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Abstract

Strength-reduction factors are analyzed for simplified near-fault, fault-normal and fault-parallel strong-motion displacements. It is

shown that the common design rules for selection of the strength-reduction factors are conservative and properly describe the reduction

amplitudes near faults of strong earthquakes, for fault-normal pulses. However, for fault-parallel displacements, the same

reduction factors are not conservative and should be changed. It is recommended that for design close to active faults, the

strength-reduction factors for all components of motion should be constant for all periods and equal to (2m�1)1/2, where m is ductility.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Engineering design of earthquake-resistant structures
usually begins with pushover analyses (FEMA [1,2]; ATC
[3]), which are scaled by target displacements determined
from the inelastic response of the corresponding single-
degree-of-freedom system (SDOF). Since the design
ground motions are usually specified in terms of the
response spectra of linear oscillators, this requires that the
relationship between the peak relative displacement
response, u0, of the linear SDOF system and of its inelastic
counterpart, um, be properly specified for the required
design parameters and environment. By defining the yield
strength-reduction factor as Ry ¼ u0/uy, where uy is the
yielding displacement of the SDOF system equivalent
spring, and ductility as m ¼ um/uy, for the same ground
motion, the ratio um/u0 is then equal to m/Ry.

The relationship between the maxima of non-linear and
linear responses of SDOF systems, um and u0 (Fig. 1a), for the
same excitation, has been studied extensively during the past
40 years. In one of the first studies by Veletsos and Newmark

[4] it was shown that for a long-period SDOF system, when
its natural period Tn-N, um/u0-1 (equal deformation
rule), and that for the response amplitudes governed mainly
by the peak excitation velocities, um=u0! m=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� 1
p

(equal
strain energy rule). With the gradual increase in the number
of the recorded strong-motion accelerograms [5] these rules
were further refined to reflect the trends observed in the
responses to the recorded data [6–9] for different site
conditions and ductility factors [10,11], for rupture distance
and the earthquake magnitude [12], and for fault-normal
near-field records in the zone affected by directivity [13,14].
For reinforced concrete structures, the range of Tn, where
equal deformation rule applies was described by Shimazaki
and Sozen [15], and it was suggested by Ruiz-Garcia and
Miranda [16] that the average value of the ratio um/u0 is not
much influenced by the recording site classification, by
earthquake magnitude, when u0/uyo4 (uy is yield deforma-
tion), or by rupture distance. Other studies have shown that
um/u0 for the high frequencies of the response (acceleration-
sensitive region) are reduced by the postyield stiffness [17,18]
and increased by stiffness degradation [18–20] and pinching
of the hysteresis loop [21,22].
The weakness of many of the above-mentioned studies is

that in a given paper only one or two governing parameters
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are considered, with de facto averaging over all other
parameters. Furthermore, the data set considered in most
studies is not large enough to detect all significant
dependencies with confidence. The exceptions to this trend
can be found in two papers, one by Tiwari and Gupta [23]
and the other by Chakraborti and Gupta [24]. Both papers
present comprehensive regression models based on large
data sets, and show the clear dependence of the strength-
reduction factors on magnitude predominant period,
duration of strong motion, and geologic site conditions.

In the near field of large earthquakes, and especially
close to surface rupturing faults, the strong-ground motion
can be dominated by the permanent displacements
(typically parallel to the fault surface) and by large pulses
(often perpendicular to the fault). Traces of these large
displacements and pulses may not always be obvious in the
processed records of the recorded motions because of the
band-pass filtering, designed to eliminate digitization and
processing noise [25–28]. This processing filters out the
long-period ground displacements, and thus eliminates all
permanent displacement components.

The purpose of this paper is to show how the strength-
reduction factors depend on the amplitudes and duration
of the near-fault pulses and displacements, in the condi-

tions when these dominate the near-fault ground motion.
The results should help in the selection of the correct design
criteria for structures located in the vicinity of active faults
and in the development of the regression equations for
the strength-reduction factors when the distance between
the site and the fault surface approaches zero. In general,
the strength-reduction factors depend on the time history
and the transient nature of the excitation, on the linear and
non-linear characteristics of the SDOF system adopted
for the analysis, and on the initial conditions. Since
the recorded strong-motion data at or very close to the
causative fault continue to be limited, the results of this
study should help us understand how the known results for
intermediate and far-field records of strong motion would
change when extrapolated toward the fault rupture.

2. Near-source ground motion

Strong-ground motion near faults can be complicated
due to irregular distribution of fault slip [25,29,30] because
of non-uniform distribution of geologic rigidities surround-
ing the fault, non-uniform distribution of stress on the
fault, and complex non-linear processes that accompany
the faulting. Thus, in general, it is not possible to predict
the detailed nature of the near-fault ground motion and of
the associated pulses. In this paper we adopt a simplified
approach and model these motions by smooth pulses,
which have correct average amplitudes and duration, and
which have been compared to and calibrated against the
observed fault slip and the recorded strong motions in
terms of their peak amplitudes in time and their spectral
content [31,32].
Fig. 2 shows schematically a fault and two characteristic

simple motions, dN (Brune’s near-field displacement) and
dF (Brune’s far-field pulse), which describe monotonic
growth of the displacement toward the permanent static
offset, and a pulse, which near faults is usually perpendi-
cular to the fault and associated with failure of a nearby
asperity or passage of dislocation under or past the
observation point [33].
For excitation by a pulse, we chose the Brune’s ‘‘far-

field’’ pulse (Fig. 2-center)

dFðtÞ ¼ AFte�aFt, (1)

where the values of AF and aF, for different earthquake
magnitudes, are shown in Table 1 [31]. Since the strong-
motion data are abundant only up to about M ¼ 6.5, we
place the values of aF and AF, for M ¼ 7 and 8, in Tables 1
and 2 in parentheses to emphasize that those are based on
extrapolation. For the near-field permanent displacement,
we consider the Brune’s displacement (Fig. 2-bottom)

dNðtÞ ¼
AN

2
ð1� e�ðt=tNÞÞ, (2)

where the values of AN and tN, for different earthquake
magnitudes, are shown in Table 2 [31].
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The amplitudes of dF and dN have been studied in
numerous regression analyses of recorded peak displace-
ments at various distances from the fault and in terms of
the observed surface expressions of fault slip. The latter are
traditionally presented as average dislocation amplitudes,
ū, and are related to dN, as ū ¼ 2dN (see Fig. 2 top). Fig. 3
(bottom shaded zone) shows, for example, the range of
average (p ¼ 0.5, where p is the probability of no
excedance) peak ground displacements, dmax, versus
magnitude, calculated at epicentral distance R ¼ 0 km for
the recording site conditions in the range from sediments
(s ¼ 0), to the basement rock (s ¼ 2) [34]. The top gray
zone shows the corresponding range for the 10% prob-
ability of being exceeded. The same figure also shows
dF,max (see Table 1), the peak amplitudes of dF used in this
study. It is seen that the amplitudes of dF,max shown in
Table 1 are consistent with extrapolations from the
recorded strong-ground motion in the far field, and are
close to dmax for p ¼ 0.5 and s ¼ 0, and p ¼ 0.9 and s ¼ 2.
Fig. 4 summarizes the trends of average dislocation

amplitudes, ū ¼ 2dN, versus magnitude M. Average
dislocation is the value of dislocation amplitudes averaged
over the fault surface and is the quantity used in spectral
interpretations of near-fault and near-field motions and of
the body wave amplitudes in the far field. Various symbols
show the results extracted from the studies of selected
earthquakes [35,36,59], while the two gray zones outline the
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Table 1

Characteristics of Brune’s pulse displacement (Trifunac [31])

M (magnitude) aF (1/s) AF (cm/s) dF,max(cm) _dF;maxðcm=sÞ

4 14.04 56.48 1.48 56.48

5 7.90 151.61 7.06 151.61

6 4.44 546.97 45.32 546.97

7 (2.50) (860.34) (126.6) (860.34)

8 (1.40) (1560.29) (410.0) (1560.29)

Table 2

Characteristics of Brune’s near-field displacement (Trifunac [31])

M (magnitude) tN (s) AN (cm) dN,max(cm) _dN;maxðcm=sÞ

4 0.55 4.9 2.45 4.45

5 1.2 29.2 14.6 12.17

6 1.8 245.5 122.75 68.19

7 (3.0) (1288.0) (644.0) (214.7)

8 (5.0) (4169.0) (2084.5) (416.9)
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80% confidence interval (bounded by p ¼ 0.1 and 0.9) for
the amplitudes of ū ¼ 2dN based on four regression models
(G4RM), which describe attenuation of strong-motion
amplitudes [31,37–40]. The dashed line shows the ampli-
tudes of 2dN,max as used in this paper (see Table 2). It is
seen that the agreement is excellent.

An important physical property of the dF and dN
functions, as used in this paper, is their initial velocity. It
can be shown that _dF�sb=ms, where s is the effective stress
(� stress drop) on the fault surface [31,39], b is the velocity
of shear waves in the fault zone, and ms is the rigidity of
rocks surrounding the fault. For _dN it can be shown that
_dF ¼ 0:5C0sb=ms, at t ¼ 0, where typical values of C0 are
0.6, 0.65, 1.00, 1.52, and 1.52 for M ¼ 4, 5, 6, 7, and 8
[31,39]. The largest peak velocities observed so far, are in
the range of and exceed 200 cm/s (170 cm/s, 5–10 km above
the fault of Northridge, California earthquake of 1994 [41],
and 229 cm/s at station TCU068, near the end of surface
expression of Che-lungpu fault, during Chi-Chi, Taiwan
earthquake of 1999 [42]). Because there are no strong-
motion measurements of peak ground velocity at the fault
surface, the peak velocities _dF and _dN can be evaluated
only indirectly in terms of s. The accuracy of the stress
estimates depends upon the assumptions and methods used
in interpretation of recorded strong-motion records and is
typically about one order of magnitude. Therefore, solving
the above equations for s we can use s�2ms _dN=ðbC0Þ

(dotted lines in Fig. 5) and s�ms _dF=b (continuous lines in
Fig. 5), to check their consistency with other published
estimates of s [35,36,59]. Fig. 5 show this comparison for
typical values of ms and b.

Since the dependence of both um/u0 and the yield
strength-reduction factor Ry ¼ u0/uy, versus period Tn,

are both functions of excitation and of the corresponding
spectral amplitudes for the linear response, we next
describe the PSV spectral amplitudes for dF(t) and dN(t)
motions at the fault. Figs. 6a and b show the linear pseudo
relative velocity (PSV) spectra computed for ground
motions represented by dF (Fig. 6a) and dN (Fig. 6b), for
magnitudes M ¼ 4, 5, 6, 7, and 8, and for the fraction of
critical damping z ¼ 0.05. In both figures, the role of large,
non-zero initial velocity is evident. It dominates the
amplitudes and the shape of PSV spectra, for both dF
and dN excitations, with spectral amplitudes approaching
constant asymptotes as Tn-0, whose amplitudes are equal
to _dF and _dN, respectively. At long periods, the corre-
sponding relative displacement spectra, SD ¼ PSV/on,
approach the asymptotes whose amplitudes are equal to
the peaks of dF and dN, dF,max, and dN,max, respectively.
With increasing magnitude, the corner frequencies, which
are direct functions of aF and tN [31] progressively move
toward longer periods. To enable a direct relative
comparison of spectral amplitudes, and to emphasize
how different the PSV spectral shapes are for dF and dN
excitations, we superimpose in Figs. 6a and b the average
PSV spectra estimated by regression analysis of more than
550 PSV spectral amplitudes computed from recorded
accelerograms in the western US; they were recorded on
sediments (s ¼ 0) or on geological basement rock (s ¼ 2),
for a fraction of critical damping z ¼ 0.05, at ‘‘epicentral’’
distance R ¼ 0 km, and for magnitudes M ¼ 4.5, 5.5, 6.5,
7.5, and 8.5 [43].
Amplitudes of PSV spectra of the linear response of

SDOF systems can be viewed, and scaled, in three period
ranges, where the PSV amplitudes are proportional to (1)
peak ground acceleration (short periods), (2) peak ground
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velocity (intermediate periods), and (3) peak ground
displacement (long periods) [6]. As will be seen throughout
this paper, when the motion begins with a sudden jump in
ground velocity (caused by a sudden stress drop on the
fault surface), this large initial velocity also dominates the
spectral amplitudes for the short periods of the oscillator
and the ‘‘acceleration-dominated’’ zone of PSV amplitudes
disappears. This results in essentially constant PSV
amplitudes in the short-period range.

We note that the effect of large initial velocities, _dF and
_dN, on the PSV spectral amplitudes in the short-period
range is reminiscent of the effects of differential motions,
particularly for stiff structures, at soft soil sites, and for
large plan dimensions. There, the peak strains in the soil
(proportional to peak ground velocity) lead to constant
PSV spectral amplitudes at short periods [44,45].

The presence of the motions resembling dN in the
recorded velocities and displacements filtered by data
processing will be noticed by a trained eye in numerous
plots of processed strong-motion records [46]. The
frequency of the occurrence and the amplitudes of such
pulses are larger for the motions recorded closer to the
causative faults. For the examples of dF and dN in this
paper there is a Dirac delta function for accelerations at
time zero. In the observed motions, because of wave
propagation through sediments and soil, this will corre-
spond to large but not infinite accelerations.

Fig. 7 (top) shows one of the early examples of the
ground displacement, perpendicular to the fault, recorded
during the Parkfield, California earthquake of 1966 [30].
This displacement, computed by double integration from
the recorded accelerogram [47] is used here to illustrate the
actual near-fault ‘‘pulse-like’’ ground motion, which in this

paper is modeled by dF (shown in Fig. 2, middle).
Fig. 7(bottom) shows the ground displacement computed
during the San Fernando, California earthquake of 1971
[48]. This displacement has been high-pass filtered by the
routine data processing methods [26], and therefore does
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not contain periods of motion longer than 15 s. However in
spite of the high-pass filtering it shows clearly two episodes
of permanent ground displacements, starting near 2.5
and 7 s. Further examples of how dN for this earth-
quake appeared near fault can be found in Figs. 6 and 10 of
Trifunac [29], which are based on synthetic computation
of the fault slip during the San Fernando earthquake of
1971.

3. Inelastic deformation ratio

The yield strength-reduction factor is Ry ¼ f 0=f y ¼

u0=uy, where all the quantities are defined as in Fig. 1a.
For ductility m ¼ um/uy, the inelastic deformation ratio um/
u0 is then equal to m/Ry. The inelastic deformation ratio,
for known yield strength, and same excitation CRy

¼

um=u0 ¼ m=Ry, can be computed from calculated peak
responses um and u0. For given Ry, the associated ductility
demand is then determined from m/Ry. Iterations are
required to compute the inelastic deformation ratio,
Cm ¼ um/u0, for specified ductility factor because different
values of fy may lead to the same m. Because Cm is not
unique, the convention is to choose the largest fy
corresponding to the largest Cm [49].

For stiff, high-frequency oscillators, when Tn-0, the
relative displacement of the mass, u, and its relative
velocity, _u, are essentially zero. Then the absolute accel-
eration of the mass m is the same as the absolute
acceleration of the ground €ug, and f ¼ �m €ug, independent
of the force-displacement relationship, and therefore
fmEf0. From Fig. 1a it is seen that f y þ ðm� 1Þaf y ¼ f m,
and when fmEf0, 1+(m�1)a ¼ Ry. Then, as Tn-0, for
a ¼ 0, Ry! 1, and um/u0-m. For a40, Ry is larger than
one, and um/u0om.

For large initial velocity of ground motion, and for the
oscillator periods, for which the response amplitudes are
dominated by the peak amplitudes of ground velocity,
equating the kinetic and potential energies of response
leads to the requirement that the linear and non-linear
oscillators, at the peaks of their responses, should have the
same maximum strain energy. This leads to f 0u0=2 ¼
f yuy=2þ ðum � uyÞf y þ aðum � uyÞ

2=2 (see Fig. 1a). For
a ¼ 0, this simplifies to Ry ¼ (2m�1)1/2, and for m ¼ 1.5,
2, 4, and eight Ry ¼ 1.41, 1.73, 2.65, and 3.87, respectively.
Then um=u0 ¼ mð2m� 1Þ�1=2.
For long periods of the oscillator, when Tn-N and its

stiffness approaches zero, both um and u0 approach the
negative of the peak ground displacement ug, and then um/
u0-1, and Ry-m. This is known as the equal displacement
rule [4].

4. Strength-reduction factor

Since the inelastic deformation ratio um/u0 is equal to
m/Ry, for estimation of the non-linear response of an SDOF
system, it suffices to describe the dependence of Ry versus
Tn in terms of the parameters that characterize strong-
ground motion and the physical characteristics of the
structure (SDOF). The characteristics that will determine
the nature of the strong-ground motion may include; for
example, the size of the earthquake (usually in terms of a
magnitude scale); geometry and the slip on the causative
fault; the geometrical relationship between the site and the
fault plane, usually expressed in terms of epicentral or
some other characteristic distance; directivity; the nature of
the medium between the source and the site; and the nature
of the geological and soil conditions at the site. The
characteristics of the SDOF system may include the nature
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of its force displacement properties like degradation of
stiffness in terms of the number of cycles and amplitudes of
the response, pinching of the hysteresis loop, consequences
of geometric non-linearities, the effects of gravity, dynamic
instability, coupling of the response to multi-component
excitation, and so on.

With the gradual increase in the number of the recorded
and processed strong-motion accelerograms, the depen-
dence of Ry versus Tn could be investigated using the
computed non-linear response first from several and then
from several hundred strong-motion records (e.g.),
[4,12,14]. Piecewise straight segments of thick lines in Figs.
8 show a typical example of Ry versus period Tn, for
m ¼ 1.5, 2, 4, and 8. Ry is equal to 1 for TnoTa, to
(2m�1)1/2 for TboTnoTc, and to m for Tn4Tc, where on
firm ground Ta ¼ 1/33, Tb ¼ 1/8, and Tc ¼ 0.55 s in this
example, but in general depends on damping. This
example, taken from Chopra [50], is based on and is
representative of the studies by Biggs, Elghadamsi, Hall,
Lai, Mohraz, Riddell, and Newmark [51,52,53]. The
sloping straight lines provide transition between the two
constant segments and Ry ¼ 1 for Tn-0. The trends of Ry

versus Tn, shown in Figs. 8, are average trends based on the
computation of non-linear response to a small number of
recorded strong-motion records and ignore any depen-
dence on earthquake magnitude, source to site distance, or
local site conditions.

Irregular thick lines, for m ¼ 2 and 4, in Figs. 9, redrawn
from MacRae et al. [14], show Ry versus period Tn, for
average strike-normal records at distances of 20–30 km
from epicenter, in the direction of rupture propagation, for

closest distance to rupture 0–10 km, and for fraction of
critical damping equal to 2%. Those are compared with Ry

computed for the near-fault pulse dF (Fig. 9a) and for the
near-fault displacement dN (Fig. 9b). MacRae et al. [14]
analyzed 154 earthquake records and reported that the
directivity effects cause a more severe response only for
periods Tn between 1 and 3 s. Their results showed no
significant dependence of Ry versus period Tn on earth-
quake magnitude.
Smooth wide lines in Figs. 10, for m ¼ 1.5, 2, and 4,

redrawn from Krawinkler and Nassar [54] show Ry versus
period Tn curves, which have been used in several other
studies [55–58]. As in many other previous studies, the
dependence of Ry on earthquake magnitude is assumed to
be small and hence is not considered.
The purpose of Figs. 8–10 here is to illustrate the range

of the variations in the shape of Ry versus period Tn

functions, based on different subsets of the recorded
strong-motion data, and to contrast those shapes with
the ones computed in this paper for near-fault pulse and
near-fault displacement.

5. Strength-reduction factors for near-fault motions dF and dN

We computed the relative response, u ¼ h sinf, of an
SDOF system (Fig. 1b) consisting of a rigid mass of length
L supported by two rigid mass-less columns, which are
connected at the top to the mass by circular springs and at
the bottom also by circular springs to the ground. The
stiffness of the springs is assumed to be elastic–plastic, as
shown in Fig. 1a, with a ¼ 0. The massless columns are
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connected to ground and to the rigid mass by circular
dashpots providing the fraction of critical damping equal
to 5%. Rotation of the columns is assumed not to be small,
which leads us to consider the geometric non-linearities.
The mass is acted upon by the acceleration of gravity, g,
and is excited by the horizontal ground acceleration, €ug, at
its base. The functional form of €ug is defined by the second
derivative with respect to time of the near-fault displace-
ments dF and dN, as in Eqs. (1) and (2), respectively. The
governing differential equation for the SDOF system in
Fig. 1b is then

€fþ 2onB _fþ FðfÞ=mh2
� ðg=hÞsinf ¼ �ð €ug=hÞcosf, (3)

where when a ¼ 0 (Fig. 1a),

FðfÞ ¼
kf when f

�� ��ofy

�kfy when f4fy or � fo� fy

(
(4)

and uy ¼ h sinfy, as in Fig. 1a.
When f is small, Eq. (3) reduces to

€fþ 2onB _fþ o2
nð1� gmh=kÞf ¼ � €ug=h, (5)

where o2
n ¼ k=ðmh2Þ, and g is acceleration of gravity.

In the presence of gravity, the SDOF system is stable
when fofs, and fs is determined from

FðfsÞ ¼ hmg sinfs. (6)

At f ¼ fs, the overturning moment by gravity force
hmg sinfsis equal to the restoring moment in the helical
springs F(fs). For simplicity, and to save computer time,
we assume that the system will collapse when f4fs.

It is seen that for large excitation amplitudes, this
structure will experience permanent distortions and may
collapse. In all calculations we consider simultaneous
action of the effects of gravity forces, dynamic instability,
and geometric non-linearities. For this structure, we
calculate um and u0, for dF and dN corresponding to
earthquake magnitudes M ¼ 5, 6, 7, and 8, for ductilities
m ¼ 1.5, 2, 4, and 8, and then plot Ry versus Tn. We overlay
the results in Figs. 8 through 10 for comparison with
previous studies on how Ry depends upon Tn. In Figs. 8a,
9a, and 10a we show our results for Ry versus Tn for
excitation by the pulse dF (Fig. 2 center), and in Figs. 8b,
9b, and 10b for excitation by the near-fault displacement
dN (Fig. 2 bottom).
In Figs. 8a through 10b, for periods Tn in the vicinity

and longer than about 10 s, the amplitudes of Ry become
sensitive to action of the gravity load. There, for large
magnitudes and ductilities, Ry dips to smaller amplitudes,
below the constant asymptotes equal to m. There, the
destabilizing effect of gravity and of horizontal excitation
lead to conditions that are close to collapse (f4fs). In
Figs. 8a through 10b, form44 the values of Ry for which
collapse occurs are shown by almost straight lines with
negative slopes, asymptotically approaching Ry curves
from above. In the zones labeled ‘‘Collapse zone,’’ only
minor increases in Ry will lead to collapse.
The classical strength-reduction factors equal to m for Tn

longer than about 0.5 s, and to (2m�1)1/2 for periods
between about 0.1 and 0.4 s (Fig. 8a), compare favorably
with our calculations and would be conservative if used
with near-fault excitation dF, except for short intervals in
Tn and for M ¼ 8. For all other magnitudes our results are
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above m or (2m�1)1/2. For short periods, our results for Ry

tend to an asymptote with amplitude equal to (2m�1)1/2,
which is a consequence of strong initial velocities asso-
ciated with a sudden onset of dF. Such behavior is observed
even when non-linearity is not present, as can be seen in
Fig. 6 for PSV spectra of dF and dN.

Fig. 9a shows similarity in the trends of our results for
M ¼ 5 with average trends presented by MacRae et al. [14].
Because their results show average trends, and because
most of their strong-motion data are for magnitudes less
than 7, it is possible to argue that their results reflect a
presence of strong-motion pulses corresponding to the
failure of single asperities for earthquakes less than about
5, and of multiple asperities for larger-magnitude events.
The physics behind this reasoning is described in two
papers by Trifunac [31,39]. His studies of spectral
characteristics of the recorded strong motion in California,
as viewed in the frequency range of interest for engineering
(say 0.1–25Hz), suggest that most earthquakes smaller or
equal to about M ¼ 5, could be viewed as failures of one
asperity, while the larger events can be viewed as failures
involving multiple asperities (with indicative numbers of 3,
15, and 90 asperities, for M ¼ 6, 7, and 8).

Our results for Ry versus Tn also agree qualitatively with
those of Krawinkler and Nassar [54], shown in Fig. 10a,
except that their results would not be conservative if used
for near-fault pulses when Tn is longer than about 1 s. In
Figs. 8b, 9b and 10b, for periods Tn longer than about
0.2–0.4 s, and for ductilities 4 and 8, the traditional design
curves illustrated here [14,50,54] are not conservative.

6. Discussion and conclusions

We have described the variations in the strength-
reduction factor, Ry versus Tn, for different earthquake
magnitudes, M, for typical motions on the surface fault,
modeled using the near-fault displacement pulse, dF,
characteristic of the fault-normal displacements, and the
permanent displacement, dN, which describes fault-parallel
motions. We found strong dependence of Ry versus Tn on
magnitude. These results are different and contradict the
conclusions of many previous studies, which typically
found little or no dependence in Ry versus Tn on
magnitude. Our results are in qualitative agreement with
those presented by Tiwari and Gupta [23] and Chakraborti
and Gupta [24]. These observed differences can be
explained by the nature of the physical process in question.
The large static and dynamic parts of the near-fault ground
motions, which occur near the moving faults, can be shown
to decay rapidly with distance from the fault, D, as D�4 and
D�2 [33] and therefore become small relative to the body
and surface waves for D larger than 1–2 source dimensions
[29,31]. The study by Mac Rae et al. [14], however, was
able to detect the dependence on directivity of fault-normal
versus fault-parallel strong motion for a selected group of
strong-motion records for ‘‘small’’ fault-to-station dis-
tances. Their average trend for Ry versus Tn curves is also

consistent with the results of this study, if we assume that
typical multiple asperities broken by the larger magnitude
events (e.g. larger than 6) are representative of approxi-
mately magnitude 5 events [31,39].
Our results show that the average trends of most Ry

versus Tn curves used in the design are conservative for
pulse-like fault-normal motions near faults, which we
modeled in this paper by dF. However the same design
curves are not conservative for fault-parallel motions,
modeled in this paper by dN, and for periods Tn longer than
about 0.2–0.4 s. The simple remedy for this problem is to
replace the strength-reduction factors by (2m�1)1/2 for all
periods Tn, for all designs near faults.
Most previous studies of the strength-reduction factors

show Ry ¼ 1 when Tn-0. This results from the common
assumption that for stiff, high-frequency oscillators, when
Tn-0, the relative displacement of the mass, u, and its
relative velocity, _u, are essentially zero. Also, in the
response analyses of linear and non-linear response of
SDOF systems excited by the recorded strong-motion
accelerograms it is assumed that the initial conditions for
u and _u are sufficiently small, so that those can be
approximated by zero. Our selection of the functional
forms for dF and dN leads to large initial strong-motion
velocities at t ¼ 0, which result from the physical nature of
ground motion caused by sudden stress drop on the fault
surface [31,39]. As can be seen from the results presented in
Figs. 8 through 10, this causes our Ry versus Tn curves to
not converge to Ry ¼ 1 when Tn-0, but to an asymptote
with an amplitude of (2m�1)1/2. For the near-fault fault-
parallel displacement, dN, this initial velocity dominates the
relative response for virtually all periods.
In summary, the results of this study suggest that for

conservative design of structures near faults the simple and
effective modification of the strength-reduction curves
would be to replace the current values for Ry versus Tn

by a constant equal to (2m�1)1/2, for both fault-normal and
fault-parallel motions. This is because in nature the faults
are rarely straight and regular surfaces, and so it is difficult
to predict when the near-fault motions will follow closely
the examples of dF and dN employed in our study. Thus, it
would be conservative to use the strength-reduction factor
(2m�1)1/2 for all near-fault motions, irrespective of their
orientation.
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