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Digital Instrument Response Correction
for the Force-Balance Accelerometer

Elena I. Novikova and M. D. Trifunac, M.EERI

Correction for the instrument response of acceleration records obtained by
force balance accelerometers (FBA) is necessary (a) to eliminate phase dis-
tortion at high frequencies, and (b) to broaden the useful frequency band
up to, and beyond, the corner frequency of the system. The proposed al-
gorithm contains operations in the time domain only and can be applied
to any digitized record obtained from a FBA with known characteristics.
The adequacy of the procedure depends on the accuracy of the information
on the transducer’s constants: damping ratio and natural frequency. An
appropriate testing procedure is also presented.

INTRODUCTION

The need for carefully processed strong motion records in buildings is increas-
ing. The studies of structural response, elastic wave propagation, and of soil re-
pose all require accurate information about the amplitude and the phase of motion
throughout a wide range of frequencies. However, the records obtained by most ex-
perimental procedures contain distortions which are caused by the physical proper-
ties of the transducers and the recording devices. If the record is analog, it should
be digitized before it can be used in analysis. The process of digitization introduces
some noise. The study of this noise gives information on the frequency band where
the data has good signal to noise ratio. Some recording instruments produce digital
output. This means that some analog to digital (A-D) converter is included into the
measuring system, and in this case it’s characteristics must be studied to account
for the possible distortions it introduces into the signal being recorded. Thus, what
we see as a digital “record” is not the actual time-history of the acceleration (veloc-
ity or displacement), but the response of the transducer and the recording device to
the input motion. Historically, investigators were concerned mainly with the ampli-
tude of motion (not the phase), and were trying to design the transducers and the
entire measuring systems in such a way that their amplification in some frequency
range can be approximated by a constant. However, it is not possible to make this
amplification exactly equal to a constant, and it is even more difficult to control si-
multaneously the phase of the responses. This is why correction of the output of the
recording system is needed. This correction “translates” the response of the device
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back to the original excitation that caused the recorded response. Good instrument
correction allows one to reconstruct both amplitudes and phases of motion well be-
yond the frequency range where the amplification of the instrument can be approxi-
mated by a constant (Trifunac 1972, Trifunac and Lee 1974). This paper deals with
such a correction for the widely used force-balance accelerometer.

Force-balance transducers differ from other types of transducers by having an
electrical feedback loop (Fig. 1) designed to keep the sensing mass in equilibrium
position. This is achieved by applying a balancing force, equal in magnitude and
opposite in direction to the “outside” force produced by the acceleration being mea-
sured. An electrical pick-up is used to sense the relative mass motion, its output is
amplified, and the required feedback current is generated.

Force-balance transducers were studied by many investigators (Amini and Tri-
funac, 1985; Amini et al. 1991; Hudson, 1979; Neubert, 1975; Norton, 1969; Oliver,
1971) and it was shown that there are certain advantages in using this system, com-
pared to the conventional open-loop devices. Those advantages are: 1) broadening
the frequency range of the measurement, 2) the possibility to alter the natural fre-
quency and damping of the transducer by changing the electrical constants (utilizing
the fact that the mechanical damping is negligible), and 3) significant reduction of
cross-axis sensitivity (due to practically zero relative mass motion) (Wong and Tri-
funac, 1977). These factors and the relative simplicity of the transducer lead to the
wide use of the force-balance transducers in dynamic measurements of ground and
structural motions in earthquake engineering and in many other related fields.

For low frequency applications, records from force balance transducers can be
interpreted as being recorded by a single degree-of-freedom viciously damped sys-
tem. However, in more detailed and broader band applications (e.g., in structural
identification), more accurate and high frequency data may be required. Also, when
structural components experience non-linear deformation, “brittle” failure mode of
concrete in compression can produce frequencies in excess of 100 Hz (Koji¢ et al.,
1984), and to interpret these, and to use the recordings of structural response which
include such high frequency signals, it is necessary to use more detailed corrections
for the instrument response. In this paper, such a correction algorithm is presented.

TRANSFER FUNCTION OF A FBA

A general scheme of a force balanced accelerometer is presented in Fig. 1. The
acceleration to be measured is applied along the axial direction of the transducer.
Relative displacement of the transducer mass M caused by the applied acceleration
is sensed by a variable capacitance with sensitivity D(volts/meter) and converted
into a voltage output. This voltage is sent to an amplifier of gain k and a velocity-
sensing pick-up, or to a phase-advancing network with transfer function (1 + ¢d/dt).
The output current is fed into a force generator with the amplitude modified by the
generator constant G gN /Amp). The force produced completes the feed-back loop
balancing the inertia force of the transducer mass caused by the acceleration, so that
the mass M remains stationary relative to the instrument housing.

The work presented here deals with one type from the family of Force Balance
Accelerometers exemplified by FBA-1 (manufactured by Kinemetrics, Amini and
Trifunac, 1985) and RJL-1 (manufactured by the Institute of Engineering Mechan-
ics, SSB in Harbin China, Amini et al., 1991). In contrast to the general scheme
shown in Fig. 1 (where the output voltage is proportional to the displacement and
velocity of the moving mass), their output is proportional to the displacement alone
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Figure 1. Force Balance Accelerometer Block Diagram. X, is the absolute ground
displacement, X, stands for the absolute displacement of the mass M and
X, is the relative displacement of the mass.
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(¢ = 0). This transducer was studied in detail by Amini and Trifunac (1985), who
presented its transfer function in the Laplace transform domain (s-domain) as fol-
lows

e — R]O + Rg . Rh + Rg . 1 . 1 . —Di(s) - A* (1)
0 RIO Rs 1+ R11C3S 1+ RGC23 52 + anfs + w,zl ’

Here ¢ is the output voltage, Z(s) stands for the input acceleration,

M
At = :
M + KC()LC + KC()RCCgRG + CCoRc + CCzRG

¢+ KCoR, + KC2Rs + GDC* Ehg}i
M + KCoL. + KCoR.CoRg + ¢CoR. + cCaoR,

26(‘)71 =

and

Ro+Ry+Ryg
. K + GD =5 5=

“n =M ¥ KCoL, + KCoR.CoRg + ¢cCoR, + cCoR.’

where ¢ stands for the mechanical damping, C* is the series combination of capac-
itors Cg and C7 and R; are the resistances, L; are inductances and C; the capac-
itors in the system logic (Amini and Trifunac, 1985). This device is equivalent to

a combination of a single degree of freedom system with corner frequency w, and
critical damping ratio £, and two low-pass linear filters with corner frequencies

wy =27 f; = (R11C3)”! and wy =2nf, = (ReC2)™! respectively (Amini et
al., 1991). Typical values of the electrical constants involved are such that f, and f,
are relatively high. In the FBA studied by Amini and Trifunac (1985), the numeri-
cal values of f; and f, are 310 Hz and 160 Hz respectively. This allows one to con-
sider the following approximation of Eq. (1) for low frequencies (f << min(fy, f2)):

R Ry Ry + R -z
0 =D 10+ ftg ftp + Hg _ z(s) -, (2)
RlO Rg s + 2wn£s + wy
where
26w _DGC* Rp+ Rg
"M Rg
and

2 _DG Ro+ Ry + Ry
"M RoRg ’

w

Equation (2) corresponds to the conditions when the frequencies of the process being
measures are so low that the two linear low-pass filters can be neglected.

Manufactures and some users of the FBA system often characterize it only by
the natural frequency, w,, and critical damping ratio, ¢, based on its representa-
tion as a single degree of freedom system, i.e. as being described by Eq. (2). For the
particular transducer studied by Amini and Trifunac (1985), these constants were
fan=w,/27 =51.2Hz and ¢ = 0.65. This representation is adequate for suffi-
ciently low frequencies. However, both low-pass filters influence the transfer function
of the transducer even for these low frequencies, resulting in shifting the “effective”
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values of f, and {. A shaking table test performed by Amini and Trifunac (1985)
gave for the same device constants f, = 47 Hz and ¢ = 0.62, by fitting the experi-
mental data to Eq. (1).

Utilizing their results and the nominal value of amplification of the system (2.5
volts per 1g of acceleration, where g = 9.81 m/sec?), Eq. (1) can be rewritten into

the frequency domain (by setting s = iw) as:

eo = C(w) - Z(w),

where C(w) represents the transfer function of the system:

1 1 —pw?
Clw) = —— C— T 5 (3)
1+ wh;1C3 1+ wReCy —w? + 2iww, € + w?

In this example p = 2.5 volts/g, w, = 27 -47Hz, and ¢ = 0.62, and
the other constants can be taken from Amini and Trifunac (1985). The graph of the
transfer function (3) in terms of frequency (f = w/2x), C(f) = |C(f)|e"()

is presented, in Fig. 2. As can be seen from this figure, this FBA produces a sig-
nal which is proportional to the acceleration being measured for the frequencies less
than ~ 30 Hz. For f > 30 Hz, the gain of the device gradually rolls off, and then
(for f > 35 + 40 Hz) decreases as a power function. The phase diagram indicates
appreciable phase shift for all frequencies.

Modern studies of structural vibrations, wave propagation phenomena and soil-
structure interaction problems require accurate information about the phase of the
recorded motion. The further broadening of the useful frequency range is also of
considerable interest. These considerations lead us to the conclusion that the instru-
ment correction of the output from the force-balance accelerometer is necessary.

AN ALGORITHM FOR CORRECTION OF THE
INSTRUMENT RESPONSE

The proposed algorithm is based on the same principles as in several previ-
ous studies (Trifunac, 1972; Novikova and Trifunac, 1991). The procedure uses the
differential equation of the system and includes digital filtering in the time domain
only.

The forth order differential equation of a force-balance accelerometer (FBA) can
be obtained by rewriting Eq. (3) in time domain:

€[R11C3R6Co) + €0[2wn R C3RgCy + Ry1C3 + RsCh)+
+ éo[l 4+ 2wn €(R11C3 + ReC3) + w2 R ;C3RsCol+ (4)
+ éo{2wnf + wz(RuC;; + ReCz)] + €g - w,zl = —pw,zl:E s

where each dot over ey designates one differentiation with respect to time. As be-
fore, ey designates the output voltage and % is the absolute acceleration being mea-
sured. It should be emphasized that the adequacy of the description of a FBA by
Eq. (4) depends on the accuracy of the information about all the constants involved
in this equation. As it was pointed out by Amini and Trifunac (1985), w, and ¢,
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supplied by the manufacturers, often correspond to Eq. (2) and are good for low fre-
quency representation only. Special procedures should be developed to measure wy
and ¢ which can go along with Eq. (1) (and, correspondingly, with Eq. (4)) to de-
scribe the system in the high-frequency range as well as in the low-frequency range.

We assume here that the galvanometer {or other recording devicez attached
to FBA has infinite impedance, and, consequently, there is no feedback from the
recording system to the transducer. This means that the system of two devices in-
volved in the measurement is uncoupled, and Eq. (4) can be analyzed alone. If
this is not the case, the whole procedure can be changed to accommodate coupling

(Novikova and Trifunac, 1991).

Having the output voltage ey as a function of time, all the four derivatives of e,
involved in Eq. (4), can be obtained by numerical differentiation. However, prior to
this, the frequency band of interest should be identified. This can be accomplished
in the manner similar to what was used by Lee and Trifunac 21979, 1984). Compari-
son of the Fourier spectra of the “standard noise” and signal (plus noise contained in
it) can indicate the frequency band where signal to noise ratio remains higher than
a prescribed value. (By “standard noise” we mean the average digitization noise,
typical for the records being processed.) We are particularly interested in the higher
limit of the frequency band, f,, as this value is going to govern the instrument cor-
rection procedure. Given the output voltage eg, we will try to reconstruct “exact”
acceleration of the moving point for all frequencies lower than f,.

Each numerical differentiation should be followed by a low-pass filtering with
corner frequency f,. It is easy to combine both procedures in one filter. However,
as it often happens (Hamming, 1983), by forcing the filter to do two tasks simultane-
ously, one may not get either of them done properly. Thus we separate the differen-
tiation and the low-pass filtering.

;[‘he differentiating filter used has the pulse response (Novikova and Trifunac,
1991}):

WikZ%{%)—} , wo=0, k=12,..,N. (5)

Here wy are filter weights and N is equal to the half length of the filter and depends

on the accuracy the filter has to achieve. Factor in {-}* represents squared Lanc-
zos coefficients and it was introduced to reduce the Gibb’s phenomenon (Hamming,
1983). The antisymmetry of the filter provides for the “exact” behavior of the phase
(it is not distorted with respect to the theoretical % shift appearing during differen-

tiation). The transfer function of the filter in Eq. (5) is plotted in Fig. 3 against the
dimensionless frequency f = f/fsampling, Where foampling is the frequency of sam-
pling. Nyquist frequency in these units is f = 0.5.

Two types of filters were utilized for low-pass filtering. When f s =
f+/fsampling > 0.25 (in dimensionless units), numerical approximation of the step
function (in frequency domain) with corner frequency f + gives the following expres-
sion for the pulse response of the “sharp” filter:

1 _ -
Wik = ﬁc(sin(zn’f_*_k)) -W,:, wo = 2f+, k=1,2,..,N. (6)

Here wy are the weights of the filter, N is it’s half-length and w; represents Web-
ber’s windowing, which can be approximated by two cubic parabolae (Cappellini et
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al., 1978). Transfer function of the filter in Eq. (6) is plotted on Fig. 3. This filter
works well for high cut-off f, but requires large number of points (N) for low cut-
off. Failure to increase the filter length results in poor control of the shape of it’s
transfer function.

Ormsby filter is used as a low-pass filter for the case when T+ < 0.25. Instead

of trying to model the step function, as the “sharp” filter in Eq. (6) does, Ormsby
filter approximates, by short finite series, the transfer function which linearly de-
creases from the cut-off frequency w, = 27 f + to the roll-off frequency w,, and is 1

when w < w. and 0 when w > w, (herew = w/27feam ling). This shape is more

“natural” for the transfer function of a digital low-pass filter, and this allows one to
reduce the number of filter weights required to obtain sufficient accuracy. Pulse re-
sponse of the Ormsby filter with von Hann windowing is described by the following

filter weights wy:

Wap = cos(@ck) — cos(@yk) {1(1 4 cos (k_w))} , ()

2%2(55 - Uc)k2 2 N
wa +wc _
WOZ?, =1,2,..,N.

The roll-off frequency, w,, can be obtained by the comparison of the requirements
for the length of the filter 2N +1 and the “sharpening” of it (Novikova and Trifunac,
1991). Transfer function of the filter in Eq. (7) is presented in Fig. 3. Both “sharp”
(Eq. (6)) and Ormsby (Eq. (7)) low-pass filters used are symmetric and this pro-
vides an exact phase representation, which is essential in earthquake engineering
data processing (Lee and Trifunac, 1984).

Having defined the filters in Eq. (5) through Eq. (7), one can proceed with nu-
merical differentiation (followed by low-pass filtering) of the output signal eo. Af-
ter calculating all four derivatives of the output voltage, the “exact” acceleration of
the moving point can be reconstructed by substitution of all the functions obtained
(€0, €0, €0 and €y) together with eg into the differential equation of the transducer,

Eq. (4).
CASE STUDY

A typical strong motion accelerogram (Lee and Trifunac, 1987) was used in
the testing procedure. This was the vertical component of the record obtained dur-
ing the Imperial Valley earthquake in California, on October 15, 1979, at the epi-
central distance of 27 km, by USGS, at El Centro Array Station #8. As all the
records in EQINFOS files, (Lee and Trifunac, 1987), this record has sampling rate
of 50 samples per second (sps). This record does not have frequencies high enough
for the purpose of testing the instrument correction procedure for a FBA. To use
this record, it was “shrunk” 5 times along the time axis and, therefore, it’s spec-
trum was shifted towards high frequencies so that the Nyquist frequency became
25 - 5 = 125 Hz (sampling 250 sps). Thus shrunk record of the total length to 7.5
sec was adopted as “exact ground acceleration.” The first “3 seconds” of this record
are presented in Fig. 4 along with the Fourier spectrum of the whole “shrunk”
record.

Given Z(t), Eq. (4) can be solved for ey by Runge-Kutta (fourth order) integra-
tion. This procedure numerically simulates the work of a FBA during the recording
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process. So “recorded” ground motion then has to be corrected for the instrument
response. The corrected accelerogram can be compared with the exact acceleration
which served as an input to the mathematical model of a FBA (Runge-Kutta inte-
gration of Eq. (4)). If the comparison shows that the reconstructed record almost
coincides with the exact acceleration, one can conclude that the proposed algorithm
for instrument correction is able to perform its task. Prior to integration, the record
has to be interpolated (Novikova and Trifunac, 1991) to higher sampling rate, so
that the Runge-Kutta procedure will not contribute additional errors.

To estimate the errors of the integration, one can consider the following test.
First, interpolate the record from 250 sps to, say, 2500 sps and carry out the Runge-
Kutta integration. Call this output es500. Second, obtain espgo - the output of the
same procedure for the sampling rate increased to 5000 sps. Now the modulus of
the difference between these two outputs |esooo — €2500| can serve as an estimate of
the absolute error of e;500 due to numerical integration. Fig. 5 shows eas500 (t) and
lesooo(t) — e2s00(t)]- As one can see, the average error of the Runge-Kutta fourth
order integration is about 1% for this record. The Y-axis is flipped in Fig. 5 (bot-
tom) to make the comparison between the “exact” (Fig. 4) and the “recorded” (Fig.
5 bottom) accelerations easier (recalling Fig. 2, one can notice n-lag in the transfer
function of the device). This comparison shows high distortion of the record during

the “recording process.”

Next step in the testing procedure is to perform the instrument correc-
tion on the record, via the mathematical model of a FBA. Instrument correc-
tion does not require so high sampling rate as Runge-Kutta does, so the eso00
can be decimated to say, 1000 sps (recall that the assumed input motion has fre-
quency band from essentially zero to 125 Hz). Prior to decimation, esggo has to
be low-pass filtered with corner frequency 500 Hz = 0.5-1000 Hz to avoid alias-
ing. Fig. 6 shows the difference between the exact acceleration £ and the output
of “Runge-Kutta — Instrument-Correction” testing process (called Z;.,). The two
functions, Z(t) and Z;..(t), cannot be distinguished by eye in this scale. The average
error of Z;, is about 5%. Recalling the value of the error introduced during inte-
gration, one can conclude that |Z — Z;.,| comes predominantly from the instrument

correction.

Fig. 7a shows a small portion of the same record but with a larger scale. The
exact appropriately scaled “recorded” and the reconstructed acceleration are plot-
ted together for the purpose of comparison. The phase shift of 180 degrees for the
“recorded” time history was taken into account in Fig. 7. However, one can notice
appreciable additional phase shift introduced by the device. Fig. 7b allows one to
check the performance of the instrument correction algorithm in the frequency do-
main. As one can see, the ground acceleration can be adequately reconstructed up
to frequencies which are far beyond the corner frequency of the recording device.

CONCLUSIONS

The correction of the records obtained by a FBA is necessary for reconstruc-
tion of the true phase in the motion, and also allows one to broaden the frequency
range available for the analysis. This correction can be performed in the time do-
main by solving the forth order differential equation of the transducer. The accuracy
of the procedures considered here is very good in both time and frequency domain.
The quality of the whole process is limited by the accuracy of the information on the
constants of the device (natural period and damping). Another assumption made is
that the galvanometer used in the recording has infinite impedance.
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