrows, show the NS 

recording channels). 
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Fig. 14.  Time-frequency analysis for the NS response of the ICS building: (a) ground acceleration, (b) 
relative roof response, and (c) system frequency versus time. 

 

 

Fig. 15.  Schematic comparison of strong-motion power demands E1 and E2 with an envelope of structural 
power capacity. 
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