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Abstract

The response spectrum method (RSM) in earthquake engineering was conceived and then fully developed by M.A. Biot (1905–1985)

during the period of about 10 yr, between 1932 and 1942. On the occasion of the 100th anniversary of Biot’s birth, this paper reviews his

contributions to earthquake engineering, and then briefly outlines the milestones in the later evolution of the RSM, and the eventual

introduction and acceptance of the method by the engineering disciplines in the early 1970s. The role of the Biot spectrum in the

formulation of design codes is illustrated briefly, using examples from code development in California. Finally, the limitations of the linear

response superposition method are discussed, and future directions for the development of earthquake-resistant design tools are suggested.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The year 2005 marks the 100th anniversary of the birth
of the inventor of the response spectrum method (RSM)—
Maurice A. Biot. It is also approximately the 30th
anniversary of the general acceptance of the RSM by the
engineering profession, following the 1971 San Fernando,
California earthquake. On the occasion of these anniver-
saries, this paper reviews the ideas that led to the
formulation of the RSM in 1942, its evolution during the
following 40 yr, its use in design during the past 30 yr, its
limitations and the prospects for its continued use in the
future.

The response spectrum is a plot of the maximum
displacements or velocities of the relative response of a
family of damped single-degree-of-freedom oscillators to
strong earthquake ground motion, specified in terms of
absolute ground acceleration. The maximum relative
displacement can be used to compute maximum drifts
and maximum dynamic forces acting in the structure, and
thus it serves as a basis for earthquake-resistant design in
e front matter r 2006 Elsevier Ltd. All rights reserved.
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terms of linear representation of response. The method is
formulated in a manner that permits separation of the
characteristics of particular structures from those of the
earthquake, the latter being given by the ‘‘response
spectra.’’ This approach is used for the design of many
earthquake-resistant structures, and it is also the main tool
for preliminary design of important structures, before the
final design is further refined via the dynamic response
using numerical integration in time for the response of the
detailed mathematical model of the structure.
Extension of the RSM to the nonlinear response has been

studied extensively, with varying degrees of success. In the
following, we will cite only a few examples, leaving the
complete review of such analyses for a future paper. This
paper will focus on (1) the development of the RSM for the
‘‘linear’’ response of structures, (2) its role in influencing the
development of design codes, and (3) its suitability for
analysis of transient response to impulsive loading.

2. Response spectrum

2.1. Historical notes

In the early 1930s, Professor Theodore von Kármán2

and his student Maurice Biot were studying the theoretical
2Theodore von Kármán, born in Budapest, Hungary (1881–1963),

engineer, applied scientist, teacher, and visionary, was the first director of

the Daniel Guggenheim Graduate School of Aeronautics at the California
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dynamics problem of how to estimate the maximum
response of oscillators to transient excitation, and pro-
posed what would later become known as the RSM in
earthquake engineering. These ideas were first described in
1932, and further developed during the following 10 yr.
Today, almost three quarters of a century later, the theory
remains essentially intact and still forms the core of the
linear mechanics framework of earthquake engineering.

The origin of RSM can be traced to the second chapter
of Biot’s Ph.D. dissertation in the Aeronautics Department
at Caltech, entitled ‘‘Vibration of Buildings During Earth-
quakes’’ [3]. Biot’s ideas, and further studies undertaken at
the suggestion of Professor von Kármán, were developed
further while Biot was a Research Fellow at Caltech in
1932 [4,5]. In his 1933 paper, communicated on 19 January
1933, 50 days before the first strong earthquake ground
motion was recorded on 10 March 1933 in Long Beach,
California, Biot stated: ‘‘The study of seismogram spectral
distributions has not yet been made; it is however, the
author’s opinion that this study would be of great
importance for two reasons: (1) The peaks of spectral
curves will reveal the presence of certain characteristic
frequencies of the soil at a given location. (2) By applying
the preceding theorem, the maximum effect of earthquakes
on buildings will be easily evaluatedy.’’

Biot’s interest in the peak response of solids and fluids
subjected to transient impulses first became evident in his
papers written in 1932. It was this general interest that led
to his study of the response of buildings during earth-
quakes, in the second chapter of his Ph.D. dissertation, and
to the first phase of his formulation of RSM [3–5].

From the very beginning of his career, Biot displayed
many varied interests, covering a broad spectrum of
subjects in mechanics and engineering. In 1930 and 1931,
he had already studied such different subjects as induced
electrical currents, hydrodynamics and the guidance of
airplanes. While at Caltech in 1933, he wrote about
photoelasticity, analysis of bending moments in airplanes
using tests in a wind tunnel, and beams on elastic
foundations. Back at Louvain, during 1933, Biot wrote
about photoelastic analyses of thermal stresses, and studied
stresses in dams and the vibration of buildings. At
Harvard, in 1935 and 1937, Biot wrote about stress
distribution in sediments during consolidation, about
beams on elastic foundations, and about flood waves.
During the 3 yr period from 1938 to 1941 while at
Columbia, he further expanded the horizon of his research,
and started to work on the theory of elasticity with large
displacements and rotations, nonlinear elasticity in a body
under initial stress, the influence of initial stress on
stability, on wave propagation, finite difference calcula-
(footnote continued)

Institute of Technology, where he arrived in 1930 from Aachen, Germany.

Von Kármán had foresight, creativity, and a remarkable talent for getting

people together across professional, national, and language barriers. He

was one of the foremost leaders in the world of aviation and space

technology (see, e.g., Ref.for example [2]).
tions, use of analogies in differential equations to
investigate stress distribution in bending and the calcula-
tion of response of simple oscillators to strong-motion
acceleration (torsional pendulum). It was also during this
time that he started to write the first papers in his now
famous series of 21 papers on poromechanics [6].
At Columbia, Biot briefly returned to the subject of

earthquake engineering, describing the computation of
response spectra by means of a mechanical analyzer [7],
and then he finally formalized the general theory and
principles of response analysis and response spectrum
superposition at Caltech in 1942 [8,9].
Between 1942 and 1985, Biot published 134 journal

papers and articles and wrote two books. Further
references about Biot and about the impact of his work
on modern engineering can be found in Trifunac [10].

3. Shape of ‘‘standard’’ elastic earthquake response

spectrum

3.1. Fixed-shape response spectra

In his 1934 paper, Biot stated: ‘‘If we possessed a great
number of seismogram spectra we could use their envelope
as a standard spectral curve for the evaluations of the
probable maximum effect on buildings.’’ In Biot [7], he
continued: ‘‘These standard curvesycould be made to
depend on the nature and magnitude of the damping and
on the location. Although the previously analyzed data do
not lead to final results, weyconclude that the spectrum
will generally be a function decreasing with the period for
values of the latter greater than about 0.2 s. A standard
curve for earthquakes of the Helena and Ferndaleyfor
values T40:2 s, could very well be the simple hyperbola
A ¼ 0:2g=T and for To0:2 s, A ¼ gð4T þ 0:2Þ, where T is
the period in seconds and g the acceleration of gravity. This
standard spectrum is plotted in Figs. 1–4. Whether this
function would fit other earthquakes can only be decided
by further investigations.’’
Housner, 15 yr later, averaged and smoothed the

response spectra of three strong-motion records from
California (El Centro, 1934, M ¼ 6:5; El Centro, 1940,
M ¼ 6:7 and Tehachapi, 1952, M ¼ 7:7) and one from
Washington (Olympia, 1949, M ¼ 7:1). He advocated the
use of this average spectrum shape in earthquake
engineering design (Fig. 1, [11,12]).
Newmark and co-workers [13,14] noted that the shape of

response spectra can be determined by specifying peak
acceleration, peak velocity and peak displacement of strong
ground motion. Spectrum shape was further studied by
Mohraz et al. [15] using 14 strong-motion records, and by
Blume et al. [16] who analyzed 33 records. The joint
recommendations of the Newmark and Blume studies of
the shape of the response spectra [17] were later adopted by
the US Atomic Energy Commission (now the US Nuclear
Regulatory Commission, USAEC, 1973 [18]) for use in the
design of nuclear power plants (Fig. 2).
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Fig. 1. Comparison of Biot [7,8] ‘‘standard spectrum’’ (heavy line) with

average spectrum of Housner [11,12].

Fig. 2. Comparison of Biot [7,8] ‘‘standard spectrum’’ (heavy line) with

regulatory guide 1.60 spectrum [18].
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In engineering design work, the fixed shapes of Housner
and Newmark spectra, normalized to unit peak accelera-
tion, were scaled by selecting the ‘‘design’’ peak accelera-
tion. This procedure, which was first systematically used in
the design of nuclear power plants, emerged as the
‘‘standard’’ scaling procedure for determination of design
spectra in the late 1960s and early 1970s.

3.2. Site-dependent spectral shapes

In one of the first studies to consider the site-dependent
shape of earthquake response spectra, Hayashi et al. [19]
averaged spectra from 61 accelerograms in three groups,
according to the recording site conditions (A—very dense
sands and gravels; B—soils with intermediate character-
istics and C—very loose soils), and showed that the soil site
condition has an effect on the shape of average response
spectra. This result was later confirmed by Seed et al. [20],
who considered 104 records and four site conditions (rock,
stiff soil, deep cohesionless soil and soft-to-medium clay
and sand; Fig. 3).

Mohraz et al. [15] suggested that the peak ground
displacement, d, and peak ground velocity, v, were
d ¼ 36 in. and v ¼ 48 in:=s for ‘‘alluvium’’ sites and
d ¼ 12 in. and 28 in./s for ‘‘rock’’ sites, both corresponding
to a 1g peak ground acceleration. However, because of the
small number of recorded accelerograms on rock in 1972,
conclusive recommendations on how to describe the
dependence of spectra on site conditions did not appear
possible at that time.
A major and persistent problem in the evaluation of site-

dependent spectra of strong earthquake motion is the lack
of generally accepted procedures on how to characterize a
site. Gutenberg [21] studied the amplification of weak
earthquake motions in the Los Angeles area and published
the results on average trends and amplification of peak
wave motions in sedimentary basins for periods of motion
longer than about 0.5 s. His site characterization could be
termed ‘‘geological,’’ because he considered the ‘‘site’’ on
the scale of kilometers, and used the term ‘‘rock’’ to
represent geological basement rock. Gutenberg’s results
were shown to be in excellent agreement with the empirical
scaling of Fourier amplitude spectra of strong-motion
accelerograms of 186 records [22], 20 yr later. While it is
clear today that both geotechnical and geological site
characterizations must be considered simultaneously
[23,24], there is so far no general consensus on how to
do this.
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Fig. 3. Comparison of Biot [7,8] ‘‘standard spectrum’’ (heavy line) with

average (heavy lines) and average plus standard deviation spectra (light

lines) of Seed et al. [20] for four soil site conditions.

Fig. 4. Comparison of Biot [7,8] ‘‘standard spectrum’’ (heavy line) with

spectral shapes, which depend upon magnitude (M ¼ 4:5 and 7.5) and

geological site conditions (s ¼ 2 for basement rock and s ¼ 0 for

sediments), for average spectral amplitudes ðp ¼ 0:5Þ, at zero epicentral

distance ðR ¼ 0Þ and for 2% of critical damping (z ¼ 0:02; [26]).
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3.3. Site-, magnitude- and distance-dependent spectra

The occurrence of the San Fernando, California earth-
quake in 1971, and the large number of new recordings it
contributed to the strong-motion database [25] opened a
new chapter in the empirical studies of earthquake
response spectra. For the first time, it became possible to
consider multi-parametric regressions and to search for the
trends in recorded strong-motion data. It became possible
to show how spectral amplitudes and spectrum shape
change, not only with local soil and geologic site
conditions, but also with earthquake magnitude and
source-to-station distance (Fig. 4; [26]). During the
following 20 yr, the subsequent regression studies evolved
into advanced empirical scaling equations, contributing
numerous detailed improvements and producing a family
of advanced, direct-scaling equations for spectral ampli-
tudes in terms of almost every practical combination of
scaling parameters. The literature on this subject is
voluminous, and its review is beyond the scope of this
paper. The readers can find many examples and a review of
this subject in Lee [27].
Figs. 1–4 compare Biot’s ‘‘standard’’ spectrum shape
with other examples of fixed (Figs. 1, 2, and 3) and variable
(Fig. 4) spectral shapes. These comparisons are only
qualitative, because the methods used in their development
and the intended use of the spectral shapes differ. Biot’s
spectrum was originally thought to correspond to zero
damping, but it was later discovered that it has small
variable damping, probably less than 3% of critical. It was
based on the spectra of two earthquakes only (Helena,
Montana, 1935, M ¼ 6:0 and Ferndale, California, 1934,
M ¼ 6:4). Housner (Fig. 1), NRC (Fig. 2) and Seed et al.
(Fig. 3) spectra were based on progressively larger numbers
of recorded accelerograms (4, 33 and 104, respectively) and
on recordings during large earthquakes. Therefore, they
have broader spectral shapes. The variable shape spectrum
in Fig. 4 shows only the dependence of spectral shape
(normalized to 1� g acceleration) on magnitude and
geological site conditions, but it does show clearly how
the spectra broaden with increasing magnitude, and how
larger magnitudes contribute larger long-period spectral
amplitudes.
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4. Response spectrum superposition

In can be demonstrated that for a linear multiple-
degrees-of-freedom system the dynamic response of the
r-th mode alone may be described by an equation that
corresponds to an equivalent single-degree-of-freedom
system, e.g. Ref. [28], and then that the total displacement
response may be computed by adding contributions of all
individual modes. For example, the contribution of the r-th
mode,fxðrÞðtÞg, to the total displacement of a multiple-
degree-of-freedom system is

fxðrÞðtÞg

¼
fAðrÞgar

or

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2r

q
Z t

0

€zðtÞ e�zr orðt�tÞ sin or

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2r

q
ðt� tÞdt,

ð1Þ

where fAðrÞgis the r-th mode shape, ar its participation
factor, or its circular frequency and zr its fraction of critical
damping. This contribution is seen to be directly propor-

tional to 1=or

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2r

q
times the integral term and will

depend upon the integral’s maximum absolute value. In
terms of the displacement, SDðrÞ, and velocity, SVðrÞ,
spectra, Eq. (1) can be written as

fjxðrÞðtÞjgmax ¼ fjA
ðrÞjgar SD

ðrÞ
¼ fjAðrÞjgar

Tr

2p
SVðrÞ, (2)

where the superscripts (r) on SD and SV indicate that these
spectral values are computed for damping zr and frequency
or ¼ 2p=Tr, corresponding to the r-th mode of vibration.
However, the different modal maxima do not occur at the
same time and, therefore, the individual modes do not
simultaneously contribute their peak values to the max-
imum total response.

The sum of maximum modal responses [9]

Xn

r¼1

fjxðrÞðtÞjgmax ¼ jAj½ �

SDð1Þ

SDð2Þ

..

.

SDðnÞ

8>>>><
>>>>:

9>>>>=
>>>>;

(3)

gives an upper bound to the total system response, but may
be too conservative. An alternative approach, based on
statistical considerations [29], is to take the square root of
the sum of the squares of the individual modal maxima.
This method (RMS) has been shown to give reasonable
results [30] for structures in which the main contributions
come from the lowest few modes.

The subject of mode superposition has been studied
extensively [31–39], and the conditions under which a
meaningful degree of conservatism can be achieved
have been determined. When the maxima of each
response quantity have been determined from
equations analogous to Eq. (2), the RMS approximation
is given by

fxgmax �

Pn
i¼1

xi
1max

� �2� �1=2

Pn
i¼1

xi
2max

� �2� �1=2

..

.

Pn
i¼1

xi
nmax

� �2� �1=2

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

. (4)

The expressions for maximum shears {V}max and
moments {M}max follow from Eq. (4) [28].
The above-described response spectrum superposition

method provides only an approximate indication of the
maximum response in the multiple-degree-of-freedom
systems. The advantage of this method is that it avoids
lengthy computations associated with the exact method
and, at the same time, takes into account the dynamic
nature of the problem. It can often provide reasonable
results for design purposes.

5. Biot spectrum and evolution of earthquake design codes

Work on developing building design codes appears to
have begun in Italy in 1908, following the Massina disaster
in which more than 100,000 persons were killed; in Japan
following the 1923 Tokyo disaster, in which more than
150,000 perished and in California after the Santa Barbara
earthquake of 1925 [40,41]. In 1927, the ‘‘Palo Alto Code,’’
developed with the advice of Professors Willis and Marx of
Stanford University, was adopted in Palo Alto, San
Bernardino, Sacramento, Santa Barbara, Klamath, and
Alhambra, all in California. It specified the use of a
horizontal force equivalent to 0.1, 0.15 and 0.2g accelera-
tion on hard, intermediate and soft ground, respectively.
‘‘Provisions Against Earthquake Stresses,’’ contained in

the proposed US Pacific Coast Uniform Building Code was
prepared by the Pacific Coast Building Officials Conference
and adopted at its Sixth Annual Meeting, in October 1927,
but these provisions were not generally incorporated into
municipal building laws [40]. The code recommended the
use of horizontal force equivalent to 0.075, 0.075 and 0.10g

acceleration on hard, intermediate and soft ground,
respectively. Following the 1933 Long Beach earthquake,
the Field Act was implemented. Los Angeles and many
other cites adopted an 8% g base shear coefficient for
buildings, and a 10% g for school buildings. In 1943, the
Los Angeles Code was changed to indirectly take into
account the natural period of vibration of the structure.
San Francisco’s first seismic code (the Henry ‘‘Vensano

Code’’) was adopted in 1948, with lateral force values in
the range from 3.7% to 8.0% of g, depending upon the
building height ([42,43]). The Vensano Code called for
higher earthquake coefficients than were then common in
Northern California, and higher than those prescribed by
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the Los Angeles 1943 code. Continued opposition by San
Francisco area engineers led to a general consensus-
building effort, which resulted in the ‘‘Separate 66’’ report
in 1951. ‘‘Separate 66’’ was based on Maurice Biot’s
‘‘standard’’ fixed shape response spectrum [44].

In Los Angeles, until 1957 (for reasons associated with
urban planning rather than earthquake safety, and to
prevent development of downtown ‘‘canyons’’) no build-
ings higher than 150 ft (13 story height limit) could be built.
In 1957, the fixed height limit was replaced by the limit on
the amount of floor area that could be built on a lot. After
the San Fernando, California earthquake of 1971, Los
Angeles modified the city code in 1973 by requiring
dynamic analysis for buildings over 16 stories high (160 ft).

In 1978, the Applied Technology Council (ATC) issued
its ATC-3 report on the model seismic code for use in all
parts of the United States. This report, written by 110
volunteers working in 22 committees, incorporated many
new concepts, including ‘‘more realistic ground motion’’
intensities. Much of the current Uniform Building Code
was derived from the ATC-3 report.

6. Limitations of RSM

Biot’s mathematical formulation of the response of
structures uses the vibrational approach, in which the
solution of the governing differential equations is repre-
sented by superposition of characteristic functions (mode
shapes) of the problem. Physically, characteristic functions
(mode shapes) represent standing waves that have been
created by constructive interference of the waves incident
through and reflecting from the boundaries of the model.
All other wave energy does enter the structure but, after
some time, it dies out due to destructive interference,
scattering transmission and refraction, and propagation
out of the structure.

6.1. Low-pass filtering effects

In practical applications, and for most structures, the
mode participation factors for the lowest frequencies are
usually the largest. In applications using detailed models
(lumped mass, finite elements, finite differences, etc.), the
contributions of high-frequency modes are routinely
neglected, because these contributions to the response can
be shown to be ‘‘small.’’ However, this practice is
equivalent to low-pass filtering of the actual motions, and
it results in reduction of the estimated transient peak
response amplitudes. In applications that consider only the
fundamental mode of vibration, this low-pass filtering
effect is the largest.

6.2. Short, impulsive excitation

It can be shown that the modal approach is not
appropriate to represent ‘‘early’’ transient response,
particularly for excitation consisting of strong motion
pulses with duration shorter than the travel time, t, of an
incident wave to reach the top of the building (toH/b; H

and b are the building height and the velocity of shear
waves in the building). As the modes of vibration result
from constructive interference of the incoming wave and
the wave reflected from the top of the building, the building
‘‘starts vibrating’’ in the first mode only after time t ¼

2H=b has elapsed from the time the shaking started.
Although, in principle, the representation of the response
as a linear combination of the modal responses is
mathematically complete and, therefore, can be used to
represent any response, a short, impulsive excitation would
require the consideration of many modes (infinitely many
for a continuous model), which is impractical. Thus, the
wave propagation methods are more natural for represen-
tation of the ‘‘early’’ transient response.
Wave propagation models of buildings have been used

for many years [45–47], but they have only recently begun
to be verified against actual observations. Continuous, 2D
wave propagation models (homogeneous, horizontally
layered and vertically layered shear plates) have been used
to study the effects of traveling waves in the response of
long buildings [48–55]. Discrete-time, 1 and 2D wave
propagation models have been used to study the seismic
response of tall buildings [56,57].

6.3. Soil–structure interaction

In general, RSM cannot be used for evaluation of the
relative response of structures supported by flexible or
multiple foundations, and in the presence of nonlinear
deformations in the soil. The complex role that flexible soil
plays in the response of structures to incident wave
excitation has been recognized and studied since the
1930s [41,46,47]. In an unpublished note, Biot [8] states
that ‘‘the problem is extremely complex because it involves
a complete knowledge of the propagation and properties of
the seismic waves in the strongly heterogeneous surface
layers of the earth, as well as their diffraction and reflection
by objects built on the surfacey. In the present investiga-
tion, we have attempted to answer the following question:
What is the influence of the elasticity of the ground on the
rocking motion of a building? How resistant is the
surrounding soil to the rocking displacement of a founda-
tion; what are the factors influencing this rigidity, and can
we expect this effect to have a practical influence in the
action of earthquakes on buildings? The problem is
simplified by neglecting the radiation of elastic waves due
to the rocking.’’ The ideas and equations from this
unpublished note appear in abridged from in Section 5,
entitled ‘‘Influence of Foundation on Motion of Blocks’’ in
Biot’s paper (Ref. [9]).
Between 1970 and 1980, the research on soil–structure

interaction grew steadily. Important theoretical problems
were solved, and key full-scale experiments were conducted
[58]. However, soil–structure interaction is rarely consid-
ered in the routine design of engineered structures and,
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Fig. 5. (Top) Deformation of columns in a two-degree-of-freedom system,

during out-of-plane response, excited by Love waves. (Bottom) Deforma-

tion of columns in a long structure during in-plane response, excited by

Rayleigh waves.
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when it is considered, it is based on the most elementary
models.

A common assumption in many models that consider the
soil–structure interaction effects is that the foundation is
rigid. This reduces the number of degrees of freedom of the
model and gives good approximations of response for
ground motions composed of long wavelengths relative to
the foundation dimensions [59]. For short wavelengths, this
assumption can result in non-conservative estimates of the
relative deformations in the structure [60–62] and, in
general, such an assumption can be expected to result in
excessive estimates of scattering of the incident wave
energy and in excessive radiation damping [50,63,64]. The
extent to which this simplifying assumption is valid
depends upon the stiffness of the foundation system
relative to that of the soil and on the overall rigidity of
the structure [56,65–67].

Rigid foundation models are usually combined with
lumped-mass, discrete representations of the structure. The
entire system is then described by a system of differential
equations, and the solution is given in terms of the motion
of different building floors. A soil–rigid foundation–
lumped-mass structural model is usually limited to
representation of 1D models and offers useful approxima-
tion for the lower-frequency modes of relative response.
The response spectrum superposition method can be used
in deterministic or in probabilistic form [32,36,37] with
such models.

The other extreme is to neglect the stiffness of the
foundation system, ignore the soil–structure interaction
and assume that the wave energy in the soil drives the
building according to the principles of wave propagation.
This approximate approach underestimates the scattering
of the incident wave energy by the foundation and
overestimates the energy entering the structure [68].

As the soft soil surrounding the foundation begins to
experience nonlinear deformations for much smaller levels
of shaking than the structure, the soil–structure system
experiences significant shifting of system frequencies
typical of nonlinear softening spring behavior [69–71].
Because this occurs most of the time, ignoring soil–struc-
ture interaction and interpreting response solely through
the RSM can result in gross misrepresentation of the
response within the structure.

6.4. Nonlinear systems

By definition, response spectrum amplitude corresponds
to the peak response of the single-degree-of-freedom
system (SDOF), irrespective of the length of the excitation
and the number and sign of the other peaks of the
response. This limitation is particularly important when
linear response spectra are modified to describe the
response of nonlinear hysteretic systems. For linear
systems, statistics of ordered peaks can be employed to
describe the expected amplitudes of many peaks
[33–35,38,72], but the analogous representation for non-
linear systems has not been developed thus far. Formula-
tion of new design criteria based on the power of incident
wave energy (demand) and the ability of structures to
absorb that power (capacity) offers a rational way to
consider amplitudes and durations of the pulses of incident
motion, but this approach abandons RSM [68].
7. Generalization of RSM to differential motions

The common use of RSM implicitly assumes that all
points of building foundations move synchronously and
with the same amplitudes. This implies that the wave
propagation in the soil can be neglected. Unless the
structure is long (e.g., a bridge with long spans, a dam, a
tunnel) or ‘‘stiff’’ relative to the underlying soil, these
simplifications are justified, and can lead to selection of
approximate design forces. Simple analyses of 2D models
of long buildings suggest that when a/lo10�4, where a is
wave amplitude and l is the corresponding wavelength, the
wave propagation effects on the response of simple
structures can be neglected [49,50].
Fig. 5(top) illustrates the ‘‘short’’ waves propagating

along the longitudinal axis of a ‘‘long’’ building or a
multiple-span bridge. For simplicity, the general incident
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Fig. 6. Relative displacement spectrum for columns, SDC(T,d,z,t), for
S16W component of acceleration recorded at USC station #53 of the Los

Angeles Strong Motion Network [73], during Northridge, CA earthquake

of 17 January 1994 ðM ¼ 6:7Þ, at epicentral distance of 6 km for z ¼ 0:05
and d ¼ 1 (one-story building). The solid lines correspond to SDC spectra

computed exactly, and the dashed lines to the approximation, given by Eq.

(3). ‘‘Standard’’ spectrum shapes of Biot [9], Housner [11] and Seed et al.

[20], normalized to agree with recorded motions at long periods, are

shown for comparison. Peak amplitudes of strong motion at this site were

12.4 cm, 59.8 cm/s and 381 cm/s2.
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wave motion has been separated into out-of-plane motion
(Fig. 5(top)), consisting of SH and Love waves, and in-
plane motion (Fig. 5(bottom)) consisting of P, SV and
Rayleigh waves. The in-plane motion can further be
separated into horizontal (longitudinal), vertical and rock-
ing components, while out-of-plane motion consists of
horizontal motion in a transverse direction and torsion
along the vertical axis [61]. Trifunac and Todorovska [62]
analyzed the effects of the horizontal in-plane component
of differential motions and showed how RSM can be
modified to include the first-order effects of differential
motion on individual columns.

Designating by SDC(T,d,z,t) the relative displacement
spectrum for column deformations, where T is the period of
the equivalent SDOF system, z is its fraction of critical
damping, d is the ratio of the peak relative response of the
first floor to SD(T,z) and t ¼ Ax=bav is the normalized
travel time between ‘‘central’’ point R of the foundation and
a given column, at distance x (A is scaling parameter �1,
and bav is the average shear wave velocity in the top 30m of
soil); for seismic waves propagating along the surface it can
be shown that for in-plane motions (Fig. 5(bottom))

SDCðT ; d; z; tÞ� dSDðT ; zÞ½ �
2
þ ðvmaxt2Þ

� �1=2
, (5)

where SD(T,z) is the relative displacement spectrum (e.g.
see Fig. 6) and vmax is the peak ground velocity associated
with the corresponding excitation. An example of
SDC(T,d,z,t) for S16W strong motion recorded at USC
station #53, during the Northridge earthquake, is shown in
Fig. 6 for t ¼ 0:001 through 0.1 s, d ¼ 1 and z ¼ 0:05.

In Eq. (5), SD(T,z) is representative of relative column
displacement caused by inertial forces, while vmaxt approx-
imates the maximum relative column displacement arising
from pseudo-static deformations in the soil associated with
wave passage. It can be seen that for long structures (large
t) pseudo-static deformation of columns can be large and
can dominate in the contribution to SDC(T,d,z,t) for
intermediate and short periods of oscillators (‘‘stiff’’
structures).

For out-of-plane motion (Fig. 5(top)) and ground
motion consisting of ‘‘long’’ waves, SDC must be
calculated for a two-degree-of-freedom system, with
translational period T, torsional period TT and their
respective fractions of critical damping z and zT. For
T�TT and z�zT it can be shown that [61]

SDCðT ;TT; z; zT; t; dÞ � f½dSDðT ; zÞ�
2 þ 2ðvmaxtÞ

2
g1=2. (6)

The SDC spectrum for in-plane motion is illustrated in
Fig. 6 for horizontal component S16W of a recording in
the near-field of the Northridge, California earthquake of
17 January 1994. The results indicate that during this
earthquake the increase in the shear forces for peripheral
columns (on individual foundations) caused by differential
ground motion was significant, so that one must consider
this effect in the design of new structures and in the
retrofitting of existing structures. This shows that for high-
frequency (stiff) structures, with moderate to large
horizontal dimensions, the shear forces and the associated
bending moments in the peripheral columns will exceed the
estimates based on the relative displacement spectra
SD(T,z) by factors that can be large.
In Fig. 6, we also compare the computed SD(T,z) with

the ‘‘standard’’ spectral shapes of Biot, Housner and Seed.
While all of these shapes agree favorably with SD(T,z) for
this particular recording Biot’s spectrum overestimates the
classical SD(T,z) spectrum, and is more conservative than
the other two.

8. Discussion and conclusions

The focus of this paper has been on the birth and early
history of RSM [3,9], and on its linear vibrational
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framework, within which it continues to be introduced in
the introductory courses on earthquake engineering. An
outline of how this method has been modified during the
past 40 yr to allow approximate analyses of nonlinear
response has been left for a future paper. Here, we only
note that in spite of the voluminous published work on
such generalizations, and extensions of the RSM to the
response of structures experiencing nonlinear deforma-
tions, no general method has been developed thus far. To
guide the development of future methods for design of
earthquake-resistant structures undergoing large nonlinear
response, it will be necessary also to record the responses of
many structures experiencing nonlinear deteriorating re-
sponse. This will require a far more comprehensive
instrumentation of structures than is available today. It
will also require development and deployment of new
instrumentation systems capable of recording permanent
displacements and permanent rotations at many locations
in the soil–structure systems [73,74].

In attempting to avoid the limitations of RSM, which
result from its vibrational formulation, it is expected that in
the future its use will become restricted to the design of
structures that are expected to experience only linear
response amplitudes. For performance-based design of
structures that are expected to experience ‘‘controlled’’
nonlinear responses, it will be necessary to develop new
design principles. These new methods will most likely be
based on equating the maximum power demand with the
design capacity of the structure to absorb a given energy
per unit of time. In the meantime, Biot’s RSM, which is so
deeply and so ubiquitously interwoven into all aspects of
earthquake engineering, will continue to be the central
guiding concept in earthquake-resistant design.
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