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The empirical equations for scaling Fourier amplitude spectra in the frequency 
band from ~ 0" 1 to 25 Hz can be extrapolated to describe the long period strong 
motion amplitudes. The results of this extrapolation can agree with (1) the 
seismological and field estimates of permanent ground displacement (near field), 
and with (2) the independent estimates of seismic moment and the observed 
frequencies of far field Fourier spectrum amplitudes. 

NOTATION 

a 

T) = { 

~ttt( A, M, T) 

aNF~ aFF 

A 
b 
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Empirical scaling coefficient in 
description of the fault length bi(T ) 
L = a x lobM; 

Parabola w.r.t, logl0 T which bl.J)(T ) 
defines the frequency dependent 
attenuation in A d°(r) (see eqn 
(2)); c 

-0.732 T > 1.8 s 
- Co 

a + b loglo T + C(loglo T) 2 T <  1.8s 

where 

a = -0.767, b = 0.271 

and 
c; 

c = -0.526 (Trifunac and Lee l) 

A function describing the fre- Cs 
quency dependent ( f  = 1/T)  
attenuation of the spectral ampli- d 
tudes versus distance A and 
magnitude M (is defined by eqn dp 
(2)); 
A function describing the contri- d(t) 
bution of near-field (ayv = e - ~ )  
and of far-field spectra (avF = dyE(t) 
1-  e - . s )  to the Fourier ampli- 
tude spectra of  strong motion dFv(t) 
acceleration, FS( T) d 

O ( M  TM) 
363 

Fault area, A = WL (km 2) 
Empirical scaling coefficient in 
L = a x 10 TM 

Empirical scaling 'coefficients' in 
eqn (1) 
Empirical scaling coefficients in 
eqn (I) for the indicator vari- 
able j 
Empirical scaling coefficient in 
W = c × 10 dM 

Scaling 'coefficient' relating the 
average fault displacement, d, or 
the average fault dislocation, 
(fi = 2d), with the source dimen- 
sions r and the rigidity of  the 
surrounding rocks, # 
Proposed 'average' trend of  Co 
versus M (see Tables 3 and 6) 
A scaling constant (see eqns (24) 
and (25)) 
Empirical scaling coefficient in 
W = c × 10 aM 

Permanent ground displacement, 
d p =  dNF(t), for t ~ cc 
Displacement of the ground 
motion versus time 
Near-field strong motion dis- 
placement (for A < S) 
Far-field strong motion displace- 
ment (for A >> S) 
Average of dNF(t), for t ~ oo, on 
the fault surface 
Difference between M TM and Mp 
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Es 
f 

A 

A 

f .  

Lo 

fmax 

FS(T), FS(w), 
FS(f)  

FSNF (W), FSNF (T), 
FSFF (W), FSFF ( T) 

G4RM 

ho 

H 
k 

L, Lmi n 

M 
M, 
Mmin, Mmax 

M0 

M0SM 

ME 

M TM 

M. 

Seismic energy 
Frequency (Hz); also used as a 
coefficient in W = e + f M  
Corner frequency, fl  = (L + 
To) -I (Hz) 
Corner frequency, f2 = 2.2/W 
(Hz) 
Frequency where FS(f)  has peak 
amplitude (see Fig. 1) 
Frequency (=l/T(Nc)) below 
which eqn (1) is not valid (see 
Table 2) 
High frequency corner or cut-off 
frequency 
Fourier amplitude spectrum of 
strong motion acceleration at 
period T, circular frequency w, or 
frequency f 
Fourier amplitude spectra of 
near-field and far-field strong 
motion acceleration, at fre- 
quency w, or period T 
Group of four regression models. 
Model 4 is shown in eqn (1). (1. 
MAG-SITE; 2. MAG-DEPTH; 
3. MAG-SITE-SOIL; 4. MAG- 
DEPTH-SOIL) 
Depth (thickness) of the sedimen- 
tary layer beneath the station 
(km) 
Depth (below the surface) of the 
top edge of a vertical fault plane 
(km) 
Focal depth (km) 
Slope of lOgl0 M0 versus M (see 
eqn (28)) 
Fault length and minimum fault 
length (km) 
Magnitude 
Cut off magnitude 
Minimum and maximum mag- 
nitudes defining the range 
Mini n < M < Mma x where the 
strong motion amplitudes begin 
to saturate. For M > Mmax, 
FS(T) in eqn (1) is constant, i.e. 
does not grow with M 
Seismic moment (=#~A) (dyne 
cm) 
Seismic moment computed from 
strong motion data 
The local magnitude scale 
(Richter 2) 
Local magnitude computed from 
strong motion accelerograms 
'Magnitude' as published in 
various catalogues (without 

Ms 
p(e, T) 

Q 
r 

R 
R0 

SL 

S 

S0),L S(2) 

So 

$1 

t 
t ~ 
T 
T(N) 

T~ 

To 

U, Uma x 

V 

specification of the wave type 
used, or the procedure employed) 
Surface wave magnitude 
Probability density function 
describing the distribution of 
~(T) in eqn (7) 
The quality factor 
The characteristic source dimen- 
sion (see Table 3) (km) 
Epicentral distance (km) 
Transition distance where the 
frequency dependent attenuation 
~¢tt( A, M, T) becomes ,-~R/200 
as in logl0 Ao(R) (Richter 2) 
The geologic site condition para- 
meter (s = 0 for sediments, s = 2 
for basement rock and s = 1 for 
intermediate sites) 
A parameter describing the local 
soil site condition (sL = 0 for 
'rock' sites, Se = 1 stiff sites, and 
SL = 2 for deep soil sites) 
The source dimension used in 
eqn (3) and defined by eqn (4). 
Also used in eqn (26); the 'source 
dimension' S = 0.01 x 10 °Sin 
(kin) 
Indicator variables describing the 
local soil conditions (see eqn 
(5)) 
The coherence radius (Gusev 3) of 
the source (km) 
Distance between the station and 
the top of a vertical fault (km) 
Time (s) 
Delayed time, t' = t - R/3 
Period of vibration, T = 1/ f  (s) 
Periods ( N =  1,2 , . . . ,12)  for 
which bi(T), Mmin, Mmax, #(T) 
and a(T) are prescribed in Table 1. 
Equation (1) can be used for 
N <  Nc (see Table 2), i.e. for 
T < T(Nc) 
Period where FS(T) is maximum, 
Tp = l /fp 
Cut off period T c = T(Nc) = 
i/f~o (see Table 2) 
The dislocation rise time, T o ~ 
(s) 
Dislocation amplitude, maximum 
dislocation amplitude 
Dislocation averaged over the 
fault surface 
Dislocation velocity (km/s) 
An indicator variable; V = 0 for 
horizontal motion, V =  1 for 
vertical motion 
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P 
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~NF (~"~), ~-~FF (f'J) 

Fault width, minimum fault 
width, a distance such that 
W = ~ IV,, for 0 < ~ < 1 (km) 

Corner frequency in the Brune's 
spectrum (see eqn (16)) 
Scaling constant (in a = aoL) 
Velocity of shear waves, /3 = 
(#/p)U2 (km/s) 
The 'representative' source to 
station distance (see eqn (3)) 
Residuals, e(T) = logl0FS(T)-  
log10 FS(T) (see eqn (6)) 
The efficiency in the expression 
for the apparent stress, r/# 
Shear modulus, # = p/32 (dyne/ 
cm 2 ) 
The mean of distribution p(e, T) 
Constant (=  3.14159) 
Material density (g/cm 3) 
Effective stress (also used as stress 
drop, Brune, 4 defined as the 
difference of stress before the 
earthquake and the frictional 
stress during faulting 
Standard deviations of the dis- 
tribution p(e, T) in eqn (7) 
The characteristic source time, 
r = l / f l  L = g + T 0  
Circular frequency, w = 27rf 
(rad/s) 
Corner frequencies wl = 27rfl, 
w2 = 27rfz (rad/s) 
Near-field and far-field Fourier 
amplitude spectra of strong 
motion displacement 

INTRODUCTION 

Since the 1960s and the early 1970s, following the 
pioneering works of Haskell 5'6 and Brune, 4 numerous 
studies and interpretations were published dealing with 
spectral representation of the physical processes at the 
earthquake source. 7 From those, we learned that the 
corner frequencies in the observed far-field spectra can 
be associated with the characteristic source dimensions, 
that the high frequency fall-off of ground displacement 
amplitudes, beyond the corner frequency, can be 
described by w -n (where n is in the range between 2 
and 3), and that the zero frequency spectral amplitudes 
can be related to the seismic moment 8 M0" During the 
following 20 years, many papers were published on (1) 
the physical interpretations of the processes at the 
earthquake source and their influence on the shape and 

amplitudes of the far-field displacement spectra, (2) the 
simple source characteristics as determined by the 
measured features of the observed far-field spectra, and 
(3) the use of the inferred source characteristics and the 
statistics of the observed source parameters to predict 
spectra of future strong and distant ground motion. 

Simultaneously, in earthquake engineering, the strong 
motion data base was growing, and the first studies of 
the near field spectral characteristics using strong 
motion accelerograms at distances typically less than 
100km could be carried out. 9 At present, detailed 
empirical equations are available to describe the 
Fourier amplitude spectra of strong motion accelera- 
tion in the frequency range from ,--0.1 to 25 Hz and for 
distances between about 10 and 100 km. 10,11 

The purpose of this paper is to address the following 
two questions: (1) is it possible to extrapolate the 
empirical equations for scaling Fourier amplitude 
spectra of strong ground motion, near the source, to 
frequencies f <  0-1 Hz, and (2) can the thus extra- 
polated spectral amplitudes satisfy the observations in 
the near field and at intermediate and teleseismic 
distances. The engineering need for such information 
continues to grow with the design of long bridges, fluid 
storage tanks, large dams and long tunnels, for example. 
Also, providing consistent and continuous spectral 
representation of earthquake wave amplitudes for long 
period motions and from small to large distances, 
should help in the studies and in the use of distant 
spectral amplitudes. Compared to distant seismological 
recordings, the earthquake ground motion recorded by 
strong motion accelerographs contains fairly complete 
and reliable information on the earthquake source, 
because the scattering, diffraction, geometrical spread- 
ing, and inelastic attenuation are smaller along a shorter 
wave path. The proximity to the source offers more 
detailed, direct and more complete data on strong ground 
motion, and thus can be used to (1) check and calibrate 
the distant recordings, and (2) learn more about the high 
frequency features of the earthquake source. 

Most of the seismological studies either assume 
directly functional forms for the spectral amplitudes 
(for example, following the Brune's 4 shear wave 
spectral2 15), or assume a source model resulting in a 
functional form which determines these spectral esti- 
mates.3,16 18 These models are specified by the following 
scaling parameters: seismic moment, M0, one or two 
long period corner frequencies (fl and f2 which are 
inversely proportional to the source dimensions), some 
form of stress drop on the fault plane, and the low-pass 
filtering characteristics of the surrounding medium 
(fmax, Hanks 19) or the non-linear phenomena at the 
tip of a propagating dislocation, z° Since M 0 determines 
the long period spectral amplitudes, while the stress 
drop characterizes the high frequencies, such models 
provide means to interpolate the spectral behavior for 
the intermediate frequency band. However, the func- 
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tional form of these spectral amplitudes is typically 
based only on the body wave spectra. Therefore, it 
cannot be expected that these models will approximate 
the Fourier amplitude spectra of a complete strong motion 
signal in the near and intermediate field. In the end, these 
results can be 'calibrated', in part, using recorded strong 
motion data, 3'15 but their 'accuracy' finally depends on 
one's ability to predict M0 and the stress drop. 

In contrast, this study uses regression equations of 
actually recorded strong motion data (in the western 
USA and mainly in California) to estimate the Fourier 
amplitude spectra for the intermediate frequency band 
(from ,-~0-1 to 25 Hz). Our regression equations do have 
terms which can be attributed to the processes at the 
earthquake source, the attenuation along the wave path 
and the observed ground motion in general. However, 
the final regression models contain only the statistically 
significant terms, i.e. those terms with coefficients and 
coefficient functions significantly different from zero in 
the frequency band considered. In this paper, the author 
does not modify these equations, but merely explores 
how they can be extrapolated to lower (f_< 0.1 Hz) 
frequencies. 

The extrapolated spectra of strong motion accel- 
eration are represented as a linear combination of a 
near-field (FSNF) and a far-field (FSFF) term (as 
aNFFSNF(~) q-aFFFSFF(a;), with coefficient functions 
such that aNF q-aFF = 1). The near-field and the far- 
field extensions are obtained as follows. The functional 
form for the shape of the extrapolated near-field spectra, 
FSNF(Od), is defined using earthquake source theory. 
Then, the final amplitudes of the extrapolated near-field 
spectra are determined by matching with the corre- 
sponding empirical amplitudes (defined by the regres- 
sion equation) at the longest period for which the 
empirical equation can be relied on. For the shape of 
the extension of the far-field spectra, FSFF(a;), functions 
are used which are similar to the body wave spectra in 
the Haskell 6 source model. Then, the amplitudes of the 
extrapolated far-field spectra are determined also by 
matching with the amplitudes of the empirical spectra 
(at the longest period for which the empirical equation 
are reliable). The final far-field and near-field extended 
spectra have continuous amplitudes at the matching 
period, but not necessarily continuous slopes. At the 
end, the success of this approach is tested by estimating 
various source and strong motion characteristics 
(permanent displacements, seismic moment, M 0, fault 
dimensions, corner frequencies, fl and f2, characteristic 
source duration and fault area) using the extrapolated 
spectral amplitudes, and then comparing these estimates 
with independent measurements of the same quantities. 

STRONG MOTION DATA 

The strong motion acceleration data base started to 

grow from March 10, 1933, when the first strong motion 
accelerograms were recorded during the Long Beach 
(M = 6.3), earthquake in California. The San Fernando, 
California earthquake of February 9, 1971, contributed 
the first major increment to the strong motion data base. 
After all the accelerograms were digitized, together with 
selected older recordings from the period between 1933 
and 1971, 186 uniformly processed free-field strong 
motion records were available. 91'22 Following the 
Imperial Valley, in 1979, the Coalinga in 1983, and the 
Morgan Hill in 1984, earthquakes in California, the 
uniformly processed strong motion data base more than 
doubled, to 493 uniformly processed records. With the 
recent recordings by the Los Angeles strong motion 
array (1987-1992) and following the 1989 Loma Prieta, 
California, earthquake, when all these data are uni- 
formly processed, there will be well over 1000 excellent 
records in the strong motion data base. 

EMPIRICAL SCALING EQUATIONS 

The most recent equation for the empirical scaling of 
Fourier amplitude spectra of acceleration, FS(T), is of 
the form 

IogloFS(T) = M +  ~t t (A ,M,  T) + bl(T)M 

+ b2(T)h + b3(T ) V+ b4(T)hV 

+ bs(T) + b6(T)M 2 + b~l)(T)S~Ll) 

+ b~z)(r)S(L2) (1) 

where M is the earthquake magnitude, 2'23'24 bl(T)- 
b~ 2) (T) are scaling coefficient functions of the period T, 
and sdtt(A, M, T) is the frequency dependent attenua- 
tion function, 25 

sltt( A, M, T) 

= ~" ~o(T) loglo A; R <_ Ro 

I, do(T)  lOglo Ao - (R - R0)/200; R > Ro 

(2) 

with A, the 'representative' source to station distance, 

[R2LH2q.-S2] 1/2 
A = S In [R 2 + H2 +~-~ (3) 

R is the epic, entral distance and H is the focal depth, 
both in kilometers. R0 is the transition distance 25 (about 
150kin for T <  0.05 and ~50km for T >  1 s) beyond 
which the attenuation equation has a slope equal to 
1/200, and A 0 is the value of A in eqn (3) when R = R0. 
sdtt(A,M, T) depends on M implicitly, through S, 
which is the linearized 'source dimension' 

S = 0 . 2 + 8 " 5 1 ( M - 3 ) ,  f o r M > 3  (4) 

So is the coherence radius of the source 3 and is 
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approximated by So ~ ~3T/2, where/3 is the shear wave 
velocity in the source region, and T is the period of  
motion. When S/R and So/R become small, 
A ~ (R 2 +HZ) 1/2, which is the hypocentral distance 
to the source. ~¢0(T) in eqn (2) is represented by a 
parabola (in logl0 T), between T = 0'04 and 1.8 s. It is 
near - 2  for T = 0.04, it increases to ~ -0 .7  and remains 
constant for T > 1-8sJ 

The thickness of  the sedimentary layer is h, extending 
from the ground surface to the basement rock (in 
kilometers). V = 0 is for horizontal motion and V = 1 is 
for vertical motion. The term ba(T)hV models the 
progressively steeper incidence of body waves for soft 
and deeper sedimentary sites, bl(T)M and b6(T)M 2 
model the saturation of strong motion amplitudes 
versus M, for -bl(T)/(2b6(T)) =-- Mmi n < M < Mma x 
-( l+bl(T))/(2b6(T)) .  S(~) and S ~ ) a r e  indicator 
variables defined by 

f 1 ifsL = 1 (stiff soil) 
S (I) / 0 otherwise (5) 

and S(L2) = { 01 ifotherwise sL = 2 (deep soil) 

where SL = 0, 1 and 2 represent 'rock', stiff soil and deep 
soil sites. The sites with soft to medium clays with strata 
of sands and gravels, as defined in the original 
investigation by Seed et al., 26 are not common in the 
Western United States and are therefore not considered 
in this anallysis. 

With FS(T) representing the Fourier amplitude 
spectra estimated from eqn (1), and FS(T) indicating 
the spectra computed from recorded accelerograms, the 
residues e(T) can be calculated from 

e(T) = log10 FS(T) - log10 FS(T) (6) 

e(T) can be described as a normal random variable with 

a cumulative probability distribution function p(e, T), 
mean #(T)  and standard deviation ~r(T). Then, 

1 
p ( e ,  r) - 

x exp - ~ \  cr(T) / j d x  (7) 

is the probability that logl0 FS(T) - lOgl0 FS(T) <_ e(T). 
Table 1 gives bl(T)-b~2)(T), Mmin, Mmax, #(T)  and 
or(T) at 12 periods T(N), N =  1 ,2 , . . . , 12 ,  between 
T(1) = 0.04 and T(12) -- 14.0s. 

The first empirical model for scaling logloFS(T) 
that involves the frequency dependent attenuation 
~ttt(A,M,T) was developed in 1985, but without 
explicit consideration of the soil site parameters 
SL .1'27'2s Simultaneously with that analysis and with 
the model described above by eqn (1), we studied also 
the geologic site conditions using s = 0, 1 and 2, in place 
of h (see Trifunac and Brady, 29 for definition and 
examples of site characterization with s, and Seed et al. 26 
for definition and examples of assigning SL). The reader 
may wish to peruse the details on how these models have 
evolved, starting with our analysis in 1976, 21 but for the 
purposes of this paper it will suffice to recognize only the 
four most recent models: 

1. MAG-SITE Model, 1 
2. MAG-DEPTH Model, ~ 
3. MAG-SITE-SOIL Model, ~ and 
4. MAG-DEPTH-SOIL Model 1° 

(eqn (1) and Table 1). 

In what follows, these four models will be used 
collectively, and will be referred to as the 'group of 
four recent scaling nodels' (G4RM). In the above, 
'MAG'  implies scaling in terms of earthquake magni- 
tude, 'SITE' indicates the use of the geological site 
parameters s = 0, 1 or 2, and 'DEPTH'  implies the use 

Table 1. Loglo FS(T) = M<+dtt(A, M, T)+bl(T)M<>+b2(T)h+b3(T)V+b4(T)hV+bs(T)+b6(T)M2<>+ b~(I)(T)S 7(2)_ t- bLO)(T)S L¢2) 

N =  1 2 3 4 5 6 7 8 9 10 11 12 
Period, T (s) 0.040 0.065 0" 11 0' 19 0"34 0.50 0-90 1-60 2.80 4"40 7'50 14'0 

Coefficients 
b 1(T) 0.652 0.667 0.819 0.962 0.977 0 . 9 2 7  0.854 0.876 0 - 9 4 0  0.856 0-382 -0.707 
b2(T) 0-067 0 . 0 6 3  0.056 0.047 0.040 0 - 0 3 9  0 - 0 4 9  0.067 0.084 0'087 0.069 0.020 
b3(T) 0-127 0 .091 -0.012 -0.155 -0.272 -0.292 -0.233 -0-152 -0.122 -0.126 -0.132 -0.131 
b4(T) 0.006 -0-002 -0-015 -0-030 -0.041 -0.047 -0.051 -0.048 -0.040 -0.033 -0.030 -0.034 
bs(T ) -3.921 -3.876 -4.151 -4.532 -4.809 -4-924 -5.151 -5-568 -5.881 -5.529 -3.791 -0.019 
b6(T) -0.095 -0.098 -0-114 -0-127 -0.128 -0-123 -0.112 -0-110 -0.113 -0.110 -0-080 -0.006 
b~l)(T) -0-314 -0.282 -0.219 -0.120 -0.008 0.052 0.120 0 . 1 6 1  0 -1 6 1  0.127 0.065 -0.002 
b~2)(T) -0.264 -0.260 -0.238 -0.151 -0.012 0 - 0 6 9  0.144 0.169 0 - 1 5 2  0 - 1 0 3  0-004 -0.144 
Mmi n 3"429 3 . 3 8 9  3"604  3"780 3.810 3 . 7 7 3  3 . 8 1 4  3 . 9 9 1  4 - 1 5 5  3"897  2'376 0"000 
Mma x 8"691 8"472  8"006  7"711 7"711 7 . 8 4 5  8 - 2 8 2  8 - 5 4 9  8"576  8 - 4 5 0  8-600 14'500 
#(T) -0'002 -0'002 -0"002 -0"001 -0'001 -0'001 -0-002 -0"001 0 - 0 0 2  0"003  0"001 -0'001 
~r(T) 0"445 0'462 0'388 0"343 0'316 0'317 0"338  0 "3 5 2  0 - 3 4 3  0'328 0"315  0'305 

M< = min (M, nmax) , M<> = max (Mmin, M<). 
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of h as in eqn (1) above. 'SOIL' shows that the soil site 
parameters SL = 0, 1 and 2 are used in the scaring equation. 
In the models 1 and 2 such dependence is omitted. 

The need to consider different scaling models (1-4)  
results from the lack of  data on local site conditions. 
Which of  the four models in the G 4 R M  will be used, will 
depend on whether some or all the site parameters 
(s, h, SL) are available, and on various constraints on the 
scaling parameters imposed by other aspects of a site 
specific analysis. To illustrate the resulting differences 
between these models, in most calculations and figures 
in this paper, all the four models are used. To simplify 
the figures, and to distinguish this from the differences in 
the results caused by the four models of  fault geometry 
(W and L in Table 5 (later)), only the range of values 
resulting from the models 1 -4  in the G4RM, will be 
shown by a shaded zone and usually for probabilities of 
exceedance equal to 0.1, 0-5 and 0"9. 

Figure 1 illustrates log~oFS(T) plotted versus fre- 
quency, f =  ~. The dashed lines show the empirical 
Fourier amplitude spectra, determined by eqn (1), for 
50% probability of  exceedance (corresponding to 
p(e, T) = 0.5 in eqn (7)), and for magnitudes M -- 4, 5, 
6, 7 and 8 (from bottom to top), at epicentral distance 
R =  10km, and for source depth H = 0 k m .  The 
shortest frequency for which the empirical scaling 
equations are reliable (the cut-off frequency) is denoted 
by fco and is marked by the symbol ' O '  in Fig. 1. The 
cut-off frequency is larger for smaller magnitudes and 
for larger source to station distances, i.e. the empirical 
spectra are valid for progressively shorter frequencies as 
the magnitude and the source to station distance 
increase. This is caused by the recording and processing 
noise, 31-35 whose amplitudes are shown in the same 
figure by the rectangular shaded zone (increasing from 
F S ~  10-1in/s for f ~  10Hz, to F S ~  l in/s nea; 

10 3 - 

10 2 

o° 10 ~ M = 8  

M=7 ....~ 

U~ 
r,,. 

lff I 

Domain where Eq. (1) applies 
Digitization noise 

* Corner frequencies fl 
c Corner frequencies f2 
P Peak frequencies fp 
o Cut-off frequencies leo = 1/T(Nc) 

Extrapolated spectra 

M=6 

/ \ 

/ 

/ I \ \  

\ \ \  

/ 
f 

\ \ \  %t~l~/ 

% %% 
% / '  

M=5 

M=4 

l i f e 1  ~ L n l n J n n l  / n a l l l l l l l  a a a l n t l l l  
lff z lff 1 1 10 

F r e q u e n c y  - Hz 

Fig. 1. Fourier amplitude spectra (in/s) versus frequency (Hz), for probability of exceedance equal to 0.5, for M = 4, 5, 6, 7 and 8 
(bottom to top), at epicentral distance R = 10 kin, and for a source at depth H = 0. Outside the shaded region, betweenfco = 1/T(Nc) 
and f =  25 Hz where eqn (1) is valid, the spectral amplitudes (heavy solid lines) can be extrapolated to f<fco  as it is suggested in this 
paper (see eqn (27)). The comer frequencies fn, f2 and fco are defined in the text. The processing and digitization noise amplitudes are 

shown by the shaded zone increasing from FS ~ 10 -l to FS ~ 1 in/s for frequencies decreasing from 10 to 0.I Hz. 
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Table 2. Cut-off periods T(Nc) versus magnitude 

M T(Nc) N¢ 

3 0-90 7 
4 0.90 7 
5 1.60 8 
6 2.80 9 
7 4-40 10 
8 7.50 11 

f = 0 . 1 ) .  At the high frequency end, the empirical 
spectra are defined only up to 25 Hz, this limit being 
chosen more for convenience in data processing than 
because of poor signal to noise ratio. The top shaded 
area in Fig. 1 shows the region where the empirical 
eqn (1) is valid. Table 2 shows the cut-off periods, 
T(Nc) = 1/fco, versus magnitude (neglecting the depen- 
dence offco on distance). For uniformity, all the G4RM 
empirical equations are defined for 12 periods T(N), 
N = 1 , . . . ,  12, listed in the first row of Table 1, but these 
can be used only for periods with index N < N c (listed in 
Table 2). 

In what follows, the spectral amplitudes will be 
extrapolated to low frequencies, starting at the 'end 
frequency' f co (end period T(Nc)) of the spectra (the left 
border of the top gray zone), as shown in Fig. 1 by the 
heavy solid lines. Also, all the spectra and the analyses 
will be based on the estimates of strong ground motion 
at sites on basement rock (geologic site condition 
number s = 2 or depth of sediments h - - 0 )  and on 
'rock' soil sites (soil site number SL = 0; in geotechnical 
literature on earthquake engineering, the sites on 
deposits with shear wave velocity higher than 800 m/s, 
or with thickness less than 10 m, are referred to as 'rock' 
sites). This will eliminate complications introduced by 
the local site conditions 36 and will allow more direct 
comparison with seismological studies and observations. 
Without loss of generality, the results of eqn (1) will be 
used for horizontal motions only ( V =  0) to simplify 
further the presentation and interpretation of these 
empirical equations. 

LOW FREQUENCY EXTENSION 

In the proposed extrapolation, two separate cases will be 
considered. In the first case, the recording site is so close to 
the earthquake source that the ground will experience 
permanent static displacement after an earthquake. This 
will occur when the site is close to the fault surface, at a 
distance smaller than the characteristic source dimension. 
One can refer to this case as the 'near-field' ground 
motion. In the second case, the recording station is far 
from the source, so that the contributions from the static 
displacement are negligible, that is, all near and inter- 
mediate field terms, 6 attenuating as R -4 and R -2, have 
become negligible, and only the body waves (attenuating 
like R -l)  and the surface waves (attenuating like R-l/2), 

where R is the source to station distance, will contribute to 
the strong motion amplitudes. By using a suitable linear 
combination, with scaling functions aNV and avv (both 
aNF and aFF will depend on distance, source dimension, 
source depth and source size, via magnitude), such that 
aNV + aFV = 1, in the end, Fourier amplitude spectra of 
strong motion acceleration will be proposed in the period 
range T >  T(Nc) valid for all distances. The spectral 
amplitude evaluated at T = T(Nc) by eqn (1) will be used 
as a starting point for both the near-field, FNF(W), and far- 
field, FFF(W ), spectra of strong motion acceleration. 

Near-field displacements 

Following Brune, 4 the near-field displacement, dNv(t), is 
represented by 

dNF(t ) ----- dp(1 - e -t/r) (8) 

where dp is the static displacement at the station (on the 
ground surface) following the earthquake, t is the time, 
and T is the characteristic time, which will be related to 
the duration of the faulting. The real details of ground 
motion, of course, are more complicated. When the 
observation point is on the fault surface, the average of 
dp can be described by 

1 Co ar  (9) 

where a is the effective 4 stress drop, r is the equivalent 
(radius) dimension of the source area and # is the rigidity 
in the source region (typically in the range from 1 
to 5 x  1011dynes/cm2). Co is a 'constant' which 
depends on the type of faulting and is in the range from 
0.4 to 1.6 (Table 3). The factor of 1/2 in eqn (9) relates 
the displacement of a point (dp) to the average source 
dislocation amplitude ~, which for symmetric faulting is 
2d. The bars on u and d designate average values. 

As the area of the fault surface, L W (L is fault length, 
and W is the fault width), increases with increasing 
magnitude, W becomes larger and Uma x is located at 
progressively greater depths. Detailed source mechanism 
studies in California for the earthquakes which have 
contributed to the strong motion data base used here, 
suggest that the largest dislocation amplitudes do not 
occur near the ground surface. 4°-47 During the Parkfield 
earthquake of 1966, the dislocation apparently occurred 
at depth 48 and its eventual surface expression grew 
through creep for about 1 year following the earth- 
quake. For the purposes of this analysis, we need dp (on 
the ground surface), and since sufficient data are not 
available on the average displacement, d, versus 
magnitude, faulting mechanisms, fault types and on 
the distribution of rigidities and stresses on the two sides 
of the fault, 49 it is assumed that the average of dp can be 
approximated 5°'51 by 

8 (10) 
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Table 3. ~ = Cocrr l l~, u = 2d  

Type of faulting and fault geometry Co r represents 
37r Dip-slip displacement along an infinitely long narrow strip in a i~ 

uniform shear f i e ld  37 

Infinitely long vertical surface fault with strike slip displacement 38 7ra nb 2 4 
8c Circular fault plane in an infinite medium 

Fault width 

Fault width 
Diameter of circular dislocation (fault width) 

Note: To model the assumed 'continuous' changes of the faulting type and geometry, for the body of strong motion data studied 
here, will be defined C~ = 0.4, 0.5, 0'65, 0"85, 1.6 and 1-6 for earthquake magnitudes M = 3, 4, 5, 6, 7 and 8. C~ = 0.4 is 
representative of small 'circular' faults, while C~ = 1-6 will represent long surface faults. 
a Surface fault. 
b Deep fault. 
C.Poisson ratio, u = 0.25. 

The Fourier amplitude spectrum of dNp(t) in eqn (8) is 

~NF(03)-  dp 1 
7"03 (032 +7- -2 )1 /2  (11) 

When w ---+ O, f~Nv(w) --* dp/03. Using the approximate 
relationship between dp and ~ in eqn (10), this implies 
that 

3 ~  
(~ Nr ~ . ~ -  - (12) 

w ~ 0  8 03 

The fluctuations of  dp on the ground surface are 
considerable, and will depend on the relative position 
of the observation point with respect to the fault surface 
and the three-dimensional properties of  the geologic 
medium surrounding the fault. Since here we are dealing 
with empirical scaling of Fourier spectrum amplitudes, 
and because our model equations (e.g. eqn (1)) represent 
the average trends for many observations, for the 
purposes of  this analysis, it will suffice to deal with the 
average trends of  dp as in the above equations. 

For Fourier amplitude spectra of  strong motion 
acceleration in the near field, FSNF(03), eqn (1 1) gives 

03dp (13) 
FSNF(03) -- [(W7)2 + 111/2 

where 7- can be approximated by 7- ~ r//3 (/3 is the 
velocity of  shear waves) when r < W/2.  When L >> W, 

L 
7- '~--  + T0 

/3 

where v is the average velocity with which the 
dislocation propagates along the fault length, and T o 
is the dislocation rise time. 6 For  L >> To , we can define 
one of the corner frequencies by 

03~ ~_v 
f l  = 27r L 

For  intermediate frequencies 

fl  = + 

with a typical value of v =  2-2km/s, To ~ w and 9 '  
/3 ~ 3.0 km/s. Here, it may be assumed that for typical 
strike slip faulting in California, the dislocation grows 

more or less as a circular dislocation up to r <_ W/2.  
When the size of  W has been reached, it is assumed that 
the fault surface grows in terms of L only. Thus, 03r is 
approximated in eqn (13) by 

w7- ~ ~ -  + (14) 

Far- f ie ld  d i s p l a c e m e n t s  

As the observation point moves away from the source, 
the permanent offset (dp) goes to zero and the ground 
displacement, tiFF, experiences only a 'transient pulse' 
which could be characterized by the Brune's 4 pulse, 

r t7/3 t - c a  ~ t t  
dFF(t ) ~ ~ ~ t e , > 0 (15) 

where t~= t - R / / 3  (r is the source dimension, a = 
Brune's effective stress drop, /3 = shear wave velocity, 
R = source to station distance, and # = rigidity). The 
Fourier amplitude spectrum of  dFv in eqn (15) is 

r o/3 1 
~'~FF(~d) ~ R # &2 q_ a2 (16) 

and the strong motion acceleration spectrum is 

r ¢r/3 I (17) 
F S F F ( 0 3 ) ~ R  # 1 + ( ~ )  2 

Since 4 a ~ 2.34/3/r, and assuming that r ~ L / 2  
(r ,,~ W/2) ,  for/3 ~ 3 km/s, a/03 ~ 2 .23T/L.  As T ~ e~, 
eqn (17) implies that FSFF ( T)  ~ 1 / T 2. Also, since 8 

f~ ~o(03 ) ~ Mo(47rpR/33) -1 (18) 

7rM0 (19) 
F S ~ o ( T  ) --~ pR/33T 2 

where p = #//~2 and Mo is the seismic moment  defined 
by 

M 0 = #uA (20) 

is the dislocation amplitude (fi ~ 2d) averaged over 
the fault surface A. 

Using the Haskell 's 6 representation in the far-field for 
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S waves, it is possible to compute the Fourier amplitude 
spectra of the ground displacement, if the dislocation 
function is specified on the fault surface. Assuming that 
this dislocation grows linearly during time To, until the 
final dislocation amplitude is reached, and that this 
dislocation propagates with constant velocity v along 
the fault of  length L, it can be shown that 

• w L  sm T sm ~ " wT° 

~ " ---J~--02_ (21) 

Equation (21) is characterized by two corner 
frequencies, one, f l ,  associated with the duration of  
faulting (L/v) and the other, f2, with the duration of  
the dislocation rise time T 0. As w --* oo, like eqn (16), 
eqn (21) implies ~'~FF "~ 1/wE" 

If  one assumes a dislocation buildup of the form 
1 - exp (- t /To),  for t > 0, 

wL 
sin 2-~-. 1 (22) 

IS FFI ~ __wL (1 +wET02) v2 
2v 

If  it is assumed that the duration of  the slip is controlled 
by the narrow dimension of  the fault W, then the 
displacement rise time is T o ,,~ W/2v. Assuming that this 
time should roughly correspond to 90% of the 
maximum dislocation 52 gives 2.3T 0 = W/2v and the 
second corner frequency 

w2 = 4.6v/W (23) 

For  v ~ 3km/s, f2 = 2.2/W. The other corner fre- 
quency, Wl ~ 2Try/L, depends on the duration of 
faulting L/v. 

Guided by the above results, the author chose to 
approximate the far field displacement spectra f~vv by 

1 1 
= (24) QFF(T) Cs W 2 1/2 7" 

where the 'constant' Cs can be computed from 

C s = fSFF(Wc)Wc 2 [1 W 2 7" 

with w~ = 2rr/T c and T c -  T(Nc) (see Table 2), and 
where FSFF(Wc) is set equal to the spectral amplitude 
computed from eqn (1) or its equivalent for one of the 
four models (G4RM). Via FSFF(Wc), Cs depends on 
magnitude, distance and local site conditions, and is 
therefore evaluated at the same epicentral distance R 
which is used to compute FS(T) from eqn (1). Since 
eqn (18) requires that FS(T)T "~ ,,~ 1/R, Cs should also 
be proportional to 1/R. This condition is satisfied 
approximately for ~ 50 < R < 150 km. 

The empirical estimates of the spectral amplitudes 

in eqn (1), for small A, first decrease with T approaching 
T c and then begin to curve up near T =  T c and for 
T > To. In part, this is due to the decreasing signal to 
noise ratio in the recorded accelerograms, 32'33 but it is 
also believed that it results from the gradual transition 
of the empirically computed spectral amplitudes to the 
slopes which are analogous to those defined by eqn (13), 
for w < 27r/T(Nc). In this work, the author first chose 
Nc so that T(Nc) is near such turning points. Then, by 
trial and error, he selected the final values of  Arc (see 
Table 2) to obtain the 'best fit' with various data and 
known constraints. In the end, for the far-field strong 
motion amplitudes, eqn (1) was used to predict FS(T) 
for T < T(Nc) a n d  W2~"~FF, with f~vv given by eqn (24), 
and Cs computed from eqn (25). 

Since 1970 many authors considered only one corner 
frequency (a = 2.34/3/v) in their interpretation of  the far 
field shear wave spectra. More recent observations of 
intermediate and large earthquakes show that at least 
two corner frequencies (fl  and f2) should be used to 
describe the body wave spectra. For intermediate and 
small earthquakes f l  and f2 become comparable to and 
higher than 1 Hz, and for M < 3, the low-pass filtering 
effects of Q then make it difficult to observe fl  and f2, 
and to distinguish them from the Brune's single corner 
frequency a (see also Fig. 7 (later)). 

Transition between near-field and far-field spectra 

To provide a continuous transition between f~NF(W) and 
~')FF(W) and to complete a representation for use in 
engineering applications, the author uses the results of 
Jovanovich et  al. 53'54 They show that the error in 
representing the static displacement field by a point 
source is typically less than 5% at distances greater than 
4L, where L is the source length. The distance S1, 
between the station and the 'top' of the vertical fault 
with 'dimension' S (see eqns (3) and (4), and Gusev 3) 
and at depth H is defined as 

$1 = ~ [R2 + ( H - S ) 2 ]  U2, H > S  
(26) 

t R, H <  S 

Here, S = 0.01 x 10 °'SM when S _< 30km, and S = 30km 
for larger events, and then FSNF(T) and FSFF(T) are 
combined as follows 

FS(T) = FSNF(T) e -(4~s) 

+ FSFF(T)(1 -- e-(3"s-ks)), T > r(Nc) (27) 

In the above expression, 3/4 is used to scale SI /S  so that 
when SI /S  = 4, the exponent is equal to 3 (so that 
e -3 ~ 0.05), in agreement with the recommendation of 
Jovanovich et al. 53"54 For T <  T(Nc) (see Table 2), 
equations of  the type illustrated by eqn (1) are used, 
depending on which of the G4RM is used. 

For  f < f~o(= 1/T(Nc)), the heavy solid lines in Fig. 1 
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show FS(73 computed from eqn (27). For  R = 10 km, 
H = 0 and M = 4 (bottom heavy solid line), since $1 
and A are both greater than 4S, FSFF(T) contributes 
mainly to FS(T), and so FS(T) ~ 1/T 2. For M > 7, 
$1 and A are smaller than 4S, and the amplitudes of 
FS(T) shown in Fig. 1 are dominated by the flat 
portion of FS(T) ~ dp/r (see eqn (13)), for T near and 
longer than 1/fl. For M = 5 and 6, the spectra, FS(T), 
display a progressively changing slope for f < f l .  With 
increasing M (increasing S), this slope decreases from 
- 2  towards 0, as M goes from 4 to 7 and 8, in the period 
range shown in Fig. 1. 

C O M P A R I S O N  OF VARIOUS S O U R C E  
P A R A M E T E R S  WITH P R E V I O U S  DATA A N D  
IN TERPRETATION 

The selection of T(Nc), where the empirical (eqn (1)) and 
extrapolation equations (eqn (27)) meet, and the assumed 
dependence of W and L on magnitude define the near- 
field and the far-field long period Fourier spectral 
amplitudes of strong motion as outlined in the above 
eqns (13) and (24). These equations, in turn, imply a 
number of other source characteristics, which can be 
compared with other independent estimates and with 
other observations. In the following are shown some of 
these comparisons, to test the suitability of the chosen 
functional forms of the eqns (13) and (24), of their scaling 
parameters, and of the overall extrapolation method. 

Permanent displacements 

By computing Fourier spectrum amplitudes (in the near 
field) for T---, oc, it is possible to evaluate the average 
dislocation ~ (in cm) implied by the G4RM models and 
by the choices for L and W (Table 5 (later); L and W 
will be discussed later). For  this, we first equate eqns (1) 
and (13) at Cac = 27r/Tc, assuming that wr is given by 
eqn (14) (L and W will be computed from eqns (29) and 
(30) for given M) and compute dp. Then, letting ca ~ 0 
in eqn (11), and multiplying dp by 2 we obtain ~. The 
result can be compared with other independent 
estimates of ~. For continuity with the previous 
studies, zz and to focus on earthquakes which contrib- 
uted to this data base, 44'45'55 the data on ~, as shown in 
Fig. 2 are used. The shaded regions correspond to 
estimated from the G4RM, for probabilities of  excee- 
dance (p(e, T) in eqn (7)) equal to 0.1, 0"5 and 0-9, and 
for the fault model 3 (Table 5 (later)) as an example. It is 
seen that the trends of  fi associated with the GRRM (as 
T ---, co) are in excellent agreement with the estimates of 

using strong motion data, but are larger than the 
estimates of Thatcher and Hanks, 56 which are based on 
distant seismological recordings. 

Analysis of the accuracy of  ~ will reveal that 
considerable simplifications are required to obtain the 
data shown in Fig. 2. Likewise, the above extrapolation 
of FS(T--* oo), using eqn (13), to evaluate FS(T) for 
T > T(Nc) depends on the proper choice of  car versus M 
(i.e. choice L and W versus M) and on the selection of 
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Fig. 2. Comparison of seismically measured (Thatcher & Hanks, 56 Trifunac, 44'45 Fletcher et al. 55) and calculated (using G4RM) 
average dislocation, ~, versus magnitude, M. The three shaded bands show the range of ~ for probabilities of exceedance equal 
to 0' l, 0"5 and 0.9. The variations within each band show the fluctuations and differences among the four scaling models (l. MAG- 
SITE, 2. MAG-DEPTH, 3. MAG-SITE-SOIL and 4. MAG-DEPTH-SOIL) and for the fault model 3 representation of L and W 

(see Table 5). 
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Ne in T(Nc). Yet, the agreement of the estimated 
(using eqns (1) and (13) at a;c), with the independent 
estimates in Fig. 2 suggests that the empirical spectral 
amplitudes of FS(T) contain most of the relevant 
information, up to and including T = T(Nc), to define 
the average FSNF(T ) for T>> T(Nc). 

C o m p a r i s o n  o f  M 0  determined from strong m o t i o n  
a c c e l e r o g r a m s  with other  e s t imates  

Equations (21), (23) and (25) result from a simplified 
consideration of  the shear wave spectra only, while 
FS(T) estimated from eqn (1), via one of the G4RM, 
represent the Fourier amplitudes of  the complete strong 
motion signal including all the waves. In recent work on 
local magnitude scale 23 computed from strong motion 
accelerograms, M TM, it was found that using the 
complete time history of  strong motion near a source 
leads to systematically larger estimates, when compared 
with more distant seismological estimates of  ML. This 
difference D(I~fSL M) = MSL M - M p  (where Mp is the 
published magnitude), for the strong motion data in 
the Western USA, is summarized in Table 4. It can be 
used to adjust the moment M TM, computed from eqns 
(19) and (25), to agree with the distant (say further than 
200 kin) estimates of  the moment M 0 

loglo Mo ~ log,o M TM - kD(/l~ tsM) (28) 

In eqn (28), the factor k is the empirical slope of 

28 - 

26 

¢0 

~D 

-o 24 

Q 

o ..¢ 
22 

0 ,-.¢ 

20 

Table 4. a D(A=/sM) = M S L M b  - -  Mp c versus Mp 

Mp D (/l~t SL M ) Mp D(/~ ¢sM ) 

3.1 1.30 (1"70) d 6"4 0.27 (0.29) 
3-5 1.24 (1.60) 6-8 0-03 
4.0 1.15 (1.45) 7.0 -0.11 
4.5 1.05 (1.26) 7-4 -0.40 
5.0 0.9 (1.05) 7.7 -0.63 
5.5 0.72 (0-81) 8.0 -0.87 
6'0 0'47 (0"53) 

a From Trifunac. 23 
b Local magnitude estimated from computed response of 
Wood-Anderson seismograph excited by the recorded strong 
motion acceleration. 
c The published earthquake magnitude typically corresponding 
to ML for Mp _< 6.5. 
dD(M'SM) as used in this study is based on the subjective 
manual fit of the data 24 in the low magnitude range, typically 
M < 5. The values shown inside brackets represent the smooth 
parabolic fit to all data as in Trifunac. 23 

loglo Mo versus M (e.g. Wyss and Brune57), and M TM is 
the seismic moment computed from eqns (18), (24) 
and (25) using the strong motion data in terms of the 
G 4 R M  ( M  TM = Cs47rpR~3). The author used k = 1 for 
M < 4 " 5 ,  k = 1 " 2 5  for 4 . 5 < M < 5 ,  k = 1 . 5  for 
5 < M < 7 ,  a n d k = l . 3 f o r M > 7 ,  ineqn(28) .  

Equation (28) can be used then to evaluate M 0 from 
M0 TM, and to compare it with other independent distant 
(> 200 km) estimates. This is shown in Fig. 3, where the 
three shaded zones, for probabilities of exceedance equal 
to 0.1, 0"5 and 0"9, show lOgl0 M0 versus magnitude. In 
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Fig. 3. M 0 versus M for selected teleseismic (Wyss & Brune 57) and strong motion estimates (Fletcher et al., 55 and Trifunac, 44"4s) 
of M0. The three shaded regions show the range of estimates for three probabilities of exceedance (0"l, 0"5 and 0"9), computed 

for the G4RM. 
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this calculation, the author used a variable value of #/3 
as follows. The typical shear wave velocity in the source 
region was assumed to increase linearly from 0.5 km/s at 
the surface to 4km/s at a depth of  10km. The material 
density was also assumed to increase linearly, from 
2g/cm 2 at the surface to 3g/cm s at a depth of 10km. 
The fault surface was assumed to be vertical with the 
lower long edge (along L) at H = 10 km, and with the 
top edge at H -  W (km). # and p were calculated at 
depth H - W/2, for W specified by one of  the four fault 
models (see Fig. 4 and Table 5). The resulting #/3 ranged 
from 4.7 x 1016dyne/cm/s (for M = 8) to 18.12 × l016 
dyne/cm/s  (for M = 3). The straight line given by 
logl0 M0 = 1.5M0 + 16, and selected data on field and 
seismic estimates of the moment M0 using body 
wave spectra and using strong motion data are also 
shown in Fig. 3. It is seen that the agreement between 
our estimates based on eqn (18) and the above 
procedure, and the results from the previous studies is 
good. 

A trend of departure of the data points on lOgl0 M0 
versus magnitude from a straight line (with the slope 
k ~ 1.5) near M = 4 has been observed for several data 
sets in California and elsewhere. 5s Its explanation has 
been sought in terms of different stress drops for some 
M < 4 events, resulting in systematically higher corner 
frequencies. 59'6° Also this change occurs for events 
whose corner frequencies are close to the corner 
frequency of the Wood-Anderson  seismometer. ~2'55 
The physical considerations of the source mechanism, 
for most earthquakes (with rupture time longer than 
5-10s,  and with rise time shorter than ~5s) ,  lead to 
lOgl0 M0 ~ 1.5M. For small earthquakes (with magni- 

tudes less than ~ 4-5),  having smaller dimensions and 
shorter rise time, 61'62 logl0 M0 "~ M. 

Using the equation lOgl0 E s = 1.5Ms + 11.8 to relate 
the surface wave magnitude, M s , and the total energy of 
seismic waves, 63 Es, and the equation Es = rl6"Mo/#, 
where ~ is the apparent stress, leads to 

log10 M0 = 1.5Ms + 11.8 - log10 r/t7 
# 

For  r/~ = 10bars, and equating M s with ML for mag- 
nitudes smaller than about 7, gives logl0M0 = 
1.5M+16.1.  In Fig. 3, showing the trends for the 
G 4 R M  and the four fault models (Table 5), it is seen 
that the average trend of  iogl0 M0 versus M is close to 
r/~ = 10-20 bars. 

For  completeness of this discussion, note that since 
M 0 = #~A and A ~ ac × lO (b+d)M (see Table 5), and 
2 =  C~cW/#  (Table 3), one can write logl0M0 = 
lOglo(C~tyac 2 ) + ( b + 2 d ) M .  For M < M . ,  b+2d, -~  
1.5, and for M > M. ,  b+2d,-~ 1.1, Also, for M <_ 4, 
l o g 1 0 a ~ - 0 " 7 5 + ~ ,  for 4 < M < 6 ,  l o g l 0 a ~ l M ,  
and for 7 < M < 8 ,  l O g l 0 a ~ l - 4 + ( l / 9 ) M .  Thus, 
when M < 4, the G 4 R M  imply logl0M0 ~ 2M, 
for 4 < M < 6 1 o g l 0 M 0 ~ l - 5 M ,  and for M > 7 ,  
logl0M0 ~ 1.3M. However, for M < 4 ,  f l  and f2 
become comparable to, and for small M, exceed fp 
(Fig. 1), and so our estimates of W and L (via f l  and 
f2) may not be reliable, and are probably too large for 
this magnitude range. The estimates of log10 M0 larger 
than the linear trend implied by 1-5M+ 16 in Fig. 3, for 
M < 4, may not be real, but merely a consequence of the 
natural low-pass filtering of the spectra of recorded 
motions by low Q. Many small magnitude strong 
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Fig. 4. Fault  length (L) and width ( W )  versus earthquake magni tude  for models  1, 2, 3 and 4. 
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Table 5. a Coefficients a and b in Lmin = a x 10 bM and c and d in W = c x 10 dM 

Fault length Lmi n (km) Fault width W (km) 

Model b a b 

1 0"009 31 0"515 

2 0"0133 0-50 

3 0"009 31 0'515 

4 0-00931 0'515 

W =  
-3 .77+  1.347M M > 3.1 

0.131M M < 3-1 

c d 
0"1 0"25 M > 3.5 

W=L for M < 3 . 5  
0.132 0-245 M > 4.25 
W = L for M < 4.25 
0.132 0.245 M > 5"5 
0.0145 0.419 M < 5.5 

a In the text these magnitudes are designated by M.. 
b Fault models 1-4 have been chosen to illustrate the plausible variations in W and L (allowed 
by the data), and the consequences of these variations on other characteristics of the models. 

motion accelerograms (M < 3.5) must be recorded near 
or at the source (e.g. A < 10km) to interpret the trends 
of  lOgl0 Mo,fl and f2 versus M in this magnitude range. 

Equations (19) and (25) imply that Cs "~ 1/R, while 
the amplitudes of  FSFF, computed from FS(T) at 
T(Nc), attenuate like A ~°(r) (see eqn (2)). However, Cs 
is computed from eqn (25) at different cut-off periods 
T(Nc), and so it depends on magnitude directly 
through FS(T) and indirectly through W and L (i.e. 
T). To verify that Cs ~ 1/R and that eqn (19) indeed 
results in M0 which is independent of  R, the author 
computed lOgl0 M0 versus M for R in the range from 
0 to 200km. For 50 < R < 150km, the results were 

insensitive to R. For the cases considered, near 
R - - 2 0 0 k m ,  eqn (28) underestimated lOgl0M 0 by 
about 0-2. For R < 50km, FS(T) in eqn (1) begins to 
be sensitive to the near-field effects, and eqn (28) ceases 
to apply. 

C o m p a r i s o n  with o ther  e s t i m a t e s  o f  L and W 

For  intra-plate earthquakes, the estimates of  the fault 
width, IV, suggest growth of loglo W versus magnitude, 
up to W ~ 5 - 1 0 k m  and for M,,~6.  For larger 
magnitude events, W seems to become less dependent 
on magnitude. 4°-43'46-48'64 Correlations of  the fault 
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Fig. 5. Field and instrumental estimates of the fault width (W) and the fault length (L) versus magnitude M. 30'44'45'55"64-67 Lmi n and 
Wmi n (e.g. for Model 2), assuming unilateral propagation of the dislocation, are shown by the heavy continuous (L) and broken lines 
(W). Symmetrically bilateral faults would result in two times larger fault dimensions. All other faulting falls between these two 

estimates and is shown by the shaded zones in this figure. 
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length, L, and magnitude show large fluctuations (for 
3 < M < 8), but most estimates tend to fall between 

Lmi n ~ a × 10 bM (29a) 

and 

Lma x ~ 0"20 × 10 0'40M (29b) 

where L is measured in kilometers, s3's4 
The fault width W can be approximated by 

W - ~  c × l0  aM (30a) 

or by 

W = e + f M  (30b) 

Table 5 presents the coefficients a - f  for the four cases 
(referred to as fault models 1-4) used as examples in this 
study (Fig. 4). As will be seen from the following, it is 
remarkable that both L and W can be approximated 
with so simple functional forms and for such a broad 
range of magnitudes. Furthermore, various constraints 
on the spectral amplitudes limit the permissible fluctu- 
ations of  L and W to a relatively narrow range, making 
fault models 1 -4  very similar, and thus controlling the 
possible range of the coefficients a, b, c, d, e and f ,  which 
were chosen here by trial and error. 

In eqn (14), L = a ×  l0 oM was chosen, which 
corresponds to Lmi n already mentioned in eqn (29) and 
for a and b as given in Table 5. Also Wmin = W was 
chosen (as in eqn (30)). As will be clear from the 
fo l lowing ,  Lmi n and Wmi n correspond to the smallest 
fault dimensions for unilateral faulting. For  bilateral 
(symmetric), faulting L ~ 2Lmi n and W ,,~ 2 Wmi n . 

For small intra-plate sources (e.g. M < 4-5), the 
fault length, L, and width, W, are about the same. 
For larger earthquakes, the fault continues to grow 
mainly through L, while W may only continue to 
increase slowly until it reaches the width of the 
seismogenic zone. A range of models describing W in 
terms of M has been considered in this paper. This 
analysis showed that the permissible variations of W 
versus magnitude are controlled well by the available 
data and suggested typical models with W =  L for 
M < M .  and W = c x  10 dM for M > M .  (Table 5). 
This dependence of L and W on magnitude is also in 
good agreement with the data on the field estimates of 
L and W (Fig. 5) and with the data on the second 
corner frequency, f2, which is seen in the far-field 
spectra of  shear waves, 2° and can be approximated by 
2 .2/W (eqn (23)). 
In Fig. 5, the shaded zone to the right of Lmi n and Wmi n 

(see eqns (29a) and (30)) outlines the range 
Lmi n < L < 2Lmi n and Wmi n < W < 2 Wmin, in this 
example for the fault model 2 (Table 5). In 

L W 
r = - + (assuming that L >> W) 

v 

the duration, r,  is defined by a dislocation propagating 

un i l a t e ra l ly  Zmi n km from the focus at one end of 
the fault, towards the other end of  the fault. Since it is 
the duration of  faulting which is constrained by o Jr and 
is fitted to the strong motion spectral amplitudes, it is 
seen that, for bilateral faulting, our scaling implies that 
the fault length L = 2Lmi n . Thus, all field observations 
of fault length falling between Lmi n and 2Lmi n would be 
in agreement with our interpretation of near-field strong 
motion data, assuming some distribution of events in 
the range between unilateral and bilateral faulting. 
Detailed comparison of our estimates (exemplified by 
the fault models 1-4) with field and seismological 
estimates of  fault length and width 53's4 (Fig. 5) indicates 
good agreement. 

C o r n e r  f r e q u e n c i e s  3q = ( ~  + _ ~ ) - 1  a n d  f 2  - 2-zw 

Figure 6 shows lOglof2Mo and loglof2Mo plotted 
versus loglo Mo for the four fault models. These can be 
approximated by the linear trends 

1 
IOgl0 f2M0 = 15"1 + ~lOgl0 M0 (31) 

2 
logl0f~M0 = 7.7 +~logl0M0,  logl0M0 > 23 (32) 

For  small M 0, f l  and f2 are nearly the same. Near 
logl0M0 ~ 20, f2 slowly becomes larger than f l ,  and 

28 

26 

24 

22 

20 

I lOgl0(fl2M0) = 15.08 + 0.333 logloM 0 
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Gusev (1983) / ,  
/ 

Z , 

Model 1 
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2O 
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22 24 26 28 
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Fig. 6. Log10 fl2Mo and log10 f]Mo versus log10 M0. 
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Fig. 7. Log10 M 0 versus lOgl0 fl (after Chouet et al.7°), and 
log10 f2 (using data from Refs 3, 15-17, 55, 60, 68, 69, 71, 72). 

after a transition region, 20 < loglo M0 < 23, 
log]of]M0 attains its own trend as in eqn (32). The 
trend of  log]o fl2M0 as used by Gusev 3 is also shown, 
and agrees well with our results. 

Figure 7 compares our results on logl0 M0 versus 
logl0 f l  and logt0 f2 with the analysis of Chouet et al. 7° 
It is seen that our curves for the extrapolation models 
1 -4  for f2 and f l  agree well with the observed corner 
frequencies, with the corresponding trends for f l  of  
Hanks 71 and Gusev, 3 and with f2 from Papageorgiou 
and Aki. 15 For logloM 0 < 19, the observed corner 
frequencies in the paper by Chouet et al. 7° cease to 
increase with frequency, apparently due to the low- 
pass filtering effects of the attenuation. The corner 
frequency of  Hanks and McGuire 72 is close to our 
loglo f2 for lOgl0 Mo < 25, and then is roughly in the 
middle between our logl0 f l  and lOgl0 f2 for 
log10 M0 > 25. 

Another way of combining the data on f l ,  f2 and M o 
is to plot logl0f2Mo versus f.  Figure 8 shows an 
example (fault model 1 in Table 5) of  our estimates of  
f E M  o and f 2 M  o versus f ,  and compares those with the 
data used by Papageorgiou. 2° In making this com- 
parison, no attempt is made to establish what is the 
physical meaning of  f2. It is only recognized that 
such a corner frequency is observed by some investi- 
gators 14'73 and that it is not difficult to associate it with 
[2 "~ 2.2/IV. The fault models 2, 3 and 4 result in very 

similar trends, and agree equally well with the data on 

f l ,  f2 and Mo. 

Character i s t ic  source  durations To and ~- 

Assuming that the time rate of  growth of the dislocation 
amplitudes is proportional to the effective stress drop, 4 
and that the multiple events are excluded from this 
consideration, the dislocation rise time To (Table 6) can 
be estimated from 

T O ,-~ ~--~ (33) 

This should also be related to the time it takes for the 
dislocation to propagate through the full fault width W, 
and since W,,~ l/ f2,  f2To should be nearly constant, 
perhaps only slowly changing with magnitude (i.e. the 
fault geometry via C~; see Tables 3 and 6). Thus, in 
terms of the overall source duration characteristics 
(integrating over the high frequency pulses that may 
result from asperities and fault barriers), T O might be 
viewed as the shortest overall characteristic duration of  

L the source. On the other hand, ~- = T + To can be viewed 
as the longest characteristic source duration, where v 
can be chosen so that it incorporates the delays between 
the multiple rupture events, when those do occur in the 
corresponding frequency and wave length domains. 

Figure 9 shows the trends of  the durations To and 
-c = l/f1 versus seismic moment M0 for the G 4 R M  
studied here. For  comparison, it shows also the data on 
source duration compiled by Somerville et al. TM Their 
source durations were estimated from the duration of  
triangular or trapezoidal source functions, which 
provided the best fit to the teleseismic long and short 
period body waves. Their data contain 22 events which 
were recorded in California between 1933 and 1983 and 
which coincide with most of  the events contributing to 
our strong motion data base used in this work. The 
method of  Somerville et al. TM should give reasonable 
estimates of  source duration for simple events (corre- 
sponding to To), but it will underestimate the source 
duration for multiple rupture or multiple plane events. 
This seems to be confirmed in Fig. 9 where most points 
fall around T O and between T O and 7- = 1/fl, but in most 
cases do not reach r.  

Fault  area 

The fault area, A, is directly related to the estimates o f f l  
W a n d S ,  since W,,~ v/J~ and L ,~ v / [ ] ] ( l  + T~-~)], giving 

A = [v2/(flf2)] 1 +~-.-.-.~ (34) 

Using the approximations for L = alO bM and IV= 
c l O dM gives 

A = aclO (b+d)M (35) 
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Then, from Table 5, ac  ~ 0-001-0.0017 and (b + d) 
0.74-0.77. For large events (M > M,),  Table 5 thus 
implies 

1 
logl0 A ~ ~ lOglo M0 - 11, M0 > 1023 (36) 

assuming 57 that logl0M0 "~ 1 .45M+ 16, and that 
M 0 > 1023. For M < M,, ac  ~ 0.0001 and b + d ~ 1, 
giving 

2 
logl0 A ~ ~ lOgl0 M o  - 14.8, M 0 < 1023 (37) 

Thus, our four fault models result in the slope of 
logl0A versus logloM0 equal to ~ 2 / 3  for M < M,, 
and to ~1/2 for M > M,. We note that the equation 
logl0 M0 = 3 lOgl0 A + 22.25, for 1025 < M0 < 103°, 
used by Purcaru and Berckhemer 75 would be identical 
to eqn (37) if extrapolated to M < 1025. This remarkably 
constant slope, equal to 2/3, for the entire range 
1021 < M < 1030 implies logl0 #~ ~ constant. 

Table 6. Average rise time To* in seconds and 
average Co*, versus magnitude 

M T o (s) a C~ 

3 0"05 0'4 
4 0"31 0"5 
5 0'73 0-65 
6 1'6 0-85 
7 5'4 1 "6 
8 (26'4) (1-6) 

a# / /3  = 0"3 × 106 dyne s/em 3. 

Starting with the definition of seismic moment 
M 0 =/_tAB and representing ~ ,-~ C~ ~ gives 

logl0 A = logl0 M0 - logl0 C~ We (38) 

An advantage of this expression is that it eliminates # 
and can be used to test the internal consistency of 
various estimates when # is not known. Using averages 
from the four fault models to compute Ct~ (Table 6), 
logi0 W and logl0 Mo, a family of curves representing 
eqn (38) can be shown in Fig. 10, for ~ = 1, 10, 100 and 
1000 bars. More directly, M o =/_t~A gives 

logl0 A = log10 M o - log10 # - logl0 ~ (39) 

In eqn (39), loglo t~ can be computed from the long 
period estimates of  spectral amplitudes (eqn (13) and 
Fig, 2) in the near field, and lOgl0 M0 can be determined 
from the long period spectra of the far-field motion (eqn 
(19) and Fig. 3). For  the fault model 2 as an example, 
and for the range of amplitudes computed from the 
G 4 R M ,  eqn (39) is shown in Fig. 10 by one of the 
shaded zones. 

For  a circular fault and known stress drop, log10 A 
can also be written as 

16 
2 [log,0 M0 - l O g l 0 ~ t y  ] (40) logl0 A = 

Using the average stress drop for the G 4 R M  results in 
the second shaded region shown in Fig. 10. The slope 
of  this equation, 2/3, is consistent with that of eqn (37) 
for M < M,, while W ,-~ L for the four fault models 
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(Table 5). This slope is apparently maintained as long as 
W and L are approximately the same, even for the 
largest faults on the subduction zones (e.g. Chile, 
Alaska; Kanamori and Anderson61). In contrast, for 
the strong motion data in California, where W is limited 
by the width of  the seismogenic zone, for magnitudes 
near M,, this slope reduces to 1/2. 

Figure 10 also presents examples of lOgl0 A, assuming 
circular dislocation and based on the spectral analysis of  
strong motion accelerograms. 44'45'55 It is seen that 
A = WL (the solid continuous curve in Fig. 10) is close 
to these data, but may overestimate A for M < 10 23. For 
M0 < 10 23, the data points are also in agreement with 
logl0A = 0.83 l o g l 0 M 0 -  18.4, which is equivalent to 
logl0 A = 1-21M s - 5.05 in B~th and Duda. 76 

DISCUSSION AND CONCLUSIONS 

The extrapolation equations in this work are based on 
a simplified description of shear wave spectra. This 
representation does not evolve from a solution of some 
specific source slip, but can be thought of  as an 
intuitive collection of  relevant parameters and func- 
tional relationships based on simple dimensional 
analyses, which result in a coherent picture of  the 

main features of  strong ground motion. The remark- 
able outcome of this exercise is that the various 
comparisons of  our model with the independent 
estimates of  seismic moment and average dislocation 
lead to good agreement, and to resolution and scatter 
which are consistent with many other independent 
estimates. 

The largest uncertainties in our extrapolation exist 
near T(Nc), where the empirical scaling models 
approach the recording and processing noise. The tests 
performed so far suggest that the resulting FS(T) are 
probably very realistic for 3"5 < M <  7 and for 
horizontal ground motion. The slopes and amplitudes 
of empirically computed FS(T) for vertical motions 
suggest that near T = T(Nc) our empirical models may 
not be reliable for M >  6.5. To understand these 
amplitudes, we need more recorded accelerograms for 
M > 7 and so we must patiently wait for these data to 
become available. 

Extrapolation of FS(T) by eqns (13), (24) and (27), 
from T(Nc) towards T ~  c~s appears reasonable and 
agrees favorably with the known trends of the seismic 
moment, M 0, and of the average dislocation amplitudes, 
~, versus earthquake magnitude. Since the corner 
frequency, 1/r, in the near field ground motion is ,,~v/r, 
where v is the dislocation velocity (typically between 2 and 
3 km/s), and r is the representative source dimension, it is 
seen that 7- can be larger than T(Nc). This is so assuming 
that, for the frequencies considered here, the rupture 
occurs as a 'smooth' process. Many studies have suggested 
that the fault slips irregularly, with large dislocations 
distributed at several or at many 'hot' spots, with large 
dislocation amplitudes, making larger events look like a 
sequence of  smaller events. While this faulting behavior 
can affect r appreciably, we do not have, at present, 
reliable data to identify such behavior in our analysis. 

The highly 'local' nature of  strong motion recordings, 
local in the sense of the proximity to the fault (less than 
say 100km), and the fact that it is ~ and not the overall 
source magnitude or moment and the long source 
dimensions (L) that govern the near-field strong motion 
amplitudes, all agree with the observed trends of  strong 
motion amplitudes predicted by the G4RM. 

Numerous further tests and studies of  the relation- 
ships analogous to eqns (13), (24), (27) and (33) (and 
of the associated amplitudes, corner frequencies and 
scaling parameters) are possible. Also the empirical 
equations exemplified by eqn (I) can be used to 
investigate the high frequency attenuation and the 
trends implied by the peaks of  spectral amplitudes for 
frequencies less than 25 Hz. Some of  these studies have 
been completed s°'S1 and will be presented in future 
papers. The picture which emerges from this work is 
that of detailed internal consistency and agreement with 
near strong ground motion and distant seismological 
inferences on one hand, and with the simplified 
theoretical source representations on the other. 
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