CALIFORNIA INSTITUTE OF TECHNOLOGY

EARTHQUAKE ENGINEERING RESEARCH LABORATORY

HIGH FREQUENCY ERRORS AND
INSTRUMENT CORRECTIONS OF

STRONG-MOTION ACCELEROGRAMS

BY
M. D. TRIFUNAC, F. E. UDWADIA AND A. G. BRADY

EERL 71-05

A REPORT ON RESEARCH CONDUCTED UNDER A
GRANT FROM THE NATIONAL SCIENCE FOUNDATION

PASADENA, CALIFORNIA
JULY, 1971



CALIFORNIA INSTITUTE OF TECHNOLOGY

EARTHQUAKE ENGINEERING RESEARCH LLABORATORY

HIGH FREQUENCY ERRORS AND INSTRUMENT

CORRECTIONS OF STRONG-MOTION ACCELEROGRAMS

By

M. D. Trifunac, F.E. Udwadia and A.G. Brady

Report No. EERL 71-05

A Report on Research Conducted Under a Grant from
the National Science Foundation

Pasadena, California
July, 1971



ABSTRACT

A study of high-frequency errors present in digitized accelero-
grams and an analysis of the distribution of unequally spaced,
hand-digitized data indicates that the Fourier content of digitized
accelerogram data may be accurate up to about 25 cps.

Two methods for accelerometer instrument correction are described:
(1) a direct numerical differentiation of recorded accelerograms from
which high-frequency digitization errors have been filtered out and
(2) an ideal '""mathematical accelerometer" with a natural frequency
significantly higher than the natural frequency of the recording instru-
ment. Although both methods give good results, the first one is

recommended for the standard use.
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INTRODUCTION

Information on a detailed time history of strong ground motion comes
from accelerographs. These instruments usually record one vertical
and two horizontal components of ground acceleration (Trifunac and
Hudson 1970). Accelerograph records are then used by earthquake eng-
ineers to studythe design of earthquake-resistant structures and by
strong-motion seismologists to study the basic properties of the earth-
quake source mechanism. Since recorded ground acceleration repre-
sents the main source of basic experimental measurements, it is
essential to retrieve the maximum available information contained in
these records.

To record ground acceleration, the relative response of a single
degree of freedom oscillator viscously damped is usually employed.

The natural frequency of such a transducer is between 10 and 30 cps,
while the equivalent viscous damping is about. 60 percent of critical.

The recorded relative instrument response approximates accurately

the ground acceleration in the frequency range from 0 cps to about 1/2

to 3/4 of the natural frequency of the transducer. Thus, the direct instru-
ment output can be used to represent ground acceleration up to about

5 to 15 cps. If information on higher frequencies is required, instrument
correction of the recorded accelerogram must be performed.

Modern computational methods in the dynamics of structures now also
require the accurate high-frequency part of the accelerogram,
in order to determine the response of the higher modes of vibration.
Detailed studies of earthquake source parameters and especially the
studies aimed at the determination of the size of the earthquake
dislocation surface and the effective stress, call for the maximum pos-

sible accuracy in the high-frequency end of the Fourier amplitude spectrum



of ground acceleration.

There are two basic steps in the processing of recorded strong-
motion accelerograms. One is the baseline correction (T rifunac 1970)
and the other, considered in this paper, is the instrument correction.

To determine optimum instrument-correction procedures, it becomes
necessary to analyze various high-frequency errors that are present in
uncorrected, hand-digitized paper-accelerograms. This analysis is
presented in the first part of this paper.

Unlike the baseline correction of accelerograms (Trifunac 1970)
considered by many investigators, the instrument correction problem
was studied by only a few. Jenschke and Penzien {1964) proposed an
approximate method for the accelerograph instrument correction in
response spectrum calculations. Their method was based on a numerical
approximation of the first derivative of an accelerograph transducer's
recorded relative response, whereas McLennan (1969) derived an exact
method to correct for accelerometer error in the dynamic response
calculations. The disadvantage in both of these methods was that they
were designed to correct the response spectra and not the recorded
accelerogram that serves as the basic input for all computations.

In the second part of this paper we present two different types of
accelerometer instrument corrections. The first method, based on
our previous work (Trifunac and Hudson 1970), is exact and uses direct
numerical differentiation of an instrument response. This differentiation
is performed after high frequency digitization errors are filtered out
from digitized data. The second method is the extension of McLennan's
(1969) approach. It consists of computing the response of a high-frequency
oscillator that has a natural fx;equency significantly higher than the accel-

erometer frequency.
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ANALYSIS OF HIGH-FREQUENCY ERRORS

High-Frequency Errors in Digitized Accelerograms

To determine the high-frequency domain in which uncorrected,
digitized, accelerogram data may be used and to generate corrected
accelerograms, a study has been made of errors present in the raw
digitized data. These errors come from various sources and are in
many cases represented by the properties of each instrument. Since
this study is mainly motivated by a need for a uniform, standard
processing of existing strong-motion accelerograms on paper and film,
we will consider mainly those errors common to all records and will
disregard some minor changes caused by differences in instrument design.

Most high-frequency errors can be divided into several groups:

1. Modifications of the harmonic amplitudes and phase shifts

caused by the finite natural frequency ©, of the acceleration transducer.

2. The errors resulting from imperfections in the transducer

design.

3. Random digitization errors.

4. The errors caused by inadequate resolution of digitizing equip-

ment.

5. Low-pass filtering effects in the mechanical-optical digitization

process.

There are also other types of errors present in analog accelero-
gram traces. Examples are errors caused by the transverse play of
recording‘ paper or film in the drive mechanism, warping of records
from photographic processing and aging, use of 70 mm and 35 mm film

negatives and the imperfect mechanical traverse mechanism of the
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cross-hair system on the digitizing table {Trifunac, 1970). Although all
these errors may contain some high-frequency components in the fre-
quency range investigated here, past experience with typical accelerograms
recorded mainly on light-sensitive paper indicates that these errors are neg-
ligible compared to the five main sources of errors listed above. We shall
now consider each of these errors and describe how they affect the accuracy
of the digitized accelerograms in the high-frequency domain.

1. Transducer distortions of amplitude and phase. Modifications of

harmonic amplitudes and phases of original input signals may be caused by
the relatively low natural frequency of a transducer element. Most mechan-
ical-optical strong-motion accelerographs commonly deployed have trans-
ducers with natural frequencies between 10 cps and 30 cps and about 60 to
70 percent of critical damping. The relative motion x of the transducer mass
is given by the differential equation:

x + Zwo gok + wix = -a
where go is a fraction of critical damping, @, is the natural frequency
(wo:ZWfO) and a is the absolute ground acceleration. For the acceleration
transducers the largest possible wois chosen so that the term wix domin-
ates on the left-hand side of the equation. For input frequencies w that are
several times smaller than w o x and Zwo ¢ox are small, and wix is nearly
the same as -a (Figure la, b). For the higher input frequencies both ampli-
tudes and phases are modified and the correction terms involving x and
Zwogox may not be neglected.

2. Imperfections in the transducer design. To simplify instrument

response interpretation, the strong-motion acceleration transducers
should be designed to represent a single-degree-of-freedom oscillator
viscously damped. Unfortunately it is not always feasible to design an

ideal single-degree-of-freedom oscillator, so that most of the transducers
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presently existing are essentially multi-degree-of-freedom systems.
Their design is aimed at using only the fundamental mode of vibration so
that the higher modes will not be excited to the extent that the simplified
theory based on a single-degree-of-freedom oscillator cannot be applied.
Since most accelerometers are used for frequencies lower than the
fundamental frequency of the transducer, these simplifying assumptions
are quite justified in most cases.

To demonstrate modes other than fundamental, we might consider
the transducer shown in Figure 2, which gives a schematic represent-
ation of the element used in the Kinemetrics SMA-1 instrument. Supported
by two leaf springs the transducer mass is meant to vibrate in its funda-
mental transverse mode only. However, in addition to the higher modes
in the transverse direction, the transducer configuration allows tor-
sional vibrations as well. These torsional vibrations may be excited
by the slight eccentricity of the elctromagnetic &amping force. A
natural frequency of almost 30 cps was observed during the overall
evaluation and testing of the SMA-1 transducer (Trifunac and Hudson 1970),
which might be associated with this torsional mode. Although not sig-
nificant for ordinary recording of low-frequency signals, such higher
modes might affect instrument correction procedures that are based on the
simplified single-degree-of-freedom theory. A similar phenomenon is
observed in other standard accelerographs such as U.S.C.S.C., AR-240
and RFT-280 which use torsional type transducer systems. In this type of
suspension a higher lateral mode the so called ""bow string' mode is occa-~
sionally observed on records, usually caused by some shock excitation,

Other transducer systems have other imperfections. The import-
ance of these imperfections may be roughly judged from the point of

view of instrument correction, by the closeness of the extraneous
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frequency to the fundamental frequency. For most instruments used to
record ground acceleration, these transducer imperfections are relatively
small in the 0 to about 25 cps range.

3. Random digitization errors. The process of optical digitization

introduces errors which are of three basic kinds:

a) '"human error'', because of the inability of the operator to pick

out the centerline of the analog trace,

b) '"'discretization error', because the accuracy of the digital

data is limited to one digitizer unit, and

c) ''systematic error' built into the optical digitizing system:.

The first two shall be collectively referred to as random digitization
errors.

Figure 3 shows part of a typical photographically recorded trace.
During the digitization process the operator attempts to align the cross
hair with the center of a trace (indicated by a dashed line in Figure 3).
Our recent study (Trifunac, 1970) demonstrated that if the operator is
careful, is not biased in choosing the points, and the digitization of
every point is independent of the previous ones the errors are nearly
normally distributed with zero mean and the average standard deviation
c ~ 1/300 crn. This standard deviation (Trifunac, 1970) may be affected
by the equipment used for this particular study (Benson Lehner 099D
Datareducer) but is probably a good estimate of many sets of random
digitization errors on other equipment as well. These errors are the
main reason why one cannot differentiate the digitized data without a
serious high-frequency noise problem.

In a recent preliminary study, Trifunac and Hudson {1970) showed

that simple smoothing procedures may be used to filter out most of the
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high-frequency digitization noise. To advance this method, we
analyze here, in greater detail, the properties of high-frequency
errors in a digitized accelerogram.

Trifunac (1970) performed an experiment which we shall briefly
outline here. A sloping straight line was digitized five times by four
operators. One operator repeated the digitization and used a magni-
fying glass to see whether there was a significant improvement in the
accuracy of the digitization. Since it was taken under essentially
the same conditions as the other four, and there was only a slight
improvement, that digitization was taken as another independent
trial., After five digitizations were completed,the sloping straight
line was least-square fitted to each set of data, translating and rotating
it to a horizontal. The five sets of data obtained in this way are shown
in.Figure 4. In order to maintain the generality of these results, the
straight lines (Figure 4), here treated as accelerograms, are given
in units of pts/cmz, where one point corresponds to a unit of the
vertical digitized scale equal to 1/312 cm and the horizontal axis is
measured in cm.

Since the digitizing errors are nearly normally distributed, with
zero mean, across the ensemble of five sequences, by averaging the five
digitizations one can approximately eliminate random erroré and
by subtraction obtain systematic errors caused by imperfect digit-
izing equipment (Trifunac, 1970). The average of the digitizations is
also shown in Figure 4. Differences between each individual digitiza-

tion Zi and the average Z then approximately represent the random

digitization errors.
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Predominant frequencies in random digitization errors were ob-
tained by aweraging the five Fourier amplitude spectra computed for
each Zi- Z . The average of the five spectra is given in Figure 5.

For instrument correction it is necessary to differentiate the
digitized function twice. As already mentioned, such a process
amplifies high-frequency random digitization errors. To show the
Fourier amplitude spectrum of these errors, five Fourier spectra
calculated for five differences Zi— 7 were multiplied by wz and
averaged. The result is shown in Figure 6.

The resolution of a human eye is limited by the wavelength of
visible light (about 5 x 10_4mm). The actual resolution during the
digitization process is further significantly reduced because of the
thickness of the digitizer cross-hair and the parallax. The parallax
on the 099D Benson Lehner datareducer amounts to one to two digit-
izer points (1 point = 1/312 cm) and is treated here as part of the
random digitization errors.

The relative importance of the two main constituents of the random
digitization error, némely the human error and the discretizing error
can be studied in further detail as far as their effect on the final
probability distribution of the total error is concerned.

(2) Human error: Denoting the human error in choosing the center-

line of the trace by €, its probability distribution can be approxi-
mated by one of those shown in Figure 7a and b.

When the trace is thin, the distribution would be relatively constant
across the thickness of the line. As the thickness of the line increases,
the distribution will have a larger spread but will be more peaked

towards the center. From the above distribution it may then be noted
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DIGITIZER DISCRETIZATION OPERATOR N

(a)
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Figure 8
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2
that ¢~ does not necessarily keep increasing with line thickness.

(b} Discretizing error: The digitizer can be described mathe-

matically as an operator N, such that,

N(y) = intly] + H [2(y-int(y)) -1]
where int[y] denotes the integer part of y and H is the unit step operator.
The correct value y, at any abscissa x, is read by the operator as
(y+¢€).

Consider first the case wherein y coincides with a certain digit-
ization level. The probability distribution of N{€) corresponding to a
given p(€) can then be easily obtained. It may be noted that the new
probability distribution is a discrete distribution and that it has a
somewhat larger variance than that of p(€) (Figure 7a and 7b). For the
case n = 2, from Figure 7a, the percentage change in the variance due
to the presence of the discretizing error (Figure 7c) is only about
13 percent.

If, however, y did not coincide with an exact digitization level, a
further error is introduced in the digitization process as seen in
Figure 9.

The total error E, in the digitization process becomes,

E = Ne+8)-38
The probability density function p( 8) depends on the nature of the
function being digitized. Assuming that the digitization is done at
close intervals along the time axis, 8§ can be considered a random,
uniformly distributed variable as shown in Figure 10. Knowing p(€)
and p( 8), p[N(€ + 8)] can be calculated, and hence the distribution of

the error E.
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PROBABILITY DISTRIBUTION p ()
S = DIGITIZER TRUNCATION ERROR

Ap (3)
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Figure 10
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To illustrate the effect of §, we again take p( €) to be that shown in
Figure 7a. The distribution of p(N(¢ + 8§)) is shown in Figure 1la and
that of the error E is shown in 11b. For n = 2, the new distribution of

Figure 11b has a variance cyé -2 + -el; +li2 . Comparing this with the

3
) . 2 4 1
variance of the error in the case when § = 0, GN( ey 3 + % » we note

that the presence of § has increased the variance of the error by only a
small amount.

This suggests that the discretizing error, herein represented by
the parameter 5 and the function N is not as significant as the human

error involved in the digitization process.

4. Inadequate resolution of the digitizing equipment. In this section

we shall consider high-frequency errors, which result from the dis-
cretization process, and may be the most significant errors in the
automatic analog-to-digital conversion process.

To determine the Fourier amplitude spectrum of these errors, an
equally spaced sequence was generated in a way that a number is either
1 or -1 so that the probability for both positive and negative values is
equal to 0.5. 1000 successive equally spaced, random points were
connected by straight lines, thus defining a continuous function (Figure 12).
Such a function would result from the digitization of a horizontal straight
zero line 30 cm long on a data reducer unit with the resolutién interval
equal to 2, assuming that there are no human errors in digitization. The
Fourier amplitude spectrum |F(w)| in pts/cm is plotted versus the
frequency w on the log-log scale in Figure 13 for the 30 cm long record
from Figure 12. From this spectrum we see that the spectral amplitudes
of the errors are essentially constant up to the Nyquist frequency sz 16.7

cycles/cm. When the function to be digitized oscillates, random errors



- 22 -

PROBABILITY DISTRIBUTION p[N(e+8)]

1 pn(e+8)]
A A
2n 2n
L Ll 7
I6n 2n| 2n| 2n i6n
l i
16n 6n
) I 1 I I 0 1 n n+l
(a)
PROBABILITY DISTRIBUTION p(E)
E=N(e+8)-8 |
% p(E)

k5 —

Iﬂ-—)

eml—a-
)
—L
eal—a
>
PR
3

2.... n~i n  ntl

Figure 11



‘A3111qeqoad [enbe y3im [- 10 [+ Io1y3io st opniijduwie osoywm
sjuiod jo eouenbes poeoeds Ajjenbe ue jo Burysisuoo
ooeIj pojerouad sonduod jed1d4] e jo juswdes y [ 2andig

SHILIWLLINID
o¢ Ge 107 Gl oL ]

- 23 -

3SION NOILVZILIOIG A31VINWIS

o

!
b

TIVAY3LNY
NOILLNTI0S3Y 3INO



- 24 _

FOURIER AMPLITUDE SPECTRUM OF THE
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can take on any value between -1 and 1, and equally spaced error
data correspond to white noise with a constant spectrum.

The spectrum in Figure 13 was calculated from 4096 equally spaced
points interpolated to the original 1000 data and interconnected with
straight lines. Thus, the spectrum in Figure 13 also describes the
transfer function corresponding to.the process of low-pass filtering
with the decimation and straight-line assumption. The properties of
such low-pass filtering are further examined in the next section.

5. Low-pass filtering effects of the optical-mechanical digitization.

During a typical optical digitization process the operator attempts
to define a continuous function by a sequence of discrete points.
Although the accuracy of the process depends on each individual
operator and the purpose for which the record is to be used, s.orne
general features particularly relevant to accelerogram digitization can
be outlined as follows. While digitizing, the operator choses points
unequally spaced in time according to the frequency of the analog trace.
Thus, for a typical strong-motion accelerogram the density of digit-
ized points tends to increase in higher-frequency portions of the
accelerogram and decrease towards the end of the record. The manner
in which each digitized point is selected is such that the operator
imagines a straight line connecting that and the previous point. Distance
between the two points then becomes a function of the frequency of the
record. The operator always choses the next point so that a straight
line will aptly approximate a section of the continuous analog trace.

Although most modern techniques of digital data analysis do not
define the functional behavior between two digitized points, this has

nevertheless become a common practice in earthquake engineering



- 26 -

and related studies. The assumption of a straight line between the
two successive points leads to filtering some small-amplitude high-
frequency components that are too small to be detected by the operator,
but on the other hand precisely defines the digitized record in the form
of a continuous function. Since such digital data are not equally spaced,
but are chosen by the operator on the basis of irregularities of the
function digitized, fewer points give a better approximation to a
continuous function than would equally spaced data of the same density.

To determine the transfer function properties of piecewise straight-
line approximation, several cycles of a sine function were defined by
equally spaced data interconnected with straight lines. The Fourier
amplitude spectrum was then calculated for this continuous function
and was divided by the Fourier amplitude spectrum for the exact
sine function. This ratio, by definition, give_s the modulus of the
transfer function for the frequency in question. The result is given in
Figure 14, in which the transfer function is plotted versus the number
of digitized points per one sine wave cycle. Thus, if the equally spaced
digitized data are connected with straight-line segments, the contin-
uous function so defined has essentially the same Fourier amplitudes
as the original function up to the Nyquist frequency. Small differences
on the order of a few percent for 5 to 10 points per cycle .gradually
increase to about 20 percent near the Nyquist frequency, corresponding
to 2 points per cycle.

This experiment with equally spaced points was performed to
approximately determine the shape of the transfer function that would
correspond to the unequally spaced points of the same ave rage density.

The validity of such an appi‘oximation was experimentally verified by
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optically digitizing several sine wave traces and using unequally
spaced data of various densities. The transfer functions were cal-
culated in the same way as for the equally spaced points, and the
result is indicated in Figure 14 by triangular points. From the
agreement of experimental points for digitized, unequally spaced

data and the theoretical curve, we conclude that by assuming a straight
line between points the transfer function for the unequally spaced
optical digitization process may be described by the curve given in

Figure 14,

The Minimum Average Period in Hand Digitized Accelerograms

The density of digitized points naturally varies from one operator
to another. This is illustrated in Figure 15, where the average number
of the digitized points per one cycle is plotted versus period. The
least-square-fitted straight lines show the ez;pected tendency towards
the increase in the number of points for longer periods. Certain
distinct features of these curves distinguish this kind of hand digitized
data from equally spaced hand or machine digitization. For equally
spaced data these curves would intersect the origin. As an example,
a dashed line is plotted corresponding to the At = 0.1 sec. Such a line
intersects the level of 2 points per cycle at the period of 0.2 seconds
in agreement with the Nyquist frequency, for vthis case equal to 5 cps.
On the other hand the lines calculated for the four typical acceleration
digitizations with the unequally spaced data never go below the level of
2 points per cycle.

Figure 16 gives the histogram of the lowest average period

present in the early 48 (Hudson et al 1969) hand-digitized paper records.
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FREQUENCY OCCURRENCE OF THE SHORTEST AVERAGE
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From this histogram we observe that the lowest average period picked
over one record may in many cases be greater than 0.04 seconds
corresponding to the frequency of 25 cps. Because this histogram
was obtained on the basis of data averaged over one second and the
operator's own judgement, of the number of points to be digitized
according to the local frequency content, the highest frequency
actually resolved in a short segment of the record is substantially
above average. Approximately 150 additional paper records recently
hand-digitized contain on the average about 40 points per second and
are well represented by the steepest curve in Figure 15. For these
records the average Nyquist frequency is about 20 ops. It, therefore,
appears that most of the hand-digitized paper accelerograms contain
information on the frequencies near and above the 20 cps. Figure 17
gives a histogram of the occurrence of the average interval of
digitization and is compiled from 263 different components.
Fundamental frequencies of most instruments fall between 10
and 30 cps. Recorded signals with frequencies higher than 30 cps
would either have a very low signal-to-noise ratio or be distorted by
the higher modes of vibration of the instrument transducers, or have
both effects present. We therefore conclude that the highest frequency
that can be extracted from hand-digitized paper records is aBou_t 25 cps.
This high-frequency limit is, of course, the consequence of presently
available and practical means for hand-digitization and processing
of paper records. With future improvements in instrument design
and in the technology of data processing, this frequency will no doubt be

further increased.
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INSTRUMENT CORRECTION

From Figure 1 it may be concluded that for the natural frequencies
of acceleration transducers between 10 and 30 cps, the recorded
instrument response may be taken to represent ground accelerations
up to frequencies of about 5 to 10 cps, respectively. To accurately
recover higher frequencies, an instrument correction must be per-
formed.

In this work we will neglect errors resulting from imperfections
in the transducer design. This is permissible because the routine
optical-mechanical digitization process does not resolve frequencies
higher than about 25 cps, and imperfections in the transducer design
affect seriously only the higher frequencies. In the future, analog
magnetic tape recordings will be digitized electronically with equally
spaced data at much greater rate than is pre senfly feasibie with the
optical digitization process; however, transducers will have to be
- designed to eliminate all the higher translational and torsional modes
of vibration to permit retrieval of the high-frequency signals.

The high-frequency limit to which accurate accelerations may be
recovered is determined by the lower of the two characteristic
frequencies. One of these frequencies corresponds to the highest
frequency defined by the digitized data. This is fN if the data are
equally spaced, or the equivalent highest frequency resolved by un-
equally spaced data in the sense of Figure 16. The other character-
istic frequency is obtained by the intersection of the instrument response
curve (Figure 1) and the chosen constant multiple of the digitization

noise level (Figure 13). The latter level may depend on the accuracy
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required of the corrected data and the particular characteristics of
fhe instrument response curve. Since the natural frequency of the
typical acceleration transducer is between 10 and 30 cps for all
earthquake accelerograms, the first frequency, governed by the
digitization rate, becomes important for all strong-motion accelero-
grams presently analyzed. The low-pass filtered accelerograms
then have to be corrected for instrument response. Two different
methods of making this correction that lead to the same result are

presented.

Differential Equation Approach

In this approach to instrument correction of a recorded accelero-
gram, use is made of a differential equation describing the behavior

of a single degree of freedom oscillator, viscously damped.

X+ 2w ( % +w(2)x:-a (1)
In this equation,
x = relative motion of the transducer mass
@, = natural frequency of the transducer (@, = 2m fo)
¢ = fraction of critical damping
a = absolute ground acceleration.

When such a transducer is used as an accelerometer wohé.s to be a
large number (normally about 100 and larger) so that only the term

wix is significant on the left-hand side of the equation and terms % and
Zwogoi may be neglected. As may be seen this approximation is
adequate as long as recorded frequencies are significantly smaller than

w0 and in that case ground acceleration a is approximately given by



a ~ - W X (2)

In order to extend accurately the information about ground accel-
eration to the higher frequencies, all terms on the left hand side of
the equation (1) have to be considered, requiring differentiation of
the recorded instrument response x. As is well known, this may lead
to serious difficulties because such a process would amplify high-
frequency digitization errors. In a recent study Trifunac and Hudson
(1970) demonstrated that such difficulties may be avoided if digitization
errors are filtered out prior to the differentiation process. This is,
of course, based on the assumption that high-frequency digitization -
errors are well above recorded high-frequency components of ground
motion, or if not, that the filtering of some of the real high-frequency
components of ground motion does not seriously affect the quality of
the digital data. Since the predominant frequencies of digitization
errors are closely related to the average interval of digitization, it
follows that one should try to digitize as many closely spaced points

as possible.

High Frequency Mathematical Oscillator Response

As mentioned in the previous section, if the natural frequency of
the transducer w_ can be sufficiently high, ground motions of smaller
frequencies are approximately recorded as accele.ration and are given
by the equation (2). As mentioned above, the natural frequency @,
for most accelerographs presently operating is between 10 cps and 30 cps.
These relatively low frequency values result from the considerations
in transducer design and the instrument amplification required. Since

the validity of recorded transducer motion as ground acceleration in
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the higher-frequency domain depends mainly on the h'igh numerical
value of W, we shall demonstrate here how one can construct the
response of a high-frequency single degree of freedom oscillator,
viscously damped, by using the recorded instrument response as
an input. This approach is merely an extension of a method given by
McLennan (1969).

Let X be the relative response of an accelerograph with natural
frequency @, and fraction of critical damping C’o' Equation (1) is

then rewritten as

. . 2
+ = -
X +2wogOX wOX a (3)
and equation (2) as
wiX A~ -a (4)

The response of any oscillator with a frequency w and fraction of
critical damping { is given by
X +2wlx +w2x = -a {5)
Using equation (4) the approximate response X, of the same oscillator
would be given by
X, +2wlx  + wzxa = wix (6)
Combining equations (3) and (5), assuming zero initial conditions, and

taking the Laplace transform we get

x(s) [s2+ 2w (s +w2] = X(s) [sz +2u)O Qos +wi :I (7)

which, as suggested by McLennan (1969), can be rewritten as

2(0, (- w0) sx(s) (o] -0%) X(s)
x(s) = X(s) + — > o > (8)
s +2Cws +w s +2fws +w

The Laplace transform of equation (6) gives



- 37 -

wiX(s)
Xa(s) = Sz+2gws+w2 (9)
and
wst(s)
:Ica(s) = 2 (10)

s2 +2Cws + wz
Combining equations (9) and (10) with equation (8) and transforming

back to the real time space one obtains

2(¢ o, - o) (0% - &%)
x(t) = X(1) ¥ —2L— % (1) + —25— x (1) (11)
wo wO

Since this equation gives the exact response x(t) for an oscillator
with frequency w and damping { as a combination of the instrument
response X(t) and the approximate response xa(t) and ka(t), McLennan
(1969) proposed to use this equation to obtain the exact response spectrum.
Although it is important to have the exact spectra of recorded
ground motion, it is more important to determine the exact ground
acceleration so that it can be used as an input to any dyné,mic response
calculations. It is proposed here to use equation (11) to determine the
response of an oscillator for which { = 0.707 and w>>w0; wzx(t) then
becomes an excellent approximation to a(t). Although this approach
does n.ot explicity involve numerical differentiation of the function
X(t), it amplifies the high-frequency errors introduced into the X(t)
through the optical-mechanical digitization process. Therefore, like
the method based on the differential equation of the instrument trans-
ducer, this approach may be used only after random digitization errors

have been filtered out from the digitized accelerogram.
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Instrument Correction Procedures - A Case Study

A typical, recorded, strong motion accelerogram (Figure 18)
was taken to be the exact acceleration a(t) and was used to calculate
the response of an oscillator with w, = 6.28 rad/sec. and €, =0.60.
Equation (3) was integrated using the third order Runge-Kutta method.
The computed relative displacement response is given in Figure 19.
It was thén assumed that only the relative displacement response in
Figure 19 was known, and the two methods outlined above were used to
correct this response and derive the original input acceleration.

The calculated response in Figure 19 was optically digitized on
the Benson Lehner 099D datareducer with 1294 unequally spaced data
points. These data represent the uncorrected "accelerogram"
Xl(ti) (Figure 20) as a typical basic input. The next step was to inter-
polate the equally spaced 200 pts/sec to the record Xl(ti), which gave
XZ(nAt) with At = 0.005 sec. This equally spaced "accelerogram"
was then used as an input to the digital Ormsby filter. The details
on the use of the digital Ormsby filter may be found in our previous
report (Trifunac 1970). For At = 0,005 sec and 200 filter weights
symmetrically distributed over the filtering interval of 1 sec, the
resulting filter transfer function is as in Figure 21.

For this particular example we chose to analyze a typical case
for which the characteristic high frequency cutoff is determined by
the digitization noise level, far beyond the instrument natural frequency,
here chosen as 1 cps. We believe that such an example illustrates how
far instrument corrections can be applied to recover the input accelera-
tion beyond the natural frequency of the transducer. In particular, this

example shows that with careful digitization, the '"displacement meter"
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output can be used to recover input acceleration to a frequency as
much as an order of magnitude higher than the natural frequency of
the transducer.

The recorded amplitudes in Figure 19 are of the order of 1 cm
and the accuracy of the digitization is estimated to be about (1/1000)
cm. If we decide to accept a signal-to-noise ratio of about 10, the
critical tenfold noise level is then about (1/100) cmn. For the trans-
ducer natural frequency of 1 cps and the single-degree-of-freedom
system, this means that we can use the digitized data to about 10 cps.
We have, therefore, chosen 10 cps as the roll-off frequency for the
Ormsby low-pass filter in this case.

The low-pass filtered "accelerogram" X3(nAt) was processed in
two ways (Figure 20). First, X3(nAt) was differentiated two times us-
ing a centered difference scheme, and the differential equation
method was uéed to construct the ini:ut acceleration for w, = 6.28 rad/sec
and Co = 0.60. The result is given in Figure 22. Second, the low-pass
filtered "accelerogram?" X3(nAt) was multiplied by wi and used as an
"approximate acceleration' to calculate the approximate response of
a single-degree-of-freedom oscillator with w = 30 cps and (= 0.707.
The approximate relative velocity )';a and displacement x  were then
used in equation (11) to determine the exact response (Figure 20) and
thus derive the input acceleration approximately given by wzx(t)
(Figure 22). As may be seen in Figure 22, both results are essent-
ially identical. When a comparison is made with the original input
acceleration plotted on the top of Figure 22, it becomes obvious that
as the consequence of the low-pass filtering procedures, some of the

high frequency components higher than 10 cps are not present in the
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reconstructed accelerograms. Nevertheless, the general agreement
between exact input acceleration and reconstructed acceleration is
excellent.

The main purpose of this parallel outline of the two methods is
to demonstrate the accuracy and to offer two alternate ways of
arriving at the same result. In our opinion, however, the method
using the differential equation of the instrument is preferable because
of its simplicity. The method based on the high-frequency oscillator
is equally applicable and accurate, but may cause some difficulties
if w is taken to be too large and if only single precision accuracy is
used fzor computations. This is because for a large w the terms
(1 - :—z-)xa and X in equation (11) are nearly the same and of opposite

o

sign, so that the truncation errors may become catastrophic.

An instrument with a natural period of 1 sec was chosen to
demonstrate the power of the instrument correction methods outlined
above. These methods can also be applied to any transducer output
and are not restricted to the simple single-degree-of-freedom
oscillators with relative displacement outputs used here. This example
clearly shows how it is still possible to recover significantly high
frequencjr components of the exact input acceleration from the relatively

smooth response in Figure 19.
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CONCLTUSIONS

Our investigation of high-frequency errors in hand-digitized
paper accelerograms and the procedures for the accelerometer
response correction may be summarized as follows:

1. The analysis of the variance of errors resulting from the

accelerogram line thickness, human reading error, digitizer

truncation error, and the digitizer discretization error shows
that for typical line thickness and a digitizer unit with a resolu-
tion 1 /300 cm or better, the human reading error is the main
contributing factor to the variance of error.

2. Random digitization errors consisting of all the above-mentioned

errors and including parallax are nearly normally distributed

with the mean centered on the accelerogram trace centerline and
the average standard deviation equal to #bout 1/300 cm.

3. The frequency transfer function associated with the process

of decimation of equally spaced data and the subsequent connection

of the resulting points with a straight line is essentially equa'l to unity

up to the Nyquist frequency for the final sampling rate.

4. Most hand-digitized paper accelerograms contain locally

reliable information on the frequencies near and above 25 cps.

Therefore, the highest frequency defined by the equally spaced,

digital data should not be smaller than 25 cps. This calls for a

sampling rate of at least 50 points per second.

5. Numerical, low-pass filtering can be used to filter out high-

frequency errors introduced by hand digitization of the analog

record. The low-pass filtered accelerogram can then be
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differentiated for instrument correction purposes.

6. The recommended accelerometer instrument correction
procedure consists of the numerical differentiation of the recorded
transducer relative response function and use of the differential
equation for the viscously damped single-degree-of-freedom

linear oscillator.
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