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SUMMARY

The system damping, the system frequency, the relative building response and the base rocking response peak amplitudes
are studied, as those depend on the building mass and height, the flexibility of the soil, the structural damping, the type of
incident waves and their angle of incidence. A linear two-dimensional model is used, which assumes the soil to be
a homogeneous isotropic half-space, the foundation supporting the building to be a rigid embedded cylinder, and in
which the building model is an equivalent single-degree-of-freedom oscillator. The system frequency and the system
damping ratio are determined by measuring the width and the frequency of the peak in the transfer function of the
oscillator relative response, using the analogy with the half-power method for a single-degree-of-freedom fixed-base
oscillator. Previous similar studies are for dynamic soil-structure interaction only, and for simplified models in which the
stiffness of the soil and the damping due to radiation are represented by springs and dashpots. The study in this paper
differs from the previous studies in that the wave passage effects (or the kinematic interaction) are also included, and that
no additional simplifications of the model are made. Results are shown for excitation by plane P- and SV-waves.

INTRODUCTION

Studies on dynamic soil-structure interaction have shown that the transfer function of the motion of
a building on a flexible foundation medium may differ significantly from the transfer function of the motion
of a fixed-base model. The interaction introduces `damping' because of the radiation of the building energy
into the soil, and, so, the relative building response is bounded even in models without structural damping.
The system frequency, the system damping and the relative building response, associated with the funda-
mental mode of vibration, are affected most. The frequency of the first peak of the transfer function (between
the relative building response and the incident wave motion) is lower than the fundamental natural frequency
of the fixed-base model.

The system damping and the change of the system frequencies, during dynamic soil-structure interaction
have been studied by several authors2-1, 7, 8 using some analogy with a single- or a multi-degree-of-freedom
(SDOF and MDOF) fixed-base oscillator. Bielak2 and Luco5 presented simple analytical expressions for the
modal damping ratios, the system frequencies and the peak responses for SDOF and MDOF building
models on a flexible foundation medium, by neglecting the higher order terms of the functions expressing the
damping coefficients. In his later work Bielak4 arrived at similar analytical expressions assuming that the
modes of the flexible base structure are orthogonal. Tsai,8 assuming orthogonal modes of vibration of the
flexible base building, calculated the damping for each mode by matching the shape of the transfer function of
his model with the `actual' transfer function at several locations along the height of the building. Rainer'
calculated the total damping for SDOF and MDOF building models (i) measuring the amplitude of the
relative building response transfer function at the fundamental system frequency and (ii) from the ratio of the
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energy dissipated during one cycle and the total potential energy during one cycle, associated with
a particular mode of vibration. The system response during dynamic building-soil interaction, for buildings
on a prismatic embedded foundation, has been studied by Bielak.3 In all of these models, the stiffness of the
soil and the damping via radiation are represented by a pair of a spring and a dashpot for each degree of
freedom of the foundation, and the excitation is a horizontal driving motion with constant amplitude.

In this paper, the system frequency, the system damping ratio, the peak relative building response and the
peak base rocking response during building-soil interaction are studied, as functions of the flexibility of the
soil, of the structural damping ratio, of the building mass, of the type of incident waves and of the angle of
incidence. Besides the dynamic (inertia) interaction, the kinematic interaction (wave passage effect) is also
included. The effects of the scattering and diffraction of the incident waves from the building foundation on
the system damping, during building-soil interaction, have not been studied so far. One of the aims of this
study is to see under which conditions these effects are significant.

Incident plane P- and SV-waves are considered in this study. Because the first mode contributes most to
the building response, in this analysis, the contribution of the higher modes is neglected. In the two-
dimensional model used, the building is represented by a single-degree-of-freedom equivalent oscillator
supported by a circular foundation embedded into a homogeneous elastic half-space. The material damping
in the soil is ignored. The analysis is linear and the substructure approach is used. The model is analytical and
allows closed-form solutions for the motions of the building base and for the relative response. The analytical
expressions for the foundation impedance matrix and the foundation driving forces for this model have been
derived by Todorovska and Trifunac,10 in their study of soil-structure interaction for a shear wall for
incident plane P- and SV-waves and for surface Rayleigh waves. Their two-dimensional model has been
chosen in this study because it allows analytical closed-form solutions, and, therefore, better and more
explicit understanding of the interaction phenomena.

With the current developments in numerical modelling of the foundation impedance functions, it is
becoming possible1 6 to consider irregular three-dimensional embedded foundations in a visco-elastic
layered half-space, and to postulate different damping mechanisms in the soil surrounding the foundation. As
these numerical models are further refined, it is becoming essential to establish some reference cases, for
relative comparison with simple analytical solutions, which have been developed under controlled and easily
understood conditions. One aim of this work is to contribute one such analytical solution.

The energy dissipated via scattering and diffraction from the building foundation should be studied more
explicitly, and in the absence of other dissipation mechanisms, so that we can understand its full potential for
reducing the relative response amplitudes. In this paper, we characterize this dissipation via a simple
analogue of viscous damping, measured by the width of a SDOF relative response peak, and show how it
depends on all other system parameters.

THE MODEL

In the model, shown in Figure 1, the building is represented by a single-degree-of-freedom (SDOF)
equivalent oscillator supported by a rigid circular foundation embedded into a homogeneous elastic
half-space. The half-space has shear modulus µ, shear wave velocity /3, Poisson's ratio v and no material
damping. The oscillator consists of a rod which at one end has a concentrated mass, and at the other end is
connected to the foundation, at point 0, through a rotational spring and a rotational damper, connected in
parallel. The mass per unit length in the y-direction of the oscillator is me. It has height H and radius of
gyration rb. The rotational spring has stiffness Kb, and the dashpot has damping constant Cb. The
foundation has width 2a, depth h and mass mf per unit length in the y-direction.

The x-O-z coordinate system is an inertial system with origin at the centre of the top surface of the
foundation at rest. The foundation has three degrees of freedom with respect to this coordinate system:
horizontal translation A (in the positive x-direction), vertical translation V (in the positive z-direction) and

rotaion cp (clockwise). The building model has only one degree of freedom with respect to the founda-
tion-the rocking angle ^rel measured clockwise from the axis ^, which is always perpendicular to the top
surface of the foundation. With respect to the inertial system x-Q-z, the centre of mass of the oscillator has
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Figure 1. The model
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horizontal displacement Ub (in the positive x-direction) and vertical displacement Vb (in the positive
z-direction). In the linear analysis, there is no coupling between the horizontal and the vertical motion of the
mass, which implies

Ub = A + (q +
,

YY
/,rel)H ll)

Vb = V l

By ue' we will refer to the relative horizontal response ue' = 11ire'H. For a harmonic excitation, with circular
frequency w and time dependence e-""t, the system will respond with motion of the same frequency, i.e.

,/,rel = , I,rele-iot
Y V0

A = Ape-iot

where A = {V, A, cpH}T is a generalized displacement vector, and Ap = {V0, A0, gp0H}T is the complex

amplitude of A.

Motion of the building

From the free-body diagram of the oscillator (Figure 1 ), neglecting the moment of the vertical acceleration
- w2 Vpe-" "t the equilibrium of moments about the centre of the base, 0, implies

mbu bH + mbr2 (ip + ^ rel) + KbOrel + Cb,/, rel - mbg ((p + lprel)H
= 0b (2)

where g is the acceleration due to gravity. On the left-hand side of equation (2), the first term is the moment
about point 0 of the inertia forces due to translation of the oscillator mass, the second term is the moment of
the inertia forces due to rotation of the oscillator mass about the point ^ = 0, the third and the fourth terms
represent the moments of the elastic and of the damping forces, and the last term is the moment of the gravity
forces. Equation (2) is equivalent to

z
rel

+ 20)
y,j,rel + w2 ,/,rel - mbH g a wz ,/,rel

IVSY
r1Y Ip wNaH NY

mbH2 A mbH2 g a 2

I H-^+ I wzaHN (3)0 0 N

where Kb/I0 = wN and C,/I, = 2WNC. 1p = mbHz[l + (rb/H)2] is the mass moment of inertia of the
building about = 0, and WN and c are the fixed-base natural frequency and the ratio of critical damping.

The term g/wN a is a dimensionless parameter involving the acceleration due to gravity. For low buildings
this ratio is very small (- 10-4), while for higher buildings it is of order 10'. For example, for a sixty storey
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building with base 2a = 30 m, it has a value - 0.3. The damping raio , ^, for typical buildings ranges between

0 and about 0.1. In calculating H and rb for a two -dimensional equivalent SDOF oscillator that corresponds
to a particular building, it is convenient first to model the building by a homogeneous shear beam10 with
height Hsb and width Wsb equal to the height and the smaller width of the building , and with mass per unit
volume equal to the mass per unit volume for the building. Then , assuming that the equivalent SDOF
oscillator has the same mass per unit length (in the y-direction) as the shear wall, H and rb are related to

Hsb and Wsb as follows: H = Hsb /\ and rb = Wsb/ 12. For a very tall building, for example Hsb = 250 m,

rb/H : 0.08 and for a short building rb/H 0.5.
For a harmonic motion of the foundation , A = A0e -t °, from equation (3), the relative rocking angle

II1re' can be expressed as a function of the displacement of the foundation as

Mb H I(
w)2

9 Mb H

I
o (ON H + \WN + O)NH I o

^0

Y (t) - ( w ) 2 - 9 mbH2

1 - 2i
wN ON wN H Io

(4)

Then , the forces that the foundation exerts onto the building (the vertical force f ( Zb), the horizontal force

f X(b) and the moment about 0, M ob)) can be calculated in terms of the displacement of the foundation, from
the dynamic equilibrium equations of the structure . fX(b) is positive in the negative x-direction , f gib) is positive

up and M o) is positive counter -clockwise. Let Fib) f (b), f Xb), M ob)/H}T be a generalized force vector.

Then, in matrix form one can write

F(b)
= mbw2

[[K (b)]
+ [Cg )] ]

Aoe-iwt

where

with

[K(b)] =

k11 = 1

0

0
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k32
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is the complex stiffness matrix for the building, and

[C(b) ] = 9
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with

C23

C I
H(ON P I0 (ON pa)

is the impedance matrix associated with the gravity forces acting on the building.

(9a)

(9b)

(9c)

Equilibrium of the foundation

Figure 2 shows the free-body diagram of the foundation where f xbl , f (zb) and M o) are the horizontal and
vertical forces and the moment that the building exerts onto the foundation ; f xsl, f ^sl and M (') are the
horizontal and vertical forces and the moment applied onto the foundation by the elastic half-space; mf A,
mf V and I of) ip are the D'Alambert forces of the foundation ; and mf g and point C are its gravity force and
centre of gravity, respectively . All of these forces act at point 0 on the foundation. lofl is the mass moment
of inertia of the foundation about point O. Let F(s) = { f , f xsl, Moll/H }T be a generalized force vector.
F(s) = F(os) + Fos), where Foy and Fo) are generalized force vectors representing the foundation driving forces
(forces acting on the foundation at rest , and due to the free-field motion) and the forces induced in the
half-space due to the deformations caused by the moving foundation, in the absence of incident waves. Fo) is
equal in magnitude and of opposite direction to the force that must be applied to the foundation to keep it at
rest , while it is forced to move by the free -field incident waves. Consequently , Flo) depends" only on the
characteristics of the free -field motion (type of incident waves, angle of incidence and their amplitude),
Fo) depends on the imposed motion A , and they both depend on the shape of the foundation and on the
frequency of the excitation . Fel can be written as

Fol = - 2p [Q] A (10)
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Figure 2. Equilibrium of forces acting on the foundation at point 0
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where 2p [Q] is the impedance matrix for the foundation and p is the shear modulus of the half-space.' o
The equilibrium equations of the foundation are

[Mf]A = F(b) - F(s) - Fgf) (11)

where [Mf] = diag{mf, mf, I(of)/H'} is the mass matrix of the foundation, and Fgf) = {0' 0, mfgccp}T is the
generalized force vector of the gravity forces of the foundation (c is the depth to the centre of gravity). Then,
for given characteristics of the structure and for various types of excitations, equation (11) can be solved for A.

RESULTS AND ANALYSIS

System parameters

Definition of the dimensionless parameters. Since the intensity of scattering of the waves from the building
foundation and the interaction between the building motion and the soil depend on the size of the foundation
relative to the wavelength of the incident waves, and on the stiffness of the building, compared with the
stiffness of the soil, the dimensionless quantities rl = 2a/#T = wa/it/i and qN = 2alIITN = wNa/7r#, respect-
ively, will be used in the analysis, rather than the frequencies w and WN. The meaning of r1 is the number of
wavelengths of the S-waves in the soil, with frequency w, contained in length equal to the width of the
foundation. Then 17N is the value of r1 when the frequency of the S-waves is equal to the natural frequency of
the building, (N. Other dimensionless parameters that affect the response of the building-foundation-soil
system are the mass ratios mb/mf and mf/ms, where ms is the mass per unit length in the y-direction of the soil
replaced by the foundation. The ratios mb/mf and mf/m, are related to the ratios of the corresponding
material densities with the help of a shear beam building model. For example, Mb = Pb WSbHsb I and
mf = p1A11, where Af is the cross-sectional area of the foundation. Typically, the ratio of the mass density of
the building and of the soil is Pb/ps = 0.2.5 We assume in our calculations that the foundation density is also
02 times the density of the soil. This implies that, typically, mf/ms = 02 and mb/mf : 22 H/a for a semi-
circular foundation. In all of the presented results mf /ms = 0.2. The building mass takes values approximately
equal to the typical value, or values that are approximately two times larger or half of the typical value.
Typically, 11N ranges in the interval 0-0.6, and H/a between 0.5 and 3. In the presented numerical results,
0 < qN <, 0.3, H/a = 2 and 5, and the building damping ratio 0 < ^ < 0.12. c = 0.12 is a high value for the
damping in the building, and it was used only to help recognize more easily the trends of the system damping
and of the base rocking with changing ^.

For example, for a 10 storey building (natural frequencyfN = 1 Hz and base half-width a = 15 m), situated
on good soil with shear wave velocity /3 = 400 m/s, for the lumped mass model H/a x 1.9 and qN 0.076. On
the other hand, for a nuclear power plant containment structure 5 (natural frequency fN = 5 Hz and
a = 23 m), situated on harder soil (/3 = 800 m/s), 11N 0.28. The same 10 storey building in Los Angeles
(/3 ,: 250 m/s) would have qN : 0- 12, and in Mexico City, where the shear wave velocity in the soil can be as
low as 40-100 m/s, 'iN z- 03-0.75.

qN depends on the ratio of the stiffness of the building and of the half-space, and on the ratio of the mass of
the building and the mass of the soil replaced by the foundation. For a semi-circular foundation

wNa_ ms 1 a
qN = /3 pa 1nb 17T 3

1
rbn H

+(H

Small 11N means a flexible building and/or stiff soil and large q N means a stiff building and/or very flexible soil.
The limiting value /N -> 0 corresponds to the case of a flexible building on a rigid half-space excited by
horizontal motion at the base Ae - '°(fixed-base building model, no interaction). 'IN oo corresponds to
a rigid building oscillating together with the foundation as a single rigid body.

Input excitation. We consider incident plane SV-waves, with incident angles y = 0°, 20°, 30° (= y^,;t), 45°,
60° and 85°, where ycrit is the critical angle , 10 and incident plane P-waves with incident angles y = 0°, 30°, 60°
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and 85°. (y is the angle between the direction of propagation of the incident wave and the normal to the
half-space surface.) The Poisson's ratio v = 0.3333. The effect of the gravity forces is neglected.

Definition of system frequency and system damping. By `system frequency', and by `system damping', we will
refer to the frequency, and to the usual measure of the width of the peak, of the amplitude of the transfer
function between the relative building response, ue', and the incident wave. The system frequency will be
expressed in terms of the dimensionless frequency rl and will be denoted by rlsys, and the system damping ratio
will be denoted by t'Sys

We will measure Vys from the amplitude spectrum of the relative building response, using the analogy with
the half-power method for a SDOF oscillator. Therefore, we will measure the frequency of the peak of the

response, risys, and the frequencies to the left and to the right of yisys (q, and rig) for which ue' = ube' (nsys)/,/2

Then ^sys can be calculated as

Ssys= 12-q1 N,fl2-q1

S 11 + 12 21!sys

The relative building response is calculated using the equations in the previous section, and solving the
system of equations (11) for A. No additional approximations and assumptions, are made. To reduce the
calculation effort, the foundation driving force Fosl(ri) and the soil impedance matrix [Q(q)] were calculated

Incident SV-waves, y=01
mf/ms=0.2, h/a=1, H/a=2
^=0.005 (s), ('=0.05 ( ), (=0.12 (o)

mb/mf=2
mb/mf=4
mb/mf=8

I

ko(OSys)al

I i i 101 I i I
0.1 77N 0.2 0.3 0.0 0.1 "1N 0.2 0.3

Figure 3. The system damping ratio, CS'Y', the system frequency, j'", the peak relative building response, luti'(ry"A and the peak base
rocking response, I q (, ")aI, versus the relative stiffness parameter, ?1N, for a medium high building (H/a = 2) on a semi-circular

foundation
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only once (at selected frequencies ) for a given type of excitation and foundation shape. Their values were then
substituted in equation ( 11) for different combinations of the remaining parameters . The damping was
measured from the transfer function amplitude, calculated from equation ( 11) at frequencies equally spaced at
On = 0.0017125. Interpolation by cubic splines is used between these points , to determine the peak and the
half-power points in the spectrum.

Vertically incident SV-waves and semi-circular foundation

For vertically incident SV-waves, the free-field motion (motion resulting from the interference of the
incident wave and the wave reflected from the half-space surface in the absence of any inhomogeneities or
irregularities) does not have a rotational component or a vertical component, on the ground surface.
However, because of the embedment, the foundation input motion (response of a massless foundation in the
absence of the superstructure) does have rotation10 owing to the finite size of the embedment, relative to the
wavelength of the incident waves, and because of the anti-symmetric nature of the displacement of the
free-field motion, with respect to the vertical axis of symmetry of the foundation. So, in general the
foundation will rotate because of the rotation of the foundation input motion and because of the action of the
forces from the superstructure.

In Figure 3, the system damping, CsYs, the system frequency , ,1sYs, the amplitude of the peak relative building

response, ue' (yl sYs ) j, and the amplitude of the peak base rotation, I(s)a, have been plotted versus the

Incident SV-waves, y=0°
mf/ms=0.2, h/a=1, H/a=2
"1N=0.05 (`), ')N=0.2 ( )

mb/mf=2
mb/mf=4
mb/mf=8
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lub'(^1Sys)
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Figure 4. The system damping ratio, ^srs, the system frequency , rl'fY', the peak relative building response, Iue'(rjs''s)I, and the peak base
rocking response, ^(p"'(qs ''s )aj versus the damping ratio in the building, ^, for a medium high building (H/a = 2) on a semi-circular

foundation
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`relative stiffness' parameter qN for a typical building (H/a = 2), with damping ratios ^ = 0.005, 0.05 and 0- 12,
and mass ratios mb/mf = 2, 4 and 8 (mb/mf = 4 corresponds to the typical value of Pb/ps). In Figure 4, the
same quantities are shown as functions of ^, for a building with the same values of H/a and mb/mf, and for
qN = 0.05 and 02. In Figures 5 and 6 the same functional relationships are shown as in Figures 3 and 4, but
for a higher building, with H/a = 5, and with mb/mf = 5, 10 and 20 (mb/mf = 10 corresponds to the typical
value of Pb /P,)- Since the system frequency does not depend on the damping in the building, in Figures 3 and
5, q'YS is shown only for C = 0.05.

Asymptotic behaviour as qN -* 0 and as qN -> co . When the soil is stiffer, the system response is influenced
more by the damping in the building, while, when it is more flexible, it is affected more by the building mass
and height. This can be concluded from Figures 3 and 5, where, as q, - 0, the curves corresponding to the same
value of c merge together, while, as qN -i oo, the curves with same value of mb/mf merge together. As qN -+ 0
the system response approaches the response of a fixed-base building model; then ylsY"

- iN S'Ys
ub'(risYs ) -+ ue'(fN) and fp -> 0; the dissipation of the building energy through radiation into the soil then
becomes smaller and goes to 0 in the limit.

As qN -* co, the system response approaches the response of a rigid building oscillating in the semi-infinite
elastic soil medium; then S'Y5(N), ylsYs (rIN) and (p (riN) have horizontal asymptotes that depend on the building
mass and height, and ue' -> 0. Then ri5Ys --* q"9, the system frequency of a rigid building, which is lower when
the building is `heavier'; I cp(riSYs)I -> fp"g, the base rocking when the building is rigid, which is larger when the

Incident SV-waves, y=0°
mf/ms=0 . 2, h/a=1, H/a=5
^=0.005 (•), ^=0.05 (), ^=0.12 (o)

0.2 r-
'.Sys

0.2

0.1

0.0

102

10

0.1

F

C

r

r-

C

10-1-
0.0

1

0.1 0.2
nN

10.0

77 Sys

mb/mf= 5
mb/mf=10
rnb/mf=20

I

I (P(rl Sys) aI

I I I
0.1 0.2 0.3

?IN

Figure 5. The system damping ratio, C'Y', the system frequency, r1'Y', the peak relative building response, Iue'(n'Y')j, and the peak base
rocking response, I c d (q'Y ') aj versus the relative stiffness parameter , nN, for a higher building (H/a = 5) on a semi-circular foundation
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Incident SV-waves, y=0°
mf/m5=0.2, h/a=1, H/a=5

11N=0.05 (`), ry1N=0.2 ( )

(Sys

0.2

0.1

1

0.1

0.0 -

102 0

10

F -----------------

0.2

1

10-11 lo-'l
0.0 0.1 0.0 0.1

Figure 6 . The system damping ratio , CSYS, the system frequency, i f"S the peak relative building response, uti'(i fY" ) I, and the peak base
rocking response, jcp"'(rlsY' ) aj, versus the damping ratio in the building , C, fora higher building (H/a = 5) on a semi-circular foundation

building mass is larger;to ^sys _, C'9 the system frequency of the motion of the base of a rigid building , relative
to the free-field motion , which is smaller when the building mass is larger . (The peak of the transfer function
of the motion of the rigid building , relative to the free-field motion , is sharper and higher when the building is
higher and heavier.)

System behaviour for intermediate t1N. The results show that, for intermediate values of i1N, when both the
building and the soil are flexible, for a given shape of the foundation)' and building height, the peak relative
building response is smaller, the peak base rocking response is larger and the system frequency is lower when
the building mass is larger (Figures 3 and 5). When the soil is stiffer (lower r1N), the system damping ratio is
larger for `heavier' buildings. However, for sufficiently large riN, when the system behaves more like a rigid
body, the system damping ratio is smaller when the building is `heavier'.

It can be seen from the results in Figures 3 and 5 that the peak relative response I ue'(q'y') I is always smaller

when the soil is `softer' (when qN is larger). However, this may not always be the case when there is damping in
the soil.',' The system damping ratio may increase or decrease with qN depending on how large in the
building is compared with ^"g, the limit of (s's when qN --• co. In most of the cases that we considered, < ^"g
and Vys monotonically increases with increasing nN. However, in the extreme case of very high structural
damping (e.g. C = 0.12) and a high building (H/a = 5), c > t;"g. Then, as the soil becomes more flexible (SIN
increases), and the contribution of the building damping to the system damping ratio becomes smaller, the

mb/mf= 5
mb/mf=10

------ mb/mf=20

,7 Sys

L 0.0 1 1
0 0 0

Iub I(q...)I r k0(gsys)a1
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system damping decreases , and, as the example shows, it can be smaller than the damping in the building. It
can be seen from Figure 5 that even when this happens, the peak relative response is still smaller than the
fixed-base response . So, ysY" < C does not imply that the relative building response is larger than the response
calculated when the soil-structure interaction effects are not included (the fixed -base response). However, this
may not be true for a MDOF equivalent oscillator and when the soil has material damping.

It can be seen from Figures 3 and 5 that , in the lower range of r1N, the base rocking is larger when the soil is
more flexible . It is larger when the building damping is smaller . For sufficiently high 11 N, when the building
behaves more like a rigid body , as qN increases , cp (rj ) I approaches monotonically the limit , which is the
rocking response of a rigid building. It may monotonically increase or decrease while approaching this limit
depending on how large it had grown in the region of lower values of riN.

System response versus ^. From the curves in Figures 4 and 6, the following can be seen . The system
frequency q'YS does not depend on ^. The relative building response decreases with ^ at a higher rate when the
building is lower , lighter and on harder soil and it practically does not depend on C when the building is
sufficiently high, heavy and on sufficiently soft soil.

All the curves SYS
(C) are practically straight lines with the slope having values between I and 0 and a value

at C = 0 depending on mb/mf , H/a and qN. Because there is no damping in the soil , when C = 0 the system
damping is due only to radiation and scattering. For the lower and lighter building (H/a = 2 and mb/mf = 2,
4 and 8, Figure 4), when the building is sitting on harder soil (?IN = 0.05), the slope of s

ysYS(C) is close to 1 and
J'SYS( = 0) is small . For heavier buildings (Figure 4) and on softer soil (ylN = 02), the slope of ySYS(4) is small
(the

S

rate of change of ysYs with l; is small) and SSYS (^ = 0) is larger . sY" practically does not depend on C when
H/a = 5 and mb /mf = 5, 10 and 20 (Figure 6 ). It can be concluded that , for a tall and heavy building, the
system damping practically does not depend on the damping in the building.

When the building is lower , and when it is on harder soil (H/a = 2, qN = 0.005), the system damping ratio is
larger when the building mass is larger . For the higher building and on softer soil (H/a = 5 and qN = 02,
Figure 6), for all values of C the system damping ratio is smaller when the building mass is larger (the system
behaves as a rigid body ). From the values of C at which the curves for different values of mb /mf cross each
other, it can be concluded that it also depends on the value of the building damping whether the system will
behave more like a rigid body or like a flexible structure . For H/a = 2 and qN = 0.05 (Figure 4 ), the curves
4SYS(j') cross each other at C ,: 0 - 11, and for H/a = 5 and qN = 0,05 (Figure 6) at C 0.05-0.06. From this, itS
can Sbe concluded that buildings with larger damping act `stiffer'.

If the line C" = C is drawn , it can be seen that , in Figure 4 (H/a = 2), ysYs is greater than the damping in the
building . For the higher building (Figure 6), however, for sufficiently large ^ the system damping ratio is
lower than the damping ratio in the building.

From the curves (p(^SYS ) in Figures 4 and 6 it can be seen that , for system configurations for which the
structural damping affects the system response , the rocking of the base is smaller when the damping in the
building is larger.

Reduction of the system frequency , gSYS/11N. The reduction of the system frequency , relative to the fixed-base
frequency, is illustrated in Figure 7, where the ratio n

sYs/f1N has been plotted versus qN for buildings of different
heights and masses ( H/a = 2, mb /mf = 2, 4 and 8; H/a = 5, mb /mf = 5, 10 and 20; and H/a = 10,
mb/mf = 10, 20 and 40). It can be seen that the reduction is larger when H/a is larger and, for buildings with
the same height , when mb/mf is larger . For example , for the 10-storey building (H/a z 2, and mb /mf = 4),
when the shear wave velocity in the soil Q = 400 m/s, qSYS/r1N 92 per cent; when fi = 250 m/s (e.g. Los
Angeles basin), ISYS/r1N : 75 per cent ; and when $ = 50 m/s (e.g. Mexico City valley), yJSYS/f1N : 55 per cent.

Effects of the type of incident waves and of the incident angle

Because of the scattering and diffraction of the incident waves from the foundation , and because of the
filtering effect of the foundation for shorter wavelengths of the incident waves, the foundation input motion
differs from the free-field motion . (Foundation input motion is the response of a massless foundation under
the action of the incident waves and in the absence of the building .) The free-field motion on the half-space
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Figure 7. Reduction of the system frequency relative to the fixed-base frequency , q'y'/r1N for several buildings on semi-circular
foundations

surface, and, therefore, the foundation input motion amplitudes and phases, depend significantly on the type
of incident waves and their angle of incidence.1 , 12 The horizontal component and the point rotation of the
free-field motion may differ considerably in amplitude, depending on the incident angle and the type of
incident waves. However, in practice, the wave nature of the earthquake excitation of buildings is usually
ignored. The actual excitation, which consists of translations and rotations, is approximated by a syn-
chronous horizontal motion of the base, which corresponds to vertically incident, long compared with the
foundation size, plane SV-waves.

To see the effect of the type of incident waves and their angle of incidence on the system damping ratio and
on the relative building response, in Figures 8 and 9, ^s>' and I ub' I, normalized by the horizontal free-field
amplitude on the half-space surface, I uff 1, have been plotted versus q, for buildings with H/a = 2, Mb /mf = 2,
4 and 8, and for ^ = 0.05. In Figure 8, the excitation is an SV-wave with incident angles y = 0°, 20°, 30°, 45°,
60° and 85°; in Figure 9, it is an incident P-wave with y = 30°, 60° and 85°, and a vertically incident SV-wave
(drawn in both figures as reference). The critical angle, ycri„ for the incident plane SV-waves is 30°. Our results
show that the system frequency practically does not depend on the type of incident waves and on the incident
angle. It can be seen that, for incident P-waves and SV-waves with y < ycri,, ^sys takes very similar values. The
ratios l ue' I / I uff I are also practically the same. However, for incident SV-waves with incident angles y > yc,i,,
the difference in VY" for larger values of qN is noticeable. The differences in the Iue' I/ Tuff I ratios can also be
significant even for smaller f1N, as can be seen from Figure 8. For y = 45° Iue'I/Tuff I tends to infinity for all
nN's and therefore has not been plotted. It can be seen from these figures that the difference in Ss)' increases
with increasing jN (increasing flexibility of the soil). Similar behaviour is observed for the higher buildings.) t

The reason for the dependence of ^sys and I ub' I / I uff I on the type of incident waves and incident angle comes
from the differences in the components of the foundation input motion.10 What makes the case of incident
SV-waves with y > ycr;, different from the rest of the considered excitations is the presence of a considerable
amount of rotation in the foundation input motion, as compared with the horizontal translation, due to the
inhomogeneous wave in the free-field motion. The input base rocking represents an additional excitation to
the base input translation, and it is responsible for the higher values of the ratio I ub' I / I uff I When y = 45° it is
the only excitation, since, then, the input base translation is equal to zero.) 0,12 It also changes the shape of
the system transfer function (causes larger relative response away from the system frequency) and, therefore,
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Figure 8 . The system damping ratio , Csy', and the peak relative building response , Iub" (tjsy' )I, normalized with the horizontal free-field
surface displacement, Iu° )I, for incident plane SV-waves with incident angles y = 0°, 20°, 30°, 45°, 60° and 85° and for building damping

ratio C = 0.05
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Figure 9 . The system damping ratio , y'Y' and the peak relative building response, Iue'(nsys ) I, normalized with the horizontal free-field
surface displacement , Iu°)I, for incident plane P-waves with incident angles y = 30°, 60 ° and 85° and for building damping ratio C = 0.05

affects the system damping. It affects the phases of the base horizontal and rocking response, relative to the
phase of the building relative response. The base rocking is, then, a vector sum of the input rocking and the
rocking due to the inertia forces of the building. From our definition of the system damping, larger ^sy' simply
means wider peaks of I ub' I and of j(pj, since '7sy5 does not depend on the type of excitation.
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To illustrate the extent and the effect of this `additional' excitation, in Figure 10 the transfer function
amplitudes and phases of A, cp and ue' have been plotted for incident SV-waves with y = 30° and 60°. The
model is a higher building (H/a = 2, mb/mf = 4), with low damping (^ = 0.005) and situated on softer soil
(11N = 0.2). The system frequency is tjsys = 0.13. At the system frequency, and for these incident angles, the
amplitudes of the input base translation are A'"p = 2.9 and 1.97, and of the input base rotations are
cp'"PH = 0.3 and 1.38. The ratio I cp'"P HI / I A'np 1 = 0.1 and 3.9. The relative responses are I ub' I = 4.6 and 2. It
can be seen that the rotation amplitude JgpJ for y = 60° does not have a maximum at f1 = 115Y5, but at a lower i,
similar to JAI. The shapes of the phases of A and cp are practically reversed fo y = 30° and for y = 60°. The
quantity A"P + pp'°PH would thus seem more representative for the building excitation than A'"P alone.

To illustrate how different the system response would be if the wave passage effects (kinematic interaction)
are not included, in Figure 11, ^sYs q'YS ue'(^?sYs) / off I and I(p(YlsYs)I / off I are plotted versus r1N when the
foundation is driven only by a horizontal motion with amplitude AlJ= 2 (the solid lines). For comparison, the
response to excitation by incident SV-waves with incident angles y = 0°, 20°, 30°, 45°, 60° and 85° (the dashed
lines) is also shown. Different symbols are used to distinguish the lines for different incident angles. The
building height is such that H/a = 2, the foundation is semi-circular (h/a = 1), the damping in the building is
^ = 0.005, and the mass ratios are mb/mf = 4 and mf/ms = 0.2. Input horizontal displacement A = 2e-'`°` for
the foundation corresponds to excitation by vertically incident plane SV-waves of infinitely long wavelength,
compared to the size of the foundation. In this approximation of the foundation input motion, the scattering
of the incident waves by the foundation and the filtering effect for shorter incident wavelengths are ignored. It

Incident SV-waves

77N=0.2, ^=0.005, h/a=1

H/a=1, mb/mf=4, mf/m5=0.2

1)

Y=30°
Y=60°

7)

Figure 10. Transfer function amplitudes and phases of the base and of the building relative response for incident plane SV-waves with
incident angles y = 30° and 60°
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Figure 11. The system damping ratio, c'YS, the system frequency, n'" the normalized peak relative building response, Iue'gsYsj/Iu`f 1, and
the normalized peak base rocking response, IcpPC'(gsys)aI /Iu« 1, versus the relative stiffness parameter, qN, for incident plane SV-waves (the

dashed lines), and for horizontal input driving motion with constant amplitude I uff I (the solid lines)

can be seen from this figure that , when the wave passage effects are ignored, the system damping ratio is very
close to the values for incident angles y 1< ycrit, but it is smaller than the values for y > y°rit (y = 45°, 60° and
85°). The building relative response , normalized by the amplitude of the driving displacement, A, also has
very similar peak amplitudes to the ones corresponding to incidence below the critical angle, but significantly
smaller than the peak amplitudes for incidence beyond the critical angle. Iuet(riy,) I/Iuff and fP(riSys) /uff I
are not plotted for y = 45°, because for this incident angle I uff I = 0 . The peak rocking response, normalized
by Iuff I, also has similar amplitudes to the case for incidence below the critical angle , but noticeably smaller
amplitudes than for incidence beyond the critical angle. This means that, for incident angles below the critical
angle, most of the base rotation comes from the inertia forces of the building . It can be concluded that, if the
wave passage effects are excluded from the analyses , by assuming simplified excitation, the system damping
ratio, and the amplitudes of the system response , may be underestimated . These effects appear to be caused
by the inhomogeneous part of the free-field motion , for incident angles greater than the critical angle. For
incident plane P-waves, the same conclusions hold as for incident plane SV-waves below the critical angle.

H/a=2

Comparison with results by other authors

The earlier studies are for three-dimensional models, and, therefore, no direct comparison of our results
with the results of these studies is possible. However, the trends of the system response with q, and t' are
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similar. Functional relationships between the system parameters were developed by Bielak2,4 and by Luco.S
Our results for the system damping as a function of the relative stiffness parameter qN are very similar to their
analytical expressions. In terms of our dimensionless parameters, their equations for the system frequency
and for the system damping are

1 1 1 1
Sys )2

1N d r1H
(12)

where qR and qH are the rocking and the horizontal frequencies, in terms of the dimensionless frequency q,
and

Sys 3 sys 2 sys 3 sys 1 3

^SySl^sys) ^N S + I 1 - C SIN ) ]S+-
H+ r-_ R

^\ qH
) nR J

where Cs f CH and CR are the material soil, the horizontal and the rocking damping ratios. From equation (12) it
follows that , as the soil flexibility increases (as riN co), rlsy' --> rl"g which satisfies

1 I 1
1 rigz

11R + 11H

(14)

As the soil becomes very stiff (as'iN -> 0)'isy" -+ r1N. The participation factors for the different damping ratios
in the equation for sys depend on how close rlsys is to 'IN or to rl"g. The contribution of ^ is the largest when the
soil is very stiff, and it decreases as the soil becomes more flexible. The opposite holds for the participation
factors of ^s, CH and SR. Analysis of the effects of the embedment depth and of the building mass on the system
response as seen in 3D models (on prismatic foundations) and 2D models (on circular foundations) can be
found in Reference 9.

The aim of the present study has been to help understand and explain the influence of the various system
parameters on the system damping and on the system frequency, for a very simple two-dimensional model.
However, the real world is more complicated than this model. The soil under the building is not a homogene-
ous half-space, it may be non-linear, it also has material damping, and the linear analysis holds only for small
displacements. The conclusions and the results presented in this paper must be taken also with consideration
that the model neglects the contribution of the higher modes to the building relative response and that the
damping in the soil is ignored.

SUMMARY AND CONCLUSIONS

A two-dimensional analytical model has been employed to measure the damping in the steady-state response
of a building during soil-structure interaction. The building has been modelled by a single-degree-of-freedom
system with rotational stiffness and with a viscous damper, placed on a circular foundation embedded into an
elastic homogeneous half-space. The analysis is linear.

The system damping has been measured from the transfer function between the relative building response
and the amplitude of the incident wave, using the analogy with the half-power method for a single-
degree-of-freedom system with viscous damping. Both the dynamic and the kinematic interaction have been
considered, for incident plante P- and SV-waves.

The effects of the following factors on the system damping ratio were studied: the height of the building
relative to the width of the base, the mass of the building relative to the mass of the foundation and the mass
of the replaced soil, the damping in the building, the relative stiffness of the building compared with the soil,
the depth of the embedment, and the type of incident waves and their angle of incidence. Incident plane P-
and SV-waves were considered.

We found many trends and features of our model to be in agreement with what has been known about
soil-structure interaction for many years. Many of these trends are discussed in the above text and need not
be repeated here. The important and new contributions of our work lie in the quantitative description of the
system damping ratio, which results only from wave scattering and radiation from the rigid foundation in the
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simple model studied here. Also, the analytical nature of our solution, and the simplicity of our model, should
serve as useful calibration cases for more general numerical methods which are currently being developed by
others.

Under favourable conditions, the system damping ratio (corresponding to, say, the first mode of the
response of a tall building) can take on large values (in some cases in excess of 0.1), while the system is
vibrating in the linear range of amplitudes. This suggests that, as designers of earthquake resistant strucutres,
we should begin to look at a larger picture, trying to optimize also the overall system parameters, with the
aim to reduce the relative building response. Clearly, this is not a simple problem, as it involves detailed
understanding of the incident wave motion. However, at this time, when much effort is devoted to base
isolation of structures, and towards active control of structural response, it would seem wise not to ignore the
advantages which are already at our disposal, and are a part of the building environment, but which tend to
be ignored or excluded by the simplistic design approach. Clearly, it is better to divert than to counteract the
incident energy of strong earthquake ground motion. With this in mind, this paper can serve as a modest step
in this direction, suggesting the conditions and the cases to be explored by more detailed three-dimensional
and numerical models.
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APPENDIX

List of frequently used symbols

/3, A, v shear wave velocity, shear modulus, and Poisson's ratio for the soil
h, a depth and half-width of the foundation
co, T circular fequency and period of the incident wave
y incident angle (angle between the direction of propagation of the incident wave and the

normal to the half-space surface)
q = wa/n/3

= 2al/3T dimensionless frequency
Hsb, Wsb height and width of a shear-beam building model
H, rb height and radius of gyration of the equivalent SDOF building model
Kb, Cb rotational stiffness and viscous damping of the equivalent SDOF building model
C, (ON damping ratio and fixed-base natural frequency of the equivalent SDOF building model

Mb, mf, ms mass per unit length in the y-direction of the building, of the foundation and of the soil
replaced by the foundation

Pb, Ps mass density of the building and of the soil
l1 N = (N a/n/3 dimensionless stiffness parameter of the building relative to the soil
g acceleration due to gravity
A, V, cp horizontal and vertical displacements and rocking angle of point 0 on the foundation
,I,rel' ub', vb' relative angle of rocking and relative horizontal and vertical displacements of the equivalent
WW SDOF building model
uff amplitude of the horizontal component of the free-field motion on the surface
gSys CSys system frequency and system damping ratio
prig yrig limits of nisys CSys when the stiffness of the building goes to infinity
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