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ABSTRACT

The system damping, the system frequency, the relative building response and the base
rocking have been studied as those depend on the building mass and height, the flexibility
of the soil, the structural damping, the depth of the embedment, the type of incident waves
and their angle of incidence. A two-dimensional model has been used which assumes the
soil to be a homogeneous isotropic half-space, the foundation supporting the building to
be a rigid embedded cylinder and in which the building model is an equivalent single
degree-of-freedom oscillator. No coupling has been assumed of the vertical motions with
the horizontal motions and the rotation. Both the kinematic and the dynamic interaction

effects have been included. Excitations consisting of plane P- and SV-waves have been

considered.
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CHAPTER 1
INTRODUCTION

Many studies, based on experimental measurements or on theoretical analyses, have
shown that the dynamic soil-structure interaction can result in significant modification of
the relative response of a structure, of the motion of its footing, and of the motion of the
surrounding soil. The flexibility of the foundation medium and the resulting additional
degrees of freedom of the building base relative to the incident wave motion make possible
a process of radiation of the vibrational energy of the building back into the soil. The final
outcome of this process on the relative building response, is reduction of the frequency
and of the amplitude of the peak response, relative to the fixed-base model response. An
attempt has been made to quantitatively describe the mechanism of the interaction by
introducing springs and viscous dampers, attached to the building that would account
for the flexibility of the soil and for the, so called, geometric or radiation damping. A
pair consisting of a spring and a damper can be defined for each degree of freedom of the
foundation. The frequency dependant stiffness and the damping ratios for those springs
and dampers can be calculated from the impedance functions for foundations of different
shapes (e.g., Apsel and Luco, 1976; Day and Frazier, 1979; Luco and Westmann, 1971),
neglecting the coupling terms and using the analogy of a viscously damped single degree
of freedom system. Then the building-soil interaction model reduces to a building model
connected with springs and dashpots to a rigid base, translating and rotating with the
amplitudes of the free-field motion.

The current empirical and analytical methods use such models to estimate the total
damping in the building relative response. Methods for representation of the building
damping, radiation damping and the damping in the soil, during dynamic building-soil
interaction, have been proposed, for example, by Tsai (1974), Rainer (1975), Bielak (1971,
1975, 1976) and Luco (1980). All of those methods use some analogy with a single or a
multi degree of freedom (SDOF and MDOF) fixed-base oscillator.

Bielak (1971) and Luco (1980) presented simple analytical expressions for the modal
damping ratios, “natural” frequencies and the peak responses for SDOF and MDOF build-
ing models on surface foundations, by neglecting the higher order terms of the functions
expressing the damping coefficients. In his later work Bielak (1976) arrived at the same
analytical expressions assuming orthogonal modes of the flexible-base structure. Bielak
(1975) also studied the effect of the depth of the embedment for prismatic three-dimensional
foundations. Tsai (1974), assuming orthogonal modes of the flexible-base building, calcu-
lated the damping for each mode by matching the shape of the transfer function of his
model, with the “actual” transfer function at several locations in the building. Rainer
(1975) calculated the total damping for SDOF and MDOF building models (1) measuring
the amplitude of the relative building response transfer function at the fundamental system
frequency and (2) from the ratio of the energy dissipated during one cycle and the total
potential energy during one cycle, associated with a particular mode of vibration. In all
those models the kinematic interaction, the coupling terms and the frequency dependant
nature of the foundation impedance functions are neglected.



The two-dimensional study of building-soil interaction by Todorovska and Trifunac
(1990) showed that the type of incident waves, angle of incidence, and the depth of the
embedment may have significant influence on the radiation process. Neglecting the rotation
of the incident ground motion and the kinematic interaction may cause nonconservative
estimates of the forces in the building. This was seen particularly in the cases for incident
Rayleigh waves and for incident plane SV-waves beyond critical angle. In this work this
analysis is extended to quantative measurements of the effects of various system factors on
the system damping and on the system frequencies. In the work of Todorovska and Trifunac
(1990), the building model is a homogeneous shear beam on a rigid circular foundation
embedded in a homogeneous and isotopic elastic half-space. It was shown there that the
interaction affects significantly only the frequency and the amplitude of the fundamental
mode of the building response. In this work the contribution of the higher modes will
be neglected. The building will be represented by an equivalent viscously damped single
degree of freedom oscillator with rocking degree of freedom relative to the rigid foundation.
The response characteristics will be measured directly from the transfer function of the
relative building response, including both the dynamic and the kinematic interaction. The
system damping will be calculated using the analogy with a damped fixed base single
degree of freedom oscillator. The purpose of this study is to see how those are affected
by the damping in the building, by the relative building-soil stiffness, by the depth of the
embedment and by the type of incident waves and angle of incidence. A two-dimensional
model has been chosen first, because it allows analytical closed-form solutions and, thus,
better and more explicit understanding of the interaction phenomena.



CHAPTER 1I
THE MODEL

Ignoring the contribution of the higher modes of vibration to the building response, the
building can be represented by an equivalent single degree of freedom (SDOF) oscillator,
shown in Fig. II.1, supported by a rigid circular foundation embedded into a homogeneous
and perfectly elastic half-space. This oscillator consists of a rod which at one end has
a concentrated mass, and at the other end is connected to the foundation at point O
through a rotational spring and a rotational dashpot connected in parallel. The mass per
unit length in the y- direction of the oscillator is m;. The center of gravity of this mass
is at height H relative to the surface of the foundation, its radius of gyration is r, and
the vertical connecting “rod” is assumed to be massless. The spring has stiffness constant
K} and represents the rocking stiffness for the oscillator, and the dashpot has damping
constant Cp. The width of the foundation is 2a, the depth of the embedment is kA and its

mass per unit length is my.

The £—0—z coordinate system is an inertial system with origin at the center of the top
surface of the foundation at rest. The foundation has three degrees of freedom with respect
to this coordinate system: horizontal translation A (in the positive z-direction), vertical
translation V (in the positive z-direction) and rotation ¢ (clockwise). The building model
has only one degree of freedom with respect to the foundation - the rocking angle !
measured clockwise from the axis £, which is always perpendicular to the top surface of
the foundation. With respect to the inertial system £—0— z, it has horizontal displacement
up (in the positive z-direction) and vertical displacement v (in the positive z-direction).
In the linear analysis, there is no coupling between the horizontal and the vertical motions
of the mass. Then, the relationships between the displacements of the building and of the

foundation are
up = A+((p+¢rel)H

II.1
Vp = V. ( )

The relative horizontal response u,’f‘ = ¢ H. For a harmonic excitation, with e~*“¢ the
system will respond with same frequency, i.e.

¢rel — ¢Bele—zwt
_ —twt
A= Aoe ’

where A = {V,A,pH}T is a generalized displacement vector and Ag = {Vy, Ao, poH}T
is its complex amplitude.

I1.1 Motion of the Building

From the free-body diagram (Fig. II.1), neglecting the vertical acceleration —#;, the
equilibrium of moments about the center of the base gives

myiip H + myrZ (3 + ) + Kyp™ + Cob™! — myg(o + ¢™)H =0 (I1.2)



Fig. II.1 The model



where g is the acceleration of gravity. On the left-hand-side of Eq. (IL.2), the first term is
the moment of the inertia forces due to translation of my, the second term is the inertia
moment due to rotation of m; about the point £ = 0, the third and the fourth terms
represent the moments of the elastic and of the damping forces and the last term is the
moment of the gravity forces.

The equation of motion of the mass my, Eq. (IL.2), is equivalent to

,‘Z,rel + 2wNS.,¢')rel + w2 d)rel
_ mbH2 g a 2 d)rel
I wNaH (I1.3)
_ —mszé . mpH? ¢ _t_z_ 2
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where
K _ wi (I1.4a)
I
Gt _ e (I1.48)
I

I = mpyH? [1 + (%)2] is the moment of inertia of the building about ¢ = 0, and w% and

¢ are the fixed-base natural frequency and the ratio of critical damping. The term g/w?% H
is a dimensionless parameter involving the acceleration of gravity. For low buildings this
ratio is very small (~ 10™*), while for higher buildings it is of order 10~!. For example,
for a sixty story building with base 2a = 30m, it has value ~ 0.3. The damping ratio ¢
for typical buildings ranges between 0 and about 0.1. The geometric parameters of the
equivalent SDOF building model, H and r;, are related to the geometric parameters of a
shear beam building model, with height H,, and width W, as

Hsb
V3

st

H=

(I1.5a)

(I1.5b)

rp, =

For a tall building, for example Hy, = 250m, 7 ~ 0.08 and for a short building 3 ~ 0.5.

For a harmonic motion of the foundation, A = Age~*“t, from Eq. (IL.3), the relative
rocking angle ¥™! can be expressed as a function of the displacement of the foundation as

wN N

2 2 .
s (L> %M“[(wi) +eg ™, ]‘PO

rel

(IL6)
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where €, = ;—297{- Then, the forces that the foundation exerts onto the building can be

calculated in terms of the displacement of the foundation, from the dynamic equilibrium
equations of the structure. Those are

B = —myiy (I1.7a)
= mpw?Voe "
© = gy (11.15)
= mpw?(Ao + woH + Y5 H)e ™t
MP) = —myiiy H — myrd (@ + 0°) + myg(o + ™) H (I1.7¢)

= mpw?[AoH + Io(po + ¥5°) + w——ng (o + w5 H?Je ™.

b) . ere . ] . b) . . b) . .l
,S ) is positive in the negative z direction, é ) is positive up and Mé ) is positive coun-
terclockwise. In matrix form one can write

FO® = myw? [[K(”)] + [cgb)]] Age~it (I1.8)
where )
FO) = {70, 7, M [HYT (I1.9)
is a generalized force vector,
ky O 0
[K®O]=| 0 kyy kos (I11.10)
0  kaz ka3
where
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In \wn/ p
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is the stiffness matrix for the building, and

g 0 O 0
[c®] = g |0 0 e (I1.12)
0 c23 c33

[=2]



where

2 2
C23 = moll (_w_) ! (I1.13a)
I wN/) P
C32 — €23 (11136)
2 2
w 1 mpH? (W 1 g
=14+2{—] - —_—) = 11.13
¢33 + (wN> P + I (wN> pw?H ( )

is the impedance matrix associated with the gravity forces acting on the building.

I1.2 Equilibrium of the Foundation

Fig. I1.2 shows the free body diagram of the foundation where fz(b), z(b) and Méb) are
the horizontal and vertical forces and the moment that the building exerts onto the foun-

dation; f;&s), ée) and Més) are the horizontal and vertical forces and the moment applied
onto the foundation by the elastic half-space; m f/.&, m ff} and I((,f )95 are the D’Alambert
forces of the foundation; and m g and point C are its gravity force and center of gravity,

respectively. Let F(2) = {féa), f,(;s), Méa)/H}T and
F©) =F(? +F (I1.14)

where F(()s) and F(As) are generalized force vectors representing the foundation driving forces
(forces acting on the foundation at rest and due to the free-field motion) and the forces
induced in the half-space due to the deformations caused by the moving foundation, in

absence of incident waves. F(()s) is equal in magnitude and of opposite direction as the
force that must be applied to the foundation to keep it at rest while it is forced to move

by the free-field incident waves. Consequently, ng) depends only on the characteristics of

the free-field motion (type of incident waves, angle of incidence and their amplitude), F(As)
depends on the imposed motion A, and both depend on the shape of the foundation and

on the frequency of excitation. FE;) can be written as
F = —24Q|a (I1.15)

where 2u[Q)] is the impedance matrix for the foundation and y is the shear modulus of the

half-space. The expressions for F(()"), for incident plane P- and SV- and surface Rayleigh
waves, as well as for [@] can be found in Todorovska and Trifunac (1990).

The equilibrium equations of the foundation are

(M)A =F®) —F& —F{h - (I1.16)
where
[My] = diag{my, m, I$"/H?} (I1.17)
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Fig. I1.2 Equilibrium of forces acting on the foundation

8



is the mass matrix of the foundation (I(gf ) is its moment of inertia about point O) and
c
Fgf) = {0,0, mfg—ﬁtp}T (I1.18)
is the generalized force vector of the gravity forces of the foundation {c is the depth to the

center of gravity). Then for given characteristics of the structure and for various types of
excitation, Eq. (II.16) can be solved for A.



CHAPTER II1

RESULTS AND ANALYSIS

III.1 System Parameters
Definition of the Dimensionless Parameters

Since the intensity of scattering of the waves from the building foundation and the
interaction between the building motion and the soil depend on the size of the foundation
relative to the wavelength of the incident waves, and on the stiffness of the building,
compared with the stiffness of the soil, the dimensionless quantities n = )?% = —‘1“,—’% and
NN = E%—i“; = %ﬁip&, respectively, will be used in the analysis, rather than the frequencies
w and wy. The meaning of n is the number of wavelengths of the S waves in the soil,
with frequency w, contained in length equal to the width of the foundation. Then ny is
the value of n when the frequency of the S waves is equal to the natural frequency of the
building, wy. Other dimensionless parameters that affect the response of the building-
foundation-soil system are the mass ratios % and r—'::—f—, where m, is the mass of the soil
replaced by the foundation. Typically, the ratio of the mass density of the building and of

the soil is ﬁf = 0.2. We assume in our calculations that the foundation and the building
have the same mass density (py/ps = 1). Accordingly, —:%f = 0.2 and % ~ 2.2% for a
semi circular foundation (% = 1) and % ~ 4.9% for a foundation with depth to-half-
width ratio h/a = 0.5, for example. Typically ny ranges in the interval 0 - 0.6 and H/a
between 0.5 - 3 (Luco, 1980). We considered in this analysis the building damping ratio
0<¢<L0.12.

For example, for a 10 story building (natural frequency fy = 1Hz and base half-
width @ = 15m), situated on medium soft soil with shear wave velocity 8 = 400m/s, for
the lumped mass model H/a ~ 1.9 and nx ~ 0.076. On the other hand, for a nuclear
power plant containment structure (natural frequency fxy = 5H, and a = 23m) situated
on harder soil (3 = 800 m/s) ny ~ 0.28. The same 10 story building in Los Angeles
(B ~ 250m/s) would have ny =~ 0.15, and in Mexico City, where the shear wave velocity
in the soil can be as low as § =50 m/s, ny = 0.3.

Selection of the System Parameters

We consider incident plane SV-waves, with indent angles v = 0°, 20°, 30°(= vcrit)
45°, 60° and 85°, where it is the critical angle, and incident plane P-waves (Todorovska
and Trifunac, 1990), with indent angles v = 0°, 30°, 60° and 85°. The Poisson’s ratio
v = 0.3333. The effect of the gravity forces is neglected.

To see the effect of the depth of the embedment, we varied the depth-to-half-width
ratio of the foundation h/a in the interval h/a € [0.5,1]. We encountered difficulties in the
numerical calculations if A/a was much smaller than 0.5. Calculating the Bessel functions
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of very high order and small argument with sufficient accuracy (smaller values of h/a
require more terms in the series than for A/a = 1) is difficult. However no significant
advantages for this analysis were expected for foundation shallower than h/a = 0.5, that
would warrant the effort required to improve the accuracy of the numerical computations.

We varied ny in the interval (0,0.3]. However in many of the cases considered, it
was not possible to calculate the equivalent damping ratio since the peak of the relative
response was too low and wide. We will present most results with maximum value of

nN — 0.2.

We calculated the response for low, medium, high and very high buildings (compared
with the size of their base), for H/a = 0.5, 2, 5 and 10. In all the cases the density of the
foundation is one fifth of the density of the half-space (%f = 0.2). Then, for each value of
H/a, we calculated the value of % that corresponds to pp/ps = 0.2. For a semi-circular

foundation % = 2—3— and for shallow foundations with A/a = 0.5 % = 4%. Furthermore,
we considered values for % twice larger and twice smaller than the value that corresponds

to pu/ps = pu/ps ~ 0.2, to see how the value of my/my affects the damping ratio when
H/a and %ﬁ are kept constant. The structural damping ratio we varied in the interval

¢ € (0,0.12].

In our analysis we also considered extreme cases, such as very tall and very “heavy”
buildings and high structural damping, because understanding those can help understand
the trends of the “intermediate” cases. In this study, understanding the system behavior in
the case of very “strong” interaction effects helped us explain its behavior for “moderate”

interaction effects.

Definition of System Frequency and System Damping

In previous studies (e.g., Bielak, 1971; Luco, 1980; and Todorovska and Trifunac,
1990), it was shown that the soil-structure interaction modifies the amplitudes and the
shape of the transfer function between the building relative response and the incident wave
motion. It was shown that the interaction changes the amplitudes and the frequencies of
the peaks of the transfer function, relative to the fixed-base model transfer function. In
the vicinity of the peak frequencies the base rotation is large. The frequencies are changed
because of the flexibility of the foundation medium, and the peak responses are changed
because of the radiation of the building vibrational energy into the soil. The transfer
function of a flexible-base building model resembles the transfer function of a fixed-base
building model. By “system frequency” and by “system damping ratio” we will refer to
the frequency and to the usual measure of the width of the peak of the amplitude of the
flexible-base model transfer function. The system frequency will be expressed in terms of
the dimensionless frequency 5 and will be denoted by 1°'*, while the system damping ratio

will be denoted by ¢°Ys.
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We will measure the equivalent damping ratio, ¢5¥°, from the amplitude spectrum of
the transfer function between the relative building response, u;el = "' H and the incident
wave motion, using the analogy with the half-power method for a SDOF oscillator. Thus
we will measure the frequency of the peak of the response, 7Y, and the frequencies to the
left and to the right of n°¥® (n; and n3) for which u}*' = uf*(n**)/v/2. Then ¢** can be

calculated as

Y — Tl2—m  "M27M (II1.1)
mn 2

The relative building response was calculated using to the equations in the previous section,
and solving the system of equations (II.16) for A. No additional approximations and
assumptions, were made. To reduce the calculation effort, the foundation driving force
F(()s) (n) and the matrix [Q(n)] were calculated only once (at selected frequencies) for a
given type of excitation and foundation shape. Their values were then substituted in
Eq. (IL.16) for different combinations of the remaining parameters. The damping was
measured from the transfer function amplitude, calculated from Eq. (II.16) at frequencies
equally spaced at An = 0.0017125. Cubic spline interpolation was used in the numerical
search for the peak response and for the frequencies n; and 52 in Eq. (IIL1).

II1.2 Vertically Incident SV-waves and Semi-Circular Foundation

For vertically incident SV-waves, the free-field motion, uff, (motion resulting from
the interference of the incident wave and the wave reflected from the half-space surface in
absence of any inhomogeneities or irregularities) does not have a rotational component or
a vertical component, on the ground surface. However, due to the embedment, the founda-
tion input motion (response of a massless foundation in the absence of the superstructure)
does experience a rotation (Todorovska and Trifunac, 1990) because of the finite size of
the embedment, relative to the wavelength of the incident waves, and because of the anti-
symmetric nature of the displacement of the free-field motion, with respect to the vertical
axis of symmetry of the foundation. So, in general the foundation will rotate because of
the rotation of the foundation input motion and because of the action of the forces exerted

by the superstructure.

The dimensionless parameter 7y depends on the ratio of the stiffness of the building
and of the half-space and on the ratio of the mass of the building and the mass of the soil
replaced by the foundation. For a semi-circular foundation

wNa Ky [m, |2 1 a
_____.__‘/_ /.._.\/__.———-————. I111.2
N 7 pna '\ my w3 /1+ (%)ZH ( )

Small nx means a flexible building and/or stiff soil and large nx means a stiff building
and/or very flexible soil. The limiting value ny — O corresponds to the case of a flexible
building on a rigid half-space excited by horizontal motion at the base A = 2e ™ (fixed-
base buildings model, no interaction). nxy — oo corresponds to a rigid building oscillating
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together with the foundation as a single rigid body, with translational and rocking degrees
of freedom.

In Fig. II1.2.1, the system damping, ¢5¥°, the system frequency, n°Y*, the amplitude
of the peak relative building response, |ul*!(n%®)|, and the amplitude of the peak base
rotation, |p(n®'%)a|, have been plotted versus the “relative stiffness” parameter nn for
a typical building (H/a = 2), with damping ratios ¢ = 0.005, 0.05 and 0.12, and mass
ratios mp/mys = 2, 4 and 8. In Fig. [11.2.2, the same quantities are shown as functions
of ¢, for a building with same values of H/a and m;/my, and for ny = 0.05 and 0.2. In
Fig. I11.2.3 and Fig. I11.2.4 the same functional relationships are shown as in Fig. II1.2.1
and Fig. II1.2.2, but for a higher building (H/a = 5 and my/my =5, 10 and 20). Since
the system frequency does not depend on the damping in the building, in Fig. II1.2.1 and
Fig. I11.2.3 Y versus ny is shown only for ¢ = 0.05.

Asymptotic Behavior as ny — 0 and as ny — 00

When the soil is stirrer, the system response is influenced more by the damping in
the building, while when it is more flexible it is affected more by the building mass and
height. This can be concluded from Fig. II1.2.1 and Fig. II1.2.3, where as ny — O the
curves corresponding to same value of ¢ merge together, while as ny — oo the curves with

same value of my/m ¢ merge together.

As ny — O the relative building response uiel has similar features as for the fixed-
base building response (7%Y° — nn, ¢¥* — ¢, ul¢l(n¥*®) — ui®!(nn) and ¢ — 0). Then
the dissipation of the vibrational energy through radiation into the soil is very small. As
N — 00, ¢¥*(nn), °°%(nn) and p(nn) have horizontal asymptotes that depend on the
building mass and height and u{,e‘(nsys) — 0. Then n®¥® — 58, the system frequency of
the building-foundation rigid body motion which is lower when the building is “heavier.”
The rocking of the base ¢ — '8, the base rocking when the building is rigid, which is
larger when the building mass is larger (Todorovska and Trifunac, 1990). (The foundation
mass in all the examples is small compared with the building mass and does not play
a major role.) The value of ¢*¥* then only reflects the shape of the peak of the spectra
|uf®!(n)|, which is similar with the shape of the peak of the spectra |p(n)|. The peak of
lo(n)] is sharper and higher when the building is higher and heavier and, therefore, the
system damping ratio is smaller when the building mass is larger and when the building

is higher.

System Behavior for Intermediate nn

When the soil is flexible, for given shape of the foundation and for given building
height, the peak relative building response is smaller, the peak base rocking response is
larger and the system frequency is lower when the building mass is larger (Fig. II1.2.1 and
Fig. I11.2.3). When the soil is stirrer (lower ny), the system damping ratio is larger for

13



. _ —no°
Incident SV-waves, y=0 my/m=2

m¢/ms=0.2, h/a=1, Hfa=2 mp/me=4
¢=0.005 (*), ¢=0.05 (), ¢=0.12 (o)  _._._. mp/m=8
0.2 —
0.1
0.0
10°E « B
- X rel/. . sys -
B lub (77 Y )l S
10 E— et e B P S St
- LE
1 & B
10—1 | l J 10—1 l l |
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
N 7IN

Fig. II1.2.1 The system damping ¢®¥® ratio, the system frequency nsys; the
peak relative building response uiel(r)sys) and the peak base rocking response

prel 1n°Y%)a versus the relative stiffness parameter, ny, for a medium high build-
ing (H/a = 2) on a semi-circular foundation.
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Fig. III.2.2 The system damping ¢*V* ratio, the system frequency 5%, the
peak relative building response ugel(nsys) and the peak base rocking response
orel 7°Y%)a versus the damping ratio in the building, ¢, for a medium high
building (H/a = 2) on a semi-circular foundation.
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Fig. II1.2.3 The system damping ¢V ratio, the system frequency 7Y%, the
peak relative building response uge‘(nsys) and the peak base rocking response

o™ (n®®)a versus the relative stiffiness parameter, 7, for a higher building
(H/a = 5) on a semi-circular foundation.
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Incident SV-waves, y=0°
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Fig. III.2.4 The system damping ratio ¢*V*, the system frequency 1'%, the
peak relative building response u{e‘(nsys) and the peak base rocking response
o™ (n%®%)a versus the damping ratio in the building, ¢, for a higher building
(H/a = 5) on a semi-circular foundation.
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“heavier” buildings. However, for sufficiently large 5, when the building behaves more
like a rigid body, it is smaller when the building is “heavier.”

The relative building response uiel(nsys) always decreases as the flexibility of the soil
increases. However, the system damping ratio may increase or decrease, depending on how
large the damping ratio in the building is compared with ¢*8, the asymptotic value of the
system damping ratio as nx — oo. In most of the cases that we considered ¢ < ¢™8 and
¢%Y® monotonically increases with increasing . However, in the extreme case of vary
high structural damping (¢ = 0.12) and a high building (H/a = 5), ¢ > ¢"8. Then, as gy
increases and the contribution of the building damping ratio to ¢*¥* becomes smaller, the
system damping decreases. Then, as the example shows, ¢*¥% < ¢ does not mean that the
relative building response is larger than the response on “rigid” soil.

It can be seen from Fig. II1.2.1 and III.2.3 that, in the lower range of ny, the base
rocking, |©(n®Y®)|, is larger when the soil is more flexible. It is larger when the building
damping is smaller. For sufficiently high 5y, when the building behaves more like a rigid
body, as ny increases, |[¢(n°Y®)| approaches monotonically the limit, which is the rocking
response of a rigid building. It may monotonically increase or decrease while approaching
this limit depending on how large it had grown in the region of lower values of ny.

System Response versus ¢

From the curves in Fig. II1.2.2 and Fig. II1.2.4, the following can be seen. The system
frequency 7Y does not depend on ¢. The relative building response decreases with zeta
at a higher rate when the building is lower, lighter and on harder soil and it practically
does not depend on ¢ when the building is higher, heavier and on sufficiently soft soil.

All the curves ¢%V3(¢) are practically straight lines with slope having values between 1
and 0 and value at ¢ = 0 depending on m;/m¢, H/a and nn. Because there is no damping
in the soil, when ¢ = 0 the system damping is due only to radiation and scattering. For
the lower and lighter building (H/a = 2 and my/ms = 1, Fig. 111.2.2), when the building
is sitting on harder soil (nx = 0.05), the slope is close to 1 and ¢*¥%(0) is small. For the
lower and lighter building (H/a = 2 and my/my = 1, Fig. I11.2.2, when the building is
sitting on harder soil (ny = 0.05), the slope of ¢*¥%(¢) is close to 1 and ¢*¥%(¢ = 0) is small.
For heavier buildings (Fig. III.2.2) and on softer soil (nx = 0.2), the slope of ¢%3(¢) is
small (the rate of change of ¢®V° with ¢ is small) and ¢*¥°(¢ = 0) is larger. ¢*¥® practically
does not depend on ¢ when H/a = 5 and my/my = 5, 10 and 20 (Fig. II1.2.4). It can
be concluded that, for a tall and heavy building, the system damping practically does not
depend on the damping in the building.

When the building is lower and when it is on harder soil (H/a = 2, ny = 0.005),
system damping ratio is larger when the building mass is larger. For the higher building
and on softer soil (H/a = 5 and ny = 0.2, Fig. II1.2.4), on the contrary, for all values of ¢
the system damping ratio is smaller when the building mass is larger (the system behaves
“more like a rigid body”). From the values of ¢ at which the curves for different values
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Fig. II1.2.5 Reduction of the system frequency, n°Y*/ny for different buildings on
semi-circular foundations.
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of my/my cross each other, it can be concluded that it also depends on the value of the
building damping whether the system will behave more like a rigid body or like a flexible
structure. For H/a = 2 and ny = 0.05, (Fig. 111.2.2), the curves ¢®V%(¢) cross each other
at ¢ = 0.11, and for H/a = 5 and ny = 0.05 (Fig. II1.2.4) at ¢ ~ 0.05 — 0.06. From this,
it can be concluded that buildings with larger damping act “stirrer.”

If the line ¢¥® = ¢ is drawn, it can be seen that in Fig. I[1.2.2 (H/a = 2) ¢*° is
grater than the damping in the building. For the higher building (Fig. IIL.2.4), however,
for sufficiently large ¢ the system damping ratio is lower than the damping ratio in the

building.

From the curves ©(¢*¥®) in Fig. I11.2.2 and III.2.4 it can be seen that for system
configurations for which the structural damping affects the system response, the rocking
of the base is smaller when the damping in the building is larger.

Reduction of the System Frequency, n°¥° [nn

The reduction of the system frequency, relative to the fixed-base frequency, is illus-
trated in Fig. II1.2.5, where the ratio n°¥°/nx has been plotted versus ny for buildings of
different heights and masses (H/a = 2, mp/ms = 2, 4 and 8; H/a = 5, my/my = 5, 10
and 20; and (H/a = 10, mp/my = 10, 20 and 40). The reduction is larger when H/a is
larger and, for buildings with same height, when m;/my is larger. For example, for the
10-story building (H/a = 2, and mj/my = 4), when the shear wave velocity in the soil
B = 400m/s n°Y® /nn ~92 %; when § = 250m/s (e.g., Los Angeles basin) n*¥*/nn =75 %;
and when § = 50m/s (e.g., Mexico City valley) n°V*/ny ~55 %.

I11.3 Effect of the Type of Incident Waves and their Incident Angle

Our results show that the frequency of the peak response n°Y% practically does not
depend on the type of incident waves and on the direction from which those waves approach
the foundation, but on the material and geometric properties of the superstructure and
the foundation. So does ¢5V® if the soil is stiffer and if the system damping is small.

For incident P-waves and SV-waves with v < 7crit (Ycrit is the critical angle), ¢5V® takes
on very similar values. The amplitudes of the peak response, normalized by the horizontal
free-field displacement amplitude (the ratios [u®!|/|uf/|), are practically the same. For
incident SV-waves with ¥ > 7,1, the difference in ¢*Y® can be significant. The differences
in the [ul®!|/|uf7| ratios can also be significant even for smaller 7y, as it can be seen from
Fig. I11.3.1 through Fig. I11.3.3. For v = 45° |u}®!|/|uf/| tends to infinity for all nx’s and
therefore has not been plotted. In Fig. II1.3.1 through Fig. I11.3.6, ¢*¥* and |ul®!|/|uff]|
have been plotted versus ny for buildings with H/a = 2, my/ms = 2, 4 and 8, and for
¢ = 0.005, 0.05 and 0.12. In the first theree of those figures the excitation is an SV-wave
with incident angle v = 0°, 20°, 30°, 45°, 60° and 85°; in the next three figures it is an
incident P-wave with v = 30°, 60° and 85°, and a vertically incident SV-wave (drawn in all

20



"600°0 = J otye Suidurep Juip[ing I0j pue ,G8 PUT ,09 ‘G¥ ‘,0¢ ‘,0Z ‘o0 = & se[Sue juspiour
Ym soaem-A G oueld Juaploul 10 ¢, o1 ‘YUaWROR]dSIp 90€JINS P[OY-29I] [RIUOZLIOY OY) Y3IM POZI[RW
-1ou ‘(g %S_om: ‘esuodsar Juip[ing aale[ar yeod oYy pue 4.5 Suidwrep woyshs oy, TSI ‘819

N[, N{
0 20 1°0 00 €0 .
| | |

Lol

TR

T
N
w
[72]
>
172}
o

(4 F3~\_Am>m9v_%3_ 201 (p -1 &0
gzt /Aw - _ (2) 0S58=4 AS ‘(S) 009=£ AS ‘(X) oS¥=L AS
p=tw /G - (0) 008=£ AS ‘() 00Z=4 AS ‘(x) o0 =4 AS

=t/ z'0="w/*w ‘g00'0=9 ‘z=p/H ‘I=b/y

21



"60°0 = 7 olyel Surduwrep Julp[ing I0j PUB ,G8 PUR 09 ‘,G¥ ‘.08 ‘0Z ‘o0 = & so[3ue juepIoul
UM soaem-A g aue[d juaplour 10y ¢ .n ‘yuowrode]dsip adoejIns poy-oolj [eJUOZLIOY 9Y)} YIIM poazi[ew

-10u ‘(4 »w:v?m: ‘osuodsar Juip[ing aalye[al yead oY) pue .5 Surdwep wrejsAs YT, Z'CIII ‘Siyg

N(, N
£0 c0 10 00 €0 g0 10 0°0..
| | | 7 | | 00
= 01
— 10
—¢0
(9 fz_\_Am\Am?v_%_h:_ &0
g=hw G == - (2) 068=4 AS ‘(8) 009=4 AS ‘(X) oS¥=4L AS
.v.ILC\_\nCL ||||| on oOm..l..\« AS ,A v oONHx‘ AS ,A*v o0 =4 AS

=tw /s T z0="w/tw ‘go'0=9 ‘z=p/H ‘I=b/y

22



21°0 = 7 onel Juidurep SuIp[ing 0] pue g8 PUT 09 ‘.G ‘,0€ ‘07 ‘o0 = L s9[Bur JuSpIOUI
UM saarem-A § aueld jusprout Ioj ¢ 747 ‘yusurade[dsIp 90BLINS P[oYy-001) [BJUOZLIOY Y3} Y}IM poazi[ewr

-Iou ‘(4 %.Szma ‘osuodser Buip[ing aalje|a1 yead oy} pue . 5 Surdwrep wegsds ayJ, ¢'¢Il S

N(, | N{t
£0 0 10 00 €0 0 10 00
| | | =R | | *— 00
=07
E - 10
E - 20
(9 *ts_\_Am\Amﬁv_hz_ 7 &0

g=tw /w - - (2) 058=4 AS ‘(S) 009=4 AS “(X) oSP=L AS
p=tw/Gw - (0) 008=£ AS ‘() 002=4 AS “(x) o0 =4 AS
¢=tw /s zo="w/tu ‘z10=9 ‘z=D/H ‘1= /y

23



'600°0 = 7 oryel 3urdwrep 3uIp[ing 0] pue ,g8 PuUe .09 ‘,0¢ = A se[Sue juapious
UHM saaem-g aue[d JUIPIOUL 10] ¢ (-1 ‘USUISIRASIP 90RINS P[aY-991] [RIUOZLIOY SY} Y}IM POZI[RU

-I0u ‘(g %Szwa ‘osuodsalr Juip[ing aalye[or yead oYy pue 4.5 Suidwrep woyshs oYy, ¢TI 'Sid

0 N
€0 20 10 00 €0 20 10 00
| | | 3 | | 00
= 01
E =410
=l
= \\\\\\\\\.\\\\\ -1 20
= 01
1 ¥
= m\Amw
(4 _tj_\_Am\Ava_mms_ 20 (o €0
wﬂwrc\nrc ..... - AXV ome\‘ d ,AOV oO@”\. d
p=rw /s T (1) 008=4 d  ‘(x) o0 =4 AS
z=tw /9w z0="w/tw ‘600'0=9 ‘z=p/H ‘I=b/y

24



60" = 5 oryes Budwrep BwIp[Ing I0] PUT g8 PUE 09 € = A so[3Ue jJuSpIOUI
Uym soaem-J oue[d JuapIdul 10] ¢ ;1 ‘JUstIAIR[dSIP 90BJINS P[2Y-93I) [RJUOZLIOY O} Y}Im pIzI[RUW
-10u ‘(4 mm:rowa ‘osuodsal Zuip[ing sAlje[al yead 9y} pue .5 Surdwep wayshs oYy, ¢'¢TII B4

NG

€0 20 I

_ _

(4 _tsi\;m\»m?v_%

g=tw /w T -
p=tw/w T
z=tw /9w

n|

N
00 €0 20 10 00
3 | | 00
E 10
E Hzo
1 ¥
m m>mw
= £0

(X) o§8=4 d ‘(0) ,09=4 d
() 008=4 d ‘(x) o0 =4 AS
zo="w/tw ‘gp0=9 ‘z=p/H ‘I=p/y

25



'g1°0 = 5 olyer 3uidwrep 3uip[ing Ioj pue g8 pue 09 ‘,0¢ = A so[3ue juspIOUl
U)m soaem-J aue[d juapIdul 10] ¢, n ‘Juatuede|dsip 9oeJINS P[BY-991) [RIUOZIIOY 93 [}IM PIZI[eW
-10u ‘(, »m:vsm: ‘osuodsol Fuip[ing aarje[ar yead 9y} pue .5 Suidwrep weyshs o], 9'¢III "Sid

N[, N{
£0 20 10 00 €0 20 10 00
| | | =l | | 00
5,01
— 10
— 20
1 ®
- m>mw
(9 Atz_\xm\??v_mwi 20 (o &0
g=tw /Gw T - (%) o58=4 d ‘(0) ,09=4 d
p=tw /Gw - () o08=£ d ‘(x) o0 =4 AS

g=tw /s zo="w/tw ‘z1'0=9 ‘z=p/H ‘1=p/y

26



six figures as refference). In Fig. II1.3.7 and Fig. II1.3.8, ¢*° and |u}®!|/|uff| are plotted
versus ¢ for the same buildings and excitations as in Fig. II1.3.1 through Fig. 111.3.3, when
the stiffness of the soil is such that nx = 0.05, and 0.2. It can be seen from these figures
that the difference in ¢*V* increases with increasing ny (increasing flexibility of the soil)
and it also increases slightly with ¢. Similar behavior is observed for the higher buildings.

The reason for the dependance of ¢*** and |u}®!|/|uff| on the type of incident waves and
incident angle comes from the differences in the componenets of the the foundation input
motion. The characteristics of those have been discussed in some detail in Todorovska and
Trifunac (1990). What makes the case of incident SV-waves with v > 7., different from
the rest of the considered excitations is the presence of considerable amount of rotation
in the foundation input motion, as compared with the horizontal translation. The input
base rocking represents an additional excitation to the base input translation, and it is
responsible for the higher values of the ratio |u}®!|/|uff|. When v = 45° it is the only
excitation, since, then, the input base translation is equal to zero. It also changes the
shape of the system transfer function (e.g., causes larger relative response away from the
system frequency) and, therefore, affects the system damping. It affects the phases of the
base horizontal and rocking response relative to the phase of the building relative response.
The base rocking is, then, a vector sum of the input rocking and the rocking due to the
inertia forces of the building. From our definition of the system damping, larger ¢%¥* simply
means wider peak of [ul®| and of |p|, since n°¥* does not depend on the type of excitation.

- To illustrate the extent and the effect of this “additional” excitation, in Fig. II1.3.9
the transfer function amplitude and phase of A, ¢ and uiel have been plotted for incident
SV-waves with v = 30° and 60°. The model is a moderately high building (H/a = 2,
my/mys = 4), with low damping (¢ = 0.005) and situated on softer soil (ny = 0.2). The
system frequency is 7%Y° = 0.13. At the system frequency and for those incident angles,
the amplitudes of the input base translation are AP = 2.9 and 1.97, and of the input
base rotation are p®PH = 0.3 and 1.38. The ratios |p!*P H|/|A™®P| = 0.1 and 3.9. The
relative responses are |uf®| = 4.6 and 2. It can be seen that the rotation amplitude |¢|
for v = 60° does not have a maximum at n = n*¥®, but at a lower 5, similar to |A|. The
shapes of the phases of A and ¢ are practically reversed for v = 30° and for v = 60°. The
quantity A'®P 4 P H would thus seem more representative for the building excitation
than AP alone.

To illustrate how different the system response would be if the wave passage effects
(kinematic interaction) are not included, in Fig. II1.3.10, ¢5¥°, n%v%, |ul®!(n*¥®)|/|uf| and
lo(n®®)|/|u®| are plotted versus ny when the foundation is driven only by a horizontal
motion with amplitude A = 2 (the solid lines). For comparison, the response to excitation
by incident SV-waves with incident angles v = 0°, 20°, 30°, 45°, 60° and 85° (the dashed
lines) is also shown. Different symbols are used to distinguish the lines for different incident
angles. The building height is such that H/a = 2, the foundation is semi-circular (k/a = 1),
the damping in the building is ¢ = 0.005, and the mass ratios are my/ms = 4 and
mg/m, = 0.2. Input horizontal displacement A = 2¢~** for the foundation corresponds
to excitation by vertically incident plane SV-waves of infinitely long wavelength, compared
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Incident SV—waves »=30°

nny=0.2, ¢=0.005, h/a=1 ———- 7=60°
H/a=1, my/m¢=4, m;/m=0.2

Fig. I11.3.9 Transfer function amplitudes and phases of the base and of the building
relative response for incident plane SV-waves with incident angles v = 30°, 60°.
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Horizontal driving motion my,/m¢=4
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Fig. I11.3.10 The system damping ratio, ¢*'%, the system frequency, Y, the
normalized peak relative building response, |uf®(7*¥®)|/|u//|, and the normal-

ized peak base rocking response, |©™(n°¥*)a|/ uff|, versus the relative stiffness
parameter, 7y, for incident plane SV-waves (the dashed lines), and for hori-

zontal input driving motion with constant amplitude |uff| (the solid lines)
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to the size of the foundation. In this approximation of the foundation input motion,
the scattering of the incident waves by the foundation, and the filtering effect for shorter
incident wavelengths is ignored. It can be seen from this figure that, when the wave passage
effects are ignored, the system damping ratio is very close to the values for incident angles
v < 7erit, but it is smaller than the values for v > ~vcrit (y = 45°, 60° and 85°). The
building relative response, normalized by the amplitude of the driving displacement, A,
also has very similar peak amplitudes to the ones corresponding to incidence below critical
angle, but significantly smaller than the peak amplitudes for incidence beyond critical
angle. ]urel(r)sys)l /|uff| and |p(n*¥®)|/|uff| are not plotted for v = 45°, because for this
incident angle |uff| = 0. The peak rocking response, normalized by |u// | also has similar
amplitudes to the case for incidence below critical angle, but noticeably smaller amplitudes
than for incidence beyond critical angle. This means that, for incident angles below critical
angle, most of the base rotation comes from the inertia forces of the building. It can be
concluded that, if the wave passage effects are excluded from the analyses, by assuming
simplified excitation, the system damping ratio, and the amplitudes of the system response,
may be underestimated. These effects appear to be caused by the inhomogeneous part of
the free-field motion, for incident angles grater than the critical angle. For incident plane
P-waves, the same conclusions hold as for incident plane SV-waves below critical angle.

II1.4 Effects of the Depth of the Embedment

To illustrate the effects of the depth of the embedment, the results are presented in the
following form. The system damping, ¢5¥%, the system frequency, #%Y°, normalized by the
fixed-base frequency ny, the peak amplitude of the building relative response, |u*! (7|,
and the peak amplitude of the base rocking response, |p(n¥®)|, are plotted versus h/a,
or versus . The translation of the foundation is not shown and discussed. The ratio
n®Y® /nN is an indicator of the reduction of the system frequency as a result of the flexibility

of the soil.

In Fig. I11.4.1 and Fig. 1I1.4.2, ¢¥2, n*¥/ny, |uf®'(n®®)| and |p(n°®)a| have been
plotted versus h/a (0.5 < h/a < 1), for a building with height H/a = 2, and excited by
a vertically incident plane SV-wave. (v appearing in these figures is the incident angle,
measured from the normal to the half-space surface to the direction of wave propagation).
The curves without symbols are for ny = 0.1, and with the symbols, for ny = 0.06. The
foundation is taken to be massless, in order to eliminate the effects of the change of its
mass as the shape of the foundation changes. The solid line and the different segmented
lines correspond to three values of the building mass, which is expressed in terms of m, 1,
the mass replaced by a semi-circular foundation of width 2a. The ratio my/m,; =0.4, 0.8
and 1.6; the value my/m,; =0.8 corresponds to the typical value of py/p,. The models
in these two figures differ only in the value of the damping in the building; in Fig. I1I1.4.1,
¢ = 0.005, and, in Fig. II1.4.2, ¢ = 0.05. It can be seen from the results in these figures that,
as the depth of the foundation decreases, the reduction of the system frequency, relative
to the fixed-base frequency, increases, meaning that deeper foundations act “stiffer.” The
relative response is larger when the foundation is deeper; it is larger when the damping in
the building is smaller (Fig. IIL.4.1). The system damping ratio, in both figures, is larger
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Fig. I11.4.1 Dependance of the system parameters and the system response on the
depth of the embedment for ¢ = 0.005, nx = 0.06 and 0.1 and when the foundation
is massless.
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Fig. II1.4.2 Dependance of the system parameters and the system response on the
depth of the embedment for ¢ = 0.05, ny = 0.06 and 0.1 and when the foundation

is massless.
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when the foundation is deeper, when the building is heavier, and when the damping in the
building is larger. In Fig. II.4.1, the amplitude of the base rocking, in most of the cases,
is larger when the foundation is deeper; it is smaller only for the lightest building and on
stiffer soil. In Fig. I11.4.2, the base rocking is smaller for deeper foundations.

In Fig. II1.4.3 and Fig. I11.4.4, ¢*v%, n®%, |uf!(n°¥®)| and |p(n®Y®)a| are plotted versus
the relative stiffness parameter ny, for a building with H/a = 2. The curves marked
with different symbols correspond to foundations with different depth (“*” correspond to
h/a =1, and “0” to h/a = 0.5). The density of both foundations is same (mys/m, = 0.2).
The deeper foundation is heavier by a factor of approximately 2, because its cross-sectional
area is approximately twice as large as the cross-sectional area of the foundation with
the smaller depth. The different types of lines correspond to different values of my/my.
The lines of same type correspond to approximately same value of the building mass.
mp/mys = 2, 4 and 8 for the deeper foundation, and my/m; = 4, 8 and 16 for the shallow
foundation. (the ratio m;/m; differs for the two foundations, because of the difference in
their mass). The values my/m; = 4 when h/a = 1, and my/m; = 8 when h/a = 0.5,
correspond to the “typical” value of the ratio py/p,. The models in these two figures differ
only by the value of the building damping; in Fig. I11.4.3, ¢ = 0.005, and, in Fig. II1.4.4,
¢ = 0.05. In Fig. II1.4.5 and Fig. II1.4.6, the same quantities are shown as in Fig. II1[.4.3
and Fig. IT1.4.4, but for higher buildings (H/a = 5). In these figures, my/my = 5, 10 and
20 when h/a = 1, and m/ms = 10, 20 and 40 when h/a = 0.5. The foundation mass is
as in Fig. I11.4.3 and Fig. II1.4.4. In Fig. I11.4.5, ¢ = 0.005, and, in Fig. I11.4.6, ¢ = 0.05.
It can be seen from these figures that for stiffer soil (lower ), the system damping ratio,
the system frequency and the relative building response do not depend much on the depth
of the embedment and on the building mass. As ny — 0, ¢V — ¢, %Y — 5y, and the
relative response goes to the fixed-base response. As the soil becomes softer (ny increases),
both for A/a =1 and for h/a = 0.5, the system frequency decreases, the relative response
decreases, and the system damping ratio increases. For the lower and lighter buildings
(Fig. I11.4.3 and Fig. II1.4.4), the base rocking increases as the soil becomes more flexible,
approaching the asymptotic value for a rigid building. For the higher and heavier building
(Fig. II1.4.5 and Fig. II1.4.6), the rocking amplitudes approach the asymptotic value for a
rigid building in some cases from above and in some cases from below, depending on the
maximum amplitude they have reached for smaller values of ny. For a given value of ny,
the system frequency is smaller when the embedment depth is smaller, as it is the case in
Fig. I11.4.1 and Fig. I11.4.2. The peak relative response is smaller when the embedment
depth is smaller in all the four figures. In all the four figures, and in all except one case, the
system damping ratio ¢5¥° is larger when the embedment depth is smaller. Also, with the
same exception, when the soil is stiffer, the base rocking is smaller for buildings on deeper
foundations, and when the soil is softer, it is larger for buildings on deeper foundations.
The exception case is the heaviest building in Fig. I11.4.5 and Fig. I11.4.6, (H/a = 5, and
mp/mys = 20 and 40 for h/a = 1 and 0.5 respectively).

The building mass also affects the system response. The results in this report show
that, for given ny, the system frequency is lower and the relative response is also lower,
when the building mass is larger. (From Eq. (IIL.2), it follows that, for a given value
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Fig. I11.4.3 The system parameters and the system response versus 7y for medium
high buildings (H/a = 2) with damping ratio ¢ = 0.005, on semi-circular and on
shallow foundations (h/a =1 and 0.5).
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Fig. I11.4.4 The system parameters and the system response versus 7y for medium
high buildings (H/a = 2) with damping ratio ¢ = 0.05, on semi-circular and on
shallow foundations (h/a =1 and 0.5).
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Fig. II1.4.5 The system parameters and the system response versus 5y for higher
buildings (H/a = 5) with damping ratio ¢ = 0.005, on semi-circular and on shallow
foundations (h/a =1 and 0.5).
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Fig. 111.4.6 The system parameters and the system response versus 7y for higher
buildings (H { a = 5) with damping ratio ¢ = 0.05, on semi-circular and on shallow

foundations (k/a =1 and 0.5).
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of nn, larger value of my/m, implies larger value of the static stiffness ratio %) The
system damping ratio (measured using Eq. (III.1)), however, may be smaller or larger
depending on the “apparent” stiffness of the soil. Two regimes of the system behavior
can be distinguished, depending on the apparent stiffness of the soil. In Regime I, the soil
is stiffer and the building natural frequency and damping influence more significantly the
system response. In Regime II, the soil is so flexible that the system behaves almost like
a rigid body embedded in the elastic half-space. From the results in Fig. III.4.3 through
Fig. I11.4.6, it can be seen that, for given value of ny, if the system response is governed
by Regime I, the system damping is larger when the building mass is larger, while, if it is
governed by Regime II, it is smaller when the building mass is larger. The value of nn at
which the transition between the two regimes occurs is smaller when the building is higher
and heavier, and when the damping in the building is larger. This value also depends on
the shape of the foundation, which affects its stiffness. From Fig. II1.4.5 and Fig. I11.4.6,
it can be seen that, the curves for different values of the building mass intersect each other
at smaller value of 75 when the foundation depth is smaller. This means that buildings
on shallow foundations enter Regime II at lower values of nx than buildings on deeper

foundations.

The real parts of the entries of the foundation impedance matrix are commonly called
foundation stiffness coefficients, while the imaginary parts, normalized by the dimension-
less frequency ag = 7n = “Z%  are referred to as radiation damping coefficients. For
the circular foundations used in this report (2D), both the stiffness coefficients and the
radiation damping coefficients are smaller when the embedment depth is smaller. How-
ever, the oscillator relative response and the system damping ratio depend not only on the
radiation damping coefficients but also on the relative stiffness of the soil. For example,
when there is no material damping in the soil, the relative response is smaller, and the
system damping ratio is larger (Bielak, 1975), when ny is larger. The foundation shape
also affects the apparent stiffness of the soil. Deeper foundations act “stiffer” and this may
explain why the relative response in Fig. I11.4.1 through Fig. I11.4.6 is larger for buildings
on deeper foundations, in spite of the fact that the radiation damping coefficients are larger
for deeper foundations.

The system damping ratio depends (1) on the radiation damping coefficients, which
control the width of the peak in the transfer-function, and (2) on the overall stiffness of
the foundation, which controls the frequency of the peak. (From Eq. (13) it can be seen
that of two peaks with same width, the one at lower frequency will have larger damping
ratio.) These two factors compete in their influence on the system damping ratio. The
system frequency is lower when the foundation depth is smaller, but on the other hand, the
radiation damping coefficients are then smaller. In the 2D model analyzed in this report,
as can be concluded from the presented results, except for very heavy and tall buildings,
the first factor prevails, and the system damping ratio is larger when the foundation depth

is smaller.

Larger reduction of the building relative response (because of smaller soil stiffness) is
usually associated with larger rocking of the base. This is the case for lower 5. Then, the
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base rocking is larger when the building foundation has smaller depth, as it can be seen
from Fig. II1.4.3 through Fig. I11.4.6. However, for larger nx, the base rocking is smaller
for a foundation with smaller depth. This may be because the foundation driving forces
may be smaller when the foundation depth is smaller. The explanation is the following.
The peak of the transfer-function in all the presented results is in the interval n € (0,0.2).
Values of 7 in this interval correspond to long incident waves, compared with the size of the
foundation, for which the stresses in the soil do not vary much along the contact surface
with the foundation. The foundation driving forces are integrals of the stresses along the
contact surface, and, for long incident waves, they may be larger for deeper foundations

for which the contact area with the soil is larger.

II1.5 Analytical Expressions for the System Frequency
and the System Damping Developed by other Authors

As mentioned in the introduction, previous works on damping during soil-structure
interaction usually do not include the kinematic interaction, but some do include the
material damping in the soil. Functional relationships between the system parameters
were developed by Bielak (1971, 1976) and in Luco (1980). Our empirically determined
curves for the system damping as a function of the relative stiffness parameter ny for
the building with H/a = 2 are very similar to the curves obtained by their analytical
expressions. In terms of our dimensionless parameters, their equations for the system
frequency and for the system damping are the following

1 1 1 1

S S S II1.3
CEOLRETRT AR (H13)

where ng and 5y are the rocking and the horizontal frequencies, in terms of the dimen-
sionless frequency n, and

nys 3 neye 2 n°vs 3 nye 3
nN \ n~ nH nr
where ¢, ¢g and ¢g are the material soil, the horizontal and the rocking damping ratios.

From Eq. (IIL.3) it follows that as the soil flexibility increases, i.e. as nxy — o0, % — n'ie
which satisfies

11
1.1 (II1.5)

ntet  nE g
As the soil becomes very stiff (i.e. as ny — 0), n°¥®* — nn. The participation factors for
the different damping ratios in the equation for ¢V® depend on how close *¥® is to nn or
to n™'€. The contribution of ¢ is the largest when the soil is very stiff, and it decreases as
the soil becomes more flexible. The opposite holds for the participation factors of ¢,, ¢u
and ¢g.
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I11.6 Comparison with Results of 3D Models

Most similar 3D model to the 2D model analyzed in this report is a SDOF oscillator
with rocking and torsional springs and dampers, supported by a hemispherical rigid foun-
dation embedded into a homogeneous half-space (Lee, 1979) (both models are analytical,
for oval foundation shape, and include the wave passage effects). Excited by in-plane ex-
citation, this 3D model will respond with motion with the same degrees-of-freedom as the

2D model in this report.

Other similar model, analyzed by Bielak (1975), is a SDOF structure on a rectan-
gular prismatic foundation embedded into an elastic layer over a half-space and excited
by horizontal motion at the base with constant amplitude. This model overestimates the
horizontal translation, but neglects the rotation of the foundation input motion. The cou-
pling terms in the foundation impedance matrix, between the horizontal and the rocking
motion are neglected, and the soil stiffness and the radiation damping are modeled by two
pairs of a spring and a dashpot - one pair for the horizontal motion and the other pair for
the rocking motion. This model does include the damping in the soil. To input horizontal
motion of the base, this model will also respond with motion in the z — z plane, as the 2D

model in this report.

The three models agree in that the system frequency is reduced more for larger values
of nxn, and for higher buildings. The results for the 2D model in this report agree with
the results for the semi-spherical foundation (Lee, 1979) in that, for given values of nx
and H/a, larger building mass causes larger reduction of the system frequency and of the
relative response. This is also in agreement with the results for 2D building models on
circular 2D foundations excited by plane SH waves (Trifunac and Wong, 1974; Trifunac,
1972), but is in contradiction with the results in Bielak (1975), for the prismatic foundations
embedded in soil with hysteretic damping.

Comparison of the system damping ratios in 2D and 3D for embedded foundations of
different depth is possible only between the 2D model in this report and the model in Bielak
(1975). The results of both models agree in that, for deeper foundations, the stiffness and
radiation damping coefficients are larger, and that the reduction of the system frequency
is larger when the embedment depth is smaller. However, there is a disagreement in the
results for the system damping ratio and the overall damping effect of the interaction.
For the 2D model, the relative response is reduced more when the foundation depth is
smaller, and the system damping ratio, except for the very heavy building in Fig. I11.4.5
and Fig. II1.4.6, is larger when the depth of the foundation is smaller. For the 3D model
(Bielak, 1975), it has been concluded that the system damping ratio, in general, is smaller
for foundations with smaller depth. The disagreement may be because, in the model in
Bielak (1975), the soil has hysteretic damping and/or because of the difference in the
shape of the foundations. 3D prismatic foundations seem to be stiffer, and to have larger
radiation damping coefficients, compared to oval foundations, because of the larger contact
area with the soil. As it was mentioned in the previous section of this report, the system
damping ratio is larger when the radiation damping coefficients are larger, but is smaller
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when the foundation is stiffer. In the 3D model in Bielak (1975), it appears that the first
factor prevails, while, in the 2D model, the second factor prevails in most of the cases.

The aim of the present study has been to help understand and explain the influence
of the various system parameters on the system damping and on the system frequency,
for a very simple two-dimensional model. One should bare in mind that the real world is
much more complicated than this model. The soil under the building is not a homogeneous
halfspace, it may be nonlinear, it also has material damping and only for small relative dis-
' placements the vertical base displacement can be decoupled from the base rocking response
and the linear analysis holds. ’
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CHAPTER 1V
SUMMARY AND CONCLUSIONS

The two-dimensional analytical model of Todorovska and Trifunac (1990) has been
employed to measure the damping in the steady-state response of a building during soil-
structure interaction, excited by plane SV-waves with oblique incidence. The building
has been modeled by a single degree-of-freedom system with rocking stiffness and with a
viscous damper, placed on a circular foundation embedded into an elastic homogeneous
half-space. The analysis is linear, and the coupling of the vertical motions of the foundation
with its horizontal and rocking motions have been neglected.

The system damping of the building-soil model has been measured from the transfer
function between the relative building response and the amplitude of the incident wave,
using the analogy with the half-power method for a viciously damped single degree-of-
freedom system. Both the dynamic and the kinematic interaction have been considered.

The effects of the following factors on the equivalent damping were studied: the height
of the building relative to the width of its base, the mass of the building relative to the
mass of the foundation and the mass of the replaced soil, the damping in the building, the
relative stiffness of the building compared with the soil, the depth of the embedment, and
the type of incident waves and their angle of incidence. Incident plane P- and SV-waves

were considered.
The conclusions of the study are the following:

1. In the limit when the stiffness of the soil is infinitely large compared with the
stiffness of the building, the relative building response approaches the relative response of
a fixed-base model. Then the system damping approaches the damping in the building, the
system frequency approaches the fixed-base natural frequency, the base rotation goes to
zero and the base horizontal motion approaches the horizontal component of the free-field
displacements on the surface. When the soil is stiffer, the amplitude of the peak relative
response does not depend much on the depth of the embedment, on the type of incident
waves and angle of incidence, and the ratio my/m,. It depends only on the damping in
the building and on its height.

2. In the limit when the building is very stiff compared with the soil, the system
damping and the system frequency asymptotically approach the system damping ¢*i& and
the system frequency n™€ of a rigid building welded to the foundation and moving as a
rigid body. The relative building response is, then, very small. ¢™€ is smaller and n*¢
is lower when the building mass is larger. When the foundation is deeper, ¢'i8 is lower.
¢™€ is higher when the rotation of the foundation input motion is a significant part of
the building excitation (when ¢ H and A of the foundation input motion are compa.ra.ble)

17" does not depend on the type of incident waves and angle of incidence. ¢™'& does not
depend on the damping in the building, ¢, and it may happen that it is lower than ¢.
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3. When both the building and the soil are flexible, the following holds. When the soil
is stiffer, the system damping depends more on the building damping, and little on the
building mass and height. As the flexibility of the soil increases the effect of the building
damping decreases. When the soil is stiffer, in general, the system damping increases as the
soil becomes softer. It is higher when the building mass is larger. The system frequency is
always lower than the fixed-base natural frequency of the building. The reduction of the
system frequency increases as the flexibility of the soil increases and as the mass of the
building becomes larger. The relative building response decreases as the flexibility of the
soil increases and the mass of the building increases. Under the same conditions the base
rotation increases. Both the relative building response and the base rotation decrease as
the building damping increases. For flexibility of the soil grater than some critical value
(for ny large enough) the building starts behaving as a rigid body. Then, the system
damping decreases with increasing mass of the building and with increasing flexibility of
the soil. At the same time the relative building response still decreases. The value of nx
for which this happens is smaller when the damping ratio in the building is higher. In this
range, its value is not a measure of the reduction of the building relative response.

4. The relative building response strongly depends on the angle of their incident
waves, as do the amplitudes of the free-field motion and consequently, the foundation
input motion. The system response is not a function only of the horizontal component
of the base input motion, but also depends on the input base rotation, which, in turns,
depends on the type of incident waves and angle of incidence. The foundation input motion
was found to be more representative as excitation for the building base than the free-field
motion. This motion can have a rotational component even when the free-field motion
does not (y = 0°, 30°). It was found that the system damping does not depend on the
incident angle when the soil is stiffer. When it is softer, the damping is larger for incident
SV-waves with incidence beyond critical angle. For the rest of the considered cases, the
system damping practically did not depend on the type of incident waves and incident

angle.

5. The depth of the embedment may significantly affect the system response. Deeper
foundations act “stiffer” and reduce less the system frequency and the relative building
response. For the 2D model studied, except for very heavy and tall buildings, the system
damping ratio is larger, when the depth of the embedment is smaller. Also, the relative
building response is reduced more when the foundation depth is smaller, meaning that then
the effective damping in the system response is larger. The opposite has been concluded
for embedded 3D prismatic foundations (Bielak, 1975) in previous studies. For smaller
1N, when the soil is stiffer, the peak rocking amplitudes of the base are larger when the
embedment depth is smaller. However, for higher 75, when the building relative response
is small and the system behaves similarly to a rigid body embedded into the half-space,
the rocking amplitudes are smaller, when the embedment depth is smaller.
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LIST OF FREQUENTLY USED SYMBOLS

= shear wave velocity, shear modulus, and Poisson’s ratio for the soil
= depth and half-width of the foundation
= circular frequency and period of the incident wave
= incident angle (angle between the direction of propagation of the
incident wave and the normal to the half-space surface)
= dimensionless frequency
= height and width of a shear-beam building model
= height and radius of gyration of the equivalent SDOF building model
= rotational stiffness and viscous damping
of the equivalent SDOF building model
= damping ratio and fixed-base natural frequency
of the equivalent SDOF building model
= mass per unit length in the y-direction
of the building, of the foundation
and of the soil replaced by the foundation
= mass density of the building and of the soil
= dimensionless stiffness parameter of the building relative to the soil
= acceleration due to gravity
= horizontal and vertical displacements and rocking angle
of point O on the foundation
= relative angle of rocking and relative horizontal and vertical
displacements of the equivalent SDOF building model
= amplitude of the horizontal component
of the free-field motion on the surface
= system frequency and system damping ratio
= limits of %3, ¢%¥Y when the stiffness of the building
goes to infinity
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