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Abstract

The methods for computation of response spectrum amplitudes are reviewed for the period preceding the modern digital computer

age. The mechanical and electrical analog methods that preceded the modern digital calculations were time consuming, inaccurate, and

difficult to verify. Modern studies of response and of the nature of strong ground motion became possible after mid-1960 with

accumulation of strong-motion records and with accurate digitization and digital data processing.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The response spectrum method (RSM) developed by
Biot [1–5] remained in the academic sphere of research for
about 40 years, finally gaining wide engineering acceptance
during the early 1970s. There were two main reasons for
this. First, the computation of structural response to
irregular ground motion led to ‘‘certain rather formidable
difficulties’’ [6], and, second, there were only a few well-
recorded accelerograms that could be used for response
studies (Fig. 1).

All of this started to change in the mid-1960s with
appearance of digital computers and with commercial
availability of strong-motion accelerographs [7,8]. Before
the digital computer age, the computation of response was
extremely time consuming, and the results were so
unreliable that many studies from that period, that used
response spectrum amplitudes, must be treated with
caution [9]. By the late 1960s and early 1970s, the
digitization of analog accelerograph records [10] and the
digital computation of ground motion and of the response
spectra were developed completely and tested for accuracy
[11,12]. Then, in 1971, with the occurrence of the San
Fernando, California, earthquake, the modern era of RSM
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was launched. This earthquake was recorded by 241
accelerographs, including more than 175 in the Los
Angeles area, where a large number of instruments had
been installed at various levels in high-rise buildings. By
combining the data from the San Fernando earthquake
with all previous strong-motion records, it become possible
to launch the comprehensive empirical scaling analyses of
spectral amplitudes [13–15].

2. Computation of response spectra

2.1. Historical Review

Computation of response spectra requires the solution of
Duhamel’s integral ([11]; Appendix A) and then selection
of the maximum response. Prior to the age of digital
computers, execution of these tasks was difficult and very
time consuming. For example, before the 1940s, direct
numerical integration [16] and semi-graphical procedures
using Intergraph instruments [17] had been used.
‘‘The first use of a mechanical analyzer for finding

oscillator response to an earthquake motion was by Frank
Neumann [18,19] of the U.S. Coast and Geodetic Survey in
1936. In this work, the earthquake displacement curve,
obtained by double integration of an accelerogram, was
used to govern the motion of a torsional pendulum’’ (see
discussion by M.P. White [20]).
Response spectra were evaluated mechanically at Stan-

ford University, as follows. ‘‘The acceleration record was
integrated twice to give ground displacements. A cam cut
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Fig. 1. Trends in the capabilities of accelerogram digitization and data processing, between 1970 and 2000: time required to compute one set of standard

response spectrum curves (in minutes), and the cumulative number of accelerograms in strong-motion data bases (light dashed line for the period prior to

1970), and in the uniformly processed strong-motion data bases (wide gray line for the period after 1970).
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in the pattern of these displacements actuated a shaking
table upon which a simple oscillator was placed.’’ The
maximum relative displacement of such an oscillator
multiplied by its natural frequency, on, then gave the
required value of pseudo-spectral velocity [21,22].

White and Byrne [23] suggested a method by which an
accelerogram can be used directly to actuate a mechanical
analyzer. This principle is the same as the one later
employed by Biot [4,5], and Housner [21,24].

The first practical method for computation of spectral
amplitudes was based on the torsional pendulum analog
[4,25]. In this method, an oscillator is represented by an
eccentric mass supported by stretched wire, one end of
which is forced to twist through angles proportional to the
acceleration amplitude, versus time [4,21,26]. The most
time-consuming difficulty associated with the use of such a
torsional pendulum was the inconvenience of changing the
natural period of torsional response. Gross changes in
period were made by using torsional wire of different
diameters. Fine changes were made by selecting the
excentricity of the mass on the inertia bar. Damping was
also difficult to control. At first, it was thought to be zero,
but later it was discovered to be in the range of a few
percent of critical. The damping in the torsional pendulum
came from the internal friction of the torsional spring and
from air damping of the inertia bar [26]. With Biot’s
torsional pendulum at Columbia University, it took about
8 h to construct one spectrum curve consisting of about 30
points [5]. At Caltech, it took about 15min to construct
one spectrum point [26]. Prorating these durations to
computation of spectra at 91 period points for five
damping values [11] results in a duration of work of about
7000min (167 h; Fig. 1).
At the Earthquake Research Institute of Tokyo Uni-

versity, a moving coil galvanometer element was used as
the mechanical torisonal system [27]. It had a torsional
element with fixed frequency, and the period changes were
effected by changing the speed of the film drive mechanism
in the ground motion generator. By energy input into the
torsional system, through electrical feedback loop, effective
zero damping of the system was possible.
The idea of using analog computers for computation of

response spectra can be traced back to 1934: ‘‘The direct
computation ofy spectra might be tedious, but automatic
electrical methods can be easily imagined, such as a
photographic record passing in front of a photoelectric
cell acting upon a tuned circuit’’ [3]. This idea was finally
implemented, 20 years later, during the 1950s [26,28].
In the late 1940s, an analog computer technique was

proposed for solving the response of a single-degree-of-
freedom system to arbitrary excitation F ðtÞ ¼ �M €z [29,30].
The differential equation of motion of a mechanical single-
degree-of-freedom system,
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Fig. 2. Basic electromechanical analog (redrawn from [26]).

Table 1

Mechanical–Electrical relations for analoga

Mechanical system Electrical analog

M ¼ mass of system L ¼ inductance ¼ ða=N2Þm

K ¼ spring constant C ¼ capacitance ¼ 1=ak

C ¼ damping constant R ¼ resistance ¼ ac=N

t ¼ period of vibration t1 ¼ simulated period ¼ t=N

F ¼ exciting force E ¼ applied voltage

x ¼ displacement q ¼ electrical charge

v ¼ velocity i ¼ current

x ¼ aðF=EÞq

N ¼ time-scale change factor

a ¼ impedance change factor

aFrom Alford et al. [26].
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can be represented via its electrical analog as

L €qþ R _qþ
1

C
q ¼ E, (2)

where M, C, and K are mass, damping coefficient, and
stiffness, respectfully, x is relative displacement of M, and z

is absolute ground displacement. In Eq. (2), L is
inductance, R is resistance, and C is capacitance. E is
applied variable voltage, and q is electrical charge (Fig. 2
and Table 1). The time dependent voltage input E was
introduced through a photoelectric cell, which scanned a
rotating film disc (Fig. 3).

The significance of the analog computer was that it
enabled, for the first time, systematic calculation of
response spectra with assigned damping values. It was
about 30 times faster than the torsional pendulum analog
(Fig. 1). Crede et al. [31] showed how a commercial
electronic differential analyzer could be used for determi-
nation of response spectra. Then a special-purpose
spectrum analyzer using electronic operation techniques
was described by Morrow and Riesen [32]. Using these
ideas, a small special-purpose analog computer system,
Mark II, designed for computation of response spectra,
was developed in 1954 and tested through the mid-1950s
[28]. Using this electric analog, response spectra were
calculated for a series of strong-motion earthquakes in the
western United States [17].

In the early 1960s the methods for computation of
response spectra started to change, following the general
availability of digital computers. Digitized accelerograms
could be used in Duhamel integral and integration could be
performed numerically. Assuming that acceleration data
can be approximated by piece-wise straight line segments
between equally spaced points in time, the Duhamel
integral can be integrated exactly over each time interval,
thus reducing numerical integration to a sequential
application of 2� 2 matrices and two 2-component vectors.
This required eight multiplications and six additions for
each time step, or 14N operations for an accelerograms
defined by N points ([33]; see Appendix A).

Through the 1980s, proposals were made to speed up
these calculations by using digital filter simulations of
response [34–36]. Lee [37] showed that by using the digital
impulse and step invariant simulations of a continuous
system, calculations of response displacement and velocity
can be reduced to two multiplications and three additions
per time step and to two multiplications and four additions
per time step if displacement, velocity, and acceleration
responses are computed simultaneously.
The speed of digital computers has increased remarkably

since 1970 (Fig. 1), eliminating the need to increase the
speed of response calculation. Therefore, in USC’s Strong
Motion Data Processing Laboratory, we have chosen to
continue with use of the exact response calculations based
on equally spaced points in time and linear interpolation of
acceleration between the digitized points [11,38,39].
In summary, before introduction of the torsional

pendulum analog, computation of response spectra was
so long and difficult that spectra of only several recorded
accelerograms for ‘‘zero’’ damping could be considered
[21,24]. Between 1940 and 1950, the torsional pendulum
method [4] ‘‘was a big advance, because it was about 30
times quicker than doing it graphically’’ [40]. The
introduction of the analog computer method in the early
1950s reduced the time of computing spectral amplitudes
about 60 times, but the conversion of recorded acceler-
grams into film disk records [26,28], the selection and
calibration of required electrical constants, and the reading
of maximum responses from an oscilloscope complicated
and delayed the process. With introduction of digital
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Fig. 3. Top: Transformation of input function to variable-width film

trace. Bottom: Dimensions of the standard film disk record for the

function generator (redrawn from [28]).

Fig. 4. Comparison of relative velocity response spectrum amplitudes for

E–W component of strong motion recorded at Carroll College, during

Helena, Montana earthquake of 1935. Spectra computed by torsional

penduli of Biot and Housner (damping not specified) are compared with

spectra computed by analog computer (damping values 0.0, 0.10, and

0.20), and digital computer (for five damping values 0., 0.02, 0.05, 0.10,

and 0.20 [41]).

Fig. 5. Comparison of relative velocity response spectrum amplitudes for

N 39 E component of strong motion recorded at Los Angeles Subway

Terminal, during Long Beach, California earthquake of 1933. Spectra

computed by graphical method (zero damping), torsional pendulum

(damping not specified), analog computer (damping values 0.0, 0.10,

and0.20), and digital computer (for five damping values 0., 0.02, 0.05, 0.10,

and 0.20 [41]).
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computers in the 1960s, it became necessary to convert
analog film records of acceleration into digital points, and
until the late 1970s this slowed down the process
considerably. Since the early 1990s, digitization of analog
records has become fast, efficient, and accurate. At present,
it is the organization of the whole process and the archiving
and distribution of data that limit the speed with which
response spectra can be obtained in their final form.

2.2. Accuracy

Figs. 4–6 illustrate the accuracy of different old methods
for computing response spectra. Fig. 4 compares relative
velocity spectra computed by (1) Biot, using a torsional
pendulum at Columbia University [21]; (2) Housner, using
a torsional pendulum at Caltech [21]; (3) [26], using an
analog computer; and (4) modern digital computing ([11],
from digitized accelerogram of Helena, Montana, earth-
quake of 1935; [42]). It can be seen that all spectra follow
the same broad trends (large amplitudes near 0.2–0.4 s and
near 1 s, and small amplitudes near 0.5–0.6 s), but the local
peaks fluctuate in a random manner. For most periods,
zero damped spectral amplitudes computed by modern
digital methods, are smaller than all three ‘‘old’’ spectra.
This may be related to the selection of scaling constants
used in electrical analog computing and in the two analyses
based on the torsional pendulum. Two spectral curves, for
z ¼ 0:1 and 0.2, computed by Alford et al. [26] have
amplitudes and trends similar to those of digitally
computed spectra, but their details do not agree.
Figs. 5 and 6 reveal far worse agreement. In both figures,

the spectra computed by Alford et al. [26] follow the trend
of modern results, but detailed comparison shows serious
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Fig. 6. Comparison of relative-velocity response spectrum amplitudes for

N 82 E component of strong motion recorded at Vernon, CMD Building,

during Long Beach, California earthquake of 1933. Spectra computed by

mechanical model at Stanford (damping not specified), torsional

pendulum at Caltech (damping not specified), Analog Computer (three

damping values 0., 0.10, and 0.20), and digital computer (for five damping

values 0., 0.02, 0.05, 0.10, and 0.20 [41]).
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discrepancies at various periods. For the Vernon record
[42], spectra computed by torsional pendulum at Caltech
[21] have a correct overall trend, but local peaks do not
correlate with those in modern calculations. The spectra
computed by the mechanical method at Stanford have the
wrong amplitudes and are depleted of high-frequency
amplitudes. The spectra computed by the graphical method
and by torsional pendulum at Caltech [21], for the Los
Angeles subway terminal record [43], shown in Fig. 5, have
erroneous amplitudes and trends. The differences are so
large that the explanation probably involves an erroneous
selection of scaling constants or possibly the use of an
incomplete record. These major discrepancies, together
with other similar discrepancies in spectral amplitudes
reported by Trifunac et al. [9], show that the accuracy and
reliability of the methods used to compute response spectra
prior to the introduction of digital computer methods were
so bad that all pre-1960s spectra must be considered with
great caution. These examples also show that the estimates
of accuracy ‘‘to within 10 percent’’ using an analog
computer, claimed by Alford et al. [26], were not realistic.
The speed, efficiency, and accuracy of computing response
spectrum amplitudes by analog computer were apparently
offset by noise introduced into the process while (1) making
the film disc records [28] and (2) reading the peak response
from a cathode ray tube display. It is unfortunate that
there are no published reports on analyses and properties
of these errors.

Biot [2] had unmistakable vision when he stated that
‘‘the peaks of spectral curves will reveal the presence of
certain characteristic frequencies of the soil at given
locations.’’ With today’s accurately digitized data and
modern digital processing, response spectra can be used
for such studies [44,45]. Unfortunately, as illustrated by
Figs. 4–6, the accuracy of the ‘‘old’’ methods for response
calculation was not adequate for such analyses.

3. Preparation of accelerograms for processing

In the old graphic method of digitization, the record was
first drawn on a large scale. This was followed by
multiplications and integration, or the use of an Intergraph
instrument.
The introduction of the torsion pendulum [4,5] presented

an advantage in that it was not necessary to convert the
recorded accelerogram to a different analog record.
A point of suspension of a torsional pendulum was given
angular displacements by rotating its arm through an angle
proportional to recorded acceleration. The accelerogram
was placed on a table traveling with constant velocity,
while the arm, connected to the torsional wire at one end
and a tracer on the other, was forced to follow the
acceleration trace.
The introduction of analog computers required conver-

sion of inertial force �M €z in the mechanical system into
applied voltage E(t) in the electrical analog. This was
accomplished by designing a ‘‘plotting table’’ to prepare
film disc records, which were then used in a forcing
function generator to produce E(t) (Fig. 3). According to
Caughey et al. [28]: ‘‘The earthquake ground acceleration
record drawn to a suitable scale is wrapped around a drum,
which is slowly rotated by an electric motor around a
vertical axis. The curve is manually traced by a follower
mechanism, which is converted through a selsyn system to
a shutter, thus exposing a photographic negative, which
rotates along with the drum. In this way, a variable-width
film trace is producedywhere the overall slit width is
seen to be equal to a constant plus twice the accelera-
tion function. A similar slit system, along with a light
source and a photocell, is then used in the function
generator to reproduce the original ground acceleration
curve’’ (See Fig. 3).
With the appearance of digital computers, it became

necessary to convert analog acceleration traces into a
sequence of digital points representing acceleration versus
time. The first digitization system in California capable of
digitizing a large number of accelerograms and converting
the digitized data into computer punch cards was described
by Hudson [46]. Similar-hand operated digitization tables
were in operation at that time in Japan, the Soviet Union,
New Zealand, and Yugoslavia. This digitization method
was accurate but time consuming. Digitization, plotting to
verify the accuracy of digitization, and the conversion of
data from computer punch cards to files on magnetic tapes
took, on the average, four days per record. However,
subsequent data processing was relatively fast and efficient.
It consisted of: (1) preparation of scaled digitized accel-
erograms (vol. I; [47]); (2) instrument and baseline
correction, followed by computation of velocity and
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displacement curves (vol. II; [48]); (3) computation of
response spectra (vol. III; [49]); and (4) computation of
Fourier amplitude spectra using a fast Fourier algorithm
(vol. IV; [50]).

The next major step forward in digitization of strong-
motion accelerograms occurred in 1978, when the first
automatic system for digitization (based on a rotating
drum scanner by Optronics, controlled by a Nova mini-
computer) was developed at the University of Southern
California [38]. With this system, digitization of a typical
accelerogram was reduced to 1–2 h. Because checking for
the accuracy of digitization now became an integral part of
running the digitization software, and because the digitized
and corrected data resided on the same computer disk, this
system was about 50 times faster than the hand-operated
digitizers. During late 1980s with the development of high-
resolution flatbed scanners (HP II with 300 dpi resolution,
and HP 4C with 600 dpi resolution) and the commercial
availability of fast personal computers, automatic digitiza-
tion was converted to operate on this new hardware [39,44].
At present, it takes less than 15min to digitize and pre-
pare the vol. I data of good quality accelerograms that are
less than 28s long. This is about 380 times faster than with
the hand-operated digitizers of the late 1960s and early
1970s [46].

4. Data distribution

Before the 1970s, the number of digitized and processed
accelerograms and their response spectra was small (less
than about 100), and the data distribution could easily be
organized through personal contacts and mail. During the
1970s and through the early 1980s, magnetic tapes with
data could be ordered from major centers performing data
processing (United States Geological Survey (USGS); the
California Division of Mines and Geology (CDMG); and
the University of Southern California’s Strong Motion
Group). These groups also contributed their data for
archiving and distribution by the National Geophysical
Data Center in Boulder, Colorado.

With the development of the Internet and the creation of
specialized Web sites dealing with strong-motion data, it is
possible today to download large volumes of strong-
motion data at no cost. Useful links to Web sites that offer
such data can be found at http://www.usc.edu/dept/civil_eng/
Earthquake_eng/.

5. Discussion and conclusions

Before the digital computer age, computation of
response spectra of strong-motion accelerograms was
difficult and labor intensive, and the results had very
uncertain accuracy. This, in combination with a very small
number of available recorded accelerograms, made it
impossible to carry out empirical studies on the scaling of
earthquake spectral amplitudes. Also, it was difficult to
explore the governing laws and to link the physical nature
of the earthquake source mechanism with the amplitudes
and shape of the response spectrum. It was primarily for
these reasons that the response spectrum method was
confined largely to the realm of academic research for
almost 40 years (1932–1972).
As mentioned earlier, all of this changed during the early

1970s. Not only did digital computers became widely
available, but also the number of recorded strong-motion
accelerograms grew rapidly. Since the early 1980s it has
become possible to carry out sophisticated and complex
regression analyses of the recorded data, to search for
intricate and detailed properties of the physical nature of
strong earthquake ground motion, and to discover how
this nature affects the response spectrum amplitudes.
Today, we understand all of the principal factors that
determine the overall amplitudes and shapes of the
response spectra in Southern California [15,51–55]. In the
future, when sufficient strong-motion data have been
recorded in other seismically active areas of the world, it
will be possible to develop such area-specific empirical
scaling equations in these locations, as well.

Appendix A

For the standard corrected accelerograms [48], with
amplitudes specified at equally spaced time intervals Dt, an
approach based on the exact analytical solution of the
Duhamel integral, for the successive linear segments of
excitation, appears to be the most practical. This approach
is described in [33]. For completeness of this paper, the
important features of this method are briefly summarized
here.
The differential equation for the relative motion x(t) of a

single-degree-of-freedom oscillator subjected to base accel-
eration a(t) is

€xþ 2oB _xþ o2x ¼ �aðtÞ, (A.1)

where, z ¼ fraction of critical damping and o ¼ the
natural frequency of vibration of the oscillator. For a(t),
given by a segmentally linear function for ti � t � tiþ1,
(A.1) becomes:

€xþ 2oB _xþ o2x ¼ �ai þ
Dai

Dt
ðt� tiÞ, (A.2)

where

Dt ¼ tiþ1 � ti ¼ const. (A.3)

and

Dai ¼ aiþ1 � ai. (A.4)

The solution of Eq. (A.2), for ti � t � tiþ1, is

xðtÞ ¼ e�Boðt�tiÞ C1 sinodðt� tiÞ þ C2 cosodðt� tiÞ½ �

�
ai

o2
þ

2B
o3

Dai

Dt
�

1

o2

Dai

Dt
ðt� tiÞ, ðA:5Þ

where

od � o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
. (A.6)

http://www.usc.edu/dept/civil_eng/Earthquake_eng/
http://www.usc.edu/dept/civil_eng/Earthquake_eng/
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Setting x ¼ xi and _x ¼ _xi at t ¼ ti, C1 and C2 become

C1 ¼
1

od
Boxi þ _xi �

2B2 � 1

o2
þ

B
o

ai

� �
, (A.7)

C2 ¼ xi �
2B
o3

Dai

Dt
þ

ai

o2
. (A.8)

Substituting C1 and C2 into Eq. (A.5) and setting t ¼ tiþ1

leads to the recurrence relationship for xi and _xi, given by

xiþ1

_xiþ1

( )
¼ AðB;o;DtÞ½ �

xi

_xi

( )
þ BðB;o;DtÞ½ �

ai

aiþ1

( )
.

(A.9)

The elements of matrices A and B are:

a11 ¼ e�BoDt 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p sinodDtþ cosodDt

 !
,

a12 ¼
e�BoDt

od

sinodDt,

a21 ¼ �
offiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p e�BoDt sinodDt,

a22 ¼ e�BoDt cosomDt��
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� B2
p sinodDt

 !
. ðA:10Þ

b11 ¼ e�BoDt 2B2 � 1

o2Dt
þ

B
o

� �
sinodDt

od

�

þ
2B

o3Dt
þ

1

o2

� �
cosodDt

�
�

2B
o3Dt

,

b12 ¼ e�BoDt 2B2 � 1

o2Dt

� �
sinodDt

od
þ

2B
o3Dt

cosodDt

� �

�
1

o2

2B
o3Dt

,

b21 ¼ e�BoDt 2B2 � 1

o2Dt
þ

B
o2

� �
cosodDt�

Bffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p sinodDt

 !"

�
2B2

o2Dt
þ

1

o2

� �
od sinodDtþ Bo cosodDtð Þ

�
þ

1

o2Dt
,

b22 ¼ � e�BoDt 2B2 � 1

o2Dt
cosodDt�

Bffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p sinodDt

 !"

�
2B

o2Dt
od sinodDtþ Bo cosodDtð Þ

#
�

1

o2Dt
. ðA:11Þ

Therefore, if the displacement and velocity of the oscillator
are known at ti, the complete response can be computed by
a step-by-step application of Eq. (A.9). The advantage of
this method lies in the fact that for a constant time interval
Dt matrices A and B depend only upon z and o and are
constant during the calculation of the response.

To calculate and plot complete response spectra,
maximum values of relative displacement SD ¼ jxðtÞjmax,
relative velocity SV ¼ j _xðtÞjmax, and absolute acceleration
SA ¼ j €xðtÞ þ aðtÞjmax are stored for each period T ¼ 2p=o
and a fraction of critical damping z. The calculation of
these maxima is approximate because the displacement
x(t), velocity _xðtÞ; and acceleration €xðtÞ are found only at
discrete points, where the values are xi, _xi, and €x1 þ ai for
i ¼ 1, 2,y,N (N is the total number of discrete, equally
spaced points at which the input accelerogram is given).
For standard spectrum calculations, the choice of the
interval of integration DT is selected to be

Dt �
T

10
, (A.12)

but it is always less than or equal to Dtmax ¼ 0.02 s. Here,
T is the period of the oscillator for which the spectrum
point is calculated. For such a choice of integration interval
the discretization error is less than 5%.
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