Higher order peaks in response of multistoried buildings
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ABSTRACT: Knowledge of the higher order peak amplitudes becomes an essential input to the seismic
design of buildings when the maximum stresses may repetitively exceed the elastic design limit. It is useful
to understand how these higher order peak amplitudes depend on various governing parameters and what
are their amplitudes in terms of the largest peak amplitudes.

INTRODUCTION

In the design of earthquake-resistant buildings, it is
not feasible to design for elastic response to moderate
and strong earthquakes. Therefore, current design
practices allow excursions of the response into the
nonlinear range during very strong ground shaking,
and so it becomes important to ensure the safety of
the structure during these excursions. This may be
achieved in part, with simplified design procedures,
and involving only small excursions into the nonlin-
ear range, with the knowledge about the amplitudes
and the number of these excursions. Then, one needs
to estimate not just the largest peaks in the struc-
tural response, but also the second, third, the fourth
and so on, largest peaks. A comparison of the peak
values with the chosen design amplitude level can fur-
nish the information about the number and the ex-
tent of the excursions of nonlinear response (Amini
and Trifunac, 1985; Lee and Trifunac, 1986).

The purpose of this paper is to study the behavior
of these higher order response peaks, normalized by
the corresponding largest peak amplitudes, and along
with their dependence on various structural and
earthquake parameters. For this, a recently devel-
oped statistical approach has been employed (Gupta
and Trifunac 1987, 1988, 1989, 1990a,b, 1991). It
can give the response amplitudes of the higher or-
der peaks for a given probability of exceedance. For
this study, fixed base buildings have been considered
with different number of stories, and different mass
and stiffness distribution along the height. Those
have been subjected to synthetic accelerograms cor-
responding to artificial earthquakes occurring at dif-
ferent hypocentral distances. The expected ampli-

tudes have been obtained for the first, second, third
and fourth order peaks of various response functions.

PROBABILISTIC ESTIMATES OF RESPONSE
PEAKS

Stochastic modeling of a seismic response function in
a building, say f(t), can be done by assuming that it
forms a part of a zero mean stationary random pro-
cess, and that its peaks are statistically independent
and identically distributed. If f(t) is represented by
the sum of an infinite number of sine waves with
random amplitudes and phases, it is possible to de-
rive the probability density function for the peaks

- of f(t), normalized by a;ms, the root-mean-square

(r.m.s) value of f(t), and in terms of e which is a mea-
sure of the width of the mean square spectral den-
sity, S(w), of f(t) (Cartwright and Lonquet-Higgins,
1956). For € = 0 and 1, this distribution becomes
Rayleigh and Gaussian respectively. Further, using
the order statistics, the distribution of the peaks of
f(t) can be used to obtain the distribution and then
the expected values of its largest or a higher order

‘peak out of the total of N peaks (Gupta and Tri-

funac, 1988). The parameters arns, € and N are ob-
tained from the zeroth, second and fourth moments
of the energy spectrum density of f(t), S(w), and
from the time duration, T, of f(t).

The determination of the spectral density func-
tion S(w) is central to estimation of the peak ampli-
tudes of f(t). For a n-story building, modeled as a
shear beam with lumped masses and discrete springs

(Fig. 1), for the i*® floor displacement, this function

can be written as (Gupta and Trifunac, 1989, 1990),
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Fig. 1 Shear beam model of a multi story building.
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where S(w) is the power spectrum density func-
tion of the ground acceleration 2(t). For “not-too-
short” earthquake excitations, this can be expressed
in terms of |Z(w)|, the Fourier transform of 2(t), as
(Udwadia and Trifunac, 1974)
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Further, in Eq. (1), qSS’ ) is the i*® element of the
j*® mode, 65 is a correction term applied to account
for the interaction between various modes of vibra-
tion, and H;(w) is the transfer functlon of the relative
displacement response of the j*® equivalent single-

degree-of-freedom (SDOF) oscillator defined as
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with w; and ¢; being the natural frequency and
damping ratio in the j*® mode.

In the computations of € and N for the displace-
ment response at the i*® floor, say €; and Nj;, from
Eq. (1), the correction factors é;; may turn out to
have negligible effect, as these parameters involve

the ratios of various moments of the spectral den-
sity function. Further, the absence of stationarity in

_the response function may not enter these consider-

ations explicitly, if we study the higher order peak
amplitudes as fraction of the first order peak ampli-
tude, and thus do not involve the computation of the
r.m.s. value. Spectral density expressions for shear
and overturning moment response can be obtained
from Eq. (1) via minor modifications (Gupta and
Trifunac 1989, 1990).

ANALYTICAL FORMULATION AND RESULTS

The ratio of a higher order peak amplitude to the first

~order peak amplitude in this approach is a function

of the parameters € and N only. Hence, it is useful to
make approximations and to simplify the expressions
of &; and N; for the i** floor displacement response.
Assuming that the Fourier spectrum |Z(w)| is rea-
sonably flat over the dominant frequencies and that
the first few natural frequencies of the building fall
within this band of frequencies (Newland 1984), we
can approximate |H;(w)|?> by a delta function and
obtain
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These expressions indicate that for a fixed n, the pa-
rameters €; and N; at any floor depend on i) the
total duration T of the input excitation, and on ii)

“the distribution of floor masses and story stiffness

along the building height. The latter one influences
the building mode shapes and modal participation
factors, with the ratios (¢¢/¢;), (/). (wk/wj;) and
(wj/ws) remaining nearly constant. e; and N; will
however vary with the story level, ¢, due to the pres-
ence of modal shape terms in Egs. (4) and (5), and
in that the higher modes are likely to contribute sig-
nificantly. If we study the relative effects of the vari-
ations in € and N on the ratio of a higher order peak
value to the largest peak value, it will be observed
that this ratio decreases with increase in € or decrease
in N. Further, for the range of ¢; normally encoun-
tered (i.e. less than 0.9), variation in ¢; values along
the building height is not likely to substantially af-



fect the normalized peak values. On the other hand,
the values of N; range somewhere between 20 and
50, and for this range, there may be significant vari-
ation of the ratios of peak values along the building
height. Though the effects of N and ¢ are opposite
in nature, the ratio E{a(,)}/E[a(y)] (i.e. the expected
value of the r** order peak amplitude to the expected
value of the largest peak amplitude) increases with
the increase in N irrespective of the variation in &.
These trends have been illustrated by considering an
example of a 16-story fixed-base building with linear
variation of mass and stiffness values along the build-
ing height, uniform story height a damping ratio, and
fundamental period of vibration being equal to (0.1
X 16 =) 1.6 sec. The base excitation is represented
by a typical Fourier spectrum, as shown in Fig. 2.
Further, the total excitation duration (Trifunac and
Brady, 1975) is assumed to be 20 seconds.
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Fig. 2 Normalized Fourier spectrum of the transla-
tional (horizontal) component of example excitation.

Fig. 3 shows the variation of N; and ¢; with the
floor level for the displacement, shear force and over-
turning moment responses, and Fig. 4 shows the
variation of the normalized expected amplitudes of
the second, third and fourth order peaks for these
response functions. On comparing these two figures,
it may be noted that the variation along the build-
ing height of the normalized amplitudes indeed de-
pends mainly on the total number of peaks, N. Thus,
higher modes dominate near the building base in case
of shear and moment responses. For this reason,
buildings with smaller number of stories are likely
to have less pronounced variation of normalized am-
plitudes along the building height. This is illustrated
by Fig. 5 which shows the normalized amplitudes for
a 4-story building with linear variation of masses and
stifiness along the building height and with (0.1 x 4
=)0.4 sec fundamental period of vibration. Build-
ings with a smaller number of stories have greater
tuning between the response functions at different

floors, whereas in the case of a greater number of
stories, various adjacent stories group together for
coherent behavior, with each group having a little
different behavior from the other groups. For a given
response function, the difference between minimum
and maximum normalized amplitudes over the build-
ing height is found to increase with the number of
stories for the given order of a peak, and with the
order of the peak for a given building. This makes it
feasible to approximate the variation of normalized
amplitudes by a constant value, only in case of short
and medium tall buildings and just for the second
and, probably, the third order peaks of the response
functions. This includes most of the cases encoun-
tered in practice, and for these, it may be sufficient
to calculate the normalized peak value at a particu-
lar floor and assume it to apply for other floors. For
a given order, the normalized peak amplitudes may
decrease so much (say, to 0.70) with the increase in
number of stories (even in the case of the third order
of peak), that designing the structure for these forces
may cause the response to go too far into the nonlin-
ear range. In those cases, a more rigorous nonlinear
analysis may be necessary.
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Fig. 3 Variation of €; and N; with the floor level 1.

The selected effects of floor mass and story stiff-
ness distributions have been investigated by consid-
ering the example 16-story building also for uniform

~distribution with one step change at mid height of
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the building, and with the other parameters remain-
ing unchanged Fig. 6 shows results of the second
normalized peak for 8 = 0.1, 0.4, 0.7 and 1.0 where
B represents the story mass and stiffness values of
the top 8 stories, as fractions of those for the bot-
tom 8 stories. It is seen that minor variations in the
distribution of mass and stiffness values, from linear
to those with step change, do not lead to significant
changes in the peak amplitudes at any floor level.

The effects of the excitation duration T have been
investigated by generating synthetic records as in Lee
and Trifunac (1985, 1987), for a site at Westmore-
land, Imperial Valley, California. Four cases have
been considered by taking the hypocentral distances
as 1, 5, 15 and 50 km. The earthquake magnitude
and the confidence levels for no exceedance have been
uniformly taken as 6.5 and 0.5 for these records. The
resulting values of T are respectively 6.3, 9.38, 18.42
and 39.24 sec. The example 16-story building has
been subjected to these excitations and the normal-
ized second order peak amplitudes have been com-
puted for the displacement, shear force and overturn-
ing moment responses. Fig. 7 shows that the second
and higher order peak amplitudes increase with the
duration of excitation, i.e. the second largest peak
comes closer to the largest peak in magnitude as the
disturbance lasts longer. Further, for shorter dura-

tions, these curves have greater undulations since at -

low values of N, the change in N is associated with
a greater variation in the peak amplitudes. Thus,
for larger hypocentral distances, dependence of the
peak amplitudes on the story level is reduced, and
the approximation by a constant may be justified.

CONCLUSIONS

Higher order peaks in the earthquake response of

multistoried buildings have been investigated by

studying their amplitudes as fractions of the corre-

sponding highest peak, for a parametric variation of
the building and excitation characteristics. It has
been seen that the single most important parame-
ter which significantly affects the (normalized) ampli-
tudes of higher order peaks, is the duration of excita~
tion. The longer is the duration, the greater are these
amplitudes. The variation of the peak amplitudes
along the building height for any response function
is, however, influenced by the mode shapes, and by
their relative participation for a building with fixed
_number of stories. This largely depends on the dis-
tribution of floor masses and story stiffness along the
building height. It is possible to approximate such a
variation by a constant value provided the building
-is low, the site is not located near the epicenter of
the earthquake, and the order of peaks considered is

not higher than three.

To the extent that this type of equivalent linear
analysis can be used to describe the early stages of
the response of nonlinear systems, the above exam-
ples suggest that: 1) For shorter and impulsive exci-
tation closer to the earthquake source, the designer
should aim to reduce the ratios Ela(;)]/E[a(y)] for
¢t = 2,3 (and perhaps 4 and 5), such that for the dis-
tribution of expected excitations this ratio is nearly
constant at all levels of a multi story structure. This
will help to distribute the extent and the distribu-

‘tion of nonlinear deformation uniformly throughout

the structure, and it may be accomplished in part
by ingenious selection of the structural system, and
the type and the geometrical distribution of the com-
ponents resisting the lateral loads. 2) The charac-
teristics of the optimal structural configuration de-
pend not only on the level of shaking, but also on
the impulsive (near) versus long (distant) earthquake
shaking. To the extent that such characteristics can
be identified in and around many seismic areas of
the world, by using the uniform risk spectrum ap-
proach (Trifunac, 1988), for example, it is seen that
the typical code design methods with only one “spec-
tral shape” function, cannot provide uniform and bal-
anced level of seismic resistance for all new construc-
tion.
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