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Summary  
The classical response spectrum method (RSM) was developed in 1932 for excitation by 
synchronous ground motion at all supports. It is shown in this paper how RSM can be 
generalized to the analyses of extended structures, (1) experiencing differential in-plane, 
and out-of-plane ground motions, and (2) crossing active faults.  A relative displacement 
spectrum for design of bridge columns, or of first-story columns in buildings, SDC (T, TT, 
ζ, ζT, τ), is defined.  In addition to the natural periods of the in-plane response, , and of 

the out-of-plane response, , such that , and the corresponding fractions 

of critical damping, 

INT

OPT
~ OP

~ ~IP OPT T T
~IPς ς ς , this spectrum also depends on the fundamental period 

of torsional vibrations, TT, and the corresponding fraction of critical damping, ζT, on the 
“travel time,” τ (of the waves in the soil over a distance of about one-half the length of the 
building, or the distance, L, between the bridge columns), and on the fault dislocation 
amplitudes. The new spectrum, SDC, can be estimated by using the empirical scaling 
equations for (1) relative displacement spectra, SD, (2) for peak ground velocity, vmax, and 
(3) empirical equations for prediction of fault slip in terms of fault dimensions and 
earthquake magnitude. Computation of the new SDC spectra is illustrated for a hypothetical 
fault and a long continuous bridge, with a rigid superstructure.  
Key words:  Differential ground motion, response spectra, earthquake fault displacement 
 
 
 
 

1. Introduction 
The common use of the classical response 

spectrum method, for design of earthquake 
resistant structures, assumes that all points of 
building foundations move synchronously and with 
the same amplitudes. This, in effect, implies that 
the wave propagation and permanent deformation 
in the soil can be neglected. Unless the structure is 
long (e.g., a bridge with long spans, a dam, a 
tunnel) or “stiff” relative to the underlying soil, 
these simplifications are justified and can lead to a 
selection of approximate design forces. 
Approximate analyses suggest that when a/λ < 10-

4, where a is wave amplitude of ground motion and 
λ is the corresponding wavelength, the wave 
propagation effects on the response of simple 
structures can be neglected (Todorovska and 
Trifunac, 1990).  

The purpose of this paper is to show how the 
response spectrum method can be extended for the 
design of long structures, with multiple supports 

(e.g., bridges), when those have to cross an active 
fault. For this it is necessary to combine the 
simultaneous action of: (1) the dynamic forces 
caused by shaking, (2) the differential motions 
resulting from wave passage, and (3) the 
permanent displacements of the foundations 
caused by faulting. 
 
2. Static and dynamic loads 

Response Spectra 

The dynamic response of structures, to 
strong ground shaking, can be characterized by the 
response spectrum amplitudes. Response Spectra 
show the maximum relative displacement, 

( , )SD T ς , relative velocity ( ~ ( ,SD T )ω ς
( , )SD T

), or 
absolute acceleration ( 2~ ω ς ) of an 
equivalent single degree of freedom system excited 
by ground shaking, where T is natural period of 
the oscillator, 2 /Tω π= , and ς  fraction of its 
critical damping. 
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The concept of response spectrum was 
introduced by Biot in 1932 (Biot, 1932; 1941; 
1942; Trifunac, 2006a,b) and at present it 

continues to be the principal tool in Earthquake 
Engineering for the design of structures to 

withstand earthquake shaking. Figure 1 illustrates 
four classical shapes of acceleration spectra 
( 2 ( , )SD Tω ς ) normalized to unit ground 
acceleration. The spectra of Biot (1941,1942), 
Housner (1959) and Newmark et al. (1973) 
illustrate the early attempts to define the fixed 
shape spectra, all scaled by one amplitude factor, 
usually peak design (ground) acceleration. The 
spectra of Trifunac (1978) illustrate the variable 
shape spectra. In Fig. 1 the dependence of the latter 
spectral amplitudes is illustrated for two different 
magnitudes 4.5 and 7.5, and for two site 
conditions: s=0 for sites on sediments, and s=2 for 
sites on the basement rock. Division of the spectral 
amplitudes in Fig. 1 by  will result 
in the corresponding shapes of the relative 
displacement spectra 

2 (2 / )Tω π=

( , )SD T
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ς . Further details on 
empirical scaling of spectral amplitudes can be 
found in a review paper by Lee (2002).  

 

Pseudo-Static Differential Motions Caused by 
Wave Passage 

Figures 2a and b illustrate “short” waves 
propagating along the longitudinal axis of a 
building or a multiple-span bridge. For simplicity, 
the incident wave motion has been separated into 
out-of-plane (OP) motion (Fig. 2a) and in-plane 
(IP) motion (Fig. 2b). The in-plane ground motion 
can be separated into horizontal (longitudinal), 
vertical, and rocking and torsional components, 
while the out-of-plane ground motion consists of 
horizontal motion in the transverse direction 
rocking about the longitudinal and transverse 
bridge axes, and torsion along the vertical axis. 
Trifunac and Todorovska (1997) analyzed the 
effects of the horizontal in-plane components of 
differential motion for buildings with models that 
are analogous to the sketch in Fig. 2b, and showed 
how the response spectrum method could be 
modified to include the first-order effects of 
differential motions. Trifunac and Gicev (2006) 
extended this approach to out of plane response of 
structures. Trifunac and Todorovska (1997) have 
shown that the relative displacement of different 
foundations for in-plane response to horizontal 
ground motion can be estimated in terms of maxv τ , 
where  is the peak ground velocity, from   maxv

Fig. 1. Examples of four pseudo acceleration 
spectral shapes. 

λ

a

H

L

c

SH  or  Love Wave

x

( ){ }max

1/ 222
max( , , )SDC T u vζ τ τ≈ +    .      (1) 

Likewise, Trifunac and Gicev (2006) have shown 
that the relative displacement of different 
foundations for out-of-plane response can be 
estimated from                                          

Fig.2(a) A structure excited by passage of SH
or a Love Wave. 
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Fig. 4 The fault model. 

( ){ }max

1/ 222
max( , , , , ) 2T TSDC T T u vζ ζ τ τ≈ +    (2) 

2

Fig. 2(b) A structure excited by passage of  Rayleigh wave.
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Fig. 3 Peak velocities at fault surface for two
probabilities of being exceeded p = 0.5 and 0.8. 

where   and TT Tς  are the first natural period of the 
system in torsion, and fraction of the 
corresponding damping respectively. In Eqs. (1) 
and (2)  represents Relative Displacement 
Response Spectra for design of columns, and 

SDC

                         .i
i

av

sxτ
β

≡                     (3) 

 
βav is the average shear-wave velocity in the top 30 
meters of soil, s is an empirical scaling factor that 
is of the order of one (Trifunac and Gicev, 2006), 
and ix  is the distance from a central point in the 
structure (or a bridge) to the i-th column being 
analyzed. Typical values of τ are less than 0.1 
(Trifunac, 1997).  
 
In Eq. (1) and (2) are the relative displacement 
spectra 

max
u

)( ,SD T ς , for in-plane and out-of-plane 
relative displacement responses respectively, that 
can be estimated by dividing the spectral shapes in 

Fig. 1 by ω , or directly using empirical scaling 
equations (Lee, 2002; Trifunac, 1978; Lee and 
Trifunac, 1995a,b). For simplicity in this note, and 
without loss of generality, it is assumed that 

, and ~ ~IP OPT T T ~ ~IP OPς ς ς

C

. 
 
Once  has been evaluated, the maximum 
shear in the i-th column becomes  

SDC

          
maxi iV k SD≈                             (4) 

where  is the stiffness of that column. ik
 
To apply Eqs. (1) and (2) it is also 
necessary to have estimates of peak 
ground velocity at zero distance from the 
fault (epicentral distance R=0).  
Figure 3 presents such estimates for sites 
on sediments (s=0) and basement rock 
(s=2), for probabilities of excedance p = 
0.5 and 0.8, and for earthquake 
magnitudes between 4.5 and 7.5 
(Trifunac, 1976). 

 

Rayleigh Wave

c

H

λ

L

a

Pseudo-Static Differential Motions Caused by 
Faulting 
 

In densely populated areas near the 
continental margins, characterized by numerous 
faults with moderate to high seismic activity, 
lifelines (highway bridges and tunnels, aqueducts, 
gas lines) crossing active faults are not uncommon. 
For the design and retrofit of such structures, and 
for the assessment of their seismic performance, it 
is necessary to have rational estimates of the 

effects permanent ground displacement caused by 
seismic slip, will have on these structures. In this 
paper we present a deterministic methodology for 
the assessment of permanent deformation of 
structures crossing a fault, due to slip on that fault 
caused by an earthquake.  
 

The methodology for estimating the design 
criteria to account for the fault displacement 
involves only one fault zone. However, not every 
earthquake in that source zone affects the site 
(while every earthquake will cause some level of 
shaking, depending on the distance).  Part (a) of 
Fig. 4 shows a fault with length L and width W, 
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dipping at angle δ, and extending from the ground 
surface to depth sinH W δ= .  Part (b) shows the 
fault surface, the site by a solid triangle, and three 
hypothetical ruptures, one of which affects the site, 
another one that occurs at depth and does not break 
the ground surface, and a third one that breaks the 
ground surface, but does not extend horizontally to 
the site.  The possible ruptures have lengths LR(M) 
and widths WR(M), which both depend on 
magnitude.  Simplifying assumptions in the model 
are (1) that the distribution of relative 
displacements at the ground surface can be 
described by a parabola along the ruptured 
segment of the fault trace, with zero amplitudes at 
the fault ends, and maximum in the middle, and (2) 
that the static displacement field does not decrease 
with distance from the fault. This is appropriate for 
typical bridges, with the spans of the order of 
hundreds of meters, in which case this 
“attenuation” effect is small compared to the 
overall uncertainty of the estimation.  

For estimating LR and WR one can use Trifunac 
(1993a,b), or Wells and Coppersmith (1994), or   

10log ( ) 0.511 1.934;RL M M= −

10log 0.229 0.513RW M= −
                      

                            (5) 

that is derived by least squares fit through a subset 
of the data gathered by Wells and Coppersmith 
(1994) that corresponds to California earthquakes 
(Todorovska et al. 2005).  
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                             Fig. 5  Rupture length and width. 

Fig. 5 shows LR and WR versus magnitude for 

model 3 of Trifunac (1993a,b) (the medium thick 
lines), consistent with seismological estimates of 
rupture length and width, with theoretical 
earthquake source models, and with empirical 

scaling models of peaks and spectra of strong 
ground motion (Lee et al., 1995; Trifunac, 1993a).  
Fig. 5 also shows empirical relations for LR and WR 
of Wells and Coppersmith (1994) (the thin lines) 
for “all” types of faulting, derived from worldwide 
data, and valid for . The open 
circles and rectangles show a subset of the data for 
LR and WR gathered by Wells and Coppersmith 
(1994) for earthquakes in California.  The 
corresponding full symbols show data gathered by 
Trifunac (1993a,b) from various published 
seismological estimates.  The thick lines represent 
LR and WR as defined in Eq. (5) and used in this 
paper. 

4.8 7.9M≤ ≤

 
The next important part of this analysis is 

the choice of scaling law for the permanent 
displacement across the fault.  We considered 
adopting one of the published models, in 
particular, those of Wells and Coppersmith (1994), 
and the models for dmax of Lee et al. (1995), where 
dmax is the peak of strong motion ground 
displacement. The former present models that are 
linear fits through worldwide data for the 
logarithm of surface displacement versus 
earthquake magnitude, separately for different 
types of faulting, and also for all types of faulting, 
valid within the range of the data.  For example, 
for the case of “all” types of faulting (for which the 
regression is most stable due to the larger number 
of data points) they use data from 148 events, and 
their model is valid for magnitudes between 5.6 
and 8.1.  The standard deviation of the logarithm 
of the displacement for this regression is 0.36, or a 

factor of 2.3, which is comparable to the 
scatter of the scaling laws for prediction of 
amplitudes of ground shaking.  The models 
for dmax of Lee et al. (1995) predict peak 
ground displacement as a function of 
earthquake magnitude, distance from the 
source, propagation type characteristics, and 
various combinations of geologic site and 
local soil conditions.  Their models were 
derived by multi-step regression analysis of 
strong motion data of peak ground 
displacement (computed from recorded 
accelerograms, after correction for the 
reduction due to baseline correction and high-
pass filtering), from about 2,000 three-
component accelergrams recorded in the 
Western U.S., in such a way that on the fault 
(at zero epicentral distance) they are 
consistent with fault dislocation data.  Based 

on extrapolations using physical source models, 
their models are valid for all magnitudes, and 
predict decay with distance near the source 
consistent with a theoretical model of radiation 
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from a dislocation.  Further, these models are also 
consistent with the long period asymptote of the 
frequency dependent attenuation models of Lee 
and Trifunac (1995a,b) of ground motion in the 
near field.  The scatter of their model is such that 
the standard deviation of log10 dmax is 0.38, or a 
factor of 2.4.  We opted for one of the models of 
Lee et al. (1995) because of its consistency with 
ground shaking hazard models, which is important 
for structures sensitive both to ground shaking and 
to static displacements.  As the uncertainty in the 
predictions remains relatively large (grater than a 
factor of 2), for meaningful comparison and 

balanced estimates of the consequences upon a 
structure, it is essential that the scaling laws are 
consistent.   

Fig. 6 Data and scaling laws for D for earthquakes in California.

We assume symmetric rupture, in which case the 
displacement at the ground surface across the fault, 
D=2dmax. While the displacement along the trace 
of the fault varies, and may even be discontinuous, 
we assume that the scaling law predicts the 
average over the length of the rupture, and that the 
variability is captured by the scatter of the scaling 
law for dmax.   In particular, we adopted the Mag + 
site + soil + % rock path model for dmax of Lee et 

al. (1995), at epicentral distance R = 0 
km, and for hypocentral depth 

0.5 sinR RH W δ=  (see Fig. 4). 
Furthermore we adopt the following 
path and site conditions:  (entire 
travel path is through rock), s = 2 
(“rock” geologic site condition) and sL 
= 0 (“rock” local soil condition).  Lee 
et al. (1995) also analyzed the 
distribution of the residuals of log10 
dmax, and showed that normal 
distribution with mean  and 
the standard deviation 0.3975 is 
reasonably close to the actual one.  
Hence, D can be modeled as lognormal 
random variable, such that log10 D has 
the following representation of its 
mean   

1r =

0− .0090

 

                  

( )10 0

2
10

2 247log , 0, 0.5 sin , , 0 649

0 0518* 2 0.341 2 985 0 137 0 0306 log 2 0.0090
R R RM M R H W S S L M

c M

μ δ⎡ ⎤= − . Δ = = / + .⎣ ⎦
+ . − − . − . − . + −                    

(6)

and standard deviation σ  = 0.3975, where D is in 
cm, M⎯earthquake magnitude, Δ⎯(in km) 
“representative” source to station distance, 

for horizontal, and 0c = 1c = for vertical motions.  
The “representative” source to station distance, 
proposed by Gusev (1983), depends on physical 
distance and on the size of the rupture, 
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 , where  

⎯source dimension, and ⎯source coherence 
radius (both functions of magnitude), and is never 
zero, even for a point on the fault.   

Fig. 7(a) Straight continuous bridge 
crossing narrow fault zone 

Fig. 6 shows D=2dmax versus magnitude, as 
predicted by the model (the thick lines), against the 
data for average dislocation, u , gathered by 
Trifunac (1993a,b), and the data for average (AD) 
and maximum (MD) displacement gathered by 
Wells and Coppersmith (1994) for California 

earthquakes.  It can be seen that the model is in 
good agreement with the data.  This figure also 
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shows the regression model of Wells and 
Coppersmith (the weaker lines) for average 
displacement for “all” types of faulting. 
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)

u x .

Combination rules for estimation of the total 
differential displacement of the columns of a 
bridge will depend on the structural system and on 
its geometric relationship to the earthquake fault, 
and therefore must be formulated specifically for 
each structure. In the following we present an 
example for a continuous, straight, multi-span 
bridge girder, assumed to be stiff (rigid) in the 
horizontal plane, and supported by columns at 
equal spacing L. The angle between the bridge 
girder and the fault is determined by the specific 
design, but from the point of view of this analysis 
can be arbitrary.  The surface expression of the 
fault can be a narrow straight line (Fig. 7(a)), or a 
fault zone with width G (Fig. 7(b)). For simplicity 
of this example it is assumed that the fault motion 
is pure right-lateral strike-slip. Within the fault 

zone we assume that  can be approximated 
by . For carefully mapped fault zones 
the motion within the fault zone can be modeled in 
more detail on a site-specific basis. We further 
assume that the variation of dislocations along the 
fault, , can be approximated by a parabola, 
with 

( ) / 2u x
( ( ) /u x G y

( )u x
x  oriented along the fault (see Fig. 4b), and 

with the maximum dislocation in the middle of the 
fault, (see insert in Fig. 8), at 

. We assume that the overall length of 

the bridge is small, relative to the fault dimensions, 
and therefore neglect the attenuation of permanent 
displacements away from the fault. All of the 
above assumptions can be modified, based on the 

detailed analysis of the bridge, its kinematic 
constraints, of site geometry, geological 
interpretation of the expected fault motion, 
expected seismic activity on the fault and preferred 
method for combining the loads. However, when 
analyzing relative displacements and relative 
rotations of structural components for bridges not 
comprised of continuous girders on the segments 
crossing the fault, each site will have to be 
examined on an individual basis. The following 
example illustrates the deterministic, worst-case 
scenario, and leaves presentation of the associated 
probabilistic method of combining different 
displacements for a future study.  

maxu =
/ 2Rx L=

3 /D 2

 
In Fig. 8 the solid continuous line, labeled 

( , )SD T ς represents the standard relative 
displacement spectrum. It can be evaluated by 
considering one of the classical examples reviewed 
in Fig. 1, or in terms of modern direct empirical 
scaling equations (e.g., Lee, 2002). Continuation of 
this curve into the long period range, say beyond 
1s periods, will asymptotically approach , 
or depending where the bridge site is 
relative to the fault length. In either case the very 
long period amplitudes of 

max / 2u

)

( ) /u x 2

( ,SD T ς will be 
determined by the permanent ground displacement 
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at the location of the structure. During earthquake 
the largest dynamic displacement pulse with 
amplitude may also contribute to intermediate 
and long period ground motions and thus to the 
response of the structure. 

maxd

max

max

u v

 
In this example we include only those 

earthquakes that occur on the fault intersecting the 
bridge. The arrival of energy along the fault 
surface will produce predominantly P, SV and 
Rayleigh wave motions with displacement 
amplitudes in the direction along the fault surface 
(L). The SH and Love waves will produce the 
motions with displacements perpendicular to the 
fault surface (T). Assuming simultaneous action of 
dynamic and pseudo static effects from the 
differential motions alone, the resultant SDC 
amplitudes will be 

 

(
(

1/222 2 2
max max

22 2
max max

sin sin cos

2 sin sin cos

L L T

T T L

v
SDC

u v v

α α α τ

α α α τ

⎧ + +⎪= ⎨
⎪ + +⎩

)
) 2

+⎫
⎪
⎬
⎪⎭

 .                                                            (7) 

Assuming , ~ ~IP OPT T T ~ ~IP OPς ς ς , 

maxu umax~ ~
L T

( , )SD T ζ ,  

and , we obtain max max~ vmax~
L T

v v
 

({ ) }2

2( )SD

( ) / 2u x

1/ 222 2 2
max3 sin sin cosSDC v τ α α α= + +

                                                                      (8) 
 
Adding the contribution of the relative fault 
motion, , then gives the final answer 
 

( ){ }2

) 3D= +

( sin

1/ 222 2 2 2
max2( sin sin cos ( ) / 4SDC S v u xτ α α α+ +

           .                                                           (9) 

The dislocation rise time (Trifunac and 
Novikova, 1995) and the multiplicity of the source 
(Trifunac and Brune, 1970) could be longer than 
the duration of strong motion. Hence, to be 
conservative, we assume the worst case scenario, 
that the time windows of strong motion shaking 
(coincident with the time window when differential 
motions are the largest), and of the fault 
displacement rise time overlap. In Eq. (9), the term 

)22sin cosα α α+

α =
0

090α =

then monotonically 

grows from zero at  to maximum equal to 
1.4 near , and then decreases to one at 

. Thus, the contribution of the differential 

wave motions to SDC is zero when the bridge is 
perpendicular to the fault ( ), and near 
maximum when the bridge is almost parallel to the 
fault ( ). Inhomogeneities of the rocks in 
the fault zone and the associated scattering of the 
waves will smear these simple trends, resulting in 
arrivals which could be represented by a 
distribution of 

0

0

0

s

0
70α =

0α =

90α =

α , and averaging out of the 
differential motion effects. Comparison of the 
amplitudes in Figs. 3 and 6 shows that maxv τ  and 
D have comparable amplitudes when 1τ = . For 
typical bridge structures 0.1τ <  and therefore the 
relative contribution of differential wave motions 
will be small for x  near , and may become 
important only near the ends of the fault 
(

/ 2RL

0= and Rx L= ). For  and 0x < Rxx L> , 
( )u x 0= , and the differential wave motion 

becomes the only contributing term in Eq. (9). 
  
4. Discussion and Conclusions 

The purpose of this note has been to 
illustrate a simple design approach and an example 
on how to analyze simultaneous action of inertial 
forces, differential motions (caused by passage of 
strong motion waves), and of fault displacements, 
all accompanying an earthquake event, on a fault 
crossing a structure. Based on the previous 
experience with elements of this type of analysis, 
we show how the result can be presented as a 
superposition, via square root of the sum of the 
squares (SRSS) of (1) relative spectral 
displacements, SD, of the single degree of freedom 
system for shaking above the moving fault, (2) 
pseudo static deformation of columns caused by 
propagation of seismic waves through the soil, and 
(3) the slip on the earthquake fault. To simplify 
presentation, the method of analysis is illustrated in 
terms of horizontal ground motions only, strike-
slip fault motion, and for a stiff continuous bridge 
supported by equally spaced columns. This 
approach can be generalized to simultaneous action 
of horizontal and vertical motions and to other 
structural systems. 

 
The results are illustrated in a deterministic 

framework, for the worst-case scenario, when a 
large earthquake occurs directly beneath the 
structure. In this case, the main contributions to the 
extreme forces in the structural columns come 
from the dynamic response to strong shaking, and 
from the pseudo-static fault displacements. During 
such an event, typical contributions from 
differential wave motions will be small (about one 
order of magnitude smaller). A more general 
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approach will be to consider the contributions of 
all events in the area surrounding the structure, not 
just of the earthquakes on the fault crossing the 
structure, and then to perform a hazard analysis 
(Todorovska et al, 2005). In that case the final 
result will depend on the relative size of the fault 
crossing the structure, the size of and distances to 
the active faults in the area surrounding the 
structure, their seismic activity, and on the nature 
of the expected faulting. Such generalizations will 
be presented in future papers. 
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