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SUMMARY

It is shown how the empirical equations for scaling the Fourier amplitude spectra in the frequency band from - 0.1 to
25 Hz can be extended to describe the strong motion amplitudes in a much broader frequency range. At long periods, the
proposed equations are in excellent agreement with (1) the seismological and field estimates of permanent ground
displacement (near field) and (2) the independent estimates of seismic moment (far field). At high frequencies, f > 25 Hz,
the spectral amplitudes can be described by exp (- nkf), where k ranges from 0.02 (near source) to about 0.06 at an
epicentral distance of about 200 km. It is also shown how amplification by local soil and geological site conditions can be
defined to apply in the same broad frequency range.

INTRODUCTION

The Fourier amplitude spectrum of strong earthquake acceleration is one of the most direct and common
functions used to describe the frequency content of strong earthquake shaking.' It is used in source
mechanism studies, where its amplitudes and the parameters describing its shape can be related to the slip on
the fault, the size of the fault and the stress drop on the fault surface.2 4 In engineering studies, the Fourier
spectrum represents the basic input for (1) analyses of local amplification of incident waves by sedimen-
tary5-8 and soil deposits,'," (2) analyses of the effects of topographic irregularities on surface ground motion
amplitudes' 1-13 and (3) studies of the soil-structure interaction. 14-11 In direct linear and probabilistic
estimates of structural response, the Fourier amplitude spectrum also represents the basic and most direct
representation of the driving forces.' 7-26 Finally, in seismic risk studies, using the concept of the uniform risk
spectrum,27°28 when the synthetic ground motion is required for non-linear response calculations, the
uniform risk Fourier amplitude spectrum, modified for site-specific effects, is the most direct and convenient
starting point for construction of synthetic accelerograms.29

Since the late 1960s and early 1970s, with the introduction of advanced signal processing methods, which
became possible following the availability of digital computers, and with the rapid growth in the number of
recorded strong motion accelerograms,30-34 it became possible to study empirically the dependence of the
Fourier spectrum amplitudes in terms of various scaling parameters describing the earthquake source, the
transmission path and the recording site conditions. These studies have now reached the level where it will be
difficult to make significant future improvements without a major increase in the quality and the quantity of
the available strong motion data.35-38 The main limitations in the current strong motion data base are: (1)
limited frequency range (' 10 Hz to - 1 Hz for events with magnitudes near 3-5-4-0; up to - 25-0.07 Hz for
events of magnitude seven >, 7; (2) lack of strong motion recordings for distances greater than about
100 km;39 (3) lack of an adequate number of sites with detailed known characteristics of the local soil and
geological conditions.

There are several main reasons for writing this paper. The first one is to show how it is possible to
extrapolate the Fourier spectral amplitudes to the high (towards 100 Hz) and low (towards 0.01 Hz)
frequencies, using our current understanding of how spectral amplitudes should behave there. We will also
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attempt to extrapolate the spectral amplitudes back to the source region , to see whether the results can be
reconciled with the overall data on earthquake source mechanisms. In recent years, there has been some
interest in trying to describe the `long-period ' ground motions to allow analyses and design of long bridges
and tall structures (for periods longer than about 5 sec). The second aim of this work is to use the presently
available information, via a preliminary synthesis of all current data, to develop a basis to guide future
priorities in the design of strong motion accelerographs,40 to define the needs for the number and the places
of their deployment , and to define the criteria for strong motion data processing" and dissemination.32
Broad band empirical characterization of strong motion amplitudes near earthquake sources (for distances
less than , say 100 km ) is also essential for many other related and supporting studies which deal with inelastic
wave attenuation and improvements in the local and teleseismic magnitude scales and their relative
calibration. 42,43

Seismological studies of spectral amplitudes usually focus on the spectra of shear waves or of surface
waves. In earthquake engineering , the spectral amplitudes of the complete signal are required because it is
necessary to estimate the extrema and the number of cycles in the structural response . 18-26 Thus, to the
extent that the basic waves contribute to or dominate the overall strong ground motion , there will exist
similarities and direct relationships between the `seismological' and `engineering' analyses of strong ground
motion , but in the end only the complete representation, including contributions from all waves, can be used
in the design . This work was guided and influenced by the papers on empirical2 and theoretical 14
descriptions of the functional forms of spectral amplitudes of S-waves , but the scaling parameters and the
final equations describing the Fourier spectra given here aim to represent the total strong ground motion.

This study also differs from many seismological analyses in that it uses regression equations in the
frequency band from - 0.1 to 25 Hz, and is based on actually recorded strong motion data . Our equations
have terms which could be attributed to known trends and properties of the earthquake source, attenuation
along the wave path, and the observed ground motion in general, but they actually represent only carefully
chosen empirical regression models which all have coefficients and coefficient functions which are signifi-
cantly different from zero in much of the frequency band being considered. In this paper, these equations are
not modified, but we explore how they could be extrapolated to higher (f > 25 Hz) and lower (f < 0-t Hz)
frequencies.

In contrast , many seismological studies begin with an analysis of far-field body waves , and then assume
functional forms for the spectral amplitudes , for example following Brune's2 shear wave spectra ," 1,16 or

assume a physical model of the source which then results in the spectral estimates.47 -51 The typical scaling
parameters are the seismic moment, M0, one or two long-period corner frequencies (inversely proportional to
the overall source dimensions and to the assumed dimensions of the asperities and barriers ), some form of
stress drop on the fault plane, and the low-pass filtering characteristics of the surrounding medium52 or the
non-linear phenomena at the tip of the propagating dislocation." Since M° determines the long-period
spectral amplitudes , while the stress drop characterizes the high frequencies , such models aim to provide the
means to interpolate spectral behaviour for the intermediate frequency band . Eventually , these results can be
calibrated using the recorded strong motion data49 , 51 and their quality finally depends on one's ability to
predict M ° and the stress drop.

STRONG MOTION DATA

The strong motion acceleration data base grew slowly from March 10, 1933, when the first strong motion
accelerograms were recorded during the Long Beach (M = 6.3) earthquake in California. The San Fernando,
California, earthquake of February 9, 1971 contributed the first and essential major increment to the strong
motion data base. After all accelerograms were digitized, together with selected older recordings between
1933 and 1971, we had 186 uniformly processed free-field strong motion records.35,36 Following the Imperial
Valley (1979), Coalinga (1983) and Morgan Hill (1984) earthquakes in California, the uniformly processed
strong motion data base more than doubled, to 493 uniformly processed records. With recent recordings by
the Los Angeles strong motion array (1987-1992) and following the Loma Prieta earthquake, when all data
are uniformly processed there will be well over 1000 excellent records in the strong motion data base. The
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documentation and the exploratory work to determine the local site conditions at all recording stations are
progressing very slowly. The local soil and geological site parameters have been collected since 1975, but
these data are difficult and expensive to obtain on a routine basis. The most recent studies"o,54,s5 could use
only 135 sites for which both the local soil and local geological data were available (Table I). The number of
recorded accelerograms with complete site characterization is considerably larger, because of many multiple
recordings at the same stations.

Table I illustrates the distribution of the recording sites for which the local geological classification
s (s = 0 for sediments, s = 1 for intermediate sites and s = 2 for sites on basement rock56) and the local soil
classification SL (sL = 0 for `rock', SL = 1 for stiff soil sites and SL = 2 for deep soil sites9) are available. Sites
designated by s = 0 have been further described by the thickness of sedimentary deposits, h (km). The soil
classification is determined as follows. Rock sites (SL = 0) are where the soil thickness is less than 30 ft (10 m).
Stiff soil sites have a soil layer of 50-200 ft (15-70 m) deep. Deep soil sites have a soil layer deeper than 300 ft
(100 m), but both have a shear wave velocity less than 2500 ft/sec (800 m/sec). For soil site classification, all
materials with shear wave velocity in excess of 2500 ft/sec (800 m/sec) are described as rock.

EMPIRICAL SCALING EQUATIONS

Our most detailed and recent equation for scaling the Fourier amplitude spectra, FS(T) is of the form

loglo FS(T) = M + Att(A,M, T) + bl(T)M + b2(T)h + b3(T)v + b4(T)hv

+ b5(T) + b6(T)M2 + b(,1)(T)S^1) + b(2)(T)Si (1)

where M is earthquake magnitude,42.5' b1 (T)-b( 2) (T) are scaling coefficient functions of the period T, and
Att(A, M, T) is the frequency -dependent attenuation function,39

-40 (T) log10 A, R 5 Ro
Att(A, M, T) _

do (T) log10 A0 - (R - Ro)/200, R > Ro (2)

with A, the `representative ' source to station distance'49

A = SIn
[R2 + H2 + S21-1/2

(3)R2 +H2+So

and A0 equal to A when R = Ro. When S /R and So/R becomes small A -* (H2 + R2)"2, which is the
hypocentral distance . Att (A , M, T) depends on M implicitly through S , which is the linearized estimate of the
`source dimension'

S=0.2+8.51(M-3) forM>3 (4)

So is the coherence radius of the source and is approximated by So - /3T/2, where /3 is the shear wave velocity
in the source region , and T is the period of motion . d0(T) is represented by a parabola versus log10 T,
between T = 0.04 and 1 . 8 sec. It is near - 2 for T = 0.04 and it increases to - - 0.7 and remains constant
for T > 1.8 sec.58 R0 is the `transition ' epicentral distance39 (about 150 km for T < 0.05, and - 50 km for
T > 1 sec) beyond which the attenuation equation has a slope equal to - 1/200. R is the epicentral distance
and H is the focal depth (both are in units of km).

In equation ( 1), h represents the thickness of the sedimentary layers, from the ground surface to the
basement rock (km). The parameter v can have values of 0 or 1. (v = 0 for horizontal motion and v = 1 for
vertical motion). The term b4(T)hv has been introduced to model the progressively steeper incidence of body
waves for soft and deeper sedimentary sites. b1 (T)M and b6(T)M2 model the saturation of strong motion
amplitudes versus M, for - b1(T)/[2b6(T)] = Mmin < M < Mmax = - [1 + b1(T)]/[2b6(T)]. SLI) and
SL) are two indicator variables defined by

Sit) = {1 if SL = 1 (stiff soil) and S(2) _ (1 if SL = 2 (deep soil)
0 otherwise 10 otherwise (

5)
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Table I. Distribution of s and SL parameters describing local geological
and soil conditions for the present data base

Geological site conditions

Intermediate
Sediments sites Basement rock

Soil site conditions (s = 0) (s = 1) (s = 2)

Deep soil, SL = 2 44 2 0
Stiff soil, SL = 1 37 24 3
Rocks, sL = 0 1 11 13

where SL = 0, 1 and 2 represent `rock', stiff soil and deep soil sites. The sites with soft to medium clays with
strata of sands and gravels9 are not common in the Western United States and are therefore not considered

in this analysis.
With FS ( T) representing the Fourier amplitude spectra estimated from equation ( 1) and FS(T) indicating

the spectra computed from recorded accelerograms, the residues can be calculated from

e(T) = log10 FS(T) - login FS(T) (6)

where e ( T) can be described by a normal distribution function with mean p(T) and standard deviation a(T)

as follows:

1 E(T) 1 x - µ(T) 2
p(E, T) _ (

T2^) _ ^ exp { 2 L a(T)
dx

6
(7)

where p(e, T) represents the probability that log10FS(T) - log10FS(T) < e(T). Table II gives

b,(T)-b(2)(T),Mmin,Mma,,µ(T) and a(T) at 12 periods T(l) = 0.04-T(12) = 14.0s (for N = 1, 2,...,12).

The first empirical model for scaling log10 FS(T) that involves the frequency dependent attenuation

Att(A, M, T) was developed in 1985, but without explicit consideration of the soil site parameter SL. 37,58
Simultaneously with that analysis, and with the model described above by equation (1), we also studied the
geological site conditions using s = 0, 1 and 2 (in place of h). The reader may wish to peruse the details on
how these models have evolved, starting with our analysis in 1976 (Reference 35), but for the purposes of this

paper it will suffice to recognize only the four most recent models:

1. MAG-SITE,58
2. MAG-DEPTH,58
3. MAG-SITE-SOIL,55
4. MAG-DEPTH-SOIL54 [equation (1)].

In what follows, we consider these four models simultaneously and refer to them as the `group of four' most
recent scaling models (G4RM). In the above models, MAG implies scaling in terms of earthquake magni-
tude,42 SITE indicates the use of the geological site parameters s = 0, 1 or 2, and DEPTH implies the use of
h as in equation (1) above. SOIL shows that the soil site parameters SL = 0, 1 and 2 are used in the scaling

equation. In models 1 and 2, such dependence is omitted.
Figure 1 illustrates log10 FS(T) plotted versus frequency, f = 1/T. It shows Fourier amplitude spectra

(broken lines) for a probability of exceedance equal to 50 per cent [p(e, T) = 0.5 in equation (7)] and for

M = 4,5,6,7 and 8. The top shaded area shows the region where the empirical equation (1) is valid

[1/T(NT) <f < 25 Hz]. Table III shows the cut-off periods, T(NT), versus magnitude. For uniformity, all

G4RM empirical equations are defined for 12 periods T (N), N = 1, . . . , 12, but can be used only for N <, N,

(see Tables II and III). For long periods, the spectral amplitudes computed from equation (1) are valid up to
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Figure 1. Fourier amplitude spectra (cm/sec ) versus frequency (Hz) for probability of exceedance equal to 0.5, for M = 4 , 5, 6, 7 and
8 (bottom to top), at epicentral distance R = 10 km and for source at H = 0 depth . Outside the top shaded region, between fo = 1/T(N,)

and f = 25 Hz, where equation ( 1) is valid, the spectral amplitudes (broken lines ) can be extrapolated as proposed in this paper. The
corner frequencies , f, andf2, and the frequency fo are defined in the text . The processing and digitization noise amplitudes are shown by

the (bottom ) shaded zone increasing from FS - 10-' to FS - 1 in./sec (2.5 x 10' to 2.5 cm / sec) for frequencies decreasing from 10 to
0.1 Hz

Table III. Cut-off periods T(N,)
versus magnitude

M T(N,) N,

3 0.90 7
4 0.90 7
5 1.60 8
6 2.80 9
7 4.40 10
8 7.50 11

progressively shorter periods [T (N,) = 1 /f,o] with decreasing magnitude and increasing source to station

distance . This is caused by the recording and processing noise whose spectral amplitudes are shown (in
Figure 1) by the lower shaded zone increasing from FS - 10-1 in./sec (2.5 x 10-1 cm/sec) for f - 10 Hz to
FS - 1 in ./sec (2.5 cm/sec) near f = 0.1 Hz.41.59 At the high frequency end, the spectra are defined only up to
25 Hz, the high frequency limit chosen more for convenience in data processing than for poor signal to noise
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ratio . Also, at high frequencies , the actual spectral amplitudes , as recorded by the strong motion accelero-
graphs, have smaller amplitudes than those shown in Figure 1, because most strong motion transducers
which contributed data to our data base had natural frequencies between 14-25 Hz. 10,60-62 While the
algorithms for correction of the instrument response and for reconstruction of the ground motion can be
extended to apply for frequencies higher than 25 Hz, so far we have not found it necessary to preserve the
digitized data at a sampling rate higher than 50 points /sec.41

To show how it is possible to extend the spectral amplitudes to low and high frequencies, starting at the
end periods of the spectra (the top shaded zone ) shown in Figure 1 [T(N,) and 0 .04 sec] , for T > T(NT) and
for T < 1/25 sec , the near-field spectra of strong motion acceleration , FSNF(w) [see equation ( 15)], is
extrapolated to long periods by using equations whose functional form can be related to the earthquake
source theory . This theory is used to determine only the shape of the spectra . The spectral amplitudes will be
chosen so that the assumed spectra have the same amplitude as the empirically determined spectra [see
equation (1)] at point T (N.). To describe the spectra for the far-field strong motion acceleration,
FSFF(w) = w2CIFF (w) [see equation (26)], it is assumed that the shape of the Fourier spectral amplitudes can
be described by functions which are similar to the body wave spectra in the Haskell44 source model. The
amplitudes of the extrapolated far-field spectra are determined by matching their amplitudes at T(NT) with
the empirically determined spectra [equation ( 1)]. Finally, to present the spectral amplitudes for all distances
[and for T > T(NT)], a linear combination of the far -field and near-field spectra [aFFFSFF((0) + aNFFSNF(w)]
is considered with aNF + aFF = 1 for all distances . The quality of this approach is tested by comparing the
extrapolated spectral amplitudes and their scaling parameters with independent measurements of various
source and strong motion characteristics . Finally, for f > 25 Hz it is assumed that FS(w) ' AQe -kwi2, and if
will be shown that the estimates of k for 5 <f < 25 Hz can be used to extrapolate FS(w) for w > 50n.

LOW FREQUENCY EXTENSION

Two separate cases are considered . In the first the recording site is so close to the earthquake source that the
ground will experience permanent static displacement after an earthquake . This will occur when the site is
close to the fault surface , typically at a distance smaller than the characteristic source dimension . This case
is referred to as the `near -field' ground motion . In the second case , it is assumed that the recording station is
sufficiently far from the source so that the contributions from static displacement are negligible , i.e. all near
and intermediate field terms" which attenuate as R -4 and R` 2 have become negligible and only the body
waves (attenuating like R - ' ) and surface waves (attenuating like R where R is the epicentral distance,
will contribute to the strong motion amplitudes.

Near-field displacements

Following Brune , ' we represent the near-field displacement dNF(T) (Figure 2) by

dNF(t) = d(1 - e`/I) (8)

where d is the static displacement at the station following the earthquake. The real details of the ground
motion are more complicated , but for the behaviour of the very long periods of the Fourier amplitude spectra
of strong motion this may be a reasonable approximation . Obviously, equation (8) does not represent
a forward solution for some assumed fault slip. It is an intuitive statement involving relevant parameters, and
is used here to relate (e.g. via dimensional analysis) the permanent offset, d, and the measure of the time it
takes to achieve it. When the observation point is on the fault surface, the average of d, d, can be described by

d= Ico ar (9)
2 u

where a is the effective stress drop ,2 r is the equivalent (radius) dimension of the source area and p is the
rigidity in the source region (typically in the range from 1 to 4 x 1011 dyne/cm2). Co is a `constant' which
depends on the type of faulting and is in the range from 0.4 to 1.6 (Table IV). The factor of 1/2 in equation (9)
relates the displacement of a point (d) with an average source dislocation amplitude u, which for symmetric
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d NF (t)

u = d (1 - e-t/T )

d

t

Figure 2. Near-field ground displacement dr,F versus time t

Table IV. u = Coar/µ, u = 2d

Type of faulting and fault geometryt Co r represents

Dip-slip displacement along an infinitely long narrow strip in 3n/16 Fault width
a uniform shear field63

Infinitely long vertical surface fault with strike slip displace- at*/2-irt/4 Fault width
ment64

Circular fault plane in an infinite medium65 81/77t Diameter of circular dis-
location (fault width)

* Surface fault.
Deep fault.
Poisson ratio, v = 0.25.

t To model the continuous changes of the faulting type and geometry, for the body of strong motion data studied here,
C** = 0-4,0-5,0-65,0-85,1-6 and 1.6 for earthquake magnitudes M = 3, 4, 5, 6,7 and 8, respectively. C** = 0.4 is representat-
ive of small circular faults, while C** = 1.6 represents long surface faults.0

faulting is equal to 2d, and where the bars on u and d designate the average values taken over the fault surface.
A vertical surface strike slip fault of length, L, and width , W, is considered which is equal to ^W* (0 < ^ 5 1,
see Figure 3). W* represents the fault width for faults which do not extend to the ground surface (when = 1).
We can represent the dislocation amplitudes by

U = Umax 2

4x 4xz
-W. W.

Then the average dislocation is uO = (2 - 3 z) Umax• When = 1 (buried fault) or when = 1/2, u = 3 Umax.
When = 3/4, u = 4 Umax. On the ground surface, the dislocation amplitude (2d) and particle displacement (d)
are described by

1 - S Umax

^/3 2 )z -
(10)

For^'0,d=u and ford=1,d=0.
As the area of the fault surface (L is the fault length and W = W* is the fault width), LW, increases with

increasing magnitude, W becomes larger and so Umax is located at progressively greater depths.66 Detailed
source mechanism studies in California for the earthquakes which have contributed to the strong motion
data base used here suggest that the largest dislocation amplitudes do not occur near the ground sur-
face.4.67-7z During the Parkfield earthquake of 1966, the dislocation occurred at depth73 and its eventual
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(1-Ow.

c(^) = (25 - 3 ^2) umax
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Figure 3 . Dislocation amplitude (e.g. strike slip ), u, on a vertical fault of width ^ W,, versus x (vertical axis with origin at the deepest
point of a long fault of width ^W,). u(^) represents the average dislocation , um is the maximum dislocation at = 0.5, and d is the

maximum permanent displacement near the fault after the earthquake

surface expression grew through creep for about one year following the earthquake. For the purposes of this
analysis, we need d (on the ground surface) and since the data are not available on the average displacement,
d, versus magnitude, faulting mechanisms, fault types and the distribution of rigidities and stresses on the two
sides of the fault, we assume that the average of d occurs for 3/4 < ^ 5 1, and will approximate it by J- 4 u/2.

Estimates of the fault width, W(= ^ W,k), versus magnitude suggest74 growth of W versus magnitude, up to
W- 5-20 km and M - 6. For larger magnitude events, W seems to become independent of magnitude.
Correlations of the fault length, L and magnitude show large fluctuations. For 3 <, M <, 8, most estimates
tend to fall between

Lmin 0.01 x 100'5M (11)

and

Lma x x 0.2 x 100 4M (12)

where L is measured in km .66'75,76

The Fourier amplitude spectrum of dNF(t) in equation (8) is

92NF(W)
= TO)

(Co' + T-2)t/2 (13)

When CO -+ 0, f2NF(CO) -+ d/CO. Using the above approximate relationship between d and u, this implies that

S2NF --> - g - (14)
0
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Fluctuations of d on the ground surface are considerable, and will depend on the relative position of the
observation point with respect to the fault surface and the three-dimensional (3-D) character of the geologic
medium surrounding the fault. Since we are dealing with empirical scaling of Fourier spectrum amplitudes,
and because our model equation [equation (1)] represents the average trends for many observations, it will
suffice for the purposes of this analysis to deal with the average trends of d as in the above equations.

For Fourier amplitude spectra of strong motion acceleration in the near field, FSNF((o), equation (13) gives

FSNF(w)

wd
(15)

[(w2)2 + 1]112

where i can be approximated by T - r//3, when r < W/2. When L > W, i L/v + To, where v is the velocity

with which the dislocation propagates along the fault length, and To is the dislocation rise time.44,46 For

L/v > To, T -+ L/v and the corner frequency f1 = o)1/27r -> v/L. For intermediate frequencies,

f1 = (L/v + To)-1, with a typical value of v = 2.2 km/sec, To - W/2/3 and /3 -t 3.0 km/sec. Here it may be

assumed that, for typical strike slip faulting in California, the dislocation grows more or less as a circular
dislocation up to r < W/2. When this size has been reached, we assume that the fault surface grows in terms

of L only. Thus we can approximate wi in equation (15) by

27r(2

-

2 L W1
wi„ T + 6 (16)

In equation (16), we choose L = 0.0133 x 10o'"M which corresponds to Lm;,,, already mentioned in equation
(11). Why should we choose Lm;,, rather than some average estimate of L? A detailed discussion of this

question is beyond the scope of this paper, but it can be shown" that the data on L versus magnitude M, and

the available data on the trends of strong motion amplitudes, suggest that Lm;,, is the best choice.
For small intra-plate sources (e.g. M < 4), the fault length, L, and width, W, are about the same. For larger

earthquakes, the fault continues to grow primarily and only through L, while W may only continue to

increase slowly until it reaches the width of the seismogenic zone. A range of models describing Win terms of

M has been considered.66 This showed that the permissible variations of W versus magnitude are controlled

well by the available data, and suggested a typical model with W = L for M < 3.5 and W = 0.1 x 101,2 'm for

M > 3.5. This dependence of Won magnitude is in good agreement with the data on the field estimates of W,

and with the data on a corner frequencyf2, which is seen in the far-field spectra of shear waves,53 and which

can be approximated by 22/W.
By computing Fourier spectrum amplitudes for T -> oo, we can evaluate the average dislocation u (cm)

implied by the G4RM models and by the above choice of L and W. The result can be compared with other

independent estimates of u. For continuity with our previous studies,36 and to focus on earthquakes which
contributed to this data base, we use the data on u, as shown in Figure 4. Each shaded region shows the
fluctuations among u estimated from each of the G4RM. The three shaded regions are for probabilities

p(e, T) of exceedance equal to 0.1, 0.5 and 0.9 (equation (7)). It is seen that the trends of u associated with the

G4RM are in excellent agreement with our estimates of a using strong motion data, but are larger than the
estimates of Thatcher and Hanks" which are based on distant recording and using body wave spectra.

Critical analysis of the accuracy of u, estimated via different source mechanism studies, will reveal that
considerable uncertainties and simplifications are required to obtain these results. Likewise, the above simple

extrapolation of FS (T -* oo ), using equation (15), to evaluate FS(T) for T > T (Nj (see Table III) depends on

the proper choice of WT versus M (i.e. choice of L and W versus M). Yet, the agreement of the estimated a in

this work with our previous estimates (Figure 4) suggests that the empirical spectral amplitudes of FS(T)

contain most of the relevant information, up to and including T = T (N,,), to define the average FS(T) for

T > T (NJ
In T = L/v + W/2/3, it is implicitly assumed that for L > W, i is defined by a dislocation propagating from

the focus at one end of the fault towards the other end of the fault, Lmin and Wm;,, km, unilaterally. Since it is
the duration of faulting which is constrained by cot and is fitted to the strong motion spectral amplitudes, it is
seen that for bilateral faulting our scaling implies the fault length and width L = 2Lmin. Thus, all field
observations of fault length falling between Lm;,, and 2Lm;n and Wmin and 2 Wm;,, (Figure 5) would be in
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excellent agreement with our interpretation of near-field strong motion data. Detailed comparison of our
estimates with the field and seismological estimates of fault length and width indicates excellent agree-
ment . 66,74-81

Far field displacement.

As the observation point moves away from the source, the permanent offset (d) goes to zero and the ground
displacement experiences only a `transient pulse' which could be characterized by Brune's2 pulse,

dFF (t) - R fl t'e t' % 0 (17)

where t' = t - RIB (r is the source dimension, a the stress drop, /3 the shear wave velocity, R the source to
station distance and µ the rigidity). The Fourier amplitude spectrum of dFF in equation (17) is

r o/3 1
OFF (w) =

R w2 + a2
(18)

and the strong motion acceleration spectrum is

FS (19)FF(w) = R a 1 + (a/w)2

Since a 2.34 f /r, and assuming that r '- L/2 (r = W/2), for /3 ti 3 km/sec, a/w - 223T/L. It is seen that as
T-+ oc, equation ( 19) implies that FS(T) - 1/T2. Also, since65

QNF ((0) = M0(4irpR/33)-1 (20)

FS T (21)FF ( ) = pR#3T2

where p = µ//32 and Mo is the seismic moment defined by

Mo = puA (22)

and u is the dislocation amplitude (u - 2d) averaged over the fault surface A.

Equation (21), relating FSFF(w) and Mo for long periods, T, and FSFF(w) - a/3/µ, for w > a [in equation
(19)], has been used in numerous seismological studies considering the body wave spectra, mostly at
teleseismic distances.45,67,68,77,80,82 However, more detailed analyses44,46,48,83 and observation53 show that

for intermediate and large earthquakes one corner frequency [a in equation (18)] cannot be used to explain
the observed spectra and that at least two corner frequencies, fl - 1/T and f2 - 11W, should be con-
sidered.46,53,66,e3 In this paper, two corner frequencies are used to model FSFF(w).

Using Haskell's44 representation in the far-field for S waves, it is possible to compute the Fourier
amplitude spectra of ground displacement if the dislocation function is specified on the fault surface.
Assuming that this dislocation grows linearly during time To until the final dislocation amplitude is reached,
and propagates along the fault length L with constant velocity v, it can be shown that

I OFF I -
sin wL/2v

wL/2v

sin wTo/2

wT0/2
(23)

Equation (23) is characterized by two corner frequencies , one (f1 - (L/v)-') associated with the duration of

faulting and the other (f2 - 1/To) with the duration of the dislocation rise time To. As w -+ oc, like equation

( 18), equation (23) implies OFF - 1/w2.
For small earthquakes (e.g. M < 4-5, log10 Mo < 23, a ? 27r ), f1 andf have similar values and it becomes

difficult to distinguish between them experimentally . In those instances , the functional form of the Fourier
amplitude spectra of strong motion acceleration , based on equation (19), is just as useful (for extrapolation to

long periods ) as the more detailed representation in equation (23) which will be used in this paper.
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If one assumes a dislocation build-up function of the form 1 - exp (- t/To), for t > 0, then83

sin wL/2v 1
(24)I ti )

coL/2v (1 + (o2T0)1/2

If it is assumed that the slip is controlled by its narrow dimension W, then the displacement rise time is
- W/2v. Assuming then that this should roughly correspond to 90 per cent of the maximum dislocation83

gives 2.3 To = W/2v and the corner frequency

cot = 4.6v/W (25)

The other corner frequency co, = 21f1 depends on the duration of faulting L/v and on To.
Guided by the above results, OFF was approximated by

OFF(T) = Cs[1 + (W/2.2T)2]112 1 + i/T
(26)

where constant C. can be computed from

r
Cs = FS(wC)w [ 1 + ( -T)2] "2(l + I (27)

with co, = 2ir/T. [TT = T(NT), see Table IV] and FSFF(COC) is the spectral amplitude computed from equation
(1) (or its equivalent) for one of the four models (G4RM).

Equations (23), (24) and (27) result from a simplified consideration of the shear wave spectra only, while
FS(T) estimated from equation (1), via one of the G4RM, represents the Fourier amplitudes of the complete
strong motion signal including all waves.

In our recent work, with the local magnitude scale computed from strong motion accelerograms,42 MM ,
we found that the strong motion near the source leads to systematically larger estimates when compared with
more distant seismological estimates of ML. This difference, D(Rim) = M M - Mp (where MP stands for the
published magnitude), for the strong motion data in the Western U.S. is summarized in Table V. It can be
used to adjust the moment MoM, computed from spectra of recorded strong ground motion, to agree with the
moment Mo computed from distant recordings

loglo MO loglo MoM - kD(MiM) (28)

In equation (28), the factor k is the empirical slope66,84 of loglo Mo versus M, and Mo is the seismic moment
computed from equations (20), (26) and (27) using the strong motion data in terms of the G4RM. k = 1 for
M<4.5,k= 1.25 for 4.5<M<5,k= 1.5 for 5 < M < 7 and k = 1.3 for M > 7 were used in the present
analysis. Equation (28) can then be used to evaluate Mo and to compare it with other independent distant
(> 200 km) estimates. This is shown in Figure 6, where the three shaded zones, for probabilities of exceedance
equal to 0.1, 0.5 and 0.9, show log10M0 versus magnitude.66 The straight line given by
loglo M0 = 1.5M0 + 16 and some data on field and seismic estimates of moment M0 using body wave
spectra and strong motion data are also shown. It is seen that the agreement between the estimates based on
equation (28) and the results from the previous studies is very good.

To provide a continuous transition between QNF(co) and OFF(w), the results of Jovanovich et al.,71,76 are
used. They show that the error in representing the static displacement field by a point source is typically less
than 5 per cent at distances greater than 4L, where L is the source length. The distance S1, between the station
and the `top' of the vertical fault with `dimension' S [see equation (4)], at depth H, is defined as

S1 _
^[R2 + (H - 5)2]112,

H ^>S (29)
R, H < S

1 1

S = 0.01 x 100'53' is used when S < 30 km and S = 30 km for larger events, and then FSNF(T) and FSFF(T)
are combined as follows.

FS(T) = FSNF(T)e-(3s,/4s) + FFF(T)(I - e-(3s,/4s)) T > T(Nc) (30)
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Table V*. D(MsM) = MsSt -
MP versus MP

MP D(MM )

3.1 1.30
3.5 1.24
4.0 1.15
4.5 1.05
5.0 0.95
5.5 0.72
6.0 0.47
6.4 0.27
6.8 0.03
7.0 -0-11
7.4 -0-40
7.7 -0-63
8.0 -0-87

* From Reference 66.
tMsM, local magnitude estimated

from computed response of
Wood-Anderson seismograph ex-
cited by the recorded strong motion
acceleration.

5Mp is the published earthquake
magnitude typically corresponding
to ML for Mp _< 6.5.

- Log10M0 = 1.5M + 16

F Fletcher et al.82

F

I I I I

2 4 6 8

Magnitude

Figure 6. Seismic moment (log10 M0) versus magnitude. The three shaded zones illustrate fluctuations among different models from the
G4RM and are for three probabilities of exceedance equal to 0.1,0.5 and 0.9. For comparison, the empirical trend
loglo MO = 1.5M + 16 and selected field data and data estimated from recordings (AR84 and strong motion data 61.68,82) are also

shown

1
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and Imperial Valley
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In the above expression , 3/4 is used to scale S1 /S so that when S1/S = 4 the exponent is equal to 3, so that
e-3 - 0.05 , in agreement with the recommendation of Jovanovich et al.75'76 For T < T(Ne) (see Table III) we
use equations of the type illustrated by equation ( 1), depending on which of the G4RM is used.

FREQUENCIES NEAR THE MAXIMA OF FS(T)

The peaks of FS(T) (Figure 1) occur near T = 0.1 sec for M = 3 and move towards T = 1 sec for M = 8. The
periods where the peaks occur also depend on the local site conditions and typically are longer for sites on
`softer' geological and/or soil deposits.

At the source (A = 0), the effective stress is expected to become the main parameter which influences the
high frequency spectral amplitudes, and for f > 1/T andf > 2.2/W (co > a) equations (13), (16) and (18) imply
that c2NF(w) Q/i/µw2 and !QFF(CO) x (r/R) (o/3/µw2), respectively. In the absence of inelastic scattering and
other possible high frequency attenuation mechanisms, this leads to constant acceleration spectra for f > 1/T
and f > 2.2/W (co > a). It is the attenuation, approximated by exp (- xkf ), where k is a coefficient to be
discussed in the next section, that leads to the reduction of high frequency amplitudes, and so the `peaks' in
FS(T) are observed. Assumng that exp (- itkf) becomes important only for f > 1/T and f > 2.2/W (co > a),
the peak amplitudes of the acceleration spectra FS(T) are proportional to a/3/µ. From this, a - 4uFS
(T = Teaak)/f can be estimated. Taking µ - 1.3 x 106 dyn/cm2, f : 3.5 km/sec (remembering that there are
2.54 cm per inch, and that 1 bar = 106 dyne/cm2) gives a - FS(T = 7,,.k) bars if FS(T) is measured in
(inch/sec).

This rough calculation can be used to compare the above results with the estimates of the stress drop from
several source mechanism studies in the same area and for many of the earthquakes which contributed to our
strong motion data base. This comparison is shown in Figure 7. It is seen that the overall agreement of the
stress drop estimates is good. Trifunac36 used a similar comparison with peak ground velocity. His results
show more variation of a with respect to magnitude. The three shaded areas in Figure 7, for p = 0- 1, 0.5 and
0.9, and those computed for the G4RM show small changes of a for 4 < M < 7. This obviously results from
the use of Att(A, M, T) in the G4RM in this study rather than loglo Ao(R)57 (as used by Trifunac36), and
because for the longer duration of shaking associated with larger magnitudes, the peak velocity will increase
as (In N)1t2, where N is the number of peaks in the velocity function. Most estimates of a in Figure 7 have
been derived on the basis of the Fourier amplitude spectra of shear waves and only a few employ the peak
strong-motion velocity. In this study FS(T) represents the Fourier amplitude spectrum of the complete
strong motion record. It was concluded that the peak amplitudes of FS(T) are not inconsistent with the
previous estimates of v.

The observed trends of the peaks of the Fourier amplitude spectra of strong motion acceleration (- a) can
be associated with a population of earthquakes which for M< 5 have essentially `circular' faults (W - L) and
are associated with one `patch' (single event) dislocation66 (C** ' 0.4, see Table IV). Near this magnitude
(M = 5), the width of the patch is believed to approach 3-5 km, and is constrained to grow further by the
thickness of the seismogenic zone in California. For larger events, the larger fault area is realized by several
(M - 6) or many such patches (M - 8, C* = 1.6). For M > 5, the expected amplitude of the stress drop grows
linearly with [In (WL/Ao)]172, where A0 - 16 km2, and the slope of this linear growth, o, corresponds to the
root mean square amplitude of the peaks of the stress function on the fault, equal to - 100 bars.

HIGH FREQUENCY ATTENUATION

Little observational work has been done on high frequency (f > 50 Hz) attenuation of strong motion
data .66 , 81 Until recently , most of the recording instruments could register only moderately high frequencies
(say < 30 Hz ). To control the volume of strong motion data archives , routine processing of strong motion
data has been performed up to 25 Hz (50 Hz sampling rate ) even though the typical analog records are of
good quality , so that we could extract even higher frequencies (perhaps up to 35 or 40 Hz, and with good
accuracy" ). The main obstacles in understanding the attenuation of high frequencies are the lack of data on
the irregularities in the earth 's crust and the relatively large distances separating the source and the strong
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motion recording stations. Some areas could be saturated with broad band strong motion instruments, but it
is not likely that we will be able to describe the 3 -D inhomogeneities in the earth's crust for some time.
Furthermore , the current computational capabilities to model scattering and diffraction for very high
frequencies (short waves ) are still very limited.''8 Thus, most investigators continue to use the empirical
description for the combined effects of many possible attenuation mechanisms , including inelastic and
scattering attenuations , in the form exp (- wA/2Q /3), where A is the distance travelled by the wave , Q is the
quality factor and /3 is the (shear ) wave velocity. For granites and basalts, Q is in the range of thousands, but
for near-surface soil and sediments it can be as low as ten.

The high frequency spectral amplitudes3 were approximated by FS(f) = AQe-"kf. Using two frequencies f,

and fr, both larger than 10 Hz (say f, = 25 Hz and fr = 15.4 Hz), one can compute k and AQ from

k - In FS(f,)
/

- In FS(fl) (31)

IT(f, -fr)

and

Then for f > 25 Hz (T < 0.04 sec.)

AQ = FS(f,)e`f' (32)

FS(T) = AQe-k1T (33)

can be used to extrapolate FS(T) to high frequencies.66
The estimates of k for 15 <f < 25 Hz and from G4RM are remarkably stable and in excellent agreement

with several related studies of high frequency spectra of strong motion in California." For A - 0 km, k is
between 0.02 and 0.03. It increases to about 0 .04-0.05 at A = 50 km. From there, it grows slowly to
0.055-0.060 at A = 200 km. This implies that Q - 10, near the surface and for A = 0, increasing to Q - 300 at
A = 50 km , and to Q - 900 at A = 200 km , all in an essentially linear manner. For high frequency strong
motions associated with body waves penetrating progressively greater depths as the epicentral distance
increases, these trends are as one would expect them to be.3 , 10,66,85



FOURIER AMPLITUDE SPECTRA 405

Neither our empirical models of Fourier spectrum amplitudes (G4RM) nor the directly computed spectra
of recorded strong motion indicate the existence of abrupt decay of the spectral amplitudes66 in the sense of

fmax• 50-52,85 If some low-pass filtering effects (sharper than e-`f) exist, they must occur for f > 25 Hz, i.e.
outside the range for which strong motion data are processed and archived at present.

Assuming the simple functional form Q = Q0f Y to describe Q versus frequency f, our study leads to y - 0.4
(horizontal motions) and y - 0.2 (vertical motions) for frequencies between 5.3 and 9.1 Hz, and to y - 0.7
(horizontal motions) and y - 0.6 (vertical motions) for frequencies between 15.4 and 24 Hz and for distance
range from 25 to 75 km. The seismological studies of the frequency-dependent Q (using Lg and coda waves)
give y - 0.1-0.3 for the central and south-eastern U.S., y - 0.3-0.4 for north-eastern U.S. and y - 0.4-0.8 for
the western U.S.66,85

LOCAL SOIL AND GEOLOGICAL SITE CONDITIONS

At present, most empirical equations which describe the effects of local soil and geological site condition use
factors [e.g. like the coefficient functions b2(T),b4(T),b(l)(T),b;2j(T) in equation (1)] to describe the
amplification of spectral amplitudes on `soft' sites (s = 0 or h > 0 and SL = 1 or 2) relative to `hard', often
referred to as `rock', sites (s = 2 or h = 0 and SL = 0). In equation (1), b2(T), for example, suggests
a progressively larger factor to describe the local geological site effects since b2(T) is multiplied by h.
However, other analyses suggest that it is not only the thickness of the layer that should be considered, but
also the layer properties.10 Furthermore, the frequency band within which such amplification occurs should
depend on the characteristic dimensions of the inhomogeneities involved. To reconcile these requirements
with the simplified average and overall effects as modelled by equations similar to equation (1), we will use
here all the site amplification factors described in equation (1), but will modify the frequency range of their
applicability, as follows.10 Suppose that the average local amplification occurs only for the periods
T < T1 = 4HL/(3L, where HL and $L are the thickness and the shear wave velocity in the equivalent layer
describing the geological site conditions. It is further assumed that this amplification gradually dies out
between T1 < T < 5T1. Figure 8 illustrates this by showing how spectral shapes change10 for T1 = 16,8,4
and 2 sec (assuming that /3L = 1 km/sec).

DISCUSSION AND CONCLUSIONS

This work is based on a simplified description of shear wave spectra as proposed by Brune.2 This
representation does not evolve from a solution of some specific source slip , but can be thought of as an
intuitive collection of relevant parameters and functional relationships , which by observational understand-
ing of the source mechanism and use of dimensional analysis result in a coherent picture of the main features
of strong ground motion . 66 Consequently , our extrapolation of the Fourier amplitude spectra of strong
ground motion into frequency bands beyond those which can be recorded by currently available strong
motion accelerographs is likewise only intuitive and qualitative . Although an effort was made to make as
many quantitative tests as possible, clearly we can only hope that real nature is not too different from these
simplified average trends . Yet, the remarkable and encouraging outcome of this simple exercise is that the
various comparisons of our model with the independent estimates of seismic moment , stress drop and
average dislocation lead not only to good agreements , but also to resolution and scatter which are consistent
with other independent estimates.66

The largest uncertainties in the present extrapolation are believed to exist near T(NT), where the empirical
scaling models approach the recording and processing noise. The tests performed so far suggest that the
resulting FS(T) are very realistic for 3.5 < M < 7 and for horizontal ground motion. The slopes and
amplitudes of empirically computed FS(T) for vertical motions suggest that near T = T(N,, ) our empirical
models may not be reliable for M > 6.5. To understand these amplitudes we need more recorded accelero-
grams for M > 7, and so we must patiently wait for this data to become available.

Extrapolation of FS( T) on a log-log scale by equation (15) from T(NT) (or from T1) towards T-> co sec
(and 5T1 ) appears reasonable and agrees favourably with the known trends of seismic moment M0 and of the
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average dislocation amplitudes, u, versus earthquake magnitude. Since the corner frequencies, f1 = 1/i and
f2 = 2.2/W, in the near-field ground motion are '-v/r, where v is the dislocation velocity (typically between
2 and 3 km/sec) and r is the representative source dimension (L and W), it is seen that >; can be larger than
T(N1). This is so assuming that for the frequencies considered here rupture occurs as a `smooth' process.
Many studies have suggested that the fault slips irregularly, with large dislocations distributed at several or
many `hot' spots with large dislocation amplitudes, making larger events look like a sequence of smaller
events. While this faulting behaviour can affect 2 appreciably, at present relaible data are not available to
introduce and verify such behaviour in this analysis.

For similarity to exist among different earthquake events, the following must be satisfied: (1)
W/L = constant, (2) u/W = constant and (3) v/fl = constant. For earthquakes occurring in different tectonic
environments, including both intra-plate and inter-plate events, several investigators have concluded that the
similarity hypothesis could be accepted for large earthquakes.49 In earthquake engineering applications, one
is interested in the similarity aspect in a more local and regional sense, to the extent that it may influence the
estimation of strong shaking from sources typically not further than 200-300 km from the site. Unless one is
dealing with a site where both a large subduction zone (e.g. the coast of Alaska, or the east coast of Japan)
and the local shallow thrust and strike slip faults contribute to the seismic risk, it may be appropriate to
consider only a more restricted set of events, for example the thrust and strike slip faults in southern
California. In this paper only such events are considered because all the strong motion data used to develop
the G4RM were recorded in this area. The present data and models are consistent with more or less `circular'
faults for M smaller that about 4 (Co - 0.4), gradually changing to thrust and dip-slip faulting as L and
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W--+ 5-10 km, and as L begins to exceed W. Then, as W becomes constrained by the width of the seismogenic
zone, our typical event `looks' like a strike-slip fault (Co - 1.6). This leads to continuous changes of Co from
0.4 to 1.6 (see Table IV), and thus implies that the similarity requirement expressed via W is not satisfied.66

The highly `local' nature of strong motion recording (local in the sense of the proximity to the fault, say less
than 100 km), and the fact that it is a and not the overall source magnitude or moment and long source
dimensions (L) which govern the near-field strong motion amplitudes, all agree with the observed trends of
strong motion amplitudes predicted by the G4RM.

Numerous further tests and studies of the relationships analogous to equations (15), (26), (30), and (33) (and
of the associated amplitudes, corner frequencies and scaling parameters) are possible. Also the empirical
equations exemplified by equation (1) can be used to investigate the high frequency attenuation and the
trends implied by the peaks of spectral amplitudes for frequencies less than 25 Hz. Many of these studies have
been completed66 in the process of selecting and verifying the equations which are presented here, but their
presentation is far beyond the scope of this paper. The picture which emerges from this work is that of
detailed internal consistency and of excellent agreement with near strong ground motion and distant
seismological inferences on the one hand, and with the simplified source representations (based on dimen-
sional analysis) on the other.
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d0(T)
APPENDIX : NOTATION

parabola w. r. t. log10 T which defines the frequency -dependent attenuation in
A"o(T) (see equation (2)),

_
rj

(T) 2o

0.732 T > 1.8 sec

T )a + b logo T + C(log,o T < 1.8 sec

where a = - 0.767, b = 0271 and c = - 0.526 (see Reference 58)
Att(A, M, T) a function describing the frequency dependent (f = 1/T) attenuation of the

spectral amplitudes versus distance A and magnitude M (is defined by equation

(2))
aNF, aFF a function describing the contribution of near-field (aNF = e-3s,14s ) and of far-

field spectra (aFF = 1 - e -3s'/4s) to the Fourier amplitude spectra of strong
motion acceleration, FS(T)

A fault area, A = WL (km2)
Ao area of a single patch (asperity)
AQ zero frequency asymptote in FS(f) = AQe-"kf
bi(T) empirical scaling `coefficients ' in equation (1)
b(')(T) empirical scaling coefficients in equation ( 1) for the indicator variable j
Co scaling `coefficient ' relating the average fault displacement, d, or the average

fault dislocation, u (u = 2d), with the source dimension r and the rigidity of the
surrounding rocks, y

Co proposed `average' trend of Co versus M
C. a scaling constant [see equations (26) and (27)]
d permanent ground displacement , d = dNF(t), for t -> oc
d(t) displacement of the ground motion versus time
dNF(t) near-field strong motion displacement (for A < S)
dFF(t) far-field strong motion displacement (for A > S)
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average of dNF(t), for t -> oo, on the fault surface
difference between Mi and MP
frequency (Hz)
corner frequency, f, = (L/v + To)-'(Hz)
corner frequency, f2 = 2-2/W (Hz)
frequency where FS(f) has peak amplitude (see Figure 1)
frequency [ = 1/T(NT)] below which equation (1) is not valid (see Table II)
high frequency corner or cut-off frequency 12
Fourier amplitude spectrum of strong motion acceleration at period T, circular
frequency w, or frequency f
Fourier amplitude spectra of near-field and far-field strong motion acceleration,
at frequency co, or period T
group of four regression models. Model 4 is shown in equation (1). (1. MAG-
SITE;58 2. MAG-DEPTH;18 3. MAG-SITE-SOIL;55 4. MAG-DEPTH-
SOIL54)
depth (thickness) of the sedimentary layer beneath the station (km)
focal depth (km)
thickness of a horizontal sedimentary layer over elastic half space, h = HL for
a horizontal layer with constant thickness
slope of log10 Mo versus M [see equation (28)]
fault length, minimum fault length and maximum fault length (km)
magnitude
minimum and maximum magnitudes defining the range Mmin < M < Mmax,
where the strong motion amplitudes begin to saturate. For M > Mmax, FS(T) in
equation (1) is constant, i.e. does not grow with M
seismic moment (= µuA) (dyne cm)
seismic moment computed from strong motion data
the local magnitude scale57
local magnitude computed from strong motion accelerograms42
`magnitude' as published in various catalogues (without specification of the
wave type used, or the procedure employed)
number of peaks of a random function (Np = WL/Ao)
probability density function describing the distribution of E(T) in equation (7)
the quality factor
the value of Q atf = 1 Hz
the characteristic source dimension (see Table IV) (km)
epicentral distance (km)
transition distance where the frequency dependent attenuation Att(A, M, T)
becomes - R/200 as in log10 AO(R)57
the geologic site condition parameter (s = 0 for sediments, s = 2 for basement
rock and s = 1 for intermediate sites)
a parameter describing the local soil site condition (SL = 0 for `rock' sites, SL = 1
stiff sites and SL = 2 for deep soil sites)
the source dimension used in equation (3) and defined by equation (4). Also used
in equation (29), the "source dimension" S = 0.01 x 101,51 (km)
indicator variables describing the local soil conditions [see equation (5)]
the coherence radius49 of the source (km)
distance between the station and the top of a vertical fault (km)
time (see)
delayed time, t' = t - R/f
period of vibration, T = 1/f (see)
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T(N) periods (N = 1, 2, ... , 12) for which bi(T ), Mmin, Mme., p(T) and u(T) are
prescribed in Table I. Equation (1) can be used for N < N, (see Table II) i.e. for
T < T(N,)

Ti the first interference period Tl = 4HL//3L, for a horizontal layer of thickness HL
and with shear wave velocity f3L

Tv period where FS(T) is maximum, Tp = 11f,
TT cut off period Tc = T(NT) = 1/f 0 (see Table II)
TO the dislocation rise time, To - up/Q/3 (sec)

U, Umax dislocation amplitude, maximum dislocation amplitude
u dislocation averaged over the fault surface
v dislocation velocity (km/sec)
W, Wmin, W. fault width, minimum fault width, a distance such that W = Wk, for 0 < c < 1

(km)
corner frequency in Brune's spectrum2 [see equation (18)]

/3 velocity of shear waves, /3 (km/sec)
y exponent in Q = Qo f Y
0 the representative source to station distance [see equation (3)]
s(T) residuals, E(T) = log10 FS(T) - log10 FS(T) [see equation (6)]
k the high frequency attenuation constant, k = 0/(Q/3)
p shear modulus, p = p/32 (dyne/cm2)
p(T) the mean of distribution p(s, T) in equation (7)
v an indicator variable, v = 0 for horizontal motion, v = 1 for vertical motion
7t constant (= 3.14159)
p material density (g/cm3)

effective stress (also used as stress drop2) defined as the difference of stress before
the earthquake and the frictional stress during faulting2

Q root-mean-square of the peak stress amplitudes on the fault surface
a(T) standard deviations of the distribution p(t;, T) in equation (7)
T the characteristic source time, r = 1/f1 = L/v + TO
co circular frequency, co = 2irf (rad/sec)
LNF(w), 92FF(W) near-field and far-field Fourier amplitude spectra of strong motion displacement

01, w2 corner frequencies wl = 2nf1, w2 = 211f2 (rad/sec)
wc cut-off frequency, w, = 2itf. (rad/sec)
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