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Abstract

Wave-passage effects are described for strength-reduction factors near faults, for fault-normal and fault-parallel strong-motion

displacements. It is shown that the common design rules for selection of the strength-reduction factors are usually conservative and

approximately describe the reduction amplitudes near faults of strong earthquakes for fault-normal pulses. However, for fault-parallel

displacements, the same reduction factors are not conservative and must be changed. It is recommended that for design close to active

faults, the strength-reduction factors for all components of motion should be constant for long periods and equal to (2m�1)1/2, where m is

ductility. For periods shorter than about 1 s, these strength reduction factors should be further reduced by 30–40%.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

For many design analyses, the earthquake shaking can
be specified at a single point, and the spatial variation of
motion at multiple supports of structures may be neglected.
When the distances between the multiple support points
are large (e.g., bridges, dams, tunnels, long buildings), the
effects of differential motions become important and
should be considered in dynamic analyses [1]. Spatial and
temporal stochastic representations of strong earthquake
motion required for such analyses have been investigated
[2–4]. The consequences of differential ground motion have
been studied for the response of beams [5–7], bridges
[8–10], simple models of three-dimensional structures [11],
long buildings [12–15] and dams [16–18]. However, with
few exceptions, engineering applications of the response
spectrum method ignore the wave-propagation effects in
the foundation soil, or they consider only a simplified
e front matter r 2007 Elsevier Ltd. All rights reserved.
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stochastic representation of the differences in motion
among separate supports [19–21]. Okubo et al. [22] were
among the first to measure and interpret finite ground
strains of recorded earthquake motions for plan dimen-
sions representative of intermediate and large buildings.
They showed that for short-period (stiff) structures, finite
ground strains lead to increased base shears. Zembaty and
Krenk [23,24] studied the same model via random
vibration-based shear force response spectrum, addressing
explicitly the contribution of quasi-static and dynamic
terms in the response. They showed that although the
relative response of the structure is reduced in the case of
differential motion of supports (due to ‘‘averaging’’ of
spatially correlated motions), the shear forces in the
columns, which for stiff structures primarily depend upon
the quasi-static contribution to the response, might be
significantly larger than for synchronous excitation.
Simple analyses of two-dimensional models of long

buildings suggest that when a/lo10�4, where a is wave
amplitude and l is the corresponding wavelength, the
wave-propagation effects on the response of simple
structures can be neglected [14]. For shorter waves, but
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those still longer than the characteristic dimensions of the
structure, Trifunac and Gicev [25] and Trifunac and
Todorovska [26] showed that the common response
spectrum method for synchronous ground motion can be
extended to make it applicable for earthquake response
analyses of extended structures experiencing differential in-
plane and out-of-plane ground motion.

In the engineering design of earthquake-resistant struc-
tures by pushover analyses [27–29], the design is governed
by target displacements determined from the inelastic
response of the corresponding single-degree-of-freedom
system (SDOF). For estimation of the maximum non-
linear response of an SDOF system, um, in terms of the
maximum linear response, u0, it is necessary to specify a
relation between um and u0. By defining the yield strength
reduction factor as Ry ¼ u0/uy, where uy is the yielding
displacement of the SDOF system equivalent spring, and
ductility as m ¼ um/uy, for the same ground motion, the
ratio um/u0 is then equal to m/Ry. The relationship between
um and u0 (Fig. 1a) for the same excitation has been studied
by many researchers. For example, Veletsos and Newmark
[30] showed that for a long-period SDOF system, when its
natural period Tn-N, um/u0-1 and Ry-m (equal
deformation rule), and that for the response amplitudes
governed mainly by the peak excitation velocities, um=u0!

m=ð2m� 1Þ1=2 and Ry ! ð2m� 1Þ1=2 (equal strain energy
rule), and for a very high-frequency (stiff) system when
Tn-0, Ry-1. With a gradual increase in the number of
the recorded strong-motion accelerograms [31], the re-
searchers improved these rules to reflect the trends
observed in the responses to the recorded data [32–35],
for different site conditions and ductility factors [36,37], for
rupture distance and the earthquake magnitude [38], and
for fault-normal near-field records in the zone affected by
h

ug
uy uo um

fo

fm

fy

u, φ  

Corresponding

 linear system

Elastoplastic system

F(u), Φ(φ)

α

Fig. 1. Left (a): Force-displacement (moment-rotation) relationship for bi-linea

ground motions, ug1, ug2. Excitation is illustrated for vertically polarized shea
directivity [39,40]. Ruiz-Garcia and Miranda [41] noted
that the average value of the ratio um/u0 is not much
influenced by the recording site classification, by earth-
quake magnitude, when u0/u, o4, or by rupture distance.
Tiwari and Gupta [42] and Chakraborti and Gupta [43]
presented comprehensive regression models based on large
data sets and showed clear dependence of the strength-
reduction factors on magnitude, predominant period,
duration of strong motion, and geologic site conditions.
Jalali and Trifunac [44] found strong dependence of Ry

versus Tn on the magnitude of an earthquake near the
faults. They showed that the classical design curves are
conservative for fault-normal pulses, although for fault-
parallel displacement the common design rules are not
conservative. They recommended that for design close to
active faults, the strength-reduction factors for all compo-
nents of synchronous motion should be constant for all
periods and equal to (2m�1)1/2.
The purposes of this paper are (1) to show how the wave-

passage effects influence the strength-reduction factors of
the structure subjected to near-fault pulses and displace-
ments and (2) to evaluate the reliability of the classical
design curves in such environment.

2. The model

The nature of relative motion of individual column
foundations or of the entire foundation system will depend
upon the type of foundation and stiffness of the connecting
beams and slabs, the characteristics of the soil surrounding
the foundation, the type of incident waves, and the direction
of wave arrival. In reality, at the base of each column the
motion has six degrees of freedom. For simplicity, we
consider only the horizontal component of relative motion
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of column foundations. In this paper, analysis will be
performed for structures on isolated foundations only. We
assume that the structure is near the fault and that the
longitudinal axis of the structure (X-axis) coincides with the
radial direction (r-axis) of the propagation of waves from
the earthquake source so that the absolute displacement of
the base of columns are different, as a result of the wave
passage. We suppose that the excitations at piers have the
same amplitude with different phase. The phase difference
or time delay depends upon the distance between piers and
the horizontal phase velocity of the incident waves. The
model we consider is shown in Fig. 1b. It represents a one-
story structure consisting of a rigid mass, m, with length L,
supported by two rigid mass-less columns with height h,
which are connected at the top to the mass by rotational
springs and at the bottom by rotational springs to the
ground. The stiffness of the springs, kf, is assumed to be
elastic–plastic, as shown in Fig. 1a, without hardening
(a ¼ 0). The mass-less columns are connected to ground and
to the rigid mass by circular dashpots, cf, providing the
fraction of critical damping equal to 5 percent. Rotation of
the columns, fi, i ¼ 1, 2, which is assumed not to be small,
leads us to consider the geometric non-linearity. The mass is
acted upon by the acceleration of gravity, g, and is excited
by differential horizontal ground motions, ugi

, i ¼ 1, 2, at
two bases so that ug2 ðtÞ ¼ ug1ðt� tÞ with t being the time
delay between two ground motions. The functional form
of ugi

is defined by near-fault ground motions dF and dN,
which are described in the next section. The governing
differential equation for the system in Fig. 1b is then Jalali
and Trifunac [44]
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where Cx is the horizontal phase velocity of incident waves;
on and B are the circular natural frequency and damping
ratio of the system, respectively, and F(f) is a non-linear
function of the type described in Fig. 1a.

3. Near-field ground motion

In general, it is not possible to predict the detailed nature
of the near-fault ground motion and of the associated
pulses due to irregular distribution of fault slip and because
of non-uniform distribution of geologic rigidities surround-
ing the fault, non-uniform distribution of stress on the
fault, and complex non-linear processes that accompany
the faulting (e.g., [45–47]). So, in this paper, we adopt a
simplified approach and model these motions by smooth
pulses, which have correct average amplitudes and dura-
tion, and which have been compared to and calibrated
against the observed fault slip and the recorded strong
motions in terms of their peak amplitudes in time and their
spectral content [48,49].
Fig. 2 shows schematically a fault and two characteristic

simple motions, dN and dF, which describe fault-parallel
displacement and fault-normal pulse, respectively. For
excitation by a pulse, we chose the Brune’s pulse (Fig. 2-
center)

dFðtÞ ¼ AFt e�aFt, (3)

where the typical values of AF and aF, for different
earthquake magnitudes, are shown in Table 1 [48]. Since
the strong-motion data are abundant only up to about
M ¼ 6.5, we place the values of aF and AF, for M ¼ 7 and
8, in Tables 1 and 2 in parentheses to emphasize that those
are based on extrapolation. For the near-field permanent
displacement, we consider the Brune’s displacement (Fig. 2
(bottom))
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Fig. 2. Fault parallel, dN(t), and fault-normal, dF(t), displacements.

Table 1

Characteristics of Brune’s pulse displacement [48]

M

(magnitude)

sF (1/s) AF (cm/s) dF,max (cm) _dF ;max

(cm/s)

4 14.04 56.48 1.48 56.48

5 7.90 151.61 7.06 151.61

6 4.44 546.97 45.32 546.97

7 (2.50) (860.34) (126.6) (860.34)

8 (1.40) (1560.29) (410.0) (1560.29)

( ) Extrapolations based on presently available strong motion data.

Table 2

Characteristics of Brune’s near-fault displacement [48]

M

(magnitude)

tN (s) AN (cm) dN,max (cm) _dN;max

(cm/s)

4 0.55 4.9 2.45 4.45

5 1.2 29.2 14.6 12.17

6 1.8 245.5 122.75 68.19

7 (3.0) (1288.0) (644.0) (214.7)

8 (5.0) (4169.0) (2084.5) (416.9)

( ) Extrapolations based on presently available strong motion data.
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dNðtÞ ¼
AN

2
ð1� e�t=tN Þ. (4)

The values of AN and tN, for different earthquake
magnitudes, are shown in Table 2 [48].

Mavroeidis et al. [45] have shown that the impulsive
near-field strong motion can be approximated by long-
period velocity pulses, which are modeled by a modulated
cosine function, and have predominant period (duration)
Tp. They approximated logTp by a straight line versus
moment magnitude, through nine estimates of barrier
intervals previously determined in the source mechanism
studies by Papageorgiou and Aki [50]. They noted that in
their studies of response, Tp emerges as a key parameter
governing the nature of relative linear and non-linear
responses, and recommended that all representations of
spectral amplitudes, and of the strength-reduction factors
should be presented versus Tn/Tp, where Tn is the natural
period of SDOF system. The nature of their modulated
cosine pulses is such that the velocity gradually starts from
zero. In contrast, the broad-band near-fault displacements
dF and dN, as defined above, are characterized by large
initial velocities (Fig. 2), which are proportional to the
stress drop in the Brune’s o2 source model [48]. As has
been shown in Jalali and Trifunac [44], this large initial
velocity is the key variable in our studies of the role of
near-source motions on the response of structures, and for
determination of the strength-reduction factors to be used
with this response.
4. Strength-reduction factor for columns under differential

ground motions

The yield strength-reduction factor for the system under
synchronous ground motion is Ry ¼ f 0=f y ¼ u0=uy, where
all the quantities are defined as in Fig. 1a. In this paper,
because of the differential motions of the ground at two
piers, the relative rotation of the two columns will be
different, and therefore, the ductility demand for these two
columns will also be different. So, it is necessary to define
the ductility and R factors for each column instead of one
factor for the total system. For the ith column we have

Ryi
¼

F0i

Fy

¼
f0i

fy

,

mi ¼
fmi

fy

. ð5Þ

F0i
, f0i

, and fmi
are the maximum linear moment, linear

rotation, and non-linear rotation of ith column, respec-
tively. Fy and fy are the yield moment and rotation of
columns, respectively. For ductility mi, the inelastic
deformation ratio fmi

=f0i
is then equal to mi=Ryi

. The
inelastic deformation ratio for known yield strength and
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excitation CRyi
¼ fmi

=f0i
¼ mi=Ryi

can be computed from
calculated peak responses fmi

and f0i
. For given Ryi

, the
associated ductility demand is then determined from
mi=Ryi

. Iterations are required to compute the inelastic
deformation ratio, Cmi

¼ fmi
=f0i

for a specified ductility
factor because different values of Fy may lead to the same
mi. Because Cmi

is not unique, the convention is to choose
the largest Fy corresponding to the largest Cmi

[51].

5. Response of the system subjected to near-fault differential

ground motions dF and dN

In all calculations, we consider simultaneous action of
the effects of gravity forces [52], dynamic instability [53,54],
and geometric non-linearity. For this structure, we
calculate fmi

and f0i
for the two columns of the system

under near-fault differential ground motions dF and dN
corresponding to earthquake magnitudes M ¼ 5, 6, 7, and
8, for ductilities m ¼ 2, 4, and 8, and for different time
delays, t ¼ 0.001, 0.01, 0.03, 0.05, and 0.1 s, and then plot
Ry versus Tn for the two columns. At first, we describe the
effect of differential ground motion on the linear response
of the system excited by fault-normal pulse and fault-
parallel displacement at the fault. Figs. 3a and b show the
linear pseudo-relative velocity (PSV) spectra computed for
differential ground motions represented by dF (Fig. 3a) and
dN (Fig. 3b), for magnitudes M ¼ 4, 6, 8, and for different
time delays, t ¼ 0.001, 0.01, 0.05, and 0.1 s. The fraction of
critical damping is B ¼ 0.05. As we know, for differential
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ground motions the linear response of the system has two
components, dynamic and pseudo-static. For a long-period
system, the dynamic component of the response is
dominant, and the pseudo-static component is usually
small, while for a high-frequency system the response is
dominated by the pseudo-static component and the
dynamic component is negligible [25,26]. As would be
expected, it can be seen from Figs. 3a and b that the effect
of differential ground motions is significant for a high-
frequency (stiff) system and is negligible for a long-period
(flexible) system. When the time delay is small (t ¼ 0.001),
the pseudo-static component of the response is small, and
the PSV amplitudes of two columns are approximately the
same. In this condition, and for a high-frequency system,
the response is dominated by the initial velocity of the
ground, _dF and _dN [44] . For long periods, the response is
dominated by the maximum displacement of the ground,
dFmax and dNmax. With increasing time delay, the
contribution of the pseudo-static component becomes
larger and the PSV amplitudes of the two columns become
different. In this condition, and in a high-frequency range,
the PSV amplitudes increase significantly. As can be seen,
the PSV amplitudes of the two columns cross each other at
the points where the period of the system is approximately
equal to Tn ¼ t, 2t. At these periods, the system is
subjected to in-phase or out-of-phase motions at the two
piers.
Fig. 4 illustrates the typical changes of Ry versus the

oscillator period for near-fault fault-parallel displacement,
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M ¼ 8, for a ductility ratio of eight and for the left and the
right columns, assuming wave propagation from left to
right in Fig. 1b, and for t ¼ 0.001, 0.01, 0.03, 0.05, and
0.1 s. For reference and easier comparison among different
figures in this paper, and considering the previously
published results, we also plotted one of the oldest
estimates of Ry versus period [44,55], by piecewise straight
lines.

Figs. 5a,b and 6a,b show the strength-reduction factors
versus the period of the system under differential ground
motions represented by a fault-normal pulse (Figs. 5a and
b) and fault-parallel displacement (Figs. 6a and b). For
comparison, we again superimposed the classical design
curves [55]. As can be seen from these figures, the wave-
passage effects on the strength-reduction factor are
significant for a high-frequency system and negligible for
a flexible system. For long periods (displacement-sensitive
region), the R factors of the two columns are nearly the
same and tend to asymptotic values equal to m or the values
for which collapse occurs because of the destabilizing effect
of gravity. For the parameters considered in this paper,
these collapse boundaries appear for Tno20 s, for mX4,
and for M47, for excitation by dF (Fig. 5b), and for mX4
and M45 for excitation by dN (Fig. 6a,b). The values of Ry

for which collapse occurs are shown by almost straight
lines with negative slopes, asymptotically approaching R-
curves from above.
For very high frequencies and for a small time delay

t ¼ 0.001, the strength-reduction factors of the system tend
to an asymptote with amplitude equal to (2m�1)1/2 (same
as the first horizontal plateau of simplified Ry curves), the
consequence of strong initial velocity associated with a
sudden onset of near-fault ground motions [44]. With
increasing the time delay and for a stiff system, relative
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rotations of the two columns are not the same. In other
words, for each value of ductility, the R factors of two
columns are completely different, and their difference
depends upon the time delay, magnitude of the earthquake,
and the period of the system. For very high frequency, the
R-factor of the two columns could be smaller or larger than
(2m�1)1/2. From Figs. 5a and b, it can be seen that for
magnitude M ¼ 5 and for different time delays, our result
is above the classical strength-reduction factor, except for
t ¼ 0.1 s, and for a short interval in Tn (0.3 soTno0.8 s).
For magnitude M ¼ 6, 7, and 8, and for t ¼ 0.03, 0.05, 0.1,
the classical design curves are not conservative for periods
between about 0.1 and 1.0 s. In Figs. 6a and b and for near-
fault displacement dN, when the time delay is small,
t ¼ 0.001, for a high-frequency system (Tn shorter than
about 0.2–0.4 s), the classical design curves are conserva-
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tive, but with increasing time delay, the R-factor of the
columns is under the classical design curves for essentially
all periods.
6. Conclusions

We have illustrated the wave-passage effects on the
strength-reduction factor, Ry versus Tn, for a simple two-
column system subjected to near-fault ground motions.
Our results show that the effect of differential ground
motion is significant for linear and non-linear response of a
high-frequency system, while the wave-passage effect is
negligible for a long-period system. When the time delay is
short, and for a stiff system, the PSV amplitude and R-
factor of the two columns are approximately the same and
are dominated by the initial velocity of the ground motion
[44] . In this case, the PSV amplitude tends to initial
velocity of the ground, _dF and _dN, and the R-factor
amplitude tends to (2m�1)1/2. By increasing the time delay,
and for a stiff system, because of the pseudo-static
component of the response, the PSV amplitudes for the
columns increase and the R factors of the two columns are
completely different.

For small values of time delay and for pulse-like fault-
normal motions near fault, which we modeled in this paper
by dF, our calculation is above the classical design curves.
However, with increasing the time delay the classical design
curves are not conservative for periods between about 0.1
and 1.0 s.

For fault-parallel motions modeled in this paper by dN,
and for all time delays, our calculations give R factors
smaller than the classical R values. With increasing time
delay, the R factors move down, and for essentially all
periods the classical design curves are not conservative.
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