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Abstract

Examples of non-linear wave propagation in an elasto-plastic building are presented for excitation by pulses of strong ground motion

characteristic of the near-field shaking near earthquake faults. Conditions that lead to the occurrence of permanent deformations in the

building are investigated, and the amplitudes and wavelengths of incident pulses that lead to non-linear response are shown. Because the

building can fail during the first passage of the incident wave pulse up and down the building (during a period that is shorter than the first

natural period of the building), it is concluded that for the analysis and the design of structures in the near-field of earthquake shaking

the wave propagation method of analysis must be used in place of the response spectrum method, which is based on the vibrational

solution of the same governing equations.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Rational design of earthquake-resistant structures re-
quires realistic representation of the problem—that is, wise
selection of the mathematical model and the associated
differential equations, which are the tasks that determine
the sub-space of possible solutions [1]. Once the model and
the governing equations have been selected, the method of
solution can also influence how realistic the end result will
be. In the traditional earthquake engineering studies of
response, structures have been represented both by lumped
mass and by continuous models, but the prevailing
methods of the solution have usually followed the
vibrational approach, using the superposition of modal
responses.

The vibrational approach for the solution of the
response of structures, which are excited at their base by
earthquake shaking, was formulated by Biot in early 1930s
[2–4]. In this approach, the linear response is represented
by superposition of the responses of the equivalent degrees
of freedom, corresponding to the responses for the
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generalized coordinates, whose amplitudes in time, deter-
mined by excitation, are expressed via the Duhamel’s
integral [5]. It can be shown that for the linear systems such
a representation is complete.
In engineering applications, the vibrational representa-

tion of the solution is further simplified by considering only
the fundamental and, occasionally, a few of the lowest
frequencies of the system. Doing so is analogous to low-
pass filtering of the complete solution [5,6], but it can work
well when the excitation is small. However, in the near field
of earthquakes, the ground motion may contain large and
short displacement pulses, the duration of which can be
shorter than the fundamental period of the structure. For
this type of excitation, the response spectrum superposition
method ceases to be valid and must be replaced by a
solution in terms of propagating waves. As will be shown in
this paper, for short impulsive ground motions the damage
can occur before the wave entering the structure completes
its travel up and down the structure, and well before the
wave interference can occur—that is, well before the
physical conditions can lead to the interference of waves
and creation of the mode shapes.
Studies of the response using the wave propagation

approach are not new, but the method of analysis has only
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Fig. 1. Shear beam and incoming strong-motion displacement pulse: (a)

model of the beam, and (b) the pulse in the soil.
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recently started to be used for interpretation of the
recorded response, for modeling a two-dimensional re-
sponse, and for interpretation of full-scale experimental
measurements of structural vibrations. Wave propagation
models of buildings have been used for many years [7] but
are only recently beginning to be verified against observa-
tions [8–12]. Continuous, 2-dimensional wave propagation
models (homogeneous, horizontally layered and vertically
layered, shear plates) can be employed to study the effects
of traveling waves on the response of long buildings
[13–18]. Discrete-time, 1-dimensional wave propagation
models were proposed to study the response of tall
buildings [19], and 2-dimensional finite difference methods
were used to study linear and non-linear soil–structure
interaction [20].

In this paper, because of the one-dimensional nature of
the model adopted for the analysis, the two- and three-
dimensional effects of soil–structure interaction will be
ignored [21,22], and thus significant mechanisms of
energy loss (non-linear response of the soil and radiation
damping) will be neglected. Other simplifications in this
paper are that the dynamic instability and the effects of
gravity on non-linear response will not be considered
[22–25].

In this paper, we will describe the most elementary form
of the 1-dimensional shear wave propagation in the
structure with elasto-plastic material properties. We will
use finite differences to calibrate the response, and we will
focus mainly on the most elementary aspects and
consequences of non-linear response. After a brief pre-
sentation on the method of computation and a description
of the transparent boundary conditions in the soil, we will
describe the results of 1-dimensional waves in an elasto-
plastic continuum subjected to shear pulses of strong
motion.

The work presented in this paper should also contribute
to a better understanding of how and where the incident
wave energy is distributed and dissipated within the
structure and in the structure–soil system. This under-
standing is essential for further development of the power
design method [6].
2. Model and numerical scheme

We consider horizontal deformations, u, in a one-
dimensional shear beam supported by one-dimensional
half space and excited by a vertically propagating shear
wave described by a half-sine-pulse (Fig. 1). As noted by
Dablain [26], a finite difference scheme for a solution of
this problem with accuracy OðDt2;Dx2Þ, where Dx and Dt

are the space and time increments, leads to the exact
solution for bDt

Dx
¼ 1, where b is the velocity of shear waves.

With a ratio of the spatial intervals
Dxb
Dxs
¼

bb
bs

we can meet
this requirement. For simplicity, the incident displacement
in the soil is chosen to be a sinusoidal pulse with
characteristics shown in Fig. 1.
The equation of motion is

vt ¼
1

r
ðsÞx, (2.1a)

and the relation between the derivative of the strain and the
velocity is

�t ¼ vx, (2.1b)

where v, r, s, and e are particle velocity, density, shear
stress, and shear strain, and the subscripts t and x represent
derivatives with respect to time and space.
The domain consists of two materials (see Fig. 1): (1)
�2Dxspxo0 with physical properties rs and ms, and (2)
0oxpHb with physical properties rb and mb—for linear
response, where ri is the density and mi is the shear modulus
in the soil ði ¼ sÞ or in the building ði ¼ bÞ. v ¼ qu

qt
and � ¼ qu

qx

are the velocity and the strain of a particle, and u is out-of-
plane displacement of a particle perpendicular to the
propagation ray.
It is assumed that the incoming wave is known and that

its displacement as a function of t is prescribed at the point
1 ðx ¼ �2DxsÞ. Also, in this paper it is assumed that the
soil is always in the linear elastic state. The Lax–Wendroff
finite difference method [27] for a set of simultaneous
equations is used to solve the problem.
A mesh with different spatial intervals in the soil and in

the building will be used. The spatial intervals are defined
by

Dxi ¼ bi � Dt;

where bi is the velocity of shear waves in the soil ði ¼ sÞ or
in the building ði ¼ bÞ and Dt is the time step.
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The building is discretized into 197 spatial intervals and
the soil into 2, so the properties of the mesh are

Dxb ¼
Hb

197
and Dxs ¼

bs
bb

Dxb: (2.2a)

The cell length at the interface point 3 ðx ¼ 0Þ is

Dx3 ¼
ðDxb þ DxsÞ

2
, (2.2b)

and the initial equivalent shear modulus for this point is
obtained from the condition of continuity of the displace-
ments and the stresses at the interface (see Appendix A) as

m3 ¼
msmbðDxs þ DxbÞ

msDxb þ mbDxs
. (2.3)

The yielding strain in the building is �yb, and to maintain
the continuity of the stresses at the interface the yielding
strain in contact point 3 is obtained from mb�yb ¼ m3�y3
(Fig. 2)

�y3 ¼
mb
m3
� �yb; (2.4)

where mb is the shear modulus in the building and m3 is the
equivalent shear modulus at the contact point 3. The time
step is constant during the analysis, as follows:

Dt ¼
Dxb

bb
¼

Dxs

bs
. (2.5)

Above the top point N, an additional dummy point N0 is
introduced at distance Dxb. For a stress-free point N, for all
time, the velocities and the stress at the point N0 are
updated as

vN 0 ¼ vN�1, (2.6a)

sN 0 ¼ �sN�1. (2.6b)
Fig. 2. The constitutive laws, s� �, for the building (solid line) and for the

interface (dashed line).
Eqs. (2.1) can be written in vector form as

qU
qt
¼

qF
qx

, (2.7)

where

U ¼
v

�

� �
and F ¼

s
r
v

( )
¼

mð�Þ � �
r
v

8<
:

9=
;. (2.7a)

The vector U at point i in time ðj þ 1ÞDt expanded in
Taylor series is

Ui;jþ1 ¼ Ui;j þ Dt
qU
qt

� �
i;j

þ
Dt2

2

q2U
qt2

� �
i;j

þOðDt3Þ; and from Eq: ð2:7Þ,

Ui;jþ1 ¼ Ui;j þ Dt
qF
qx

� �
i;j

þ
Dt2

2

q
qt

qF
qx

� �
i;j

þOðDt3Þ,

Ui;jþ1 ¼ Ui;j þ Dt
qF
qx

� �
i;j

þ
Dt2

2

q
qx

AðUÞ
qF
qx

� �
i;j

þOðDt3Þ.

(2.8)

AðUÞ is the Jacobian matrix

AðUÞ ¼
qF
qU
¼

qs
rqv

qs
rq�

qv

qv

qv

q�

2
664

3
775 ¼ 0

1

r
ds
d�

1 0

2
4

3
5. (2.9)

3. Transparent boundary

The transparent boundary adopted for this study is
described in Fujino and Hakuno [28] (Fig. 3). This is a
perfect transparent boundary for one-dimensional waves,
when bDt

Dx
¼ 1. In Fig. 3, the horizontal axis is time and the

vertical axis is space. The points are represented by their
discrete coordinates. The first coordinate represents dis-
crete space, while the second coordinate represents discrete
time, so the column consisting of spatial points 1–3
represents a certain time step.
Point 1 is where the prescribed displacement is applied.

We assume that this displacement travels upward in each
time step. Point 2 is the boundary point of the model,
where the quantities of motion are updated in each time
step. Point 3 is the first spatial point, where the motion is
computed using finite differences.
The motion at each point results from two components

of motion, one from a wave going up and one from a wave
going down. To update the motion at boundary point 2, in
time step k, we proceed as follows. The total motion at 2 is

uð2; kÞ ¼" uð2; kÞþ # uð2; kÞ; (3.1)

where the arrows denote the direction of wave propagation
(m for up and k for down). The motion at point 1 results
from up-going wave uð1; t=DtÞ ¼" uð1; t=DtÞ ¼ u0ðt=DtÞ.
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Fig. 3. The model of the absorbing boundary.
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Then,

" uð2; kÞ ¼ uð1; k � 1Þ ¼ u0ðk � 1Þ. (3.2)

The component of motion from the wave traveling
down is

# uð2; kÞ ¼# uð3; k � 1Þ. (3.3)

From uð3; k � 1Þ ¼" uð3; k � 1Þþ # uð3; k � 1Þ it follows
that

# uð3; k � 1Þ ¼ uð3; k � 1Þ� " uð3; k � 1Þ: (3.4)

The motion at point 3 at time step (k�1) from the wave
traveling upward is the motion at point 2 from the wave
traveling upward in the previous time step (k�2). From
Eq. (3.2), the motion at point 2 from the wave traveling
upward in time step (k�2) is the given motion at time step
(k�3), so that when we have " uð3; k � 1Þ ¼"
uð2; k � 2Þ ¼ u0ðk � 3Þ.

Eq. (3.3) becomes

# uð2; kÞ ¼# uð3; k � 1Þ ¼ uð3; k � 1Þ � u0ðk � 3Þ. (3.5)

Substituting Eq. (3.2) and Eq. (3.5) into Eq. (3.1), the
motion at point 2 is

uð2; kÞ ¼ u0ðk � 1Þ þ uð3; k � 1Þ � u0ðk � 3Þ 8k. (3.6)

Eq. (3.6) is the boundary condition at the transparent
boundary point 2, where u stands for displacement,
velocity, strain, or stress.

For the linear case at the contact (point 3), one part of
the incoming wave is transmitted into the other medium
and one is reflected back into the same medium. The
corresponding coefficients are obtained from the boundary
conditions of continuity of the displacements and stresses
at the contact. For a transmitted wave from medium B to
medium A, and for a reflected wave from medium B back
into medium B, the above coefficients are

ktrB!A ¼
2

1þ

ma
ba
mb
bb

¼
2

1þ
raba
rbbb

. (3.7)

And, similarly,

krefB!B ¼

1�
raba
rbbb

1þ
raba
rbbb

. (3.8)

For the opposite direction of propagation, the num-
erators and the denominators in these fractions exchange
places.
4. Numerical examples

For the numerical examples, we consider a shear beam
supported by elastic soil, as shown in Fig. 1. The densities
of the soil and of the beam are assumed to be the same:
rb ¼ rs ¼ r ¼ 2000 kg=m3. The velocity of the shear waves
in the soil is taken as bs ¼ 250m=s, and in the building as
bb ¼ 100m=s. To study non-linear response and the
development of permanent deformations in the beam, we
introduce two dimensionless parameters:
�
 dimensionless amplitude

a ¼
A

Hb � �yb
; (4.1)

where A is the amplitude of the pulse (see Fig. 1), Hb is
the height of the building, and �yb is the yielding strain in
the building; and

�
 dimensionless frequency

Z ¼
Hb

lb
2

¼
Hb

bb � 2td

2

¼
Hb

bbtd
; (4.2)

where lb is the wavelength of the wave in the building,
bb is the shear wave velocity in the building, and td is the
duration of the half-sine pulse.
To understand the development of the permanent strain in
the non-linear beam, we analyze first the solution for the
linear beam.



ARTICLE IN PRESS
V. Gicev, M.D. Trifunac / Soil Dynamics and Earthquake Engineering 27 (2007) 774–792778
The displacement and the strain for the linear beam are

uðx; tÞ ¼ A
X1
j¼1

kj

sin
p
td

t� tj�1 �
x

bb

� �
H t� tj�1 �

x

bb

� ��

�H t� tj�1 �
x

bb
� td

� ��

þ sin
p
td

t� tj þ
x

bb

� �
H t� tj þ

x

bb

� ��

�H t� tj þ
x

bb
� td

� ��

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(4.3)

and

�ðx; tÞ ¼ A
p

bbtd

X1
j¼1

kj

�

� cos
p
td

t� tj�1 �
x

bb

� �
H t� tj�1 �

x

bb

� ��

�H t� tj�1 �
x

bb
� td

� ��

þ cos
p
td

t� tj þ
x

bb

� �
H t� tj þ

x

bb

� ��

�H t� tj þ
x

bb
� td

� ��

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

;

ð4:4Þ

where j is the order number of the passage of the wave on
the path bottom–top–bottom in the building, tj ¼

2jHb
bb
ðj ¼

0; 1; 2; 3; . . . ; Þ is the time required for the wave to pass j

times the path bottom–top–bottom (two heights),

kj ¼ ktk
j�1
r (4.5)

is the amplitude factor of the pulse in the soil, in its jth
passage along the path bottom–top–bottom, through the
building, and kt and kr are coefficients defined by Eqs. (3.7)
and (3.8). The amplitudes of kj ¼ kjðjÞ and kj ¼ jkjðjÞj, for
the examples considered in this paper, are shown in Fig. 4.

The odd terms in the series of Eqs. (4.3) and (4.4)
describe the response at arbitrary points to the pulse
coming from below, while the even terms describe the
response for the pulse arriving from above. For the shear
wave velocities in our example, (bs ¼ 250m=s and
bb ¼ 100m=s), kt ¼

10
7
, and kr ¼ �

3
7
. In Eq. (4.3) the

displacement is positive for odd passages and negative for
even passages. The displacement and velocity change sign
after reflection from the soil–building interface and do not
change sign after reflection from the top of the building.
The strain changes sign after reflection from the top of the
building and does not change sign after reflection from the
building–soil interface.

The constant multiplying the series in Eq. (4.4) in terms
of dimensionless amplitude and dimensionless frequency is

A
p

bbtd
¼ A� ¼ paZ�yb. (4.6)

To analyze the occurrence of permanent strain, we consider
two characteristic points in the building: (1) Point B ðx ¼ 0Þ
at the soil–building interface (point 3 in the grid, see

Fig. 1), and (2) Point T x ¼ Hb �
bb�td
2

� 	
, where the

amplitudes of the strain with the same sign meet after
reflection from the top of the building. The location of this
point is dependent upon the duration (wavelength) of the
pulse. To find the location of this point and the time of
occurrence of the local maximum strain, we use Eq. (4.4).
The first term in Eq. (4.4) is one if the argument of the

cosine function is equal to td t� t0 �
x
bb
¼ td

� 	
. The second

term is one if the argument of the second cosine function is

equal to 0 t� t1 þ
x
bb
¼ 0

� 	
.

The position of point T, where the strain amplitude is
two times larger than the strain entering the beam, is at

x ¼ Hb �
bb�td
2

, and the time when this occurs is

t ¼
Hb
bb
þ

td
2
. From Eq. (4.4) in the first passage of the pulse,

to 2Hb
bb

, only the first term in the series exists. The strain at

point B reaches its absolute maximum at the very
beginning, during the entrance of the pulse into the
building, and its value is

j�1B maxj ¼ paZ�ybkt. (4.7)

If the strain in Eq. (4.7) is greater than the yielding strain in
the building, a permanent strain at the interface will
develop. The condition for occurrence of permanent strain

at this point is j�1B maxj4�yb, or, in terms of the dimension-

less parameters,

aZ4
1

pkt

¼
bb þ bs
2pbs

¼ CB. (4.8B)

At point T (this point does not exist if td4
2Hb
bb

, and it

coincides with point B if td ¼
2Hb
bb

), from Eq. (4.4), the

maximum strain during the first passage occurs at t ¼

Hb
bb
þ

td
2 ; and its amplitude is 2A� � kt. The condition for

occurrence of the permanent strain is

aZ4
1

2pkt

¼
bb þ bs
4pbs

¼ CT ¼
CB

2
. (4.8T)

For the shear wave velocities in our example CB ¼ 0:2228
and CT ¼ 0:1114.
When the reflected wave from the top of the building

reaches the soil–building interface ðt ¼ t1Þ, the wave begins
the second passage. The linear solution for the strain in Eq.
(4.4) at B now involves three terms in the series if the
duration of the pulse is longer than

2Hb
bb

, and two terms for
shorter pulses. Recalling Eqs. (4.4) and (4.6), the solution
at time t ¼

2Hb
bb
¼ t1 is

�ð0; t1Þ ¼ A� k1 � cos
p
td
�
2Hb

bb

� �
þ cos 0

� �
� k2 � cos 0

� �
(4.9a)



ARTICLE IN PRESS

-0.5

0.

0.5

1.5

1.

0.

0.5

1.5

1.

2 6 8 10

k
j

k
j

j

42 6 8 10

j

4

a b

Fig. 4. Dependence of kjðjÞ on j.

V. Gicev, M.D. Trifunac / Soil Dynamics and Earthquake Engineering 27 (2007) 774–792 779
or

�ð0; t1Þ ¼ paZ�ybktð1� cos 2pZ� krÞ, (4.10a)

when

td4
2Hb

bb
Zo

1

2

� �
,

and

�ð0; t1Þ ¼ A� k1 � cos 0� k2 � cos 0f g (4.9b)

or

�ð0; t1Þ ¼ paZ�ybktð1� krÞ, (4.10b)

when

tdo
2Hb

bb
Z4

1

2

� �
.

Comparing Eqs. (4.7) and (4.10b), because kro0, for
shorter pulses ðZ40:5Þ, the strain at point B, at the
beginning of the second passage, is always larger ð1þ jkrjÞ,
and for our example, 107 times larger than the strain, A� � kt,
at the beginning of the first passage. However, it is still
smaller than the strain at T in the first passage ð2A� � ktÞ.
For shorter pulses ðZ40:5Þ, it can be concluded that if there
is no occurrence of permanent strain during the first
passage at point T, the response of the beam will be linear
for all time.

For longer pulses ðZo0:5Þ, comparing Eqs. (4.7) and
(4.10a), it can be seen that for Zo 1

2p arccosðjkrjÞ the strain
at interface point B at the beginning of the second passage
is smaller than the strain at the beginning of the first
passage, and for Z4 1

2p arccosðjkrjÞ the former strain is
larger than the latter one. For our example ðkr ¼ �

3
7
Þ,

Z40:18 always gives larger strain at the interface point at
the beginning of the second passage than the strain at the
beginning of the first passage.
The largest amplification of the strain at B is for Z ¼ 0:5,

when, at the beginning of the second passage, the
strain is ð2þ jkrjÞ times larger than the strain during the
first passage. For our example, the amplification is 17

7
,

which gives larger strain than the strain at point T during
the first passage ð2A� � ktÞ. Therefore, for longer pulses
ðZp0:5Þ the first permanent strain can occur later (see
Fig. 5). The conditions in Eq. (4.8) can be written also in
the form

aZ4
1

pktð2þ jkrjÞ
¼

bb þ bs
2pbsð2þ jkrjÞ

¼
CB

2þ jkrj
. (4.8B2)

In general, we distinguish three cases for the duration
of the pulse and for the corresponding strains at the
bottom of the beam at the end of the jth passage (tj), as
follows:
1.
 t0otdot1. The dimensionless frequency is higher than
0.5.

�ð0; tjÞ ¼ A�ðkj � kjþ1Þ. (4.10.1)
2.
 tlotdotlþ1, loj, lX1. The dimensionless frequ-
ency is lower than 0.5, and the pulse has entered
into the beam completely. The strain contains 2ðl þ 1Þ
terms:

�ð0; tjÞ ¼ A�

Xj

m¼j�l

km cos 2pðj �mÞZ

"

�
Xjþ1

m¼j�lþ1

km cos 2pðj �mþ 1ÞZ

#
. ð4:10:2Þ
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Fig. 5. Normalized time of occurrence of the maximum strain versus Z—dimensionless frequency (left), and a—dimensionless amplitude (right).
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3.
 td4tj. The pulse is still entering into the beam. The strain
contains 2j þ 1 terms:

�ð0; tjÞ ¼ � A�

Xj

m¼0

kmþ1 cos 2pðj �mÞZ

(

�
Xj

m¼1

km cos 2pðj �mÞZ

)
. ð4:10:3Þ

For the non-linear case, we will consider five examples of
the dimensionless amplitude a ¼ 0:05; 0.1; 0.2; 0.3; and 0.4,
in the range of the dimensionless frequency 0:03pZp5. We
will also consider only ‘‘small’’ deformations, for which
� � tan � (geometric linearity).

In Fig. 6a the largest permanent strain in the beam
is shown versus the dimensionless frequency. It can be
seen that for aX0:2 the peaks occur in the range
0:36pZp0:46 (see the conditions described in Eq.
(4.8B2). The peak for a ¼ 0:4 occurs at Z ¼ 0:36, with
amplitude �max ¼ 0:795, and it is the largest perm-
anent strain for the range of dimensionless frequencies
considered here. The development of the largest perm-
anent strain is explained further in Appendix B. As a
decreases, the peak decreases and is shifted toward
larger Z (for a ¼ 0:2 the peak is at Z ¼ 0:46). For a ¼ 0:1
and a ¼ 0:05 the beam remains linear in this fre-
quency range. Fig. 6b shows �max versus Z for
0:15oao0:25 and further illustrates the emergence of the
peak at Z�0:5.

As shown above, the coordinate of point T is dependent

upon the duration of the pulse xT ¼ Hb �
bb�td
2

� 	
. In terms

of the dimensionless frequency and normalizing by the
height of the building, Hb, the coordinate of the point T is

x ¼
xT

Hb
¼ 1�

1

2Z
. (4.11)

The minimum value of Z for which point T is a real
(physical) point of the building is Z ¼ 0:5, and the
maximum value of the dimensionless amplitude for which

the building will remain linear for this frequency is a ¼
CT
Z ¼

0:1114
0:5 ¼ 0:2228 (see Eq. (4.8T)).

In our example, for a ¼ 0:1, the first permanent strain
will occur at T for Z ¼ 1:114, and for a ¼ 0:05, at T, for
Z ¼ 2:228 (see Fig. 6a). As Z increases, the peak values of
�max asymptotically approach constant levels �ðaÞ. This is
suggested by the leveling off of �maxðZÞ at large Z.
As can be seen in Fig. 6a, for a ¼ 0:2, the curve �maxðZÞ

has a local minimum near Z ¼ 3 and a local maximum near
Z�2:5. This is further illustrated in Fig. 6b, where �maxðZÞ is
plotted for dimensionless amplitudes a ¼ 0:15; 0.175; 0.2;
0.225; and 0.25. With a increasing, the local minima and
maxima are shifted to the left. Fig. 6a shows that for a�0:3
the minimum disappears, and for a ¼ 0:1 it is near Z ¼ 5:
This departure from monotonically increasing values
appears to be associated with the second natural frequency
of the beam on a fixed base.
In Fig. 7a and b normalized lengths of the segments of

the permanently deformed beam are shown versus Z. We
distinguish three zones of the beam:
�
 bottom (deformed) zone,

�
 middle zone consisting of the lower, not deformed part

and the upper deformed part, and

�
 top (not deformed) zone.
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Fig. 6. Maximum permanent strain versus dimensionless frequency Z.

a b

Fig. 7. Deformed bottom zone (top), and not-deformed top zone (bottom) versus (a) dimensionless frequency Z, for dimensionless amplitudes a ¼ 0:05,
0.1, 0.2, 0.3, and 0.4; (b) dimensionless amplitude a, for five values of Z ¼ 0:33, 0.36, 0.39, 0.42, and 0.45.
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Fig. 7a (top) shows the length of the bottom (deformed)
zone, hbott, normalized by the height of the beam, Hb. Fig.
7a (bottom) shows the length of the top (not deformed)
zone. In this paper, the numerical criterion adopted for
defining these lengths is that if the permanent strain at a
point of the building is smaller than �yb=5 the building is
treated as being linear at that point. The difference between
one, and the sum of the normalized two lengths, hbott=Hb

and htop=Hb is the normalized length of the middle zone of
the beam.
From Fig. 7a it can be seen that for small Z, until the
condition in Eq. (4.8B2) is satisfied, the deformed bottom
length of the beam is 0. For the largest amplitude we
consider, a ¼ 0:4, and for, Z4 7CB

17a ¼ 0:23 the condition in
Eq. (4.8B2) is satisfied and the permanently deformed zone
at the bottom appears. As Z increases, the length of this
zone increases, reaching its maximum value of about
0:46Hb at Z ¼ 0:5 (Fig. 7a (top)). After this point, the
permanent strain first occurs at point T (see Eq. (4.8T)), the
length of the deformed bottom zone decreases, and the
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middle deformed zone is formed. When the condition in
Eq. (4.8B) is satisfied, the length of the deformed bottom
part of the beam increases slightly but remains independent
on Z, while the top (non-deformed) part decreases. The
middle zone consists of a top zone, which is deformed,
narrower, and closer to the top as Z increases, and a
bottom linear zone, which lengthens as Z increases. The
situation is similar for a ¼ 0:3. The maximum length of the
deformed zone at the bottom, for this amplitude, is 0:28Hb

(see Fig. 7a (top)).
To explain these trends, we recall the analysis of the

strains for the linear case. We noted by comparing Eqs.
(4.7) and (4.10) that the strain at the beginning of the
second passage is larger than at the beginning of the first
passage. For long pulses, this can be generalized to the
third, fourth, etc., passages of the wave along the path
bottom–top–bottom of the beam, if the pulse is long
enough so that the first term (which is multiplied with the
largest, k1), still exists in Eq. (4.4). This increase in the
strain at the bottom due to multiple reflections increases
the length of the deformed zone at the bottom of the
building. As the pulse becomes shorter, the permanent
strain occurs in the middle or at the top of the building, the
wave loses energy to produce these additional permanent
strains, and the higher-order passages of the wave are not
able to increase the strain at the bottom and the length of
the bottom deformed zone. For those conditions, the
Fig. 8. Location of the point with maximum permanent strain versus

dimensionless amplitude a (top), and versus dimensionless frequency Z
(bottom).
deformed zone at the bottom is completely formed with the
first passage of the wave. This is why there is a sharp
decrease in the length of the deformed bottom zone at Z ¼
0:5 for a ¼ 0:4 and 0.3 in our examples. Because this length
is completely formed with the first passage of the wave, it
stays constant with increasing Z. For smaller a (e.g., a ¼ 0:1
and 0.05), the condition in Eq. (4.8B2) is not satisfied for
long pulses Zp0:5; and there is no deformed bottom zone
in this frequency range. When the condition in Eq. (4.8T) is
satisfied, the beam has a top linear zone, a middle zone
with an upper deformed part, and a linear lower part.
Finally, when the condition in Eq. (4.8B) is satisfied, all
zones exist in the beam.
In Fig. 7b (bottom) the length of the non-deformed, top

zone of the building is shown. Again, for small Z and large
dimensionless amplitudes a, when Eq. (4.8B2) is satisfied,
the length of this zone is the largest. Comparing the plots in
Fig. 7a and b, it can be concluded that until the sharp
decrease of htop=Hb in Fig. 7a there is no intermediate
zone. After this sharp decrease in Fig. 7a, the length of the
top zone in Fig. 7a (bottom) starts to decrease gradually
with increase of Z, and the length of the intermediate zone
increases with increase of Z.
To further illustrate the appearance of the peak of the

permanent strain accompanying long pulses and the three
zones in the beam, we consider the dimensionless
amplitudes 0:18pap0:43 for five dimensionless frequen-
cies Z ¼ 0:33; 0.36; 0.39; 0.42; and 0.45. In Fig. 7b the
normalized lengths of the bottom and the top deformed
zones of the beam are shown versus a. It can be seen from
Fig. 7b (bottom) that the length of the top, not deformed
0. 0.2 0.4

t (s)

ε 4

-0.4

-0.2

0.0

0.1

-0.1

-0.3

Fig. 9. Strain time history at point 4 ðx ¼ DxÞ, for a ¼ 0:4 and Z ¼ 1.
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zone of the beam starts to decrease as the bottom zone
begins to form. We recall the conditions stated in Eqs.
(4.8T) and (4.8B2). Let the dimensionless parameters a and
Z, at the first appearance of the permanent strain in the
building, for long pulses Zp0:5 (Eq. (4.8B2)) be a0 and Z0.
Let these parameters for the appearance of the first
permanent strain at T (Eq. (4.8T)) be a1 and Z1. Dividing
Eq. (4.8B2) by Eq. (4.8T) and using the values for kr

adopted for our examples in this paper, we obtain

a0Z0
a1Z1
¼

14

17
. (4.12)

For the pairs ðZ0; Z1Þ ¼ ð0:39; 0:42Þ, (0.36, 0.42), and (0.33,
0.39) we obtain a0=a1 ¼ 0:95, 0.96, and 0.97, respectively,

or, in general,
a0
a1
¼

2Z1
ð2þjkrjÞZ0

. All of these ratios are close to

one, which means that the first permanent strains for
Z ¼ 0:39; 0.36; 0.33 in our examples, appear just before the
permanent strain occurs in the fictitious point T, below
point B.

To further investigate where and when the largest strains
occur, we turn to Fig. 8. First, we note that for the domain
ða; ZÞ considered here the condition in Eq. (4.8B) is not
satisfied, amaxZmax ¼ 0:43 � 0:45 ¼ 0:1935oCB ¼ 0:2228,
and so there is no permanent strain during the first half
of the first passage of the wave through the beam. From
Fig. 8 it can be seen that for this range of a, except for
Z ¼ 0:45, the largest permanent strain occurs at the bottom
of the beam (point 4 in Fig. 1). For Z ¼ 0:45 and for
ap0:41 the largest permanent strain also occurs at the
bottom.

The pulse reflected from the top, traveling downward
and having positive strain A�kt (see Eq. (4.7)), is smaller
than the yielding strain �yb (condition in Eq. (4.8T)). It
needs some ‘‘help’’ from the part of the pulse traveling
a

Fig. 10. Ductility versus dimensionless frequency
upward to reach the yielding strain. For Z ¼ 0:45 the
duration of the pulse is td ¼ 0:2222 s; 0.1111 s after the first
entrance of the pulse, the part of the pulse traveling
upward will contribute to the positive strain in the beam.
This strain increases with time, having maximum positive
value at the end of the pulse. When the reflected pulse
meets a large enough supplement of the positive strain
from below, it reaches the yielding strain in the beam. With
propagation of the reflected pulse and interference with
larger strains traveling upward, the lower points of the
beam experience permanent strain, as well. In this
development of the permanent strain, the pulse reflected
from the top loses energy, so the strain at the bottom is
weaker than the one with an elastic pulse reflected from the
top. For a40:41 and Z ¼ 0:45, the strain at B is smaller
than the strain at some point in the beam. For all other
parts of the considered domain ða; ZÞ the strain at the
bottom is the largest.
From Fig. 5b it can be seen that for the range ða; ZÞ

considered in this paper, the largest strain occurs during
the first half of the second passage of the pulse. Until the
condition in Eq. (4.8B2) is satisfied for occurrence of the
first permanent strain (no permanent strain in the first
passage), the time of occurrence of the maximum
permanent strain in the beam is the same for all Z. When
the permanent strain occurs at some point of the beam
during the first passage, the time of maximum strain grows
because the maximum strain reflected from the top is
smaller than the arriving elastic strain from the half-space
propagating upward. The weakening of the reflected strain
is greater for larger amplitudes, so that the largest strain at
the bottom occurs at a time when the pulse has completely
entered the beam ðt ¼ tdÞ and the curves in Fig. 5b have
constant values

tdbb
2Hb
¼ 1

2Z. There are transitions (intervals of
a) between these two cases. These transitions are shorter
b

Z (left) and dimensionless amplitude a (right).
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Fig. 11. Permanent displacements along the beam versus dimensionless frequency Z, for dimensionless amplitude (a) a ¼ 0:4, (b) a ¼ 0:3, (c) a ¼ 0:2, (d)
a ¼ 0:1, and (e) a ¼ 0:05, and for two different view angles.
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for higher frequencies and higher strains, because the pulse
loses more energy while creating the permanent strains in
the first passage. For Z ¼ 0:45 and for amplitudes a40:41,
because the maximum occurs at some point above B,
additional time is needed for the pulse to come to that
point.

In Fig. 8 (bottom) the location of the point where the
permanent strain is maximum is presented as a function of
Z for a ¼ 0:05, 0.1, 0.2, 0.3, and 0.4. It can be seen that the
largest strain for a ¼ 0:4, 0.3, and 0.2 first occurs at the
bottom, satisfying the condition in Eq. (4.8B2). The
condition in Eq. (4.8B2) is for the long pulses ðZp0:5Þ,
and so in our examples it cannot be satisfied for a ¼ 0:1
and 0.05. For these small amplitudes, the largest strain
occurs at point T, which satisfies the condition in Eq.
(4.8T).

When the condition in Eq. (4.8T) is satisfied, the largest
strain for a ¼ 0:4, 0.3, and 0.2 is at point T. It stays there
until it is shifted to point B for certain higher frequencies,
where it stays until Z increases further. Recall that the
condition for the occurrence of permanent strain at the
bottom of the beam at the beginning of the first passage,
for our examples, is given by aZ4CB ¼ 0:2228 (Eq.
(4.8B)). When this condition is satisfied, the entering pulse
immediately starts to lose energy, so the effect of the
reflection from the top of the beam (Eq. (4.8T)) is
diminished. When aZ is slightly larger than CB, a small
permanent strain occurs at the bottom, and the permanent
strain at the top is smaller than if there were no permanent
strain at the bottom. As the product aZ increases, the
permanent strain at the bottom Z increases, the larger part
of the energy is lost at the bottom, and the attenuation of
the permanent strain at the top is more pronounced.
Following this trend, for some values of the product aZ the
permanent strain at B becomes larger than the permanent
strain at T.
It is interesting to note that the sharp drop from point T

to point B for a ¼ 0:4, 0.3, and 0.2 occurs for approxi-
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mately the same values of the product aZ (see Fig. 8
(bottom)). We have:
�
 for a ¼ 0:4, ZTB ¼ 1:91, aZTB ¼ 0:764,

�
 for a ¼ 0:3, ZTB ¼ 2:72, aZTB ¼ 0:816,

�
 for a ¼ 0:2, ZTB ¼ 4:16, aZTB ¼ 0:832.
This is to be expected, since aZ=p ¼ �dmax=�yb, where �dmax is
the peak linear strain associated with the pulse entering the
building (see Fig. 1).

In Fig. 5a, the normalized time t
2Hb=bb

, when the

maximum strain occurs, is shown versus Z. It should be
emphasized that there is no connection of this plot with the
plot in Fig. 8, which describes the point with maximum
strain at the end of the analysis. Fig. 5a shows the time at
which the maximum strain occurs, not the strain at the end
of the analysis. This difference is illustrated in Fig. 9, where
the strain at the bottom point 4 ðx ¼ DxÞ for a ¼ 0:4 and
Z ¼ 1 is shown versus time. It can be seen that in the
beginning this point experiences large strain ð� ¼ �0:41Þ,
while at the end of the analysis the strain is small ð� ¼ 0:05Þ.
A sudden drop in the curves can be noticed also in Fig. 5a,
analogous to those in Fig. 8 (bottom) as follows:
�
 for a ¼ 0:4, ZTB ¼ 0:89, aZTB ¼ 0:356,

�
 for a ¼ 0:3, ZTB ¼ 1:19, aZTB ¼ 0:357,

�
 for a ¼ 0:2, ZTB ¼ 1:88, aZTB ¼ 0:376.
Similar conclusions can be drawn here as for the example
in the previous paragraph.
Fig. 10a and b present the ductility ratio (maximum

permanent strain normalized by the yielding strain) in the
building. Fig. 10a shows ductility versus Z ð0:03pZp5Þ for
five dimensionless excitation amplitudes a ¼ 0:05; 0.1; 0.2;
0.3; 0.4. Fig. 10b shows the ductility versus a in the vicinity
of the largest strain (see Fig. 6a).
If our hypothetical beam is made of a material that can

experience maximum ductility m0 ¼ 10, then Fig. 10a
implies failure for the following values of a and Z in the
range of the parameters we consider: for a ¼ 0:4ð0:3pZp
0:43Þ [ ZX0:95, and for a ¼ 0:3ð0:38pZp0:44Þ [ ZX1:73.
The beam will not fail for dimensionless frequencies
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outside the above intervals, and also for all values of
ap0:2. From Fig. 10b, it can be seen that the same beam
will fail for the following values of a and Z: Z ¼ 0:33,
aX0:36; Z ¼ 0:36, aX0:32; Z ¼ 0:39, aX0:29; and Z ¼ 0:42,
aX0:27. This beam will not fail for smaller amplitudes than
the ones given above, and for Z ¼ 0:45, for all a in the
range we considered here ð0:18pap0:43Þ.

All of the above discussed trends can be summarized by
three-dimensional plots of permanent displacements uðx; ZÞ
and permanent strains �ðx; ZÞ, for a ¼ 0:4, 0.3, 0.2, 0.1, and
0.05. To show the peaks occurring for Zo0:5 (see Fig. 6)
with better detail, the interval 0:03pZp0:5 is discretized
with a three times denser grid in the Z direction than the
interval 0:5pZp5. Fig. 11 shows the distribution of
permanent displacements, while Fig. 12 shows the dis-
tribution of permanent strains. Tables 1 and 2 summarize
the position and the extreme amplitudes shown in Figs. 11
and 12.

In Figs. 13 and 14, the displacements along the normal-
ized height of beam w ¼ x

Hb
versus the dimensionless time

t ¼ bbt=ð2HbÞ are shown. In this way, t becomes an integer
when the pulse hits the building–soil interface. In Fig. 13
the dimensionless frequency is Z ¼ 3 (short pulse), and in
Fig. 14 it is Z ¼ 0:41 (long pulse). The yielding strain of the
beam for the examples shown in these figures is �yb ¼ 0:02.
In Fig. 13a, the propagation of a half-sine pulse with

dimensionless amplitude a ¼ 0:03 and dimensionless fre-
quency Z ¼ 3 is shown. For this small a, the response of the
beam remains linear for all time. In Fig. 13b, the
propagation of the pulse with a ¼ 0:1 is illustrated, and
in Fig. 13c the propagation of a pulse with the amplitude
a ¼ 0:3 is shown. As can be seen in Fig. 13a, the linear
pulse after reflection from the building–soil interface loses
some energy due to radiation and changes its sign. After
the second reflection from this interface ðt ¼ 2Þ, a
substantial part of the pulse is still in the building. This
ceases to be so in Fig. 13b. Immediately after the creation
of the non-linear zone at the top, a part of the energy in the
pulse is ‘‘absorbed’’ to form large permanent strains at the
top, and only a small part of the pulse energy propagates
downward. After reaching the building–soil interface, this
remaining pulse loses additional energy to radiation and to
the need to overcome the permanent strain at the bottom,
so that after the first reflection from the building–soil
interface the pulse almost vanishes. In Fig. 13c, the
permanent strain at the bottom occurs in the very
beginning, so that the part of the pulse propagating up is
weaker. After reflecting from the top, a large permanent
strain is formed, and almost all of the energy of the pulse is
lost.
In Fig. 14a for a ¼ 0:2 the response of the beam is linear

for all time. For a ¼ 0:25 (Fig. 14b) the first permanent
strain appears after the first reflection from the building–
soil interface ðt ¼ 1Þ. With increasing amplitude a, this
permanent strain increases, but for this range of dimen-
sionless frequencies this occurs at time t ¼ 1. In Fig. 14c,
the response is illustrated for a ¼ 0:3.
To further assist in interpretation of the results presented

in Figs. 13 and 14, Table 3 summarizes the maximum and
minimum amplitudes of displacements, at the building–soil
interface, u0, and in the building, u (Table 4).

5. Conclusions

In this paper, the occurrence, development, and ampli-
tudes of permanent strains and displacements have been
studied for a one-dimensional soil–structure interaction
model consisting of an elasto-plastic shear beam on an
elastic foundation. Excitation for five dimensionless
amplitudes of a half-sinusoidal displacement pulse with
strong ground motion (a ¼ 0:05; 0.1; 0.2; 0.3; and 0.4) in a
wide range of dimensionless frequencies ð0:03pZp5Þ were
analyzed.
It has been found that for large ground displacement

pulses (large a) the maximum permanent strains occur
mainly at the interface of the building with the soil, while
for smaller amplitudes of pulses permanent strains occur
closer to the top of the building. Three zones of the
permanently deformed beam can be distinguished: (1) A
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Fig. 12. Permanent strain along the beam versus dimensionless frequency Z, for dimensionless pulse amplitude (a) a ¼ 0:4, (b) a ¼ 0:3, (c) a ¼ 0:2, (d)
a ¼ 0:1, and (e) a ¼ 0:05.
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permanently deformed zone at the bottom; (2) An
intermediate zone, which is not deformed at its bottom
part and is deformed in the top part; and (3) A non-
deformed zone at the top of the beam. The occurrence and
the development of these zones depend upon the dimen-
sionless excitation amplitudes and the dimensionless
frequency, and in particular on the conditions that lead
to the occurrence of the first permanent strain (see Eqs.
(4.8B), (4.8T), and (4.8B2) in the text). For large and long
strong motion pulses (Zp0:5; first the condition in Eq.
(4.8B2) is relevant), only zones 1 and 3 are present in the
beam. For large amplitudes and short strong-motion
pulses, all three zones develop and are present. For smaller
excitation amplitudes (when the condition in Eq. (4.8B2)
cannot be satisfied for long pulses, and when the condition
in Eq. (4.8T) is satisfied) only zones 2 and 3 exist in the
beam. For larger values of Z (when the condition in Eq.
(4.8B) is satisfied) all three zones exist.
The situation is similar for the occurrence of the

maximum strains. For large and long pulses, maximum
strain is located at the bottom of the building, and as the
pulses become shorter peak strains occur at higher
positions in the building. For some high frequencies of
excitation, the maximum strain again appears at the
bottom of the building because the loss of energy due to
the development of the permanent strain at the bottom
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overcomes the effects of the wave reflections from the top
of the building.

Creation of large permanent deformation zones
in the building by the incident waves absorbs some or
most of the incident wave energy and can reduce
or eliminate further wave propagation and the associated
e

Fig. 12. (Continued)

Table 1

Maximum and minimum displacements, umax and umin, and their locations, (Z

a Fig. no. Zmax xmax (m)

0.40 11a 0.68 7.56

0.30 11b 0.89 8.48

0.20 11c 1.31 8.88

0.10 11d 2.63 9.34

0.05 11e 4.97 9.80

Table 2

Maximum and minimum strains, emax and emin, and their locations, (Zmax, xm

a Fig. no. Zone # Zmax xmax (m)

1 0.36 0.0

0.4 12a 2 4.97 0.0

3 1.76 8.48

1 0.41 0.0

0.3 12b 2 4.91 0.0

3 2.00 8.63

1 0.46 0.0

0.2 12c 2 4.79 0.0

3 2.42 8.83

1 — —

0.1 12d 2 4.97 0.0

3 3.44 9.14

1 — —

0.05 12e 2 4.97 0.

3 4.97 9.34

Zone 1: Zo0:5 [ xp10m, zone 2: 0:5pZp5 [ xp1m, and zone 3: 0:5pZp5
energy transport. To the extent that the locations of the
plastic deformation zones can be controlled by the
design process, absorption of the incident wave energy
by structural members may become a new and powerful
tool for the performance-based design. To take
advantage of such possibilities, the governing differential
equations must be solved by the wave propagation
method.
Examples studied in this paper show that for excitation

of structures by large, near-field displacement pulses,
failure can occur anywhere in the building before the
incident wave has completed its first travel from the
foundation to the top of the building and back to the
foundation ð2Hb=bbÞ. Because this travel time is shorter
(by 1

2
) than the natural period of the structure on the fixed

base, it is seen that the common response spectrum method
of analysis (based on the vibrational formulation of the
solution) cannot provide the required details for the design
of structures for such excitation.
Appendix A. Equivalent shear modulus at interface point 3

To derive the equivalent shear modulus at the inter-
face, which can be used in finite difference computation,
max, xmax) and (Zmin, xmin), in Fig. 11a–e

umax (cm) Zmin xmin (m) umin (cm)

16.704 4.40 0.36 �0.569

12.606 4.82 0.36 �0.503

8.371 4.82 0.36 �0.338

4.171 4.97 0.30 �0.128

1.982 4.58 0.30 �0.049

ax) and (Zmin, xmin), in the three zones in Fig. 12a, b, c

emax Zmin xmin (m) emin

0.79584

0.50137 4.97 0.10 �0.1364

0.23798

0.30714

0.32172 4.91 0.10 �0.0951

0.20205

0.00495

0.19734 4.79 0.10 �0.0592

0.15989

—

0.06243 4.97 0.10 �0.0199

0.10097

—

0.00079 4.49 0.05 �0.0039

0.05447

[ x41m.
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Fig. 13. Displacements along the normalized length of the beam, w ¼ x=Hb, versus normalized time t ¼ bbt=2Hb, for dimensionless pulse amplitude (a)

a ¼ 0:03, (b) a ¼ 0:1, (c) a ¼ 0:3 and dimensionless frequency Z ¼ 3 (shown for two different view angles).
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we introduce two dummy points: (1) point 2, above
point 3, at distance Dxs, associated with the material
properties of the soil; and (2) point 4, below point 3, at
distance Dxb, having the material properties of the
building.
The numerical representation of continuity of the
stresses and the displacements at point 3 is

mb
u4 � u

4

2Dxb
¼ ms

u
2
� u2

2Dxs
, (A.1)
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Fig. 14. Displacements along the normalized length of the beam, w ¼ x=Hb, versus normalized time t ¼ bbt=2Hb, for dimensionless pulse amplitude (a)

a ¼ 0:2, (b) a ¼ 0:25, (c) a ¼ 0:3 and dimensionless frequency Z ¼ 0:41 (shown for two different view angles).
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u4 þ u4

2
¼

u2 þ u2

2
. (A.2)
Solving for u4 (or u2) and substituting the solution into the
left-hand side (or right-hand side) of (A.1), the stress at the
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Table 3

usoil—amplitude of the incoming wave in the soil; u0max and u0min
—maximum and minimum displacements of the building–soil interface and the

corresponding t0max and t0min
, where these extrema occur; and umax and umin—maximum and minimum displacements and their locations at (tmax, wmax)

and (tmin, wmin), respectively (see Figs. 13 and 14)

a Fig. no. usoil (m) u0max (m) u0min (m) umax (m) umin (m)

t0max t0min (tmax, wmax) (tmin, wmin)

0.03 13a 0.006 0.00857 �0.00209 0.017 �0.00732

0.086 2.091 (0.581, 0.995) (1.584, 0.995)

0.10 13b 0.02 0.02959 �0.00116 0.04890 �0.00341

0.086 2.091 (0.594, 0.995) (1.14, 0.071)

0.30 13c 0.06 0.10497 �0.00332 0.10497 �0.00516

0.086 2.117 (0.086, 0.0) (1.165, 0.091)

0.20 14a 0.04 0.05714 — 0.11428 �0.04955

0.619 — (1.114, 0.995) (2.117, 0.995)

0.25 14b 0.05 0.07142 — 0.14285 �0.05075

0.619 — (1.114, 0.995) (2.117, 0.995)

0.30 14c 0.06 0.08571 — 0.17142 �0.02619

0.619 — (1.114, 0.995) (2.117, 0.995)

Table 4

To interpret the loss of energy, as the pulse creates and then propagates through the zone of permanent strain, and because the pulse for Z ¼ 3 is shorter

than Hb, the amplitudes of the response at w ¼ 0.5 for five consecutive passes are reported in this table. The amplitude of the permanent displacement at

the end is shown in the last column (see Fig. 13b, c)

a Fig. no. t1 t2 t3 t4 t5 tend
A1 (cm) A2 (cm) A3 (cm) A4 (cm) A5 (cm) Aend (cm)

0.1 13b 0.3299 0.8426 1.3299 1.8477 2.3350 2.5000

2.44517 0.38029 �0.24846 �0.23245 0.03569 �0.0468

0.3 13c 0.3274 0.8680 1.3553 1.8680 2.3553 2.5000

2.95771 �0.05625 �0.51400 �0.42024 �0.22527 �0.29591
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interface is obtained as

s3 ¼
mbms

mbDxs þ msDxb
ðu4 � u2Þ. (A.3)

For linear analysis, one can use the stress (A.3) in the
computations, but for non-linear analysis, when the
material at point 4 yields, Eq. (A.3) is not convenient
because the shear modulus mb varies in time, and if at some
instant it becomes zero Eq. (A.3) gives zero stress at the
interface.

Appendix B. The largest permanent strain in the beam

For the range of the parameters considered in this paper,
the largest permanent strain occurs for a ¼ 0:4 and
Z ¼ 0:36, at point 4 ðx ¼ DxÞ. The duration of the pulse
in this case is td ¼ 0:27778 s: The strain at point 4 is
computed by iteration from

�kþ1
4 ¼ �k4 þ

Dt

2Dx
ðvk

5 � vk
3Þ þ

Dt2

2rDx2
ðsk

5 � 2 � sk
4 þ sk

3Þ.

(B.1)
Because of the assumption that the yielding strain at the
interface point is �y3 ¼

mb
m3
� �yb, the stresses s5, s4, and s3 are

essentially equal during all time in this analysis, and so the
third term in the right-hand side of Eq. (B.1) can be
omitted. The permanent strain obtained in this way is 0.75,
while including the last term in the RHS of Eq. (B.1) would
give 0.796.
The bottom of the beam starts to yield at time t ¼ 0:2 s,

when the reflected wave from the top reaches the bottom
again. In the beginning, there is constructive interference
from two positive strains:
�
 the first positive strain, with maximum amplitude

A� � kt ¼
Ap
bbtd
� kt, coming from above (from the reflected

pulse), and

�
 the second positive strain, arriving from the linear half-

space below, with amplitude �A� � kt cos p t
td
¼

A� � kt sin p
td�t

td
.

After reflecting from the bottom of the building, the
reflected strain is still positive, but it has a reduced
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amplitude A0� ¼ �kb�b
r � kt � A�, where kb�b

r ¼ ð1� bs=bbÞ=
ð1þ bs=bbÞ.

The velocity at point 3 (see Fig. 1) continues to follow
the linear motion in the half-space. At the same time, the
velocity at point 5 experiences a jump and then remains
constant as long as the neighboring points 4 and 6 are in
the plastic state. When point 6 starts to unload, the velocity
at point 5 decreases and follows the input velocity from the

ground. At the time t ¼ td þ 2 Dxs
bs
þ 2

Dxb
bb
� td, the whole

pulse, arriving from the ground, has passed points 5 and 3,
and the velocities at these two points remain equal until the
end of the analysis.
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