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ABSTRACT

Instrument correction of records obtained by a coupled transducer-galvanometer
system is necessary to eliminate amplitude and phase distortions. A method for correc-
tion of the output from a seismograph or accelerometer with galvanometric registration
is described. The procedure involves operations in the time domain only, and can be
applied to any digitized record. Example tests are presented showing that a ground
motion signal can be adequately reconstructed (for both phase and amplitude) in the
frequency band which is wider than the nominal range of typical recordings.



I. INTRODUCTION

Seismological and strong motion measurements require use of a variety of devices
with electrodynamic registration. The first systematic description of such devices was
presented by Galitzin (1912). Depending on the application, the response of coupled
“transducer-galvanometer” system may be required to reproduce displacement, velocity
or acceleration of a moving point. By changing the constants of both devices one can
obtain a system with the transfer function that represents almost ideal displacement,
velocity or acceleration meter in a defined frequency band. “Almost ideal” means that
the device has the ability to reproduce the amplitude of the motion of interest in the
desired frequency band. However, the phase of the direct instrument output is distorted
for all frequencies. This is discussed in Chapter II of this report.

The coupled transducer-galvanometer device is very popular in seismology and in
earthquake engineering, and a great number of records is being produced by such de-
vices in different countries. For example, in the Soviet Union, structural vibrations are
recorded with the help of multichannel systems based on transducers such as VEGIK (Vi-
brograph, Electrodynamic, Geophysical Institute, Kirnos), SPM-16 (Seismotransducer,
Mechanical), VBP (Vibrograph for Big Displacements), and galvanometers of GB type
(Medvedev, 1962). Many seismologists are using transducers VEGIK, SGK and SKM
with galvanometers of GB type. Variety of techniques are used to control the response
of these systems (Khalturin, 1991; Medvedev, 1962). Strong-motion instruments often
used in China are RDZ type devices with galvanometers (Lee and Wang, 1983).

There are certain advantages in using coupled systems, as compared with single
degree of freedom devices: a) the ability to get a broad range of amplifications, b) the
ability to separate recording and measuring locations, and c) the ability to gather and to
write on the same medium (film, paper, magnetic tape) the response of several transduc-
ers, attached to different places of the object studied (this simplifies time-matching of
the different records). Thus, it is useful to process the records obtained by such devices
to be as representative of the ground (or structural) motion and in as broad frequency
band as possible. This can be accomplished by careful digitization of these records and
application of data processing and correction procedures (Trifunac, 1971; 1972; Lee and
Trifunac, 1979a,b; 1984; 1990).

Almost any study of earthquake sources, wave propagation or vibration of struc-
tures requires information supplied by the broad frequency range of the spectrum of the
recorded motions. In consideration of response of long structures to earthquake exci-
tation and in surface-wave propagation, the long-period end of the Fourier spectrum is
of considerable importance. Thus, the need for the information contained in the high
and in the low frequency ends of the spectrum motivates us to attempt to broaden the
frequency band available for the analyses as much as possible.

The majority of the methods used to test mathematical models of earthquake
sources, of wave propagation, or of structural vibration require also accurate informa-
tion about the phase of the motion throughout the frequency range under consideration.
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Thus, it is necessary to correct the direct output of coupled transducer—galvanometer
systems for the instrument response. Together with the base line correction procedure
(Trifunac, 1971), the instrument correction then gives the opportunity to increase the
quality of a large number of records obtained from coupled devices and to use them in
various analyses. Lee and Wang (1983) developed an instrument correction procedure
on the basis of the approximation available for the Chinese RDZ1-12-66 device.

This report presents a method that can be used to correct the direct response of
almost any coupled transducer-galvanometer system. The method essentially is the so-
lution of the system of equations of motion for the coupled device in the time domain.
Three numerical differentiations and one integration are used to obtain ground accelera-
tion from the direct output of the system. If velocity or displacement are the quantities
of interest, additional integration(s) is (are) required.

The advantage of the time domain solution is that it does not assume periodicity
of the signal thus avoiding the distortions that arise in the frequency domain filtering.
There are methods which reduce those distortions (Press et al., 1986), but those require
additional computer memory. A lot of memory is also required if the record to be
corrected is very long. This memory may not be available if the whole procedure is to
be performed on a relatively inexpensive personal computer. Of course, Fast Fourier
Transform of a time series which cannot fit into the computer memory can be taken,
but this requires additional exchange of data between RAM memory and the hard disk,
thus eliminating the main advantage of the frequency domain filtering: speed.

Numerical differentiation is known to be a difficult procedure to apply in time-series
analysis, but it can be shown that if the high frequency digitization errors are filtered out,
then it can work very well. However, because of the large number of filtering procedures
involved, the question of the filter’s accuracy becomes important. The integration em-
phasizes low frequencies, so high-pass filtering should follow the integration procedure.
Low cut-off frequency of the high-pass filters can cause problems as it becomes equiva-
lent (in its difficulty) to the narrow band-pass filtering. The discussion of the properties
of the filters used here and the description of the instrument correction procedure are
presented in the Chapter III of this report.



II. TRANSFER FUNCTION OF THE COUPLED SYSTEM

II.1 Transducer as a Single Degree of Freedom System

Let us at first consider a transducer working as single degree of freedom (SDOF)
system. The motion of such a device can be described by the equation:

; ) 1
0+2w1§10+wf0 = —-l—" z,
0

where 0 designates the angle of rotation away from the equilibrium position (the relative
motion of the transducer), w; and ¢; are natural frequency and ratio of critical damping
of the device, [y stands for the generalized length of the pendulum of the transducer and
% designates the absolute ground acceleration.

The complex transfer function of this system, C(w), between the instrument re-
sponse # and the input motion z at a particular frequency w, is

Cle) = l% (o%)z 1- (i)’izi(ﬁ)sl' )

w1

Then, for harmonic input, the amplification of the system is |C(w)|, and the phase shift
4(w) of the output 6 with respect to the input displacement z is

w-ox (228

where Im and Re mean imaginary and real parts of a complex number. For example, if
z = 't then 0 = C(w) - € = |C(w)|e*@t+7(“)), Introducing dimensionless frequency,
71 = w/wy, C(w) from Eq. (1) can be rewritten as:

Uy 1
lo 1—n%+2im&

C(w) =

Suppose that the transducer is to measure the displacement of the point were it is
attached. That requires

6] _ IC(w) - ™|

|_2_:_| — o] = |C(w)| = const.

This can be realized when n; — oco. Indeed, using Taylor series expansion and taking
the limit: ~

lim |C(w)]= lim (1/t0) - ni = lim -—1—{1+0(—1—>2}.

e el (R R C AL S m
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The last equation shows that, as n; — oo, the relative angular motion of the transducer
is proportional to the displacement of the moving point with amplification 1 /lo, and this
limit is approached within (1/71)*. For the phase shift there follows:

2
lim y(w)= lim ta"_l{ nlflz}= lim w-{1+0(é>}'
n1—00 n1—00 1—n9 11 —00 71

If the device is to measure velocity, then the proportionality of the response of the
device and the input velocity is required, i.e. |C(w)|/w = const should hold. This can
be achieved when n; — 1 and &; > 1. To obtain an accelerometer, one should have
|6|/|Z| = const, or |C(w)|/w? = const, and thus 71 — O is required. Putting all this
together, one can construct Table 1. Note, that C(w) describes angular response of the
system, and the Dynamic Amplification Factor (DAF) in Table 1 characterizes its linear
response. It is important to emphasize that the phase in the case of the velocity meter
cannot be a constant, as it is proportional to the frequency even in the limiting case
(when 57 — 1). Coefficient of proportionality includes the damping ratio, so one can
improve the nature of the response by making &; >> 1. However, that leads to a decrease
of the amplification of the device. The damping ratio is not so crucial (in this sense)
in the cases of a displacement or an acceleration meter, and we do not include it in
the term describing the limiting behavior for these two cases (in Table 1). However, §;
should be about 0.6 in the latter two cases to secure the proper behavior of the amplitude
response when the frequency of motion approaches the natural frequency of the device.
By “proper” behavior we mean no dependence on frequency in as broad frequency range

as possible.

To visualize the quantities listed in Table 1, one can look at the amplitude and
phase response characteristics of the system. Top row of plots in Fig. 1. represents
the amplitude response of the device in terms of the quantity to be measured. More
specifically, a) shows the amplification for the displacement meter, i.e the ratio between
the amplitude of the response of the device, 8, and the amplitude of the ground (or
structure) displacement, z, b) gives the amplification for the velocity meter, i.e. the ratio
between the amplitude of the response of the device, 8, and the amplitude of the ground
(or structure) velocity, £, and c) presents the output amplification produced by the
accelerometer, i.e. |0|/|Z|. Note that all the plotted quantities have been premultiplied
by lo, and are therefore dimensionless.

The bottom row of the same figure describers the phase of the response relative to
the phase of the input function. Note that 4 gives the phase shift between the input
DISPLACEMENT and the output of the device (see Eq. (1)). However, for the case
of a velocity meter, one is interested in the phase shift between the VELOCITY of the
ground (or structure) motion and the output of the recorder (which is proportional to
the velocity of the input motion). This phase shift is equal to v — 7 and this quantity
is plotted at the bottom of Fig. 1b). A similar consideration for the accelerometer
leads to the conclusion that 4 + 7 describers the phase shift between the output of the
accelerometer and the ACCELERATION of the moving point. The corresponding plot
is presented in the bottom part of Fig. 1c.
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As it can be seen from Fig. 1, an optimum value of damping ratio, exists for the
cases a) and c). When ¢ = 0.6, the flat portion of the amplitude response (shown in
the top row of the figure) extends almost up to the natural frequency of the transducer
(71 = 1). In our further considerations we will assume the ratio of critical damping for

cases a) and c) to be close to 0.6.

II.2 Response of a Coupled “Transducer—Galvanometer” System

The motion of the coupled system can be represented by the equations:
- . 1. .
0—{-20)1610-{-&)?0 = —z—x+2w1£101¢p (20)
0

B + 2wzbap + wip = 2wz 2050, (2b)

where: @ is the relative rotational response of the transducer,

¢ is the response (rotation) of the galvanometer,

w; is the natural frequency of the transducer,

&, is the ratio of critical damping of the transducer,

wo is the natural frequency of the galvanometer,

&, is the ratio of critical damping of the galvanometer,

o, is the dimensionless coefficient that describes additional excitation
of the transducer due to the feed-back from the galvanometer,

04 is the dimensionless parameter describing the transfer
factor for the electrodynamic registration,

lo is the generalized length of the pendulum of the transducer,

% is the ground acceleration.

All coefficients involved can be obtained from the physical constants of the trans-
ducer and galvanometer (Khalturin, 1991; Borisevich, 1981; Savarensky and Kirnos,
1955).

To get the transfer function of the system, one can assume harmonic excitation
with unit amplitude, z = €**?, which will result in the harmonic output:

6 = A(w)eit = |Aw)] - ¥t () 9
p= B(w)eiwt = |B(w)] - etWt+pA(w)) *

Here A(w) designates the intermediate response complex transfer function of the trans-
ducer, B(w) stands for the complex response of the whole system, a(w) represents the
phase shift between the input displacement and the intermediate response (of the trans-
ducer) and B(w) is the phase shift between the input displacement and the galvanometer
response. Substitution of Eq. (3) into Eq. (2) gives:

1—n?+2in& —21£1m101 ] { Aw) } = { ni/lo } , (4)

—21€am202 1—n2 + 2in3é2 B(w) | — 0
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where the dimensionless frequencies 7y = w/w; and 72 = w /w2 have been introduced.
Solution of the system (4) gives both transfer functions:

2 -

ni a+b

A N =r7

W) =1, ora

2 -

o2n7 b

B = 2. 5
where

a=1-— 17%,
b = 2136,

¢=(1-13)(1—n2) +4&in1é2m2(0102 — 1),
d=2{n2é2(1 — n3) + mé&(1 —nd)},

and amplitude and phase responses:

2 2 2y1/2
_ni {(ac+bd) + (be — ad)?}V/ __bc—ad
[Aw@)l =7, c% + d2 » tana(w) = o
2
_ oM7) b ¢
Bl =" v ey tanfl) =g

I1.3 Limiting Case for Negligible Coupling

In the case when o5 — 0, the output from the transducer A(w) is very close to the
response C(w) of the SDOF system, discussed in section II.1. This means that for certain
set of parameters the direct transducer output can represent the ground displacement,
velocity or acceleration. We examine these three cases in some detail. Later we will
summarize the results in the Table 2 and Fig. 2.

I1.3.1. Transducer Measures Displacement

Assuming negligible coupling (0; — 0), considering the transducer as a displace-
ment meter and using Eq. (2a) together with the Table 1, one can get for the response

of the transducer that

1
if 71 — o0, and & =~ 0.6, then |A(w)| — = and a(w) — 7 (8)
0
or ) .
0 o _ei(wt+1r) = ——etwt (7)
0 lo



The derivative of the response of the transducer represents the excitation for the gal-
vanometer, so, substituting Eq. (7) into Eq. (2b), one obtains the expression for the
transfer function of the whole system:

-1 21820312
Blw) = — - - . 8
(«) lo {1—n2+2iny6,} ®)

The galvanometer is also a SDOF system, so it can also work in three different regimes:
it can measure displacement, velocity or acceleration of the input signal. Taking this
into consideration, one can ask, if transducer relative response () is proportional to
the displacement of the ground, wether it is possible to get the whole “transducer—
galvanometer” system to measure a) displacement, b) velocity or c) acceleration of the

ground (structural) motion.

a) Displacement. Suppose we want |B(w)| from Eq. (8) to be proportional to the
displacement of the ground, having |4(w)| proportional to the ground displacement.
That requires

2&202 72

. = t.
[0 {(1 _ ’7%)2 + (20262)2}1/2 cons

|B(w)| =

Table 1 shows that n2/{(1 — 72)? + (272€2)?}'/? is DAF,—dynamic amplification
factor for the velocity meter, and this quantity is constant if 7o — 1. This means
that, given |0| o |z|, the total response || o |z| if galvanometer works as a velocity
meter, i.e. it has 75 &~ 1. Also £; > 1 is required to make the amplification and the
phase vary less with the frequency of the exitation. This gives for the amplification

of the whole system:

2 6202 1 _ 02 (9)

lo .262 Tl

lim [B(w)| =

The phase shift, introduced by the galvanometer, is +7; shift due to differentiation
of 8 is 7. Recalling the additional phase shift = from the transducer, the total phase
shift can be obtained. The phase near 5, = 1 is not constant. The phase shift is
proportional to the frequency and this is caused by the velocigraph (galvanometer)
being involved in the measurement. We will not discuss the phase shift dependence
on frequency for all other cases, but it is useful to remember that there is always
some reason that causes the phase to “misbehave”, that is, to depend on frequency.
Amplification in this case is 03/lo, and, as it can be seen from Eq. (2), this factor
scales the amplification for all possible sets of devices’ constants. To compare
amplifications of different systems, one should recall that I = g/w?, were g is
gravitational acceleration on the Earth surface.



b) Velocity. Velocity of the ground motion can be obtained if

[B(w)| _ 2&309 1

= . = t,
W dows {(L—m)Et(@m&)RYR

which is possible when 3 — 0 (galvanometer is an accelerograph), that is:

lim B@ _ 26202 (10)
n2—0 w lowz .

Notice that low, in the denominator causes the amplification to be small.

c) Acceleration. It is not possible to get the whole system to measure acceleration
of the ground if the transducer measures displacement. This would require

|B(w)| _ 2§02 [1 1 . const- .
w2  lows {w [(1- ﬂ%)z + (2’7252)2]1/2} t-(1+0(¢))

where ¢ is small. This is impossible because the term {-} cannot be represented as
const - (1 + O(e)) in the neighborhood of any of its final limits.

I1.3.2 Transducer Measures Velocity

When it is not much distorted by the galvanometer’s feed-back (o — 0), the
transducer gives the velocity of the ground motion

if py =1, and & > 1, so that [A()] — 1 R
2low1€1
and 1
O(w) = 1w e't. 11
(w) T (11)
Substitution of Eq. (11) into Eq. (2b) gives:
—02 §2 wa n3

lo & wi (1—n%+2in2é)

This is the general representation of the transfer function of a system with negligible
coupling, if the transducer measures velocity.

a) Displacement. The displacement of the ground motion can be obtained if the gal-
vanometer works as a displacement meter, which means that its natural frequency

10



has to be smaller than the characteristic frequencies of the process being measured.
Then

. o2bowe . n3 _ 0262w2

'lzh—r’n°° 1B)] = lo&iw: na—v0o {(1 —n2)2 4 (21262)2}/2  lobywr (12)
Comparing this amplification with the one from Eq. (9), one can see that
wa&s/low; & causes the expression in Eq. (12) not to be as small as the expression
in Eq. (9), (recall that I, = g/w?, and that w; is small and w; is big when compared
to the frequency of motion being measured). However, the pair “transducer (ve-
locigraph) — galvanometer (displacement meter)”, resulting in measurement of the
displacement of the moving point (designated as V + D = D) is seldom used. It is
not simple to design a galvanometer with low natural frequency and characteristics
stable enough to take advantage of the greater amplification.

Velocity. The measurement of velocity requires that
B
l (w) | = const,
w

and this is possible in the arrangement V + V = V, which means: transducer
measures velocity (of the moving point), galvanometer measures velocity (of the
change in the input voltage), and the resultant output is proportional to the velocity
of the ground motion. This is possible when 7, — 1, since

|B(w)| _ o2bowz 1 . N2 o2 (13)

ﬂlzlgl w  lbiwr ws 'llzlgl {(1 —n3) + (2n2£2)2}1/2 7~ 2pbywr’
As w; is of the order of the predominant frequencies of the signal being measured,
V+V =V (Eq. (13)) is a good combination to “compete” with the pair D+ A =V
(Eq. (9)) as far as amplification is concerned. However, the limiting behavior of
both devices in the pair V +V = V is O(1 — ;) and O(1 — ;) which makes
approaching the limit (constant amplification of the velocity of the moving point)
slower, than for the pair D + A = V, which has limiting behavior O (1/ 171)2 and
O (n2)? (in all cases there is a small quantity inside the brackets). This leads to the
conclusion that the pair V + V = V can reproduce velocity of the ground motion
with relatively small error in narrower frequency band, than the pair D+ A = V.

Acceleration. The pair V + A => A gives an output which is proportional to
the acceleration of the ground motion. This is achieved when 7, — 0, and the
amplification in this case is

lim | B(w)| _ o2§owz 1 im 1 _ §202 (14)
N2—0 w2 lofiwy w? na=0 {(1 — n2)2 + (212£2)2}Y/2  lobrwiws’

11



After substitution of the expression for the generalized length [, the amplification
is seen to be proportional to w;/w,. This quantity can be small in this particular
arrangement; however, having the galvanometer working as an accelerometer makes

the amplification very stable.

I11.3.3. Transducer Measures Acceleration

The transducer now works as an accelerometer. This means that its natural fre-
quency is bigger than all frequencies involved in the process being measured, that is we
will consider

[Aw)] | 1
w2 - lo&)f ’

n1 — 0, and & =~ 0.6, so that

and

0(w) = wzl:i—%e"“’t. (15)

After combining Eqgs. (15) and (2b), we obtain following representation of the transfer
function of the slightly coupled system in which the transducer measures acceleration:

_ 2i£20’2 w3

Bw) = lowlwy {(1—n2) + 2inzés}

a) Displacement. The displacement output cannot be obtained for the same reason
as for the case in paragraph 11.3.1 c.

b) Velocity. The velocity can be obtained if the galvanometer response is propor-
tional to the displacement, which is the case when n; — 00, and then

lim |B(w)l _ 202 82w2 lim ﬂ% . 202 €2w2

= = 16
n2—00 W low?  na—oo {(1 —n2)2 + (2n2¢2)2}1/2 low? (16)

This pair (A + D = V) appears to be inefficient. Although its amplification is not
as small as in the case D+ A = V (Eq. (10)), it is difficult to design a galvanometer
with stable characteristics and having the natural frequency sufficiently lower than
the characteristic frequencies of the ground motion.

12



c) Acceleration. This last case corresponds to the pair A +V = A and repre-
sents the most common arrangement of a strong-motion device with galvanometric
registration. The amplification of the system with negligible coupling then is:

lim BN _ 202l i =2
na—oo w2 low?  na—1 {(1—n2)2 + (2n2£2)%}1/2 low?’

Recalling the definition of the generalized length of the transducer pendulum /o =
g/w?, it is seen that the amplification of this device is not small.

I1.4 Distortion of the Transducer Response by the Galvanometer Feed-Back

All preceding amplification factors, derived in Section I1.3, Egs. (9), (10), (12)-(14),
(16) and (17) were obtained with the assumption that o; = 0. In this section, we will
estimate the “distortion” of the transducer response which is caused by the coupling with
a galvanometer, assuming that the transducer is “ideal”. Here “ideal” means that the
response of the transducer, working alone as a SDOF system, is proportional to either
displacement, velocity, or acceleration of the ground. This distortion then can be used to
estimate the effect of the coupling on the total response of the system. This is possible
because the second device (galvanometer) behaving as a single degree of freedom system

(see Eq. (2b)), is a linear system.

The amplification factors discussed in Section II.3 are for no coupling, and therefore
can be considered as a zero approximation of the above distortion. Let us now consider
the first approximation of the transducer response. We will explain why we call it “first

approximation” shortly.

Pair D+V = D. In this case the transducer output is proportional to the displacement
of the ground, galvanometer works as velocigraph and the whole system measures the
displacement of the moving ground or structure. Assuming both devises to be “ideal”,
for the response of the whole system we have (according to Eq. (9))

©= ?—%eiwt with some phase shift. (18)

0
Let us consider the magnitude of this function only. Taking advantage of the linearity
of the system and substituting Eq. (18) into the equation
5 + 2w, 610 + wfa = 2w €019, (19)

which describes the motion of the transducer due to coupling term alone, we can define
the first approximation of the distortion of the transducer due to coupling, as a response
of the SDOF system to the exitation 2w; £;01¢. The total response of the transducer (in
time domain) is the sum of its response as a SDOF system and of this first approximation

13



of the distortion. Having this total response of the transducer, one can get the response
of the galvanometer ¢, and then repeat the procedure: substitute ¢ in the Eq. (19) and
obtain the second approximation of the distortion of the transducer due to coupling. In
this Section, we will restrict ourselves to the consideration of the first approximation of
the distortion only, which means we consider “slight” coupling only, o1 = 0.

For the case of harmonic exitation, we designate by A,(w) the ratio between the
input (ground) displacement z = e'“t and the distortion part of the transducer output,
i.e. the time domain response to the exitation at the left hand side of Eq. (19), 2wy &1010.
We will call A,(w) “the distortion (in the frequency domain)”, and will consider only

the absolute value of it.

Recall now that we consider the pair D 4+ V = D, so we assume 7; — co. Then

lim |A,(w)| = 2610192 im ni _ 2£10102
n1—00 o 10771 n1—00 {(]_ — 7]%)2 + (2,7151)2}1/2 10711

Hence, in the limit, when n; — oo, for two “ideal” devices, the distortion of the response
of the transducer, slightly coupled with the galvanometer, is proportional to 1 /n1. This
distortion is not significant even for considerable coupling o102 = 1, since 3 — oo.
However, the distortion of the transfer function of the transducer because of coupling
is greater, than the distortion of this function due to “non ideal” characteristics of the
transducer (n; cannot be infinitely large). While the departure from “ideal” transducer is
proportional (see Table 1) to (1/71)? (in the case of a displacement meter), the distortion
due to coupling is proportional only to (1/71), and the latter is greater, as 71 — oo.

Pair D + A = V. “Ideal” response gives

2620,

lp| = w loos

9

and the distortion term in frequency domain in this regime is

lim | 4o (w)] — 4¢,820102w1 .

m—oo  |w]| lows

It is useful to note that the distortion does not depend on frequency in this case. Hence,
the coupling just shifts the flat portion of the graph of the response spectrum without
disturbing its shape.

Analogous formulae describing distortion of the transducer response for all other
possible cases can be obtained in a similar fashion. It appears that the nature of coupling
in all arrangements is similar to the one of the two cases described above. In general,
the change in the transducer’s response due to the feed-back from the galvanometer is
similar to the change in the response caused by the change of the critical damping ratio

in SDOF system.
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Due to linearity of the whole system the distortion of the transducer response wili
be linearly transmitted through the galvanometer, to the final response of the whole
system.

II.5 Summary

It is convenient to summarize all of the above results in a form of Table 2. This
table describes all combinations that can be obtained by the pairs of two “ideal” de-
vices, coupled together to measure displacement, velocity or acceleration of the ground
motion. Each entry in the table describes one of the possible pairs and gives the needed

information:

a) what quantity the output of the system is proportional to (in terms of a short
“formula”, like D + V = D, displacement meter (transducer) and velocigraph
(galvanometer) result in the total output being proportional to the displacement),

b) what the amplification factor (Ampl.) is equal to,

c) how significant the distortion of the transducer response due to coupling is (in terms
of | D(w) = A5 (w)] /|A(w)])-

The table also considers the limiting behavior of the transfer function of the SDOF
system to estimate the limiting behavior of the coupled system.

Figs. 2a, 2b and 2c complement Table 2 and represent the exact transfer function
B(w) from Eq. (5) for different arrangements and for different degrees of coupling. Factor
1/lo is omitted in B(w) in the Figs. 2a—2c for the purpose of simplicity, thus making
all the plotted quantities dimensionless. The case of strong coupling is also presented
in Fig. 2 so that the accuracy of the weak coupling approximation can be estimated.
Similar to the case of a SDOF system, the amplitude and phase responses with respect
to the quantity to be measured are plotted. For the amplitude response, this is the
absolute value of the ratio of the measured function of motion (displacement, velocity
or acceleration) to the displacement of the moving point. For the phase response, this
is the phase lag between z and ¢ if the displacement is being measured, the phase lag
between £ and ¢ if the velocity is being measured and the phase lag between £ and @ if
the acceleration was the quantity of interest. For example, for the output proportional
to the acceleration, the top figure in the corresponding pair (V+A = A and A+V = A)
gives the amplification of the device in terms of the ratio of the measured acceleration
to the exact ground acceleration. The phase shift ¥ + 7 gives the delay of the recorded
acceleration with respect to the real (input) acceleration. ,

Table 2 and Fig. 2 show also that small coupling is not necessarily the best choice
if the goal is to get the “flat” amplitude response and a constant phase shift in as broad
frequency range as possible. As far as the phase is concerned, it is obvious that the
ideal case is when o102 = 1, which means complete coupling. In general, small coupling
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is better for the amplitude response (makes it more stable), and big coupling—for the
phase response.

The above analysis and careful study of the Table 2 and Fig. 2 lead to the conclusion
that the correction of the output of the coupled “transducer-galvanometer” system for
instrument response is necessary for any value of coupling even in the frequency range
where the amplitude response is stable, because of the phase distortion. Obviously,
correction is also needed if we wish to increase the frequency range where the amplitude
response of the system can be considered to be “flat”.
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III. CORRECTION FOR THE INSTRUMENT RESPONSE
OF A COUPLED SYSTEM

The general scheme for the proposed method is based on Eq. (2) and can be pre-
sented by the flow chart of Fig. 3.

Before applying the numerical procedures, shown in Fig. 3, the frequency band of
interest should be identified. This can be done by comparison of the Fourier spectrum of
the direct output from the system with the average noise spectrum for a typical record.
By “noise” here we mean mostly digitization noise (Amini et al., 1987; Lee et al., 1982;
Trifunac et al., 1973), and consider the other distortions of the signal to be the part of
a signal itself. Having Fourier spectra for both noise and the signal with noise, one can
determine the upper (f;) and the lower (f2) limits of the frequency band for any desired
signal to noise ratio. It is customary to work whithin frequency band where this ratio is
greater or equal to one, so that no information is lost.

Each differentiation and integration from the flow chart in Fig. 3 should be ac-
companied by low- or high-pass filtering with low cut-off f; and high cut-off f;. This
is necessary because differentiation emphasizes high frequencies (higher than f;) which
do not have any useful information, and integration does the same with low frequencies
(lower than f2). So, low-pass, high-pass, differentiation and integration filters are all
required. We will see later on that an interpolation procedure is also necessary.

II1.1. Digital Filters Used in the Process

We will describe now the filters used in this work. Each circle in Fig. 3 may represent
application of a sequence of filters. For example, differentiation is always accompanied
by low pass filtering and integration requires both low- and high-pass filters.

I11.1.1. Differentiation

The pulse response of the differentiating filter can be represented by

wikz%-{ﬁi—(l;(—;l%—];q} , wo=0, k=1,N. (20)

Here wj, designates the weights of the filter, the overline in k = 1, N means that k varies
from 1 to N, so that 2N + 1 is equal to the total number of points in the filter. Factor
{-}? represents squared Lanczos coefficients which are introduced to reduce the Gibb’s
phenomenon (Hamming, 1983). The antisymmetry of the filter provides for the “exact”
behavior of the phase (it is not distorted with respect to the theoretical 3z value).
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o

Fig. 3 General scheme of the instrument correction procedure for the coupled 2DOF system,
represented by Eq. (2). Having the response of the system ¢ one can get ¥ and ©
by two numerical differentiations. Knowing all the constants involved in Eq. (2b),

the first derivative of the transducer response 6 can be obtained. Further, numerical
differentiation and integration gives § and 6. The last step is to compute Z from

Eq. (2a) with known 4, 9,6 and ¢.
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The modulus of the transfer function of this filter can be evaluated as:
N
[H(w)| =| Z2-wk-sinwkl . (21)
k=1

The transfer function in Eq. (21) of the filter in Eq. (20) with N = 10 is shown in Fig. 4
(top). As the transfer function of the differentiation should ideally be proportional to w,
the quantity {1 — |H(w)|/w} describes the relative error of the numerical differentiation
(Fig. 4 bottom). As it can be seen from the figure, the accuracy of this filter is 102 for
f < 0.31 and 10~ 2 for f < 0.4. The frequency, f, is expressed in terms of the sampling
frequency, so that the meaningful range of f is from zero to 0.5, where f = 0.5 is the
Nyquist frequency, which is the highest one that can be resolved by a sampling rate.
It is useful to recognize that during the actual numerical differentiation, small error,
predicted by the above transfer function (Eq. (21) and Fig. 4), can be achieved only if
the process is infinitely long and stationary. The beginning and the end of a record will
be distorted (with respect to whatever is predicted by the transfer function) by any filter.
Difficulties associated with the record extension beyond the actually recorded time can
be avoided in the case of continuous recording.

II1.1.2 Integration

The symmetrical 3 point IIR Chebyshev filter (Hamming, 1983) was chosen as an
integrator. This filter is defined by

Yn+1 = Yn—1+ ayp 1 + by, +ay;,_;,

where y!, stands for the input function, y, is the output from the integrator, and a and
b are coefficients to be determined by two conditions. First, y'(t) = const., should be

integrated exactly. This gives
2=2a+0. (22)

Second, the error curve at any frequency is to be a Chebyshev function in the lower A
part of the Nyquist interval (that is, from 0 up to A-0.5 in terms of sampling frequency).
This gives the second equation:

2rAaJ](7A) + 7AbJ{(0) = 2J; (7w ]), (23)

where Jj(z) is the Bessel’s function of order one and with argument z. The symmetry
of the filter allows one to avoid the phase errors. Solution of Eq. (22) and Eq. (23) gives
the constants a and b for any 0 < A < 1. The modulus of the transfer function of this

integrator can be represented as

2acosw + b l (24j

H —
I (w)] ’ 2sinw
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and the error is described by {1—|H(w)|-w}. Plots of the transfer function Eq. (24) and of
the error are presented in Fig. 5. Notice that it is not practical to require high frequencies
to be integrated precisely with this type of filter. In general, it is not recommended to

take A > 0.5.

To start the integration, the initial conditions should be known. Lack of this infor-
mation forces one to assume zero initial conditions and, after integration is accomplished,
to “correct” the result. This correction takes care also of a possible linear drift due to
non ideal position of a zero line in the input function and is just a subtraction of the
least-square straight line from the result obtained by the integration of the input func-

tion.

I11.1.3. Low-Pass Filter. High-Pass Filter with “Not Very Low” Cut-off
Frequency

Two types of filters were considered for the purpose of low- and high-pass filtering.

The symmetrical pulse response of the low-pass version of the first one was chosen
to be 1
Wik = ﬁ(sin(27rf1k)) -wk, wo=2f;, k=1,N, (25)

where wy are the filter weights and f; is the low cut-off frequency. The last term wj
represents the Webber’s windowing, which can be approximated by two cubic parabolae

(Cappellini et al., 1978).

The high-pass version of this filter can be represented by

Wik = W—lk(sinwk —sin2n fak) -wy, wo=1—2f;, k=1,N (26)

where fs is the high cut-off.

The required length of the filter Ny,; = 2N + 1 can be estimated by the empirical
formula Ny,; ~ 2/f*, where f* is the narrowest frequency interval for which the ampli-
tude response of the filter can be realized. Suppose we want to have a sharp filter, so
that the transition band is much smaller than the cut-off frequency f. (which is equal to
f1 or f2). In that case, f* can be considered to be equal to the width of the transition
band, which may be taken as, say f./10. This gives us the estimation of the required

filter length as
20
Ntot ~ ?c—. (27)
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The modulus of the transfer function of any symmetrical (preserving zero phase) filter
can be written as

N
|H(w)| =| Z 2 - wy cos(wk) + wo | - (28)
k=1

Fig. 6 (top) represents |H(w)| in Eq. (28) for the low-pass filter in Eq. (25) with f; = 0.25
and N = 40. Fig. 6(bottom) shows the error of the filter. The transition band here is
defined as the difference between the frequencies f~ and f+, where f~ is the point were
the error in the pass-band becomes greater than 1072, and f1 is the point were the error
in the stop-band becomes smaller than 10~2. In the case presented f* — f~ = 0.03,
so that f¥ — f~ ~ f1/10 and the estimate of Nzt in Eq. (27) is reasonable. All the
properties of the high-pass filter in Eq. (26) are like a mirror image of the properties of

its low-pass counterpart Eq. (25).

The second type of filter is the Ormsby filter and it is used for high- and for low-pass
filtering when f. < 0.25. “Sharp” approach (i.e. small transition within the response
of the filter, Eq. (25)—(27)) leads to unreasonable length of this filter for small fc. The
reduction of the number of the filter weights results in the poor control of the shape of
the transition band. Ormsby low-pass filter with von Hann windowing

cos(wck) — cos(wek) |1 km we + We —
— . —_ — = - 2
Wik 272 (wy — wo) K2 2 1+ cos N , Wpo , k=1,N (29)

effectively reduces the width of the transition band for small corner frequency with
respect to the “sharp” filter with the same N by providing better control of the slope
between the w, (the cut-off frequency) and w, (the roll-off frequency). The number of
weights in the filter can be estimated from

47

Wg — We

(30)

Nict=2N+1=

For a reasonable balance between the length and the sharpness of the filter in Eq. (29),
an empirical estimation of the relative width of the transition band can be considered
(Fig. 7). The transfer function for a typical cut-off f1 = w. /27 = 0.12 (which corresponds
to 24 Hz with 200 Hz sampling frequency) is presented in Fig. 8. The width of the
transition band and the number of points in the filter were chosen in agreement with the
empirical estimate illustrated in Fig. 7 and in Eq. (30).

If one needs to perform a high-pass filtering with the help of the filter in Eq. (29),
this can be done in two steps. First, low-pass filtering with w. and w, exchanged (as
compared with what is required by the ordinary one-step low-pass) has to be performed.
Second, the result of the first operation has to be subtracted from the original time
series. However, even for (w. — w,)/w. = 0.5, the number of filter weights becomes
very large if f.<1/50 (in terms of sampling frequency). Within digitization frequency of
200 Hz (which is common in seismological and earthquake engineering data processing),
this corresponds to corner frequency ~ 4Hz. Obviously, cut-off much lower than 4Hz is
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Fig. 7 Empirical relation between the corner frequency f.(or w.) and the width of the
transition band Af (or w, — w,) for obtaining a “reasonable” length of the filter.
The dimensionless frequency f is expressed in terms of the sampling frequency.
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Fig. 8 Ormsby filter transfer function amplitude (top) and the corresponding error (bot-
tom), for f; = 0.12. The other parameters were chosen according to Fig. 7 and
Eq. (30) and are: Af = 0.022 and N = 44 (the total number of points is 89). The
dimensionless frequency f is expressed in terms of the sampling frequency.
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required in the high-pass procedure for a great number of cases (fz is usually smaller
than .5Hz). At the same time, large number of points in the filter results in slowing
down of the computations and in accumulating numerical errors.

III.1.4. High-Pass Logic (“Very Low” Frequency Cut-off Case)

As we saw in the conclusion of the previous section, in the majority of cases the
straightforward high-pass filtering is not practical, and the scheme presented in Fig. 9

can be considered.

The idea of the scheme in Fig. 9 is quite simple: if it is difficult to implement
the straightforward high-pass filtering, the complementary low-pass procedure can be
performed instead (this can be easier to do) and then the low-pass filtered result should
be subtracted from the original signal. It appears to be easier to do low-pass filtering
because the frequencies one wants to preserve are very low; so one does not need high
sampling frequency to operate on the record. Thus, the idea of decimation comes in.
Computer time is proportional to n - N, where n is the length of the record in points,
and 2N + 1 is the number of points in the filter. The decimation reduces both n and N
several times. A variety of schemes for high-pass filtering with decimation and backward
interpolation are available (Crochiere and Lawrence, 1975; Oetken et al., 1975; Shively,
1975; Mintzer and Liu, 1978, to mention just a few). The method presented here was

chosen because of its simplicity.

We next discuss each step in Fig. 9 in some detail.

Step #1. Preliminary low-pass filtering is necessary to make the decimation possi-
ble. Due to the phenomenon of aliasing, it is necessary to have fhighest < Ny™¢¥ during
the decimation process. Here fhighest designates the highest frequency that is present
in the record at the time of decimation and Ny®¢¥ is the new Nyquist frequency—the
one that we want to decimate the record to. Thus, before decimation, one should filter
out all frequencies that are higher than Ny"¢¥. What should be the properties of this
preliminary low-pass (pre-low-pass) filtering? It should filter out all f > Ny®®¥, not
disturbing all frequencies f < fo, where f; is the cut-off of the initial operation to be
to accomplished (high-pass). To perform preliminary low-pass, we choose Ormsby filter
with (ws — we)/we = 1, 50 that (to play it safe) all frequencies w > 4w, will be definitely
filtered out. In other words, the requirement for the pre-low-pass filtering is

Nynew
p=—pre 24 (31)
1
where fP™ designates the cut-off frequency of the filter, i.e. 27 P = we. We will see

later that the “safety factor” of 4 is necessary for some other reason.
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Input signal @(t) to be
high-pass filtered with cut-off  f,

¥

(" o L )
Step #1. Preliminary low-pass filtering of @(t).
All frequencies higher than fP are
filtered out to make decimation possible.
Step #2. Decimation of the pre-low-pass filtered
signal by the factor of K to decrease the
sampling frequency.  New Nyqust frequency
should be greater than ~ fPr® .
. ' J
deci
@ decim(¢)

Y
decim ( t )

Step #3. Perform low-pass filtering on @ .
(pre-low-passed and decimated signal).
Cut-off is f, .

@ Em (t)

!

Step #4. Interpolate @ %e;im (t) to the
old sampling frequency.

¥

9p, (1)

Y

Step #5. Subtract @ (t) from the original @(t)
2 . .
and get the result - high-pass filtered
signal - function g(t) .

!

g(t) = ®b) - 9, (1)

Fig. 9 Flow chart of the high-pass filtering procedure for the case of “very low” cut-off
frequency fa2.
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The filter length 2NP™ + 1 required can be estimated from Eq. (30) or, in terms of

the pre-low-pass cut-off:
1
NP = —5. (32)

1

Step #2. After preliminary low-pass filtering the record is ready to be decimated.
Designating the factor of the decimation by k, the following results,

Ny .k=Ny°® =05  k>2 (33)

Here Ny°! is the initial Nyquist frequency, which is equal to the half of the sampling
frequency. However, it is not practical to perform Steps #1 and #2 separately. Actually,
during the pre-low-pass filtering, only every k! point should be calculated, and this saves
computer time considerably making the whole procedure very efficient.

Step #3. This step performs low-pass filtering with corner frequency fs (in terms
of the original cycle frequency). To avoid disturbance of the frequencies lower than f2,
one should have fF™ >> f,, because only very low frequencies were not disturbed at all
by pre-low-pass filter (see later Fig. 12). Assuming that factor 4 is sufficient, one can

write
pfa<fi, 24 (34)

Notice, that decimation reduces the length of the record and of the filter in terms of
points, but this does not affect the physical length of either of them. Hence, the length
of the Ormsby filter, estimated with the help of Fig. 7 and Eq. (30), can still be much
greater than the length of the record is. At this point one can introduce an additional

constraint
Niot < 1.8n, (35)

where N,,: and n are the length of the filter and the length of the record respectively.
The factor 1.8 does not have any specific physical meaning and comes from experience.
The idea is that having the filter much longer than the record is not meaningful and
filtering under such conditions will only introduce additional errors (recalling the fact
that the filtered result “feels” the disturbance coming from the beginning and the end
of the record during the time equivalent to the half of the length of the filter).

Step #4. Suppose one has low-pass filtered the record (up to fz) with the new
sampling frequency. Now we have to interpolate back to the old digitization frequency.
The method used is the spline interpolation (Press et al., 1986) which can be tested as

follows. We take

. . 27, .
yo(?) =sin (P—l(J - 1)) , j=1,n

33



as an input function, where p; designates the number of points per period of the function
(the bigger p; is, the smaller the error of interpolation becomes). During the interpo-
lation procedure, the sampling rate increases k times as k — 1 additional points are
introduced inbetween every pair of initially defined points. Let us designate the output
of the interpolation as (i) defined at all ¢ = 1,1, where | = k(n — 1) + 1. The function,
characterizing the error of the interpolation can be written as

q(2) = §() = 9o(¥), i=1,1,

where §o(?) is the initial function yo defined with k times increased sampling rate: »
27 -
go(t) =sin| — (1 —1 = 1,1.
iold) =ain (=), 0=,
Define the error of the interpolation for this specific value of p; as:
max |q(i)]-

Changing p;, one can estimate the error of the interpolation, ¢, as a function of the value
of the highest frequency which is present in the record (p1 = 1/ fhighest), as

elpr) = max [§(6) — Gol)] (36)

The parameter k in the logic presented describes the relative density of points where
the initial function was defined. The graph of Eq. (36) for k¥ = 10 is given in Fig. 10.
Experiments show that the accuracy of the interpolation does not depend on k for k > p;.

Next we summarize all conditions, given by Eq. (31)-(34) in Fig. 11. As it can be
seen from this figure, the highest frequency that can be present in the record at the time
of the interpolation, corresponds to at least p’p points per period, and as p > 4 and
p' > 4, this number is not less than 16. Going back to Fig. 10, the estimation of the
interpolation error can be obtained for p; > 16. This error is < 1073, and that gives
the answer to the question why a safety factor of 4 was chosen in the discussion on the
pre-low-pass filtering procedure.

Step #5. Subtraction of the interpolated time series from the original function
gives the desired result: high-pass filtered signal.

Further consideration of restrictions, summarized in Fig. 11, leads to the following
conclusions. The flow chart in Fig. 9 can be used to perform high-pass filtering only if
f2 <0.5/(42 -0.2) = 1/64. If this is so, one has to choose k, p and p’. This can be done
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by minimizing the computer time necessary for the whole process and by taking advan-
tage of the results obtained during the testing procedure. That leads to the following

assumptions and estimates:

P=p
ax | 4 1 k=2
= m. ’ s =
p 5aT, p
1
NPT = mi =8k, 09n], 37
min (0.5 T4k n) (37)
pre _ 1
18k’

. 1 1 n
N—mm(Ah-k, O.Qk),

where A f, is obtained in accordance with Fig. 7 for f = fs.

Fig. 12 presents the transfer functions of the preliminary low-pass filter (Step #1
above) and of the low-pass filter (Step #3) for the given f; = 0.00025 (this is 0.05 Hz for
200 Hz sampling frequency). Parameters p = 10, k, NP™ and N were chosen according to
Eq. (37). Preliminary low-pass is done with 200 Hz sampling frequency (i.e. N;ld =100
Hz) by convolution with Ormsby filter with NP™ = 160, corner dimensionless frequency

Pre — 0.00625 (1.25 Hz in 200 Hz sampling frequency) and with the width of the filter
equal to its corner frequency (i.e. (ws — wc)/we = 1). After decimation (during filtering
only every kt* point was calculated) with factor k£ = 20, the record has 10 Hz sampling
frequency and, therefore, new Nyquist frequency Ny**" = N y°4/k = 5 Hz. Now, f,
is equal to 0.005 (the same 0.05 Hz, but now for a 10 Hz sampling). Main low-pass is
nothing else but convolution with Ormsby filter with corner f2 = 0.005, A f2 = f2 /2 (see

Fig. 7) and half-length N = 342.

II1.2. The flow of the program ICR2

Using the filters discussed in Section III.1, the program ICR2 (Instrument Correc-
tion for the Response of a two degree of freedom coupled system) was written. Fig. 13
presents the flow chart of the logic of this program.

The output of the procedure is supposed to represent the reconstructed ground
acceleration. If velocity or displacement are the quantities of interest, additional inte-

grations should be performed.

The testing shows that the time necessary to reconstruct one record of about 50 sec
duration with 200 Hz sampling frequency and the low cut-off at 10 sec and high cur-off
at 25 Hz, is about 2 minutes on IBM-PC-AT with a DEFINICON accelerator board.
The most critical quantities here are the value of the high cut-off expressed in terms
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of the sampling frequency (this determines the length of the filters in low-pass filtering
which is done 4 times in the program) and the length of the record (number of points).
The lower the cut-off is and the longer the record is, more time is necessary to perform

the instrument correction.

I11.3 The Transfer Function of the ICR2 Procedure

The ICR2 was designed to perform the correction of the record for the instrument
response. One way to check the quality of the algorithm is to get it’s transfer function.
Given the (generally) coupled device with known characteristics, the transfer function
B(w) is known (see Eq. (5)). The relationship between the input (displacement of the
moving point z(w)) and the output (rotational response of the galvanometer p(w)) can
be expressed as

B(w) - z(w) = ¢(w)
in the frequency domain. Therefore, the acceleration of the moving point £(w) can be
obtained as
B(w) = —?[B@)| " - p(w)- (38)

The ideal instrument correction procedure should be able to reconstruct Z(w) inside
prescribed frequency band f; < f < f;. From this point, we will change our notation,
and will express frequency in Hertz, and not as a dimensionless quantity scaled in terms
of the sampling frequency. Designating the transfer function of ICR2 as R(w), we have

£(w) = RW) - p(w). (39)

The accuracy of the instrument correction can be measured as the discrepancy between
the theoretical Eq. (38) and actual Eq. (39) transfer function. The relative error is given

by
—W?[B)|"! - R()
—o [ B@) ! (40)

However, direct implementation of Eq. (40) is impossible as the analytical expression for
R(w) is not known.

e(w) =

To evaluate |e(w)| the following test was performed. Given harmonic input p,,(t) =
sinwt, both actual Z,(t) = r,[sin(wt + B(w))] and theoretical £ (t) = by, [sin(wt +8°(w))]
responses of the instrument correction algorithm can be obtained: the former by just
running the ICR2 program, and the later analytically. As all the filters involved are
symmetrical (or antisymmetrical), one can assume that the instrument correction pro-
cedure reconstructs the phase perfectly (8(w) = #°(w)). This allows one to estimate
r. /b, as the discrepancy between Z,(t) and Z2(t) at their (say) maxima. Carrying out
calculations for a wide range of frequencies, the estimate of the relative error of the
instrument correction procedure can be obtained:

le(w)| = =1-. (41)
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Fig. 14 Relative error of the ICR2 procedure in the case of a harmonic input.
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Fig. 14 presents |e(w)| in Eq. (41) for: sampling frequency 200 Hz; frequency range or
the instrument correction requested: 0.05 Hz + 30 Hz; the transducer’s frequency and
damping ratio fi, = 5 Hz, &, = 5 (velocity type); galvanometers frequency and damping
ratio fgaly = 10Hz, £ga1v = 0.6 (acceleration type); and coupling coefficients o; = 0.01,
o2 = 1. Fig. 15 shows the transfer function of the coupled transducer-galvanometer
system with these parameters. As one can see the device is only a hypothetical one and
has “poor” characteristics. It was chosen to make the effect of instrument correction
more pronounced. Comparison of the last two figures shows that ICR2 performs well
with accuracy of 3 x 1072 in the range 0.09 Hz < f < 27 Hz and with accuracy 107!
in the ranges 0.065 Hz < f < 0.09 Hz and 27 Hz < f < 29 Hz. This means that the
algorithm does reconstruct the amplitude characteristics of the motion far beyond the

“flat” portion of the system response.

III.4 Case study

Another test performed is a case study. A typical strong motion accelerogram (Lee
and Trifunac, 1987) was taken to represent the exact acceleration of the ground. This
was the S50W component of the record obtained during the Imperial Valley earthquake
in California, on October 15, 1979, at epicentral distance of 27 km (Fig. 16). The scheme
of the testing procedure is presented by the flow chart in Fig. 17.

Eq. (2) was solved using the forth order Runge-Kutta method. This procedure
simulates the work of the recording device. The parameters for the coupled system
where the same as for the first test, discussed in Section III.3 and are summarized in
Fig. 15. As one can see comparing Fig. 15 and Fig. 16b, the working range of the device
adopted is narrower than the spectrum of the acceleration to be recorded. Prior to
the integration of Eq. (2), the interpolation of the input record was performed. This
was necessary because Runge- Kutta method becomes unstable if the process under
consideration has the smallest period comparable with the time-step size used during

the integration.

The record considered has 50 Hz sampling frequency and considerable Fourier am-
plitudes up to 15 Hz. The factor 50/15 = 3.3 appears not to be sufficient for the
Runge-Kutta method to be stable. After interpolation with k = 10 (see section IIL.1.3,
step #4), the safety factor becomes (50/15) - 10 = 33, and the sampling frequency be-
comes 50 - 10 = 500Hz. The low-pass filter with cut off at 25 Hz (which is the original
Nyquist frequency) should follow the interpolation to filter out all high frequencies that
could be introduced during the interpolation. This step is necessary because the criterion
1/p1 < 0.1 from Fig. 10 was not satisfied. Here p; is the highest frequency (expressed
in terms of the sampling frequency) that is present in the signal prior to interpolation:
in our case it is 15/50 = 0.3.

The interpolated and low-pass filtered ground acceleration was supplied as an input
to Runge-Kutta integration. The resulting function pso0 is shown in Fig. 18 (bottom).
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Fig. 20 The original (solid lines), properly scaled “recorded” (dashed lines) and recon-
structed (dotted lines) acceleration. Two parts of the record are shown: with the
intensive high frequency content (top) and with the substantial low frequency com-
ponent (bottom).
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The vertical axis in this figure is flipped to make the comparison with the exact input
acceleration easier, (recall 7 shift in the phase for the “accelerometer” in Fig. 2b and 2c).
The same procedure was repeated with the interpolation factor k£ = 20 and, therefore,
sampling frequency 1000Hz, and ©;000 was obtained. The estimate of the error intro-
duced by Runge-Kutta integration, can be obtained by comparison of ¢500 and ¢1000-

Relaying on the well-known estimation of the local error (Dahlquist and Bjorck, 1974),

one can assume that the global error of s should not exceed |@s00 — ¥1000|- (The
latter is true if the function under consideration is smooth enough. In our case the record
should have many points per period for the smallest period that is present in the record,
which means that high sampling rate is required). Fig. 18 (top) shows [©s00 — ©1000]
as a function of time and allows one to conclude that the accuracy of the integration of
the Eq. (2) by the method chosen is approximately 10~2 for 500 Hz sampling frequency
and not worse than that for 1000 Hz sampling frequency.

It is customary to perform the routine strong motion data digitization with sampling
frequency 200 Hz (Lee and Trifunac, 1979a,b), so we reduced the sampling of ¢1000
from 1000 Hz to 200 Hz by applying the decimation subroutine. Note, that prior to
decimation, a low-pass filtering with cut-off at 100 Hz should be done. The output of
these two procedures (function @200) was used as the representation of the response of
the strong motion recording device that should be corrected by ICR2. Before continuing
we compare Fig. 18 (bottom) and Fig. 16a and notice how the record is disturbed during
the “recording process” in both high and low frequency parts of the spectrum. The
working frequency range for the ICR2 was chosen to be f; = 0.05 Hz < f < 25 Hz = f;.
Then the corrected accelerogram, Z;c,, should, ideally, coincide with the initial record
% (Fig. 16a). However, some additional steps should be done to make this comparison
possible. These steps are: interpolation of £ to 200 Hz and low-pass filtering with 25 Hz

cut off (we designate the result as £*). Then the output of the instrument correction
algorithm Z;., and the “exact” interpolated accelerogram i* can be compared. These
two functions are plotted on top of each other in Fig. 19 (bottom). As one can see, those
appear the same to the naked eye, which means that the original ground acceleration was
adequately reconstructed throughout the whole required frequency range. The difference
between Z;., and Z* is shown in Fig. 19 (top). The accuracy of the result can be
estimated as the ratio of the scales on Fig. 19 (top) and (bottom), which is ~ 5 x 1072,
Recalling the accuracy of the Runge-Kutta solution as 10~2, we can assume that the
difference |Z;., — Z*| arises mostly from the instrument correction procedure. This allows
us to conclude that in the case studied the relative error of the ICR2 is approximately
5 x 10~2, which is reasonable. The largest error appears at the time intervals with
highest frequency content. The most rich in high frequencies part of the record is shown
in Fig. 20 (top), and the low frequency interval is presented in the bottom of this figure.
All three curves: original acceleration i* (solid line), the properly scaled “recorded”
acceleration 200 (dashed lines) and the corrected signal Z;cr (dotted lines) are shown

together for comparison.

49






IV. CONCLUSIONS
The main results of the work presented can be summarized as follows:

1. The need for accurate representation of both phase and amplitude of the original
motion being measured requires correction of the direct output from coupled transducer—
galvanometer systems for the instrument response. This-procedure not only significantly
increases the frequency band beyond “flat” portion of the amplitude response, but it also
corrects the phase, which always depends on frequency for the system considered.

2. The proposed instrument correction algorithm involves numerical differentiations
and integrations in time domain and can be applied to the output from any coupled
system which can be described by Eq. (2). It is not necessary to design instruments so
that their output is proportional to displacement, velocity or acceleration of the moving
point, if the direct output from the system is corrected by the proposed procedure. It is
also not necessary to worry about small coupling between devices if it is more convenient
to design an instrument with big coupling coefficient.

3. The tests we presented show that the relative error of the procedure is about 5%
inside the frequency band which was chosen to be corrected for instrument response. In
the case study considered, this frequency band was much broader than the “fat” portion
of the “device”, “recording” the motion (the “recording” was modeled by Runge-Kutta

integration of the governing Eq. (2)).

4. The program written on the basis of the proposed algorithm can be integrated
into standard packages of strong motion and seismological data processing programs,
and a great number of records obtained by coupled transducer-galvanometer systems
can be corrected for the instrument response.
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