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SURFACE MOTION OF A SEMI-CYLINDRICAL ALLUVIAL VALLEY 

FOR INCIDENT PLANE S H  WAVES 

BY M. D. TRIFUNAC 

ABSTRACT 

The nature of surface motion in and around a semi-cylindrical alluvial valley is 
investigated for the case of incident plane SH waves. The closed-form analytical 
solution of this two-dimensional wave-propagation problem displays complicated 
wave-interference phenomena characterized by nearly-standing wave patterns, 
rapid changes in the ground-motion amplification along the free surface of the 
valley, and significant dependence of motion on the incidence angle of SH waves. 
Although simple, this model may qualitatively explain some vibrating characteristics 
of long and deep alluvial valleys. 

INTRODUCTION 

One of the major concerns of engineering seismology is to understand and explain 
vibrational properties of the soil excited by near earthquakes. Alluvial deposits, often 
very irregular geometrically, may affect significantly the amplitudes of incident seismic 
waves. Since many human settlements are founded on alluvial valleys, it is important 
for the design of earthquake resistant structures to study the mechanism of these 
amplification effects. The main purpose of this paper will be, therefore, to 
point out some phenomena associated with the two-dimensional-wave interference. 

Many observed properties of the ground amplification of seismic waves have been 
explained by a simple model of alluvial deposits consisting of horizontally stratified 
surface layers overlying a half-space (e.g., Tsai 1969). Other equally important char- 
acteristics of strong earthquake ground motion caused by irregular layer properties 
(e.g., Aki and Lamer 1970; Boore 1970), focusing of seismic waves, and standing 
waves call for other geometrically more complex models. 

In this paper, we investigate the amplification and focusing properties of the semi- 
cylindrical alluvial valley subjected to incident SH-waves. This relatively simple 
model allows a closed-form analytical solution, but, at the same time, leads to compli- 
cated interference phenomena that probably also take place in realistic alluvial valleys. 

There are only a few known geological configurations with a cross-section resembling 
the semi-cylindrical valley and whose length is sufficiently great to permit the two-di- 
mensional analysis. Two such examples might be the Barnard Glacier in the St. Elias 
Mountain Range, Alaska, and the floor of the Yosemite Valley, California (Guten- 
berg et al. 1956). (I am indebted to Professor R. P. Sharp of the California Institute of 
Technology for bringing these examples to my attention.) 

THE MODEL 

The two-dimensional model to be analyzed is shown in Figure 1. It consists of a 
semi-cylindrical valley of radius a. The soil is assumed to be elastic, isotropic and ho- 
mogeneous, and the contact between the valley and the half-space is assumed to be 
welded. The material properties are given by the rigidity t~ and the velocity of the 
shear waves ~. The subscript v on ~ and ~ designates these constants in the valley. 

Exci~tion.  We assume that the half-space is subjected to the incident motion 

i elO~[t-(xlcx)+(y/cy)] 
u ~  = (i) 

1755 
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which represents a plane SH wave traveling upward and to the right (Figure 1) along 
a ray which makes an angle ~ with the y axis. The phase velocities along the x axis c~ 
and the y axis cy are given by  

c~ = ~ / s i n v  ( 2 )  

cy = ~/cos % (3) 

The motion represented by uo is in the z direction only and is the same for all z. 
Far  from the valley u~ ~ waves are reflected from the free surface and incident u, ~ 

and reflected u. ~ waves interfere to give the resulting free-field motion 

u~i ~- u~ ~ = 2e i~[t-e/~)] cos . (4) 

HALF SPACE 

INCIDENT SH WAVE 

¥ 

----VALLEY 

X 

j O J ~  /REFLECTED SH WAVE 

Y 

Y 
FIG. 1. Semi-cylindrical  val ley and the  sur rounding  half-space.  

Close to the valley, the total motion is given by (4) and also the waves reflected and 
diffracted by the material discontinuity at r -- a (Figure 1). We call these additional 

R 
w a v e s  U z  • 

The geometry of the valley (Figure 1) is suitable for the use of a cylindrical coordi- 
nate system; therefore, it is convenient to represent (4) in terms of functions that  de- 
pend on cylindrical coordinates r and 0. I t  can be shown, then, that  (4) becomes (Wat-  
son, 1966) 

u~ ~ + u~ r = 2J0(Kr) + 4 ~ ( -  1)'~J2~(~r) cos 2n-/cos 2n0 

-- 4i ~ (--1) 'J2~+l(Kr) sin (2n -Jr- 1)~/sin (2n + 1)0. (5) 
n~O 

Here J~(x) are the Bessel functions of the first kind with argument x and order p and 
= ~/~. 
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Solution of the problem. The total displacement u~ in the half-space and ~Uz in the 
valley must satisfy the differential equation 

02u 1 Ou 

0 7  + r ~ + 

where u stands for either u~. or ~Uz. 
The boundary conditions are 

1 O2u 1 O2u 
r 2 002 f12 OF 

(6) 

]~ OUz 
- - 0  at 0 = ±~-  (7 )  O'Oz 

r O0 

and 

u~=vUz  at r = a  (8) 

OUz O~ Uz 
U ~ r  = ~ ~ -  at r = a. (9) 

The total  motion in the half-space can be expressed as the superposition of ( u / q -  Uz") 
and the waves u f  reflected and diffracted by  the discontinuity at r = a. The u f  must 
represent a wave outgoing from the valley. This wave has to satisfy the differential 
equation (6) and the boundary conditions (7), (8), and (9). We write Uz R as 

R ~ H (2) b H~ 2) / ' u, = [a~ 2n (Kr)  COS 27~0 + n 2n+l~ K'F] sin (2n ~- 1)0 (10) 
n=0 

where 

~0 
K - (11) 

The Hp (2) (x) is the Hankel function of the second kind with argument x and order 
p. In addition to satisfying (6), (7), (8), and (9) the motion in the valley must have 
finite amplitudes at r = 0. I t  may be writ ten as 

~uz = coJo@~r) q- ~ cnJ2~(~r) cos 2nO q- ~ dnJ2n+~(K~r) sin (2n q- 1)0 

where 

(12) 

CO 
~v ~ (13) 

I t  is readily seen tha t  the waves (5), (10), and (12) satisfy differential equation (6) 
and the boundary condition (7). 

The complex constants a,~, b~, c,,, and d~ for n = 0, 1, 2, • - • may next be determined 
by  putt ing (5),  (10), and (12) in the boundary conditions (8) and (9).  The result is: 

for n = 0 

CoJo@va) - aoHo (2) @a) = 2J0@a) 

CoK~#~aJl(K~a) -- aoK~aHl(2) (Ka) = 2K~aJl(Ka) (14a) 
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i 
for n = 1, 2, . . .  

c ~ J ~ (  K~a) - -  a ~ H ~ )  ( Ka) = 4(--1)nJ2~@a) cos 2n'y 

c~[KvaJo~_~(K~a). - -  2nJ2~@~a)]  - -  a~tt[~aH~)-l(Ka). - -  znr12~ ~(2)~rKa ~]] 

= 4( -- 1)"#[KaJ2,_x@a)  - -  2 n J 2 ~ @ a )  ] cos 2n~, (14b) 

and f o r n  = 0, 1,2,  - . .  

d~J2,~+l(K~a) b H (2) ~" ~ ~ - -  ~ 2 ~ + ~ a )  = - - 4 i ( - - 1 )  J2~+~(Ka) sin (2n + 1)~, 

d,~#~[~aJ2n(~a)  - -  (2n + 1) J2~+l(~a)] - b~[~aH2,~(2) (~a) - (2n + 1)H2n+I(Ka)](2) 

= - 4 i ( - 1 ) ' ~ [ ~ a J 2 , ~ @ a )  - (2n + 1)J2~+l@a)] sin (2n + 1)% (15) 

The constants cn and a~ are given by  the equations (14) while d~ and b~ are given by  
the equations (15). The motion in the valley, for r < a is then given by (12) and, for 
r >= a, it becomes 

i r R 
U z = U ~  + u ~  + u ~  (16) 

where u~ ~ + u~ ~ is given by (5) and u~ R by (10). 

S U R F A C E  D I S P L A C E M E N T  SPECTRA 

A question of primary interest for the earthquake engineering studies is the spatial 
and frequency dependence of the strong earthquake ground motion. For the model 
studied in the paper, we assumed the excitation to be a steady train of propagating 
S H  waves whose incidence angle is % the amplitude is 1, and the frequency is ~. The 
solutions u.. given by (16), and vu~ given by (12), now give spectral amplitudes, since 
the amplitude of the incident wave (1) is taken to be unity. 

Both Uz and ~u~ are complex. The amplitudes and phases of these quantities are 
given as follows 

l ul - [(Re u) 2 + (Ira U ) 2 ]  1/2 (17) 

V Im u 1 
~ tan-1 [_Re u J "  (18) 

Both [ u J and ; depend on the frequency of the incident waves, the radius of the semi- 
cylindrical valley, material constants p, pv, (p = g/~2; p~ = gv/~ 2), fl and fly and co- 
ordinates r and 0, or in terms of dimensionless quantities, on Ka, p / p v  , f l / f l~  , r / a  and 0. 
The parameter  Ka given by  

can also be expressed as 

c0a 
Ka - (19) 

2~a 
~ a  - ( 2 0 )  

X 
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where X = fiT is the wavelength of the incident wave. It is then convenient to think in 
terms of a ratio ~ given by 

2a 
, = - - .  ( 2 1 )  k 

Then Ka is given by ~-n. 
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FIG. 2. Envelope of surface displacements for vertical incidence (7 = 0 °) of SH waves plotted 
versus the dimensionless frequency 7. 

Figures 2, 3 and 4 give the envelope of surface displacements for ~ = 0.25, • • . ,  2.50, 
for different values of p/p, and ¢~//~, and for the vertical incidence (~, = 0 °) of SH waves  
whose amplitude is one. The surface displacement amplitudes that  correspond to the 
amplification factors are plotted on the vertical axis. The two horizontal  axes in Figures 
2, 3, and 4 are x/a and 7. The point  x/a = 1 corresponds to the edge of the valley,  and 
x/a = O, to the center of the valley.  Since all motions  are symmetric  about x/a = O, 
for vertical incidence of SH waves, only the positive x/a axis is illustrated. 
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In Figures 2 and 3 both P/Pv and ~/~, are greater than one. This corresponds to a 
"softer" material in the valley and "harder" material outside the valley. Figure 4, 
for which p/pv = 0.666 and ~/~v = 0.5, is an example of "harder"  material in the valley 
and "softer" material outside. As may been seen from those figures, surface-displace- 
ment amplitudes for p/pv > i and ~//3, > 1 are complicated in the "soft" valley by the 
interference phenomena caused by the semi-cylindrical interface r = a. Displacement 
amplitudes outside the valley (x/a >= 1) are less complicated, and although they are 
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s h o w n  o n l y  for  i _-< x /a  < 2 i t  c an  be  seen  t h a t  for  i nc r ea s ing  x/a ,  d i s p l a c e m e n t  a m p l i -  

t u d e s  t e n d  to  t h e  a m p l i f i c a t i o n  v a l u e  of 2. T h i s  is as e x p e c t e d ,  b e c a u s e  t h e  " f r e e  

f i e ld"  s u r f a c e - d i s p l a c e m e n t  a m p l i t u d e ,  fa r  f r o m  t h e  va l l ey ,  c o r r e s p o n d i n g  o n l y  to  u~ i + 
r 

u=, is 2. 

~=2.50 

/1 / I  /2' / J  //f-,, / ~ ~.--.----~" ~ : 2 . ~  

" I-.... i ... Izlz ". 

ioL/ L.-" 
0 I 2 
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FIG. 4. Envelope of surface displacements for vert ical  incidence (~, = 0 °) of SH waves plot ted 
versus the dimensionless frequency 7. 
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FIG. 5. Surface-displacement amplitudes and phases for incident (~, = O °, 30 °, 60 °, and 90 °) 
plane SH waves, x/a = 0 corresponds to the center of the semi-cylindrical valley and x/a = =El 
to the edges of the valley. 
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I t  may  be of interest to compare results in Figures 2, 3 and 4 with those for a single 
surface layer of constant thickness H = a subjected to the vertically-incident plane SH 
waves. By  using the same notat ion for the material  properties u, and ~v in the surface 
layer, as in the ease of the semi-cylindrical valley, it can be shown (e.g., Haskell  1960) 
tha t  the surface-displacement amplification of vertically-incident waves caused by  a 
layer of thickness H is given by  
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FZG. 6. Surface-displacement ~mp] i tudes ~nd phases for inc ident  (~ = 0 °, 30 °, 6~ °, and 90 °) 
p lane S H  w~ves, x / a  ~ 0 corresponds to the center of the semi-cy l indr ica l  va l l ey  and x / a  = ~ 1  
to  the edges of the vu] ]ey.  

The maxima of this function are a t ta ined for 

- -  n @  

and are equal to 

amplification max. = - - .  
tLvfl 

Taking X~ = Tfl, and X = T~ and defining n = 2H/X, (23) gives 

n = ~ #  + ; n --- 0 ,  1 ,  2 ,  . - . .  

(23) 

(24) 
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For example, for ¢~v/B = ½ in Figure 3, the model with a layer of uniform thickness 
H = a would predict maxima of the ground-displacement amplitudes in the center of 
the semi-cylindrical valley to be at ~ = ~ ,  ~-~, ~ ,  • • -. For example, from Figure 3, we 
find that ~ -- ~ and ~ indeed give high amplifications, whereas ~ -- ¢~ and ~1, which 
according to (24) would also be expected to give maxima, yield only very small ampli- 
tudes. The model with a layer of constant thickness H = a would also predict the 
amplification to be 9 for the center of the semi-cylindrical valley in Figure 3. The ampli- 
fication for the semi-cylindrical valley is apparently almost twice that much. 
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p lane  S H  waves ,  x / a  = 0 cor responds  to the  center  of the  semi-cyl indr ica l  val ley and x / a  = ± 1  

to the  edges of the valley.  

The above qualitative comparison shows that when the interface of the alluvial 
valley becomes steep and the depth of the valley becomes comparable to its width, the 
simple model with a layer of uniform thickness H = a does not apply. When the inter- 
face slopes are small, i.e., when the width to the depth ratio is large, the above-men- 
tioned simple model may give reasonable estimates of the surface-displacement ampli- 
fication (Aki and Larner 1970). 

DEPENDENCE OF DISPLACEMENT SPECTRA ON INCIDENCE ANGLE T 

The amplification spectra of Figures 2, 3 and 4 were given for the vertical incidence 
of plane S H  waves (~, = 0°). In this section, we investigate how these spectra change 
for different angles % Figures 5 to 10 give surface-displacement amplification versus di- 
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mensionless distance x /a  plotted for ~ = 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50~ In these 
figures, x /a  = 0 corresponds to the center of the semi-cylindrical valley, and x /a  = -4-1, 
to the edges of the valley. In each figure, the displacement amplification and its phase 
e ( x / a )  are plotted for the incidence angles ~ = 0 °, 30 °, 60 ° and 90 °. The phase e ( x / a ) ,  
defined by (18), is plotted relative to the phase ~(0) in the center of the valley. For 
p/p,, = 1 and ~ / ~  = 1, the solution of the wave equation (6) would reduce to (4) 
and would be valid for all r. In this case, the phase ~(x /a)  would be given by 

e ( x / a )  = ~x = _{~)x (25) 
c~ \ c~ / a 

15 

l0 

V=k0 

4Zr 

~2~r 

o. 0 

-27T 

- 47 r -2  - I  0 I 2 

FIG. 8. Surface-displacement amplitudes and phases for incident (~, = 0 °, 30 °, 60 °, and 90 °) 
plane SH waves, x/a = 0 corresponds to the center of the semi-cylindrical valley and x/a = ±1 
to the edges of the valley. 

and by (2),  ~a/c,  becomes 

~ o~a . 
- sin % (26) 

c~ /3 

Thus, for p/p~ = 1 and ~//~ = 1, #(x /a )  is a straight line with a negative slope given 
by (26). These straight lines passing through x /a  = 0 are also plotted in Figures 6 to 
10, for comparison with the #(x /a )  calculated for a semi-cylindrical valley. For ~ = 
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0.25 these straight lines are omitted, because they fall too close to the computed ~ ( x / a )  

and would only confuse the phase diagram in Figure 5. All diagrams in Figures 5 to 10 
were calculated for p/p~, ---- 1.5 and f l /~  = 2, a case which corresponds to the spectr~ 
in Figure 2. 

Several important properties of the model in Figure 1 are reflected in Figures 2 to 
10. First, it is clear that as ~ increases, i.e., as the incident wavelength X decreases, the 
effects of the valley on the "free field" motion increase. This result is analogous to the 
intuitive physical expectation that the waves with long wavelength do not "feel" 
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FIG. 9. Surface-displacement amplitudes and phases for incident (~/ = 0% 30 °, 60 °, and 90 °) 
plane S H  waves, x / a  = 0 corresponds to the center of the semi-cylindrical valley and x / a  = ± 1  
to the edges of the v~lley. 

small irregularities in the ground, whereas the waves with short wavelengths do. 
Second, Figures 2, 3 and 4 show that for increasing f l / f l ~ ,  that is, for the "softer" ma- 
teriM in the valley, over-all amplification in the vMley increases. Again, this result is in 
agreement with what would be expected. Third, for ~9/fl~ > 1 and P/Pv > 1, there are 
many sections Mong the surface of the valley where significantly-high local amplifica- 
tions take place. These regions are not necessarily confined to the deepest part of the 
valley and apparently depend on ~ / ~  and p/p,~, aS can be seen from Figures 2, 3 and 
4. For example, for fl/fl~ = 2 and P/Pl = 1.5 in Figures 6 to 10, the region of such high 
amplification is mainly concentrated toward the edges of the valley. 

The localized high amplification of the surface displacements is a consequence of the 
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focusing of waves reflected through the discontinuity at r = a. To explairt this, R may 
be  convenient to think in terms of many parallel rays incident from the underlying me- 
dium. The change in the ray direction upon the refraction at r = a depends only on the 
ratio fl/fl~, and depending on the interference pat tern of all rays, some points in the 
valley and along its surface receive a high concentration of incident rays, which, if 
they constructively interfere, increase the local displacement amplitude. 
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FIG. 101 Surface-displacement amplitudes and phases for incident (v = 0 °, 30 °, 60 °, and 90 °) 
plane S H  waves, x / a  = 0 corresponds to the center of the semi-cylindrical valley and x / a  = =t=1 
to the edges of the valley. 

Another property of the model in Figure 1 is that,  for increasing 7, the pat tern of the 
surface amplification changes so tha t  the motions in the region of positive x / a  increase 
and in the region of negative x / a  decrease relative to the symmetric incidence with 
7 = 0 °. This property again may be interpreted by the ray analogy. For increasing V, 
all incident rays (Figure 1) enter the valley from the left, while a shadow zone is formed 
on the right. The rays refracted into the valley, predominantly from the left interface, 
are part ly or completely reflected from the right interface back into the valley. The 
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amplification caused by focusing of these waves is apparently greater for positive x/a  
and for p/p~ = 1.5 and/3//~, = 2. 

Finally, as can be seen in Figures 5 to 10, vibrations in some regions in the valley are 
characterized by nearly-standing waves. These regions correspond to the intervals 
along x/a in Figures 5 to 10, for which ~(x /a)  is nearly stationary. Furthermore, there 
are many points along x/a, particularly for greater 7, where rapid change in phase takes 
place and at the same time displacement amplitudes are zero (e.g., x/a  = ±0.85, in 
Figure 9, or x/a  = --0.38, -1 .90,  in Figure 10). This property of the complicated in- 
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FIG. 11. Typical spectral amplification on the surface of the semi-cylindrical valley at x/a = 0.8 
(p/p, = 1.5; ~//~, = 2.0) plotted versus the dimensionless frequency u. 

terference pattern in the valley is of interest to earthquake engineering, because it 
suggests that  some structures could be excited predominantly into torsional oscillations. 

TYPICAL SPECTRA 

The Figures 11 and 12 show the typical spectral amplification on the surface of the 
semi-cylindrical valley, plotted versus dimensionless frequency v. Figure 11 compares 
spectra for the vertical and horizontal incidence at x/a, 0.8, while Figure 12 gives the 
same comparison for x /a  = - 0 . 8 .  

Although the spectra in Figures 11 and 12 represent only one typical case for p / p , ,  = 

1.5 and/3//3, = 2.0 and for x /a  = ±0.8,  several general properties of the model ia  
Figure 1 are nevertheless well displayed. One of these properties, as already men- 
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tioned above, is that long-period waves (X large) do not "feel" small irregularities in 
the ground. This is shown in Figures 11 and 12 where as n tends to zero, spectral ampli- 
fication tends to 2, corresponding to the "free field" amplification. 

The most important property of the spectra in Figures 11 and 12 is that the ampli- 
tude and position of many local peaks depend on x / a  and y. This property of the model 
in Figure 1 may serve as a warning to all simple interpretations of the recorded strong- 
motion accelerograms and microtremor ground noise. It clearly shows that unless the 
direction of the approach of the main disturbance and the detailed geology of the site 
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FIG. 12. Typical spectral ampIification on the surface of the semi-cylindrical valley at x /a  = 
--0.8 (p/p~ = 1.5; ~/fl, = 2.0) plotted versus the dimensionless frequency 7- 

are known, interpretations based on correlating the observed spectral peaks with those 
from the simple models may be in error. 

STANDING W A V E S  

The model considered in this paper can be used to interpret vibrational characteris- 
tics of some simple deep and long alluvial valleys. I t  points out several phenomena that  
may take place during strong earthquake ground motion. Among these are the focusing 
of earthquake waves by the semi-cylindrical material discontinuity and nearly-stand- 
ing waves generated by the interference in the geometrically-complex alluvium. 

A typical observation made during strong earthquake ground motion that  ]night be 
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related to the phenomenon of standing waves is quoted from Richter (1958): 
% . .  seismie waves. . ,  travel at speeds measurable in miles per second and cannot 
possibly be followed by an observer's eye. Waves actually seen would have to be of 
another physical type with much lower velocities. They might, however, be a modifica- 
tion of standing waves; that is, an interference pattern of nodes and loops may be set 
up which shifts over the ground as the exciting disturbance changes. A high school in- 
structor described to the author what he saw in the streets at Long Beach in 1933; it 
could, easily, be such pattern of nodes and loops. There was no suggestion of large no- 
tion of the surface of the ground, but the loops or antinodes were put in evidence by 
dust thrown into the air, while the nodes appeared quiet. The account was rather con- 
vincing because the observer was not a physicist and did not have the technical vo- 
cabulary used here." 

Several accounts on the visible waves are given by Fuller (1912), Lomnitz (1970), 
and Vitaliano and Vitaliano (1971). 

CONCLUSIONS 

The analysis of the amplification and interference effects on incident plane SH waves 
in a semi-cylindrical valley may qualitatively explain several ground amplification 
phenomena either observed or recorded during the strong earthquake ground motion 
and the mierotremor noise measurements. From the engineering point of view, the 
main results of the present analysis that bear on these phenomena may be summarized 
as follows: 

1. Tile surface-displacement amplification for the semi-cylindrical valley may change 
rapidly over short distances, in some eases, only a fraction of the characteristic length 
of the valley. The changes in the amplification over these short distances may be as 
much as one order of magnitude. For the fixed geometrical and physical properties of 
the valley and its surrounding medium, the degree of complexity of the amplification 
pattern increases with the increase of frequency of the incident waves. 

2. A comparison of the amplification pattern in the semi-cylindrical valley with the 
radius r = a and a layer of the uniform thickness H = a shows that there is no simple 
correspondence in the amplification patterns. The reason for this is related to the one- 
dimensional nature of the layer model and the two-dimensional nature of the semi- 
cylindrical valley. This eonclusion is important for many engineering applications if 
the effects of loeal sites are modeled by horizontal layers of uniform thiekness. 

3. The pattern of spectral amplification at a given point on the surface of the semi- 
cylindrical valley significantly depends on the angle of incidence of the SH waves. 
This dependence is reflected in the over-all change of spectrum amplitudes, the shift- 
ing of some spectrum peaks from one frequency to another, and in some eases, the com- 
plete disappearance or occurrence of peaks as ~/varies from 0 ° to 90 °. 

4k If the shear-wave velocity in the semi-cylindrical valley decreases, other model 
properties being fixed, the over-all amplification in the valley increases. For incident 
~qH wavelengths longer than i0 to 20 radii of the valley, the amplification in the valley 
is negligible. 

5. In some parts of the valley the interference of SH waves may lead to a nearly- 
standing wave pattern. As a result, at a node, the surface ground motion is zero. Since 
the phase of the ground motion may change through one 7r there, a building structure 
that appears to be centered at such a node might experience essentially pure torsional 
vibrations and no lateral vibrations at all. This is of course based on the assumption 
that we are dealing with SH waves only. 
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