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SUMMARY — This paper contains an illustration of the method
Sfor estimation of the total loss (a sum of the direct and the indi-
rect losses) for a building described in the companion paper,
referred to as Part 1. The method is applied to a hypothetical
building of a university campus. The probabiliry distribution
Sfunctions of the subsystem direct and indirect losses, and of the
total loss for the building are evaluated for a given value of the
shaking parameter at the building site. Probability distribution
functions for the physical damage of the elements at risk, and
for the indirect loss proportionality factors for the subsystems,
that are suitable for such a detailed analyses, are not available
at present. Therefore, hypothetical, but physically admissible,
analytical functions have been used. In particular, Beta proba-
bility distribution functions have been used for the losses of the
elements at risk, with expected value and variance depending on
the level of the input hazard and on the characteristics of the
element. Resistance classes are introduced to discriminate
between elements at risk of the same kind, but with different su-
sceptibility to damage. The indirect loss proportionality factors
are assumed to be uniformly distributed.

KEYWORDS: eartquake losses, assessment of losses, indirect
losses, direct losses, optimum design level, optimum level of
strengthening, probabilistic estimate, decision making tool,
earthquake hazard.

Introduction

In Part I of this paper (Jordanovski et al. 1992), a
methodology is presented for assessment of the total
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losses (direct and indirect losses) for a single building
exposed to some natural or man made hazard. In the
model, the building is represented by an integral sy-
stem, consisting of subsystems. The subsystems contain
elements at risk, which suffer physical damage caused
by the hazard. Resistance classes are introduced to di-
stinguish between elements with different susceptibility
to damage, and indirect loss proportionality factors, to
model the indirect losses. This work was motivated by
the need for a more accurate model for assessment of
losses caused by moderate to large earthquakes. This
model, interfaced with database of the building inven-
tory, residents, ongoing activities, and probability di-
stribution functions for the damage of the elements at
risk and for the indirect loss proportionality factors, can
assist the decision making for long range planning re-
lated to mitigation of the financial consequences of
damaging earthquakes.

Probability distribution functions for the losses of the
elements at risk for such a detailed system are not avai-
lable at present. At this time, the most complete set of
damage probability matrices (ATC, 1985) that is appli-
cable to buildings in the United States, is based on
expert opinions, and can be used by engineers to esti-
mate the generic loss for selected types of buildings. In
this paper, the procedure of constructing damage proba-
bility functions for the elements at risk is discussed,
and some physically admissible functions are sugge-
sted. To illustrate the method, it is applied to a
hypothetical building of a Large Public or Private Or-
ganization (LPO) exposed to given earthquake motion
at the base. Hypothetical, but physically admissible
probability distribution functions for the losses of the
elements at risk and for the indirect loss proportionality
factors are used.
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Admissible probability distribution functions for the
losses of the elements at risk

The conditional distribution functions £, of the
input hazard level H for different groups of elements,
and the conditional distribution function F,, =~ of the
losses for the elements at risk, can be determined by

statistical regression analysis applied to

1. empirical data, such as compiled data on losses
after particular earthquakes,

2. results of theoretical analyses, involving evalua-
tion of linear and non-linear response of buildings and
simulation, and

3. expert opinions.

Empirical data on losses gathered after earthquakes
are often incomplete. For example, the available dama-
ge probability matrices obtained by regression of data
on structural and nonstructural damage are incomplete.
The expert opinions and the theoretical data are also
not equally reliable for all values of the input hazard
level H and the level of shaking Y. In addition to this,
determining the probability distribution functions for all
the possible values of the conditional variable is time
consuming, and implementing these in the analysis is
memory demanding. Therefore, another approach is
recommended and used in this paper.

Often, in the engineering analyses, a theoretical di-
stribution function is chosen that would best fit the
data, and that would not violate the physical properties
of the process. The theoretical distribution functions are
often defined by two parameters: the expected value
(the mean) and the variance (the standard derivation).
Those are evaluated by fitting the theoretical distribu-
tion function to the data. Then, various tests are perfor-
med, such as the Kolmogorov-Smirnov test, to determi-
ne the «goodness of fit». For example, in the case of
the conditional distribution function F Lery the func-
tions #, and u, have to be determined such that

u,(h) = E[LERIH = h] (N
and
u,(h) = Var[LERIH = h]. 2)

Similarly, for F,,, the functions v, and v, have to be
determined such that

v,(y) = E[HIY = y] (3)
and
v, (y) = Var[HIY = y]. (4)

In Eqgs. (1) through (4), E[-] and Var[-] indicate ex-
pected value and variance. The advantage of this proce-
dure is that it makes it possible to fill-in the no-data
regions within the interval of the data. The reliability of
the results strongly depends on the quantity and quality
of the available data and on the smoothness of U, Uy, v,
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and v,. In this respect, 4, and v, are smoother than u,
and v, because of their nondecreasing nature.

In this study, the Beta probability distribution func-
tion is used to mode! the element losses probability

distribution function (Jordanovski et al., 1992), i.e.

1 (t-ay ' (b-0)"!
_a)r+p+l B(I”, p)

(h) = 5
fLERIH( ) (b ( )

where

B(r, p) = j;x"la — )" dx (6)

is the Beta-function, ¢ and b are the lowest and the
highest values that the element loss can take, and r and
p are parameters that define the slenderness and skew-
ness of the density function. r and p are related to the
expected value and to the variance by

EILERIH = h)=25P% _ 0 ) (7a)
r+p
and
2
Var(LERIH = h] = —2 r(zb —9) =u,(h). (7b)
(p+r) (p+r+1)

In Fig. 1, examples of Beta probability distribution
function f(x) are shown for different values of r and p.
Incurve (1), r=0and p>> 1;in curve 2), r, p# 0
and p >> r and f(x) is skewed to the left; in curve (3),
r=p >>1 and f(x) is symmetric; in curve (4), r >> p
# 0 and f(x) is skewed to the right; in curve (5) r =p =
1, and f{x) is constant,

A desirable property of the Beta probability distribu-
tion function is that it is nonzero in a closed interval
[a, b], and with adequate choice of » and p different
weight can be assigned to smaller or higher values of
the losses. The minimum loss, a, is usually equal to 0
and the maximum loss, b, is usually equal to the repla-
cement value of the element.

f(x)

|
|
|
I
|
|
|

(0] a b X

Fig. 1 — Examples of Beta-probability distribution functions, for five sets
of values of the parameters r and p.
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Examples of u,(h) and u(h)

In the hypothetical example in this paper, the func-
tions u (h) and u,(h) appearing in Egs. (7a) and (7b) are
assumed to be the following

u,(h) = E[LERIH = h] = b(1 - e (8)
and

u(h) = Var[LERIH = h] = b(1 — e?)e?, ©)

where ¢ 1s some constant. Sketches of u,(h) and u,(h)
are shown in Figs. 2 and 3. These forms of u (/) and
u,(h) are physically admissible hypothetical functions,
and are used only to illustrate the model. Even though,
in reality, the damage of the structural components is
not necessarily a continuous function of the building
response, but may have jumps (components of the ele-
ment suddenly break when certain level of 4 is rea-
ched), u (h) in Eq. (8), as a monotonically increasing
function of the input hazard level, does not violate the
relationship between the damage of the element at risk
and the input hazard level. From Eq. (9), it follows that
the scatter of the data, Var[LERIH = h], is small when
the input hazard level and the damage are small, and
Var[LERIH = h] — 0 as h —» 0. When & — h_  and
the loss due to the physical damage approaches the
maximum loss, then Var[LERIH = h] — 0 also. For
intermediate values of A, Var[LERIH = h] # 0. Then,
larger Var[LERIH = h] means that the loss can take
comparable values in a larger interval about the mean
value. The form of u (k) in Eq. (9) is also physically
admissible.

RESISTANCE CLASSES

The structural elements of a building sometimes may
not have the design strength, because of the human
factor involved in the construction process. Elements of
the same kind may have different vulnerability in dif-
ferent subsystems. Three possibilities can be suggested
to account for this difference:

1. different distribution functions have to be defined
for different elements or groups of elements,

2. one distribution function can be used for all the
elements of a given kind, but with a larger standard
deviation, and

3. same analytical representation of u (k) can be
used (as in Eq. (8), e.g.) for all the elements of the
kind, but the values of some parameters of u, (e.g., ¢)
should be different for elements belonging to different
vulnerability classes.

In the hypothetical example that follows, the third
possibility is employed.
First, three resistance classes are defined:

a) poor resistance class,

b) fair resistance class, and
¢) good resistance class.

28

u(h) = E[LER | H<h] = b(1-e ")

0 h h
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Fig. 2 — The assumed form of the function u,(k), representing the ex-
pected value of the loss of an element at risk for a given value of the
input hazard level H, in the hypothetical example in this paper.

- -gh
u(h)=Var [LER| H=h] =b(1-e "y e

/

| h
O Nmax

Fig. 3 ~ The assumed form of the function u,(h), representing the varian-
ce of the loss of an element at risk for a given value of the input hazard
level H, in the hypothetical example in this paper.

g defines the rate of growth of u (4). Quantitatively,
it is defined for each of these classes in terms of the
value of 4 for which the expected value of the loss
equals 90% of the maximum loss, b. In mathematical
terms this could be expressed as

u,(h) = 0.9b. (10)

Then, from Eqgs. (8) and (10) it follows

_—ln().l

= (1)
I h

It is assumed in the examples that for a good resistance
class h =094, for a fair resistance class & = 0.8,
and for the poor resistance class # = 0.6h__ . In Fig. 4,
u,(h) are illustrated for the three resistance classes.
Accounting for the difference in the vulnerability of
the elements of a given kind by assigning it to different
resistance classes is physically more reasonable than by
increasing the variance, because through the resistance
classes the variance of the overall distribution function
of the elements (including the distribution functions for
the classes) is increased at all values of 4, uniformly.

e
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Fig. 4 — An illustration of the definition of the three resistance classes
(poor, fair and good) for an element at risk. For example, for a «good»
resistance class, the expected value of the element loss equals 90% of
the maximum loss, b, when the input hazard level, H, equals 90% of its
maximum value A

X

This would not be the case if a standard shape, as in
Eq. (9) e.g., is assumed.

In determining the function u (h) = E[LERIH = h] by
a regression analysis of empirical data, it may happen
that u,(#) in Eq. (8) does not fit the data. Consequently,
conditions other then Eqgs. (10) and (11), have to be
defined to determine the distribution function and to
define the criteria for the resistance classes. In a gene-
ral case, u (h) can be defined with the help of the mean
and the standard deviation, i, (k) and (), of the di-
stribution function determined by a regression analysis
of all the data for that kind. For example,

1) u,(h)=u,(h) for a good resistance class,
2) u,(h) =1, (h)—&(h) for a fair resistance class, and

3) u(h)y=#,(h)—246(h) for a poor resistance class.

Assigning an element to a lower or to a higher resi-
stance class may also express the confidence of the
individual performing the analysis that the element will
in reality perform as it was initially designed.

An application of the model to a hypothetical exam-
ple

To illustrate the model described in Part I of this
paper (Jordanovski et al., 1992), the computer program
ESTIMATE was written and applied to a hypothetical
building, exposed to a given earthquake ground motion
described by a single parameter. Hypothetical analytical
probability distribution functions for the damage of the
elements at risk were used, as described in the previous
section of this paper.
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DESCRIPTION OF THE BUILDING

The hypothetical building is a two-story moment
resisting frame building. It belongs to an LPO (e.g. a
university campus) and it is used for lecturing, as an
office building, and for research. The classrooms are on
the first floor. On the second floor, the X-department
has faculty and administrative offices and several com-
puter laboratories. In the basement there are several
experimental laboratories. The total cost of the buil-
ding, including ail the equipment, has been estimated to
be equal to B monetary units (m.u.). The X-department
is involved in several projects which bring income of
B, m.u./year to the university, and the lectures that take
place in this building generate B, m.u./year profit to the
university. The experimental laboratories are also enga-
ged in projects whose interruption may have long term
impact on the university finances.

Choice of the subsystems and of the elements at risk

The subsystems are chosen to be the different levels
of the building, i.e.

1. §§,: the basement,
2. 8§, the first floor, and
3. 8§,: the second floor.

The considered elements at risk for each of the su-
bsystems are the following.

Basement:

B.! Structural elements (columns, beams, shear wal-
Is...)

B.2 Non-structural elements (ceilings, partitioning
walls, stairs, facade...)

B.3 Installations (telephone lines, electrical lines, air
conditioning ducts, lights, elevators...)

B.4 Laboratory equipment (electronic microscope,
optical lasers...)

First Floor:

F1.1 Structural elements (columns, beams, shear
walls...)

F1.2 Non-structural elements (ceilings, partitioning
walls, stairs, facade...)

F1.3 Installations (telephone lines, electrical lines, air
conditioning ducts, lights, elevators...)

Second Floor:

F2.1 Structural elements (columns, beams, shear
walls...)

F2.2 Non-structural elements (ceiling, partitioning
walls, stairs, facade, roof...)



F2.3 Installations (telephone lines, electrical lines, air
conditioning ducts, lights, elevators...)
F2.4 Equipment (two main-frame computers, 20 per-

sonal computers, 8 laserjet printers, 3 xerox and 3 FAX
machines...)

A block diagram of the integral system, the subsy-
stems, and the elements at risk is shown in Fig. 5.

THE InpPUT
The shaking parameter

The shaking parameter, Y, could be the MMI inten-
sity of shaking, the peak ground acceleration, or the
response spectrum at the building site, for example.
The site shaking parameter is a random variable, and a
proper interface between the computer program ESTI-
MATE and a program that evaluates in a probabilistic
way the ground response at the building site to motion
generated at the surrounding faults (NEQRISK is an
example of such a computer program, Lee and Trifunac
1985) is necessary. For the purpose of demonstrating
the program ESTIMATE alone, the losses for the
hypothetical building are estimated for a given value of
the shaking parameter, (for example the maximum va-
lue expected to occur for exposure time of 80 years).
This maximum value is assumed to be equal to § units
of the shaking parameter.

Input parameters for the elements at risk

For each of the elements at risk, the following para-
meters are defined:

(i) the input hazard parameter, iiip, (the floor respon-
se parameter with which the damage of the element is
best correlated)

ihp = d: interstory drift

thp = v: peak velocity

ihp = a: peak acceleration

ihp = s: maximum shear force

ihp = m: maximum bending moment,

(ii) the input hazard level, H, as a function of the
ground shaking at the site,

(iii) minimum and maximum losses for the element,
L, and L, in monetary units,

(iv) probability distribution functions for the element
losses, as functions of the input hazard level 4 (the
Beta probability distribution function is used, defined
on the interval [L, L ]),

(v) resistance class parameter, rc,

rc = g: good resistance class

rc = fi fair resistance class

rc = p: poor resistance class.

Since the subsystems are the story levels, the input
hazard level is assumed to depend only on the story

Building

Basement 1st floor 2nd floor

OEEE
o

Fig. 5 — A block diagram of the integral system, /S, the subsystems, S,
and the elements at risk, ER/V .» for the hypothetical example in this pa-

per.

height. For all the elements of the story, the input ha-
zard level is assumed to be normally distributed with
mean p and standard deviation o

u(y) = E[HIY = y] = k(y - 6)m’ (12)
and
o? = Var[HIY = y] = 0.15u(y)

where m = 1 for the basement, m = 2 for the first floor
and m = 3 for the second floor, and £ is a proportiona-
lity factor. It follows from Eq. (12) that the input ha-
zard level is larger at higher levels of the building. The
standard deviation is also larger at the higher floors,
where the mean of the input hazard level is larger.
Quantitatively, the resistance classes are defined in
the above text. Then, the expected value, and the va-
riance of the Beta probability distribution function for
the losses are defined as described in Egs. (7). In Table
1, the values of the input parameters for all the elemen-
ts at risk are summarized. It can be seen from this table
that the damage of all the first three elements at risk at
the basement is correlated with the floor displacement,
and of the fourth element, to the floor acceleration. At

Tab. 1 Input parameters for the subsystems and for the elements at risk
of the building

Input Minimum | Maximum
Floor Element Hazard | Resistance Direct Direct Indirect
Parameter Class Loss [m.u.] | Loss [m.u.] | Loss Class
B.1 d o 0 300
Basement B.2 d p 0 100 h

B3 d p 0 400
B4 a o 0 1,000
FL.1 d ) 0 300

First F1.2 d p 0 200 h

Floor F1.3 d p 0 400 ]
F2.1 d P 0 300

Second F2.2 d p 0 300

Floor F2.3 d P 0 400 h
F.2.4 t a p 0 600
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the first floor, the damage of all the elements at risk is
correlated with the interstory drift. At the second floor,
the damage of the structural and nonstructural elements,
and the installations is correlated with the interstory
drift, and of the equipment, with the floor accelerations.

The resistance class indicates how well the element
is expected to perform during an earthquake, as compa-
red with the average performance calculated from sta-
tistical data, or as compared with some expected per-
formance. It reflects the past experience of the element
(e.g., if the structural element has some cracks from
past earthquake, then it is assigned to a lower resistan-
ce class). Also, equipment which is not bolted properly
to the floor or to the wall, or which is placed where
there is a higher probability that a heavy object can fall
onto it and damage it, is assigned to a lower resistance
class.

Because the example building is an older building, it
is assumed that, for the present state, all the elements at
risk belong to the poor resistance class.

The Indirect Loss Proportionality Factors

The Indirect Loss Proportionality Factors, ilpf, for
the floors are assumed to take one of the following
values:

ifpf = I: low indirect loss proportionality class,
ifpf = a: average indirect loss proportionality class,
ifpf = h: high indirect loss proportionality class.

It is assumed, for example, that the indirect losses
can exceed at most three times the direct losses. The
subsystems are assigned to one of the three indirect
loss proportionality classes (low, average and high), as
defined in the above text. All the three subsystem are
assigned to the high indirect loss proportionality class.

NUMERICAL RESULTS

The minimum loss for all the elements is zero. Ad-
ding up the maximum direct losses, it follows that the
maximum direct loss for the basement is 1,800 m.u.,
for the first floor 900 m.u., for the third floor 1,600
m.u., and for the whole building, 4,300 m.u.

The maximum indirect losses are three times larger
than the maximum direct losses, and the maximum to-
tal losses are four times the maximum direct losses. In
Table 2, for each floor and for the whole building, the
maximum direct, indirect and total losses, the expected

Tab. 2 A summary of the values of the maximum direct loss, the maxi-
mum indirect loss, the expected loss and the dispersion, for the indivi-
dual stories and for the whole building

Maximum Maximum Maximum Expected
Floor Direct Indirect Total Total Dispersion
Loss [m.u.] Loss [m.u.| Loss [m.u.] Loss [m.u] [m.u.]
1 1,800 5,400 7,200 4,126 535
2 900 2,700 3,600 2,847 287
3 1,600 4,800 6,400 5,010 486
Total 4,300 12,900 17,200 11,900 811
EUROPEAN
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value of the losses for exposure time of 80 years, and
the dispersion are shown. It can be seen that, for exam-
ple, the maximum direct loss for the whole building
(the replacement value) is 4,300 m.u., the maximum
indirect loss is 12,900 m.u. and the maximum total loss
is 17,200 m.u. The expected value of the total loss for
the whole building is 11,900 m.u. and the dispersion is
811 m.u.

Let us define the mean damage ratio, MDR, as the
ratio of the expected value of the total losses and the
replacement value of the building. Then, it follows that
for the initial state MDR = 2.77.

In Fig. 6 the probability density distribution func-
tions of the direct and total loss are shown for each
floor, and, in Fig. 7, the cumulative and the density
probability distribution functions of the losses for the
whole building are shown. From Fig. 7, it can be seen
that, given that the shaking parameter ¥ = 8, the most
probable total loss is about 12,000 m.u. and the loss
that will not be exceeded with confidence level of 90%
1s about 13,000 m.u.

This program can be used for simulation of the total
loss for the building for different states, each corre-
sponding to some level of strength and some cost to
achieve that strength. Then, a cost-benefit analysis can
be performed and the optimum strength can be chosen
(Jordanovski et al. 1991).

- ST . Direct
Probability Distribution Functions ree
_______ Total
of the Subsystem Losses
0.003
Basement
0.002 -
0.001 +
/////’_"\\\\\
0.0 ' = ‘ e '
0 2000 4000 6000
0.008 1st floor
0004 —
//_—\\\
0.0 o =~ '
0.006 O[_ 2000 4000 6000
2nd floor
0.004
0.002 |-
0.0 I L Y
4] 2000 4000 6000

Losses [m.u.]

Fig. 6 — Density probability distribution functions of the direct (the solid
line) and the indirect losses (the dashed line) for the three subsystems in
the hypothetical example, evaluated for a given value of the shaking
parameter.
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Probability Distribution Functions

of the Integral System Losses
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Fig. 7 — The density and the cumulative probability distribution function
of the total loss for the integral system, evaluated for a given value of
the shaking parameter.

Summary and conclusions

The method for assessment of the total loss of a
building exposed to a hazard, presented in Part I of this
paper (Jordanovski et al. 1992), is applied to a
hypothetical building of a university campus, exposed
to earthquake shaking, using hypothetical, but physical-
ly admissible analytical probability distribution func-
tions for the losses of the elements at risk. The Beta
probability distribution function is used as a convenient
physically admissible probability distribution function,
with expected value and variance specified for particu-
lar elements at risk as functions of the input hazard
level. The example building is a two story moment
resisting frame building housing offices, laboratories
and classrooms. The subsystems are the two stories and
the basement. The elements at risk are the structural
and nonstructural elements, the installations and the
laboratory and office equipment, for example. Three
resistance classes (good, fair and poor) are defined both
rigorously and descriptively. The indirect loss propor-
tionality factor is assumed to be uniformly distributed
over the interval of the losses. Three classes of indirect
losses proportionality factor are defined (low, average
and high), both exactly and descriptively. The losses of
the subsystems are assumed to be a sum of the losses
of the elements at risk, and the losses of the integral
system (the building) to be a simple sum of the subsy-

kY

stem losses. The losses are estimated for the maximum
possible value of the site response parameter in the
next (for example) 80 years. An interactive computer
program EQLOSS has been written to estimate the ear-
thquake losses for an LPO (a university campus, in this
example). This program can be interfaced with the
bank of data on all the buildings of the LPO (on the
campus), which can be easily updated by the user. It
also allows graphical representation of the damage pro-
bability functions for the integral system. Such a com-
puter program can be used by the owner or by an exe-
cutive as a decision making tool for mitigation of the
losses caused by future earthquakes. By executing the
program for different scenarios, the optimum steps for
future action can be determined. At present the pro-
gram estimates the losses for given level of shaking at
the site. However, it can be easily interfaced with the
computer program NEQRISK (Lee and Trifunac 1985)
so that, then, the expected value of the losses or the
losses that will not be exceeded with a given level of
confidence during the service time of the building can
be estimated.
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