UNIVERSITY OF SOUTHERN CALIFORNIA
DEPARTMENT OF CIVIL ENGINEERING

ANALYTICAL MODEL FOR IN PLANE
BUILDING-FOUNDATION-SOIL INTERACTION:
INCIDENT P-, SV- AND RAYLEIGH WAVES
by

Maria I. Todorovska and Mihailo D. Trifunac

Report No. 90-01

Los Angeles, California
March, 1990






ABSTRACT

Foundation-soil and building-foundation-soil interaction has been studied using a two-
dimensional analytical model, including both the dynamic and the kinematic interaction
effects. The building has been represented by an infinitely long shear wall resting on a
rigid circular foundation, embedded into an elastic homogeneous half-space. Deep and
shallow foundations have been considered (with depth-to-half-width ratio of 1 and 0.5)
and excitation consisting of plane P- and SV- and surface Rayleigh waves. The wave
function expansion method has been used to represent the motion in the half-space and a
substructure approach to solve the interaction problem. Special attention has been paid
to the wave passage effects, and to the influence of the depth of the embedment.
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CHAPTER 1
INTRODUCTION

1.1 General Introduction

Since the 1960’s, the soil-structure interaction has been recognized as an important
factor that may significantly affect the relative building response, the motion of its base,
and the motion of the surrounding soil. Some of the important manifestations of the
interaction are the following: (1) it generally reduces the strains and the forces in the
building at the resonant frequencies, (2) it may cause significant rotation of the base, and
(3) it changes the frequencies of the peaks in the relative response transfer function. The
degree of the modification of the transfer function of the building on flexible foundation
medium, relative to the one on a fixed-base, is larger when the stiffness of the building
relative to the soil is larger. Solving the complete problem is complicated for routine
calculations and requires detailed knowledge of the soil properties in the vicinity of the
foundation (Luco and Wong, 1990), such as the material damping and the values and the
variations of the shear-wave velocity and of the Poison’s ratio. Also, the large deformations
of the soil, caused by the large rotations of the base, may require nonlinear analyses.
Another problem, which arises in densely populated urban areas, is measuring the free-field
motion in the close vicinity of the building site, so that it could be used as realistic input for
the interaction models. So, the engineers have looked for some simplified and easy approach
to use models for dynamic analyses of buildings, that would account for the interaction.
A common means to model the dynamic interaction effects is by associating linear springs
and dashpots to the degrees of freedom of the foundation, the former accounting for the
change in the stiffness, and consequently the changes in the natural frequencies, and the
latter for the dissipation of the building vibrational energy via radiation damping. This
hysteretic model makes it possible to combine the radiation damping with the material
damping (which is also assumed to be of hysteretic nature).

1.2 Literature Review

In general, the building-soil interaction consists of two parts: a kinematic and a
dynamic interaction. The former is a result of the wave nature of the excitation, and .
is manifested through scattering of the incident waves from the building foundation and
through the filtering effect of the foundation, that may be stiffer than the soil and, therefore,
may not follow the higher frequency deformations of the soil. This interaction depends
on the frequency, angle of incidence and type of incident waves, as well as on the shape
of the foundation and on the depth of the embedment. The latter is due to the inertia
forces of the building and of the foundation which act onto the soil through the contact
area, and it depends on the mass and height of the building and the mass and depth of
the foundation, on the relative stiffness of the soil compared with the building and on the
shape of the foundation. The kinematic interaction is usually described by the foundation
input motion (response of the massless foundation without the action of the forces of the
building), and the dynamic interaction by the foundation impedance functions. A common



approach is that those are first calculated for different types of foundations, and are readily
available (e.g., in tabular form) for the next stage which is calculation of the structural
response. This approach is known as a substructure approach, and is used only when both
the soil and the building are linear. When this is not the case, the structural response
is calculated by step by step solution of the equations of motion for the complete soil-
foundation-structure system, using finite element models or combination of finite element
and integral equation methods.

Pioneering work in the area of building-soil interaction was done by Luco (1969),
on a two-dimensional (2D) building model on a circular rigid foundation and for incident
plane SH-waves. Trifunac (1971) generalized the solution to arbitrary incident angle of
the SH-waves. Both authors arrived at analytical closed form solutions. Later, Wong
and Trifunac (1974) solved analytically the same problem, but for a building on a semi-
elliptical foundation, which enabled them to study the effect of the depth of the embedment
for incident SH-waves. Wong and Trifunac (1975) generalized their solution to interaction
of two or more buildings, again for incident plane SH-waves.

The foundation-soil interaction has been studied by many authors for foundations of
different shapes, embedded into homogeneous or layered half-space, and excited by different
types of waves. Some of those are: Luco and Westmann (1971), Veletsos and Verbi¢ (1973),
Thau and Umec (1974), Luco et al. (1975), Thau (1976), Apsel and Luco (1976), Day and
Frazier (1979), Iguchi (1984), and Pais and Kausel (1989). Some of the conclusions of
these studies are the following. (1) The kinematic interaction can change significantly
the foundation input motion relative to the free-field motion. At higher frequencies the
translation is reduced but the rotation increases (Day and Frazier, 1979). Iguchi (1984)
concluded that (2) the usual assumption for vertically arriving incident waves does not
always lead to the most conservative estimates, both for flat and for embedded foundations.
Yet, in numerous analyses the kinematic interaction and often the frequency dependant
nature of the foundation stiffness are neglected, as well as the coupling of the rotational
and the translational stiffnesses.

A typical model to study dynamic building-soil interaction consists of an N degree-
of-freedom lumped mass building model, attached by springs and dashpots (one pair for
the horizontal and another pair for the rocking foundation motion) to a rigid base. This is
solved for the dynamic response of the N+2 degree-of freedom fixed base system excited
by horizontal translation only, equal to the free-field motion. Using such a model, Bielak
(1971) arrived at analytical expressions for the modal damping, “natural” frequencies and
the peak response of a SDOF and a MDOF building model on a flexible surface foundation.
He assumed frequency independent and uncoupled stiffnesses and damping coefficients for
the foundation, calculated from the diagonal terms of the foundation impedance function,
evaluated at the first peak frequency of the interacting system. He included the material
damping in the soil, which he superimposed linearly to the foundation damping. Assuming
small values for the radiation, soil material and building damping coefficients, he neglected
the higher order terms of their contribution. In his later work (Bielak, 1976) he arrived at
the same analytical expressions assuming orthogonal modes of the flexible base structure.
He concluded that (1) the assumption of orthogonal modes is equivalent to neglecting the



higher order terms in the damping coefficients. (2) The fundamental natural frequency,
as well as the amplitude of the equivalent input acceleration, always decrease, but the
effective damping can increase or decrease relative to the damping in fixed base models,
depending on the value of the other parameters. (3) The average undamped response is
always decreased as a result of the interaction, while for a damped structure either an
increase or a decrease can take place, i.e. the effects of the interaction are not always
conservative. (4) The effect of the base mass is small. (5) The effect of the interaction
may be negligible for the higher modes of the structure. (6) Although all the resonant
frequencies decrease, only the fundamental frequency decreases significantly. Except for
short structures this reduction is essentially due to rocking rather than to translation of
the base.

Using the same model and the assumption of small damping coefficients, Luco (1980a)
studied the effects of the interaction on the modal quantities obtained by typical identifi-
cation techniques in which the interaction is neglected. Neglecting the contribution of the
higher modes, he also arrived at analytical expressions for the apparent system frequency
and the apparent system damping. Those are the modal characteristics calculated from
the transfer function between the total translation of the base and the relative translation
of the top of the building (equal to the total translation of the top minus the total transla-
tion of the base). His study showed that the apparent system frequency is slightly higher
than the true system frequency, and that they both can be significantly lower than the
fixed base building frequency. When the relative stiffness of the building relative to the
soil is larger, the contribution of the building damping to the true and apparent system
damping decreases and, then, those are mainly governed by the radiation and material soil
damping.

Recently Dangla (1988) used a numerical method (finite element and boundary ele-
ment method) to study two-dimensional soil-structure interaction of a building (modeled
by a two-dimensional finite element model) for incident plane P- and SV- and surface
Rayleigh waves. In his paper, he focused only on the interpretation of the foundation re-
sponse transfer function amplitudes for his example system. He concluded that, in general,
the horizontal and the vertical displacement amplitudes have local minima at he bending
and compressional natural frequencies of the fixed-base building model, and that rotational
amplitudes of the foundation have local maxima at the bending natural frequencies of the
fixed-base building model. The shortest wave lengths of the shear wave in the soil in his
results were equal to 4/7 times the width of the foundation.

Other studies of building-soil interaction are by Wong (1975), Lee (1979), Luco
(1980b) and many others.

1.3 Subject of Study and Organization of this Report

Analyses of two-dimensional models have not been detailed enough in the study of
building-soil interaction. There remain many physical phenomena that need to be ex-
plained before moving to more complex three-dimensional models. Even though the real



world is three-dimensional, because of the possibility of separation of the in-plane from the
anti-plane motion, the two-dimensional models may allow better understanding and expla-
nation of many physical phenomena. In this work, and analytical two-dimensional model
will be employed to study a building-soil interaction for general in-plane wave excitation.
The purpose of the study is to understand the influence of various parameters, such as the
relative building-soil stiffness, the depth of the embedment, the type of incident waves, and
the building mass and slenderness ratio on the foundation and relative building response
transfer function, with special attention to the effects of the wave passage.

In Chapter II, the problem and the boundary conditions are defined, as well as the
superstructure model, the representation of the scattered waves in the soil, and the series
expansion of the free-field motion and the closed form solution for incident plane P-waves.
This is followed by presentation of some results and a discussion. The first part of Chapter
III focuses on the series expansion of the motion of the inhomogeneous P-wave of the
free-field motion, generated by the mode conversion for incident plane SV-waves beyond
critical angle. Then, the closed form solution of the interaction equations and results and
analysis are presented for incident plane SV-waves. In Chapter IV the same is repeated for
incident Rayleigh waves. Chapter V contains the summary and the conclusions. Appendix
A contains the list of symbols used in this report, and Appendix B an example of evaluation
of the dimensionless stiffness parameter for the building.



CHAPTER 11

DEFINITION OF THE PROBLEM
AND SOLUTION FOR INCIDENT PLANE P-WAVES

I1.1 The Model
I1.1.1 Description of the Model and Definition of the Problem

The interaction model is shown in Fig. II.1. The building, of width W and height
H, is represented by a homogeneous shear beam with mass myp per unit length, shear
wave velocity By, longitudinal wave velocity a; and shear modulus tp. The shear beam
is also allowed to deform in its longitudinal direction z. These two types of deformation
are assumed not to couple with each other. The building is supported by a rigid circular
foundation of width 2a and depth h, having center of curvature at O; and radius of
curvature b. The depth of the foundation, k, can vary in the range 0 < h < a. Its mass
will be denoted by m¢. The foundation is embedded into a homogeneous half-space with
shear modulus y, density p and Poissons ratio v. The shear and the longitudinal wave

velocities, 8 and «, are
m
g=,/"
p

_[2-v)
“=\Va—m”

It is assumed that the foundation and the half-space are perfectly bonded to each other at
the contact surface r; = b, where r; — 0, is a fixed polar coordinate system with origin at
O:. The z — 0 — z coordinate system and the 0 — ¢ coordinate axis are also fixed. (Fig. II.
2) the former is attached to the half space and the latter coincides with the vertical axis of
symmetry of the building at rest. A linear stress-stain relationship is assumed both in the
building and in the half-space. No damping is assumed in either of the two media. The
undisturbed configuration is taken as a reference system.

and

The excitation can be a plane monochromatic P- or SV-wave, with frequency w and
incident angle ~, or a Rayleigh wave. An incident P-wave, can be represented by its
P-potential

¢' = explikq(zsiny — 2 cos v) — 1wt (I1.1)

where ko = w/a is its wave number. This incident wave is reflected by the stress-free
half-space surface and is scattered by the foundation. In this process additional P- and
SV-waves are generated. The displacements in the half-space, in the positive z- and z-
directions, are denoted by u and v. The excited foundation moves with three degrees of
freedom: translations A and V, in the positive z and z directions, and a clockwise rotation
@ about an axis perpendicular to the z — z plane and passing through O. The moving
foundation excites the building to vibrate with displacements uj and v, in the positive z
and ¢-directions, relative to its position at rest (Fig. II. 2).



P, SV

Figure II.1 The model



Figure 11.2

Motion of the building



The steady-state motions of the building, of the foundation and of the half-space have
to satisfy the following conditions:

(a) the motions of the half-space, u and v, and the motions of the building u; and v,
have to satisfy the corresponding differential equations of motions;

(b) on the surface of the half-space, at z = 0 and left and right of the foundation, and on
the top of the building, at £ = H, all stresses have to be Z€ro;

(c) continuity of displacements must exist between the motions of the foundation and of
—1a,

the half-space at the contact surface, r; = b and —0p < 0; < 6o, 0p = sin 3
(d) the displacements of the building and of the foundation must be continuous at their
contact surface, at £ = 0;

(e) the motion of the foundation must be such that all the dynamic forces acting onto it
are in dynamic equilibrium, and

(f) the influence of foundation and the superstructure on the motion of the half-space
has to vanish at sufficiently large distances.

The aim of this work is to derive analytical expressions for the motions in the build-
ing, in the half-space and of the foundation. This will be carried out in several steps. In
the subsequent sections, first, expressions for the displacements of the building and the
forces acting onto it will be derived in terms of a given general displacement of the foun-
dation. Next, the displacements of the half-space and the forces with which it acts onto
the foundation will be derived in terms of the incident motion and given imposed displace-
ment of the foundation. Finally, implementing the previous results into the equilibrium
equations of the foundation, the motion of the foundation will be expressed in terms of
the excitation. This approach of decomposition of the original problem into two separate
problems and then implementing the results of those into the equilibrium equations is
called a substructure approach. It can be applied only in linear problems. In this chapter
the problem will be defined and solved only for incident plane monochromatic P-waves.
In the next chapters the solution will be generalized for incident monochromatic plane
SV-waves and for Rayleigh waves. In the time domain, the problem can be solved by the
Fourier synthesis, with the response to monochromatic excitation as a transfer function.

I1.1.2 Displacements and Forces in the Building

The free-body diagram of the building is shown in Fig. II.2. The undisturbed,
as well as the exaggerated disturbed configuration at time ¢ are shown. The absolute
displacements u; and v, of the building, in the positive z- and negative z- (positive ¢)
directions, respectively, will be measured with respect to the 0 — ¢ axis. The 0’ — ¢’ axis in
Fig. II.2 is a coordinate axis attached to and moving with the base of the building. The
relative displacements of the building will be measured with respect to this axis.



The displacement of the base of the building, which is the same as the displacement
of the foundation, is described by the horizontal translation A, the vertical translation V'
and the clockwise rotation ¢ about the center of the base. For a harmonic excitation, A,V
and ¢ will be also harmonic, and can be written as

A = Age it (I1.2q)
V = Ve vt (I1.2b)
© = poe Wt (I1.2¢)

where Ao, Vo and ¢q are complex amplitudes. The finial displacement response of the
building is a linear superposition of the responses to each of the components in equation
(IL.2) separately. The displacements A, V and ¢ are assumed to be small and thus the
analysis is linear. With these assumptions, only the horizontal motions and the rotations
will be coupled. Therefore,

up(€,t) = up,a(&,t) + up (&, ) (I1.3q)
vp(€,t) = vp,v (£,1) (11.3b)
where up,a(€,t) and up,,(¢,t) are the absolute horizontal displacements (in the positive

z-direction) due to motions of the base A and ¢, respectively, and up v, is the absolute
vertical displacement (in the positive ¢-direction) due to vertical motion of the base, V.

The horizontal and vertical displacements of the building, u, and v, satisfy the
following one-dimensional wave equations

0%u, 1 0%y,

v, 1 9%, ‘

The displacement u A is a solution of equation (I.4a) that satisfies the boundary condi-
tions

up(0,t) = Age™ ™t (I1.5a)
duyp _
and it is equal to
up,A(€,t) = Ao (cos wé + tan vH sin w_f) et (I1.5¢)
Bb B Be

Similarly, up,, is a solution of equation (IL.4a) that satisfies the boundary conditions (see
Fig. 11.2)

up(0,2) = 0 (II6a)
—— (H,t) = poe~ ¢ (I1.6b)
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and it is equal to

-—% sin w—fe""“’t. (I1.6c)

upo(&,t) =
‘P( ’ ) B‘%COS ﬁb ﬂb

Both uj A and Up,, are positive in the positive x-direction. The vertical displacement Vp,v

is a solution of equation (I1.4b) with the boundary conditions

vp(0,t) = —Vpe~twt (I1.7a)
31)5 .
3¢ (H1) =0 (I1.76)
and it is equal to
vp(é,t) = Vo (cos wé + tan wH sin w_f) i (I1.7¢)
ap ay B

The minus sign arises (in equation II.7a) because V is measured downwards, while positive
vp is up. The boundary conditions, stated by equations (IL.5b), (IL.6b) and (IL.7b), follow
from the zero-stress condition at the top of the building.

The dynamic forces acting on the building are the inertia forces, the moments of the
gravity forces, and the external forces fng), éb) and the external moment Méb) exerted
onto the building by the foundation. The inertia forces are illustrated for accelerations of
small elements of the beam with mass Am, as shown in Fig. II.2.

Imposing dynamic equilibrium conditions of all the horizontal forces acting on the
building, with the z — 0 — 2z coordinate system as reference, it follows that

H
19 =~ [ Wosan(c,)ae (I1.80)
0

where the two dots over u; denote second derivative with respect to time. Recalling
equations (II.3a) , (IL.5c) and (IL6c)

tan <& H 1 .
fz(b) = mbw2 Aowﬁb— _ ¥o (1 - C_OST—H) e—zwt. (IISb)
B

wH 2
B wH
B

From the dynamic equilibrium of vertical forces it follows that

H
= /O W pbin (€, t)dé (I1.9)

and recalling equation (IL7c)
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tan @
F¥) = mpw?Vo—2b g—iwt (I1.9b)

wH
ap

From the dynamic equilibrium of moments about O it follows that

H H
M =~ [“Wain(e0ede + [ Wina(us +uizh)ae
o 0 (I1.10q)

H W2 .
—/O Woy—=8(£,t)d¢

where
1

UpA = UpA — A

is the elastic deformation of the building due to the imposed horizontal motion A at
the base. In equation (IL.10a), the first integral includes the moments about O of the
horizontal inertia forces due to rigid body translation A and rigid body rotation ¢, as well
as the overturning moment about O’ of the inertia forces due to the elastic deformation
of the building. The second integral represents the overturning moment of the gravity
forces about O’. The third integral is a sum of the moments of the inertia forces due to
clockwise rotation ¢ of each of the horizontal slices of thickness A¢ and mass Am (see
Fig. II.2) about a horizontal axis through their center. The last term is negligible for
slender buildings, but must be considered for wide and short buildings. The moment of
the vertical inertia forces has been dropped in (equation II.10a) because it involves terms
that are of order O(V; - Ap) and O(Vo - o) which are higher order terms in our analysis.
Recalling the expression for u;, b, and u,, A, equations (IL.3a), (IL.5¢) and (IL.6c),

2 1 1 1 wH ., wH
Mo(b) = ey {Ao[ 3 ( 7 — 1) + 5 tan sin J
H (ﬁ) cos ""ﬁ—b ( ) Bv B

A

tan <2 .

+(p0l: wﬁ3b _ f2J}e—twt
%) (&)

H

myg Bs ©o 1 —iwt
+ A0< —H)+ 2( H—l)]e
H [ f,“’; ( _aL) cos ——“[’,b

twt

(I1.10b)

+ mbwz—lgfpoe—

Equations (I.8b), (I1.9b) and (I.10b) can be written in matrix form as follows

A Vo
{ (®) } = mpw? [[K(b)] + [Cg(b)]] { Ao }e—"wt (I1.11)
Méb)/H woH
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where [K] is a 3 x 3 block diagonal matrix

ki1 O 0
[K®=1| 0 ki kas (I1.12)
0 kaz kas
with real entries
tan @2
ki1 = —(5° (I1.12q)
“op
tan %H—
ka2 = — 3 (I1.12b)
By
-1 1
ko3 = (o2 3 (1 - ﬂ> (II.‘12c)
—ﬁT) b
-1 1
k3y = —3 (1 - ﬂ) (I1.124)
(',E,,_) b
—1 f[tan<Z 1 /wW\?2
k3s = — 2( w_Hﬁ" —1) +E<E) . (11.12¢)
(_ﬂf) B
and [C’éb)] is
g 0 O 0
(C=—=7 |0 0 o (I1.13)
0 c32 c33
-where -
tan %%
car = —- — 1 (I1.130)
B
€3z = le -1 (II.13b)
COS _ﬁ_

and g is the acceleration due to gravity. The matrix mw?[K ()] is the stiffness ma-
trix for the building. Because of the absence of damping, all of its terms are real.
The matrix mbw2[Cg(b)] is a stiffness matrix associated with the force vector {Fg(b)} =

0 o0 , Where 1s the dynamic moment of the gravity forces of the build-
M) /H}T, where M{") is the dynami f the gravity forces of the build
ing about the center of its base.

I1.1.3 Motion of the Half-space
I1.1.3.1 The Free-field Motion

It is convenient to represent the motion in the half-space as a superposition of the
“free-field” motion and the waves scattered from the foundation. The “free-field” motion
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consists of the plane incident P-wave and the reflected plane P- and SV-waves from the
half-space surface in the absence of the foundation and the building. The reflected P and
SV-waves have potentials ¢" and ¥" as follows

¢" = Ky expliky(zsinf, + zcos,) — iwi] (I1.14a)

Y = K expltkg(zsinfg + z cosg) — iwt] (I71.14b)

where the angle of the reflected P-wave 8, (= 7, the incident angle of the P-wave) and the
angle of the reflected S-wave, 03, are related by :

sinf, sinfp

o 1Y

and where kg = w/f is the wave number of the S-waves. The reflection coefficients K,
and K, are both real and are equal to

_ sin26,sin205 — (a/B)? cos? 204
' 7 sin26,sin20p + (a/B)? cos? 205

(I1.15a)

Ko — —2sin 20 cos 20
27 sin 26, sin 20p + (/B)? cos? 20,

(e.g. see Cao and Lee, 1988).

(I1.15b)

I1.1.3.2 Representation of the Scattered Waves

The essential part of this analysis, is to represent the waves scattered from the foun-
dation. We have used here the method developed by Cao and Lee (1990) and Lee and
Cao (1989) for scattering of plane P- and SV-waves by shallow cylindrical canyons. The
geometry of their canyon is the same as the geometry of the canyons in Fig. II.1 and Fig.
I1.3, where the foundation is imbedded. They represented each of the potentials of the
scattered P- and SV-waves, by a combination of two series of cylindrical wave functions

with origin at O;: a series of Hankel )(,(,1) functions and a series of Bessel J, functions, i.e.

¢% = ¢F + 65 (I1.16a)
and

PR = pf +pf (I1.16b)

where -
¥= Z (Al,n cosnb; + By, sin n01> U (kgry)e™ et (I1.17a)

n=0

> .

¢35 = Z (A;,n cosnf; + B; , sin n01> Jn(kari)e (I1.170)

n=0
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z

B, p, v

Figure II.3 Motion of the half-space
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[0 0]
1/15' = Z (C’l,n sinnf; + D, , cos n01) )(,El)(kprl)e_“"t (I1.17¢)
n=0
m -
DY (C;,n sinnd; + Dj ,, cos n01> IV (kgry)e~it (I1.17d)
n=0

(The function )(,El)(krl)e“‘“"t represents a cylindrical wave propagating away from O,
with wave number k, while Jn(kry) represents a standing cylindrical wave with the same
wave number and with origin at O;.) Such a representation of the scattered waves is
complete. Those waves were required to satisfy the condition at r1 = b (zero-stress)
exactly, but the zero-stress condition on the half-space surface only approximately. Lee
and Cao approximated the half-space surface in the vicinity of the canyon by a concave
cylindrical surface of very large radius R (R ~ 100a) that is tangent to the plane z = 0 at
O, and required that the scattered waves satisfy the zero-stress condition on this surface.
Using the Addition theorem for cylindrical Bessel functions, they transformed ¢F, ¥¥,
and ¢¥ and ¥¥ into Fourier-Bessel series of r2 and 03, where r; — 0, is a polar coordinate
system with origin at O,, the center of the big cylinder approximating free half-space
surface (see Fig. I1.3). The series of J,(kr;) were transformed into series of J, (kr2). But
the series of ¥ (kry) were also transformed into series of J, (krz). This implied that only
the trivial solution could satisfy the zero-stress condition on rg = R. If we denote the
coefficients of ¢f and ¢f in the series in r, — 6; coordinate system by A3 , and Bf ,, and
Az, and Bj ,, respectively, the trivial solution implied that

= —Ayn (I1.18q)

B}, = —By,. (I1.18b)

Similarly, the coefficients of the series representing ¥ and ¥ in the r, — 0, coordinate
system, C7 , and Dj ., and C3 , and D, ,, respectively had to satisfy

Cin=—Can (I1.18c¢)

D}, =-Ds,. (I1.184)

Still, Cao and Lee did not reject their idea of transforming ¢%, oF, Y and Y& in the
(r2 — 62) coordinate system. First, they truncated the infinite series representing the
potentials of the scattered waves in r; — 8; coordinate system at some n = N, and then
they transformed those potentials into series in the r2 — 02 coordinate system. Then, they
truncated these series at some n = M, applied the conditions in equations (IL.18), and
transformed the potentials back into the r; —6; coordinate system, using again the Addition
theorem. Consequently, relationships were established between the sets {A1,2})_, and
{A;,n}rll\,’:O’ {Bl,n}ﬁ=o and {Bék,n}g:o, {Cl,n}ﬁr:o and {C'f,n}ﬁ=o, and {Dl,n}nN=o and
{D3,.}_o- In their calculations Cao and Lee took M = N. Using a similar approach for
incident SH waves, Cao and Lee (1989) got excellent agreement with the exact solution by
Trifunac (1971).
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There are, so far, no exact analytical solutions for scattering of in-plane incident
waves by cylindrical canyons. For incident P- and SV-waves, our study showed that the
results by this method are in good agreement with published approximate results by Wong
(1979)) (using the Ohsaki’s method with point sources), with the results of Sanchez-Sesma
et al. (1985) (using the method of Hankel function expansion of the scattered waves and
application of the zero-stress condition in the least squares sense), and with the results of
Kawase (1988) (who used the discrete wave numbers and the boundary element method).
Moreover, our study showed that if we take M = 0, i.e. if we relax the zero-stress condition
on the half-space surface, the surface displacements change little for the cases we consid-
ered, and the results by the method of Cao and Lee are again in good agreement with the
results by the previously mentioned approximate methods. The fact that the zero-stress
condition at z = 0 appears to affect only little the motion of the scattered waves, relative
to the conditions at the canyon wall (i.e. r; = b), and the fact that the method of Cao and
Lee satisfies the second condition exactly, influenced our decision to use this approximate
method in our interaction problem.

I1.1.3.3 Displacements and Stresses in the Half-space

The radial and tangential components of the displacements, u, and ug, and the
stresses 7, . and 7, 4, , at a point (r;,0;) in the half-space, can be calculated from the
potentials as follows:

{url } _ _1_ f:[ Du cosnb, Dl(g')"'cosnﬂl] {Al,n}
ug, D( )* sin no, D.‘,(g) sinng; 1 Cin
n Dl(f) sin n6, Dl(g)_sin nf; 1 {Bl,n }
-sz ~ cosnf, D ®) cosnfy 1\ D1, (I1.19)
+ D( ) cos né, D( )+ cosnf {AO,n + 435, } .
D( )+smn01 922 sinnd; 4\ Con +C5n
4 r D ) sin nf, pl(;)"sin nf {BO,n + B;‘,n } e—iwt
D( + cosnfy D) cosndy I\ Don+ Dj,
N
{'r,.lr1 } _ 2 Z[ 811 cos nf; 81(23)+cosn01]{A1,n}
Tr16 r 5( )* sinnd, 52(3) sinnd; ! Cripn
i El(l)smnﬂl 51(3)_sinn01] { B, }
-5 (8~ cos nd; 82(5) cosnf; |\ Dypn (11.20)
n 8( )cos nf, 51(;)+cos nﬂl] { Aoy + A3, } .
-521 sinnf, 52(21) sinnd; 1 Con +C3,
4 5( )s1nn01 81(21)_sinn01] { Bo,n + B3 ,, } —iwt
8( )+ cosny €3 cosndy I\ Do+ Dj,
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where (see Paw and Mow, 1971)

Dl(f) = —nCp(kar) + karCp_1(kar) (I1.21a)
D{P* = £nCo(kgr) (I1.215)
DI = FnCp(kar) (I1.21¢)
D) = nCokgr) — kprCo_1 (kar) (I1.21d)
and
& = (n? +n— %kaﬂ)cn(kar) — korCp—1(kar) (I1.22q)
EPF = 2n[—(n+1)Cplkpr) + korCr_1(ksr)] (II.22b)
EDE = Fn[—(n +1)Cp(kar) + karCa_i(kar)] (I1.22¢)
£ = —(n® + n.— ~kgr?)Ca(kor) + kgrCaa(ks) (I1.22d)

In equation (II.21) and (IL.22), C,(f)(-) = Ju(-) when £ = 1, and CS,Z)(-) = }(,(,1)(-) when
£ = 3. The coefficients Ao,ns Bo,n, Co,n and Dy, n =0,1,... are the coefficients of the
expansion of the potentials of the free-field motion in Fourier-Bessel series in the ry — 0,
coordinate system,

(e o]

¢t (r1,0,) = Z Jn(kar1) (Ao,n cos nby + By, sinnd;) exp (—iwt) (I1.23a)

n=0

oo
Y (r1,01) = Z Jn(kgr1) (Co,nsinny + Do, cos nf;) exp (—iwt), (11.23b)
n=0
where . .

Ag n = €pi™ cosnb, ((—1)"6"‘"“"”s ba | K, e tkadcos 0‘*) (I1.24a)
Bo,n = €ni" sinnb, (—(—1)"e'kadcos%a | [ g=thadcos 0") (I1.24b)
Con = €nKpe™kpdcostpingin ng (I1.24c)
Do,n = €nKpe™*0303085n co5 ng g, (I1.244)

In equations (I.19) and (I1.20) N is the index where the infinite sums have been truncated.
The coefficients of ¢f, 7, f, YF in equations (I1.17) are related as follows:

{éz,': } T mi:o TR'T'" E,’““D’ R, ?k D) ] { ‘éi: } (I1.25q)
{11;2: } - i TR,T,,, gkaD) . ?kﬁD)] {gi: } (I1.25b)
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where

M
Rsm(kr)=f;2‘;’[ Jna(kr) % (= 1)'Jn_z(kr)] [;;z,,w)i( DLt (kr)] (11.26)
=0

and where ¢ =2 and ¢, =1 for n > 1.

I1.1.3.4 Imposing Continuity of Displacements at r; = b

The foundation moves as a rigid body, and its motion is defined by the translations
A and V and the rotation . At r; = b, the r; and 0; components of the displacements
are
Vo

Ur, (0,01) ) _ [ cosby sinfy (d/H)sin 8, ot
{unitoo) ) = [ Sn, conty —b/H+(d/H)cos01]{(pA0;{}e SRCEL

The 2 x 3 matrix on the right-hand-side (RHS) of equation (II.27) is a foundation motion
influence matrix. For a rigid foundation it depends on its shape. Since those displacements
must be continuous with the displacements of the half-space at r; = b, for all angles 6,
the RHS of equation (II.27) must be equal to the RHS of equation (I.19), evaluated at
ry = b. This implies the following relationships between the coefficients of the scattered
waves and the displacements of the foundation:

-~ -

( . . r . \

. . ; . Ve
: { ’él} = W] [D““(n,b)] < {é} >—b[X+]{ Ao }
"" 2%2 .’" woH
: . : Ve
< {3;3} S [D“"(n,b)} < {3‘;’"} >—b[X“]{ Ao }
; 2x2 " woH

(I1.28b)
where the matrices [Wi]( N+1)x(N+1) consist of 2 X 2 blocks [WW%];42, such that the
blocks occupying the n-th row and m-th column are

(WW(n,m)] = [DWE(n, b)|[RRE (n, m)] — 6pm[D @ (n, b)]. (I1.29)

In the above equations

D(e) b D(e):t
[0(n,5)®=] [ w (mn8) - Diz (n,0) (I1.30a)
2x2 Da1’ " (n,b)  Dy5’(n,b)
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Rt (koD) 0
+ _ o
[RR=(n,m)|ax2 = | """ R;Fm(k,,p)] (I1.308)
[0 0 0]
0 0 O
1 0O
[X+]2(N+1)x3 =|-100 (I1.30c)
0 0 O
| 0 0 O]
0 0 0
0 0 —b/H
0 1 d/H
(X lavinyxa = |0 1 d/H | (I1.304)
0 0 0
00 0 |

I1.1.4 Forces Acting on the Half-space

Integrating the stresses in the half-space along r; = b and —0y < 6; < 6y, where
0o = sin~!(a/b), the resultant forces with which the foundation acts on the half-space can
be calculated, as

P 6o cos 0, —siné,
@ Lo [ o] sing 9 {Trm (6,61) }do I1.31
{ : } /—oo [ in e ] Trio,(0,01) J 1 ( 9

d b d
sind; —3 + g cosb;

where fée) and f,S") are the resultant forces in the positive 2- and z-directions, and Méa)
is the resultant clockwise moment about O. Recalling the expression for the stresses,

A Y Bia "
equation (II.20), for the coefficients { Cl’" } and { Lin } , equations (II.28), and

l,n n=0 Dl,n n=0

* N *

for the coefficients {A,l,g” } and {B}g" } , equation (IL.25), and performing the
Ln ) n=0 1,n ) n=0

integration in equation (II.31a), the resultant forces acting onto the half-space at ry = b

and —0y < 61 < g are as follows:

" N z
zs —2u AO,n —2u BO,n
{ (2) }z[—b [P {COn} +—-1P7] {DOn}
(s) ) )
My”/H . .

(I1.31b)
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[Pi]3x2(N+1) = [ T [L(l)i]sxz ] ~ [T W] [(Di,lb))i} (I1.32a)

(@] = [TTIWF7HXF] + [T~ )W~ [X ] (11.32b)

and

n

[Tilsxz(N+1)=[---[Z[L(n)(l)i][RR(n,l)i]—[L(l)(s)i]} ] (I11.32¢)

The 3 x 2 matrices [L(n)(©%] are as follows:

6o cos 0, —sin F o (2) 0+ -
[L(n)(®7] :/ sinf; cosﬂl 51(1e)_(*_n,b) cos nfy &, (e) (n,b) cos nb, do,
~6o | 5ingy —L + £ cos; | €57 (n,b) sin 2 (n,b) sinnb,
(II.33a)
60 [ cosfy —sinf; | .0 . (0)- i -
(L (n)®-] =/ sin 0, c0501 81(%)£n,b) sin nf, 81%0 (n,b) sinnd, do;.
—0, _%sinﬁl ___ n H cos | €317 (m,b) cos By Ep57 (n,b) cosnb; |
(I1.33b)

Because of the symmetry in the limits of integration and of the trigonometric functions,
the second and third rows of [L(n)(®*] and the first row of [L [L (n )(©=] have zero entries,

i.e.
, XL - et et - e,
[L(n)OF] = 0 0 (I1.33¢)
0 0
and
0 0
[L(n)O7] = [ , 5(£)I4£+ QI , £ L+ €T }
EQEL+ER T (L L+ £0) €8 4L+ € (515 + £1)
(IT.33d)

where £ © _ & 6 (n,b),i=1,2and j =1, 2. The terms I;,i = 1, 4 and 5, are functions
of n and are the following integrals:

6o

I(n) =/ cos 0, cos nf,db, (I1.34a)
)
010

I4(n) =/ sin 0, sin nf,df, (I1.34b)
—8,

and
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bo
I5(n) =/ cos 0;d0,, (I1.34c)
—6,
equal to
in(n+1)8, , sin(n—1)8
Im) = { Somr + SES, n (I1.350)
sm2209 + 00, n=1
sin(n+41)8 sin(n—1)8
Lin)={ i1 ot TR n#l (I1.35b)
___5&22_&1 + 8o, n=1 .
and I ( ) zsin nbo n # 1 (II 35 )
= n ) .35¢
5\ =9 26, .n=0.

The generalized force vector F(8) = {fz(s), fags),Més) /H}T in equation (I1.31) can be
broken into two parts

{FO} = {F} + {FO). (11.36)

The generalized force vector {Fo(s)} = { fgfo) , f,(:fg, Mo,0/H}T represents the resultant
forces that act onto the half-space, and are caused by the free-field waves and by scattered
waves from a fixed foundation. It is equal to

s 2u Ao, — 2u, By, ¢
{Fé )}=-T[P+] {0 "} e “’t——l;—[P ] {Do,n e, (I1.37)

o,n

It’s components are the forces that must be applied to the foundation in order to keep
it at rest, in the absence of forces from the superstructure. The opposite of those

forces are called “foundation driving forces.” The generalized force vector {Fl(;)} =
{fz(z, f,ffi, MéfA/H}T, where

Vo
{F};)} = —24[Q] { Ao } e it (I1.38)
‘ woH

represents the forces acting onto the half-space when there is no free-field motion, but only
waves generated by the foundation moving as {Vo, Ag, po H}Te~*?. The matrix 2u[Q] can
be thought of as a stiffness matrix of the half-space. It is usually called the “foundation
impedance matrix.”
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I1.1.5 Equilibrium of Forces Acting on the Foundation

The free-body diagram of the foundation is shown in Fig. I1.4. The forces f,E”) z(b),

and the moment Méb) are those exerted onto the foundation by the building and by the
Third Newton’s law they are equal in magnitude, but with opposite direction, with the
forces that the foundation exerts onto the building in Fig. II.2. Similarly, f,(;s), ;8) and
Mé") in Fig. II.4 are the forces with which the half-space acts onto the foundation. Those
forces are equal in magnitude but have opposite sign from the forces in Fig. II.3 with
which the foundation acts onto the soil. Next, m;A and m fV are the horizontal and
vertical d’Alambert forces and I‘gf )gé is the d’Alamberts moment about O. Here I(gf ) is
the moment of inertia of the foundation about O and is calculated as follows

b0 b
I(gf) = / / prrdrdf(r? + d? — 2dr cos 0)
—68o Jd/cos 6,
4|(1 2 3 .
=b E—I-cos 0o 00—-2—sm0oc0800 pf

where py is the density of the foundation material. The area of the cross-section of the
foundation, Ay, is
As = b0y — ad
= b%(6o — sin 8 cos fo)

and in terms of the total mass of the foundation, m,

b2m 1 3
¥ — f e 200 ) 0, — = si .
0 0o —sinfgcosfy |\ 2 +cos™ 8o | fo 2 - 02 cos fo

The center of mass of the foundation, C, is at depth ¢ from the top surface, where

1 [b
c= — b3sin% 0 cos0do — d
Af 0
b sin® 0,

- §00—-sin00cosﬂo -

For positive rotation ¢ about O, the gravity force m 79 will produce a counter clockwise
dynamic moment about O which for small ¢ is equal to msgcp.

The dynamic equilibrium of the forces acting onto the foundation implies

my 01 (Vv i 5 0
mj Ad={ f®& 3_ SN 0 . (I1.39q)
0 I GH p® (s) mrqgc
o 0 M/ H 9¢p
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f,fb)
fz(b)
)

Figure 1.4 Equilibrium of forces acting on the foundation
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From this equation, and recalling equations (IL.2), (IL.11) and (II.31), the displacements
of the foundation can be expressed as

myw?
2u

(K®]+ [cg(“])] s {Fé”} (11.390)

4 1 mfw2 (f)
A =2 lQ+ P (M) + D) + =

pH 2u

e 10
[Mf]— dlag {1,1,;}——&3

and
M= d —9°
[C’g )] = diag {0,0, wzHH}°
m ¢ M| is the mass matrix of the foundation and m f[Céf )] can be thought of as a stiffness
matrix of the generalized force {Fg(f ) } = {o,0, Mé”;) /H}, where Mé,’;) is the dynamic
moment about O of the foundation gravity forces. The response {Ao} = {Vo, Ao, woH}T
to a P-wave with unit displacement amplitude is equal to

1 1 b (s
{8} = K7 S ARY) (11.40)
where R )
(K] =1Q)+ ZL=(Mf] + 00 + (K] + [0f) (114

is a dimensionless matrix, kb is a dimensionless wave number of the incident waves and
8 . . . .
—21 {FO( )} is a dimensionless generalized force vector.

The solution of the interaction problem can be carried out in the following steps. First,
the generalized force {Fés)} can be calculated (forces that act onto the half-space when
the incident wave is scattered from the immobile foundation). This vector depends on the
frequency of the incident waves, on the incident angle, and on the shape of the foundation.
It does not depend on the mass of the foundation and on any of the characteristics of the
superstructure. Second, the impedance matrix for the half-space, [Q], can be calculated.
It depends only on the shape of the foundation and does not depend either on the incident
wave or on the presence of the superstructure. Third, the various impedance and mass
matrices of the foundation and of the superstructure, [M,], [M/], [c ], [c§D ] and [K®)],
can be calculated, and the matrix [K] constructed. At the end, the interaction equation
(IL40) can be solved. This type of decomposition was introduced by Thau (1967). The

advantage of the decomposition is that once {Fo(s)} and [Q)] are calculated, with little extra
effort the interaction problem can be solved for any properties of the superstructure and
for any value of the mass of the foundation.



25

I1.2 Results and Analysis

It is of interest to see how the displacements of the foundation A, V and ¢ and the
relative responses of the building

s (€) = up(€) — (A + p¢)

and

v(€) = ws(€) +V

depend on the frequency (wave length) and angle of incidence of the incident waves, and
on the many physical parameters of the soil-structure system. These parameters are: the
masses of the building and of the foundation, my and my, the rigidity of the half-space,
i, the shear and longitudinal wave velocities in the building and in the half-space, ap, B,
o and B, the height of the building, H, and its slenderness ratio, %, the depth of the
foundation, k, and its width, 2a, and the acceleration due to gravity g.

I1.2.1 Dimensionless Parameters

It is convenient to use the following dimensionless parameters. The frequency of
the excitation can be expressed in terms of the dimensionless frequencies = ﬁ,_,., where

T = —2;)’5 is the period, or } = ¥¢ = 7. The parameter n equals the number of wave
lengths of the shear waves in the half-space contained in length equal to the width of
the foundation. It can also be interpreted as dimensionless width of the foundation. The
flexibility of the bulldlng relatlve to that of the half-space can be expressed through the

parameter € = —,—c';—a- ,;L,,ci ﬂbT / n, which is equal to twice the ratio of the number of wave
lengths of shear waves in the building contained in length H and the number of wavelengths
of the shear waves in the soil contained in length 2a (n). Then, for given n and ¢, there
are 27]5 shear wave wavelengths of the building contained in its height. Larger values of €
correspond to flexible buildings, i.e. tall buildings and/or buildings with small 3, relative
to 3. Short and stiff buildings (relative to the stiffness of the half-space) will have smaller
value of €. As an example, in Appendix B, values for € have been calculated for the former
Imperial County Services Building in El Centro (Koji¢ et al. 1984) for different values
of the soil shear wave velocity. Other dimensionless parameters are the mass ratios %
and 7L, where m, is the mass (per unit length in the y-direction) of the soil replaced

m, "’
by the foundation, the geometric ratios %, %— and ;:‘;, and the ratio of accelerations ;g-;
1
where w; is the fundamental frequency of the shear vibrations of the building. It is equal

to wy = Bym/2H. The order of magnitude of -4~ is 1074, e.g., for the former Imperial
wla
County services building (Appendix B).

In all the examples considered in this report, the Poisson’s ratio v = 0.3333 ~ — both
in the building and in the half-space, implying /8 = 2 and o3/8, = 2. Also, in all the
examples W = 2a. The slenderness ratio W— = 1 or 4, and the depth to half-width ratio

of the foundatlon 2 =1 or 0.5. The effect of the gravity forces is neglected, i.e. —4- =0.

1
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The mass ratios ms/m, and my/my are chosen so that ps/ps ~ 0.2 and py ~ py (Luco,
1980). Also two additional values of mp/my are taken for each combination of parameters
h/a, H/a and € - a twice smaller and a twice larger. The spectra of A, V, ¢, uf®' and
vie' are calculated in the frequency domain 0 < n < 2. In this chapter, incident P waves
are considered with incident angles v = 0°,30°,60° and 85°. The free-field displacement
amplitudes on the surface, [uff| and |v/f|, as well as the amplitudes of the reflection
coefficients, K; and K, and the angle of the reflected SV-wave, 63, for these incident
angles and for v = 0.3333 are shown in Table IL.1.

Table II.1

Free-field motion characteristics on the half-space surface for incident plane P-waves
with unit amplitude and for Poissons ratio v = 0.3333

gl ul?| [v/7] | K| | K| 0p
0° 0.000 2.000 1.00 0.00 0°
30° 0.963 1.741 0.76 0.44 14.48°
60° 1.395 1.117 0.40 0.48 25.66°
85° 0.517 0.301 0.74 0.15 19.74°

The fixed base natural frequencies for the building are k%H =(2n-1)5,n=12,..,

for shear deformation, and kK H = (2n—1)5, n = 1,2,..., for longitudinal deformation.
In terms of the dimensionless frequency (1, these are at 0 = kga = 1(2n — 1)7 and at
0 = kga = %Q‘f(Zn —1)%,n =1, 2,.. , respectively. For ¢ = 2 and 4, the first few fixed
base natural fgequencies are as follows:

shear deformation longitudinal deformation
= —r 3m 5w — x 3r 5w
€=2 kga =%, 55y s kga =%, 5% -
= —r 3rm 5w —r 3m 5w
e=4 kga = g, 55 % kga =%, s 5>

The value € = 2 would correspond, e.g., to a 10 story building with fundamental
period Ty ~ (0.1)(10) = 1 sec, height H ~ 50 m and width W = 50 m, situated on soil
with shear wave velocity 8 ~ 200 m/s. The value ¢ = 4 would correspond to the same
building on soil with 8 ~ 400 m/s. A 50 story building would have fundamental period
Ty =~ (0.1)(.50) = 5 sec and height H ~ 250 m, which would imply the shear wave velocity
to be B, = 4H/T; = 200 m/s. Then, if its base is W ~ 80 m, € = 4 would correspond to
the same building on soil with shear wave velocity by 8 ~ 100 m/s (e.g., in Mexico City).
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I1.2.2 Discussion of the Interaction Equations

How the chosen system parameters influence the interaction can be seen from equa-
tions (I1.40) and (I1.41). For example, larger values of ¢ correspond to shorter periods of
the harmonic functions in [K ()] which means that, in given interval of the dimensionless
frequency (e.g., 0 < < 2), the fixed base natural frequencies of the building will be more
dense. Rapid changes in the spectra of A and ¢ and ugel are expected for frequencies in
the vicinity of the resonant (shear) fixed-base frequencies of the building. The same is true
for the spectra of V and v}® for frequencies in the vicinity of the longitudinal fixed-base

resonant frequencies. The reason is that as the fixed base resonant (natural) frequencies

are approached, the terms in [K (b)] having tan %ﬁl (or tan % become very large and

suddenly change sign as those frequencies are crossed. Next, from equations (II.40) and
(I1.41) it can be seen that the inertia forces of the foundation are proportional to

2
mgw” _milAs a2
2u m82a2(ﬁa)

and that the inertia forces in the building depend on

mpw? _ ﬂ_m_b_l_ﬂ(k a)?
2u ms mys 2 a? pE)

Therefore, away from the characteristic frequencies, the interaction forces are larger for

larger frequencies of the excitation, for larger %f and %‘: and for deeper foundations. The

larger %;— is, the larger will be the moment of inertia of the building. Typically, % has

little effect on the interaction. The larger the ratio % is, i.e. the higher the center of
gravity of the building is, the larger is the moment (about O) of the inertia forces of the
building and larger is the moment with which the building acts onto the foundation.

If the foundation is deeper, i.e. if % is larger, the terms in the foundation rigid body
motion influence matrix (in equations (II.27), (IL.30c and d) and (I.31a)) corresponding
to rotation will be larger. Because of the larger distances of the points on the foundation
boundary from point O, the moment (about O) of the stresses of the free-field motion
acting on the contact area between the foundation and the soil will be larger. However,
the foundation driving forces are represented by integrals of those stresses and of their
moment about O along the whole contact surface, which has larger area if the foundation
is deeper (h/a is larger). The net result will depend on the wavelength of the incident
waves relative to the size of the foundation. When the incident waves vary little along
the contact surface, then, the resultant horizontal and vertical foundation driving force
is larger when the contact area is larger, i.e. for deeper foundations. For wavelengths
comparable to the foundation size, certain distributions of the stresses along the contact
area many produce large rotation of the foundation. The value of 5 for which this happens
will depend also on the depth of the foundation.

The foundation will act as a low pass filter for the short wavelengths of the motion of
the soil, because it is rigid and therefore cannot follow the short wavelength motions of the
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soil. In sections II.1.3 and II.1.4, it was shown that only the first two cylindrical waves of the
expansion of the free-field motion actually “drive” the foundation. The foundation driving
force therefore depends on the amplitude of the coefficients in the series multiplying those
waves. If the incident wave has unit amplitude, for shorter incident waves those coefficients
are smaller. “Shorter” and “longer” means relative to the size of the foundation, and so
an incident wave would appear as “shorter” to a foundation that is deeper. Therefore, for
given 7 a deeper foundation will filter more energy than a shallow foundation. This effect
will be seen in the examples that follow.

A cylindrical foundation, without or with a rigid building, embedded into the elastic
half-space and excited by in-plane waves, is like an “oscillator” with three degrees of
freedom, with stiffness provided by the elastic medium and with damping caused by the
radiation of energy into the semi-infinite medium. The characteristic frequencies of this
oscillator depend on the rigidity of the elastic medium (u), on the mass of the oscillator
and on the shape of the foundation. The foundation will have two system frequencies: one
for the coupled horizontal and rocking motion and one for the uncoupled vertical motion.
By analogy with a single degree-of-freedom oscillator, the characteristic frequencies should
be higher when the rigidity of the half-space is higher (u is larger) and when the mass
of the oscillator is smaller. The amplitudes of forced oscillations, caused by a periodic
external force, would be larger if the amplitude of the force is larger and if the mass
and the characteristic frequencies of the oscillator are smaller (the static displacements
would be larger). At the characteristic frequencies the foundation response, relative to
the foundation input motion, should be the largest. As the frequency of the outside force
approaches infinity, the response should approach zero (the dynamic amplification factors
approach zero).

I1.2.3 Foundation Input Motion

Some authors, (e.g. Luco, 1980; and Luco et al., 1975), use the foundation input
motion, rather than the foundation driving forces, as an excitation function in solving
soil-structure interaction problems. Foundation input motion is called the response of a
massless foundation under the action of the seismic excitation and in the absence of external
forces, e.g. forces exerted by the structure. This motion depends on the characteristics of
the incident wave motion (frequency, incident angle and type of incident waves) and also on
the geometrical shape of the foundation. Then, the total ground motion is a superposition
of the free-field motion and the scattered waves from the massless foundation without the
building.

In Fig. IIL.5a, b and c, the amplitude spectra of the components of the foundation
input motion A, pa and V are shown for a semi-cylindrical foundation and for incidence
angles v = 0°,30°,60° and 85° for incident P-waves with unit displacement amplitude. It
can be seen from these figures, that for vertically incident P-waves (v = 0°) there is no
horizontal component of motion and no rotation of the rigid foundation. The reason for
this is the symmetry of the shape of the foundation and the symmetry of the incident wave
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motion about the plane z = 0. For incidence other than vertical, |A|, |pa| and |V| are non-
zero and are frequency dependant. For long incident wavelengths, |A| and |V| approach
the free (half-space) surface displacement amplitudes, |uff| and |v/f|, and the rotation
approaches zero. The displacement of the free-field motion on the half-space surface at
z = 0 would be the input motion for the building if it had a surface foundation and if
no differential motions occurred along its contact with the soil. From the spectra in Fig.
IL.5c it can be seen that for Q) = kga € (0,27], as a result of the scattering of the incident
waves, the input motion for embedded foundations has smaller vertical amplitudes than
the input motion for surface foundations. This difference increases with decreasing wave
length of the incident waves. For the horizontal amplitude of the foundation input motion,
this is also the case for 4y = 60° and 85°. For 4 = 30° this amplitude first decreases with
frequency but then increases and exceeds |uff| for 1 > 3.6. The reason for the decrease of
the amplitudes of the translational components of the response of the massless foundation,
relative to the free-field motion amplitudes, is in the scattering of the incident waves and
in the filtering effect of the rigid foundation. The “anomaly” in the transfer function of
A for v = 30° and at n =~ 2 appears to be caused by a contribution to the translation of
point O from the rotation of the massless foundation.

In the traditional seismic analyses of buildings, the building models are supported by
a rigid base moving at all times only horizontally and vertically, following the free-field
ground motion on the surface. In the models that do allow for soil-structure interaction,
often the excitation it taken to consist only of horizontal and vertical translations, equal
to the corresponding components of the free-field motion. The rotation of the base of such
models is caused only by the moment of the inertia forces of the building about its base.
The rotation of the free-field motion, and the induced rotation and the modification of
the translational components of the input motion due to the embedment are neglected.
In some analyses (with or without interaction) the building models are also subjected to
rotational excitation equal to the point rotation of the free-field motion on the ground
surface (Gupta, and Trifunac, 1990a,b). This rotation is proportional to the amplitude
of the SV-wave generated by the mode conversion on the half-space surface and to the
wave number of the shear waves in the soil (Trifunac, 1982). In terms of the quantities
defined in this chapter, the free-field point rotation for incident plane P-wave (with unit
amplitude) is '

ff_ Lty ow tko (zsin y—2z cos ) —iwt
'l = 2K2 5 ,Be

where K is the reflection coefficient defined in equation (I1.15.b) and with values as given in
Table I.1. For given incident angle, the amplitude of ¢/ f increases linearly with frequency
of the incident wave and regardless of the frequencies, there is a 7 /2 phase difference
between o/ and the horizontal translation u/f. The results in Fig. IL.5 show that for
the vertical component of motion the approximation of the foundation input motion by
the free-field motion is conservative. For the horizontal component, this approximation
is also acceptable. However, neglecting the rotation, a considerable contribution to the
base excitation is neglected, and this may lead to nonconservative estimates of the forces
in the building. Approximation of the rotation by the point rotation of the free-field
motion is meaningful only for long wavelengths of the incident waves compared with the
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size of the foundation (n < 0.3), when the point rotation along the foundation boundary
has practically the same phase. For shorter wave lengths, the amplitude of the input
rotation is overestimated, and its phase relative to the phase of the translation is changed
(Todorovska and Trifunac, 1990).

In Fig. IL.6a, b and c, the phases of A, p and V, calculated from
Phase(-) = tan™? (%)

where & and R represent imaginary and real parts, are shown versus kga for incident
angles v = 30°, 60° and 85°. For low frequencies (long incident waves), A is in phase with
the incident P-wave and the phase of ¢ is ahead of A by phase angle equal to /2. For
shorter wavelengths, the phase difference between A and ¢ decreases, and for 1 <n<2
the two are practically in phase (as the foundation input motion moves the foundation in
the positive z-direction, it rotates it clockwise).

When the wavelength of the shear waves of the free-field motion is comparable with the
size of the foundation, the wave passage effects become important. When the wavelength
of the shear waves is much smaller than the size of the foundation, the differential motions
along the foundation boundary average out and result in smaller rotation of the rigid
foundation. This can be seen from Fig. II.5b and Fig. I1.6. For very small 5, ¢ increases
almost linearly with n and the phase difference between the translation and the rotation
is about 7 /2, i.e. ¢ behaves as /. For larger n, ¢ still increases but with a smaller rate
and achieves a maximum. This is when the wave passage effects contribute most to the
rotation. The SV-wave of the free-field motion is a propagating wave with phase velocities
¢f = B/sinbs and cf = B/ cos b, where s = arcsin(sinyB/a). When v = 60°, e.g.,
0p = 25.7° and the rotation is maximum at n ~ 1. For that wavelength of the SV-waves
the ratio 2a/cfT ~ 0.43 and a/cfT =~ 0.45. This means that the maximum occurs when
the phase difference between the motion of the two corners of the foundation is about 7.
The phase difference between the motions of points at level z =0 and z = h (located on
a same vertical line) is similar. When v = 30°, 03 = 14.5° and the rotation is maximum
at =~ 1.5. Then 2a/c2T =~ 0.38 and a/cAT ~ 0.73, i.e. the phase difference between the
motion of the two corners is smaller than 7, and between the top and the bottom points
of the foundation about 37 /2.

I1.2.4 Soil-Foundation Interaction

In Fig. IL7 a, b and c, the transfer function amplitudes of the horizontal, rocking
and vertical components of the response of a semi-cylindrical foundation, with mass ratio
%ﬁ = 1, are shown, for incident angles v = 0°,30°,60° and 85° and ignoring any other
external forces. This would be the response of the foundation if the building is very “light”
compared with the foundation, so that it’s inertia forces are negligible. It is seen from these
figures that, as in the case of a massless foundation, |A|, lpa| and |V| depend on « and,

as 1 — 0, |A|— [uff], V| - |uff| and |pa| — 0.
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In the lower frequency range (n < 0.3, kga < 1), A, p and V have higher amplitudes
than the foundation input motion, and that is in the vicinity of the system frequencies.
These are “characteristic” frequencies of the interacting system. Yet, those cannot be
called eigenvalues because they do not arise from a boundary value problem (the elastic
medium, i.e. the half-space is unbounded). At those frequencies the amplitudes of the
corresponding components of the foundation motion relative to the free-field motion are
maximum. When the mass of the foundation is larger, the amplitudes of this relative
motion are larger and the “characteristic” frequencies are lower (the soil acts as a softer
medium). This is illustrated in Fig. II.8a, b and ¢ where the amplitudes of the transfer
functions of A, ¢ and V' are shown for m¢/m, = 1,2,4 and 0.2. The solid curves correspond
to the foundation input motion (ms/m, = 0). At higher frequencies |A|, |V| and |p]| are
smaller than the amplitudes of the foundation input motion, and decrease more rapidly
with frequency when m/m, is larger.

The foundation has two system frequencies: one of the coupled horizontal and rocking
motion, #%%, and one of the vertical motion, ny. The former depends on the horizontal
and rocking foundation frequencies, ngy and ng. nv, ng and ng can be calculated from
the real parts of the diagonal terms of the foundation impedance matrix (Luco, 1980a).
Those three frequencies can be thought of in the following way. The vertical frequency
would be the frequency of free oscillations of the foundation if it is given an initial vertical
displacement. The horizontal frequency would be the frequency of the free oscillation
of the foundation if it is given an initial horizontal displacement and it is prevented to
rotate. Similarly, the rocking frequency would be the frequency of the free oscillation of
the foundation when it is given an initial twist and is prevented to move horizontally. If
the foundation is allowed to move horizontally and to rotate, but it cannot move vertically,
n*Y® will be the frequency of its free oscillations. Because of the radiation of energy into
the unbounded soil medium those free oscillations would die out with time.

I1.2.5 Building-Foundation-Soil Interaction
I1.2.5.1 Rigid building

An extreme case occurs when the building is very stiff compared with the soil (¢ — 0)
so that its elastic deformations are negligible. Then the building moves as a rigid body
welded to the foundation. In Fig. I1.9a, b and ¢, the amplitudes of the transfer functions
of A, pa and V are shown in the frequency range 2 € (0,2x) for rigid buildings (¢ = 0)

with slenderness ratio —VI% = 1 and mass ratios —2’; = 1,2 and 4, on semi-cylindrical rigid

m
m

foundations with mass ratio ——f = 0.2 and for an incident P-wave with angle of incidence
~ = 60°. For comparison, the case % = 0 is also shown in the figures. In Fig. I1.10 the

phases of those transfer functions are shown. Parts a, b and ¢ correspond to m;/m f=12
and 4. The transfer functions of the base motion of the rigid building have similar shape
as the transfer functions of the foundation in Fig. I1.8. From the phase spectra in Fig. 10,
it can be seen that for very low frequencies there is a difference of 7 /2 between the phases
of A and ¢ (same as between u// and pff ). As the frequency increases the phase of ¢
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approaches the phase of A and at some frequency the two phase curves cross each other.
The frequency at which A and ¢ have same phase decreases when ms/m, increases. This
“characteristic” frequency is in the vicinity of the rocking and the translational frequencies,
which are very close. At those frequencies, when the translational and the rotational
responses are maximum, as the foundation moves to the right it rotates clockwise.

I1.2.5.2 Effect of the Incident angle

Figures II.11a through II.11e illustrate the dependance of the amplitude spectra of
A, p, ugel, V and v,‘,’el (for unit amplitude of the incident wave) on the incident angle
7, for a flexible building (¢ = 4), with slenderness ratio % = 1, on a semi-cylindrical
rigid foundation, and with mass ratios % = 2 and -’:nlf = 0.2. The different dashed

lines correspond to 4y = 0°, 30°, 60° and 85°. When 4 = 0, the horizontal motion of
the foundation, the rotation, and, consequently, the horizontal component of the building
relative response are zero. In the vicinity of the fixed-base natural frequencies of the
building, |A|, [a| and [V| have large variations, having sharp local minima and maxima.
|ui®!| and |v}®!| also have peaks in the vicinity of those frequencies. The general behavior
of the curves |V| and |v}®!| is similar to the horizontal foundation and relative building
responses for incident SH-waves (Trifunac, 1972), where there is no rotation of the base.
[V'| is zero close to the fixed-base longitudinal natural frequencies of the building. It is
not so for |A|, because the horizontal motions of the soil-structure system are coupled
with the rocking motions. The amplitudes of |V | and |v}°!| are proportional to the vertical
amplitudes of the free-field motion on the half-space surface. For oblique incidence, for low
frequencies (kga < 3), the amplitudes of A and pa are proportional to [uff|. However, for
higher frequencies that is not always the case. For example, even though the horizontal
free-field displacement amplitudes |u//| are larger by a factor of about 1.5 when ~ = 60°
relative to v = 30°, at some frequency the base horizontal amplitudes |A| and the base
rotation amplitudes || become the same (kga ~ 5 and kga =~ 3.5, respectively), and
for frequencies higher than those the relationship even reverses. The same can be said
for the amplitudes of the horizontal relative building response |u§el|. Those are close at
kga ~ 4 and for higher frequencies lugell is even higher for v = 60° relative to v = 30°.
This effect reflects the behavior of |A| and |p| of the foundation input motion at those
angles (Fig. IL5), and it is ignored in analysis that take only the free-field translations
as base excitation. Such analyses may underestimate the forces in the building and the
base rotation at higher frequencies for 4 = 30°, for example. Because the model in this
report neglects the coupling of the vertical motions with the base rotation, |V | and |ui®|
are proportional to |v§el| in the whole frequency range considered.

Because of the interaction, the transfer function of the building relative responses
is modified relative to those of the fixed-base model. (1) At the resonant frequencies
of the fixed-base model, the relative responses are finite (in the fixed-base model these
amplitudes are unbounded). (2) There, the relative response has peaks but at frequencies
shifted relative to the fixed base frequencies. The first peak of |ul®!| is most affected by



39

Incident P—waves _ y=0°
£=4.0, H/a=2, W/H=1, v=1/3
h/a=1, my/mg=0.2, mp/m= 2 e 7=85°

.................................................

. —— ~— -
H \.\ N —— ' \:\\ ) \\\ I\
Igac'l P :l~.—’_—~’ \\\ \'\.\ =~ \\\\\ Ne
4 .- \\.y x ~\_\.\ —. ) N X ~.

...........................
....................

10

IUEeI

IR R LR

—_
I

BN LLLL

Figure I1.11 a), b) and c)



40

Incident P-waves _ y=0°
_ N _ Care v=30°
£=4.0, H/a=2, W/H=1, v=1/3 o =600
h/a=1, mi/m¢=0.2, m,/m= 2 S——— 7=85°
V]
10°
S e)
10 &
M =
e SN
10!
0

Figure I1.11 d) and e)




—

41

Incident P—waves - y=0°
£=4.0, H/a=8, W/H=0.25, v=1/3

h/a=1, m;/m=0.2, my/m= 8 e 7=85°

j
/
/1
]
. TN 2 e
5 ~\ If ----- \ N \\ /] \'\ ==
—— \ A \ VN [
T~ \ |
................ \\f \ /// .
"""" ‘\ ,,' \\/,’ '\_. s RN T — ;5 '
.l: '-_\'l"' ._‘\,‘_; . .
l : 1 I

o

i !}/\\ A
Ny N ANVAN
i IANZE N NN \
H| /1 ,’ NN Q\
i - '/// i AN N
/ A ey J '\\\ NN /\\\
\ /1 ey 2 Y A\ \‘\j'r\'\
N A=A T P, J !
| \\::’// i \\:’//’/ v ........................................................................
l" -------------- LSRRI I I ...... I .....
0 2 4 6
g c)
E. .//'-'§
- r e //V \ J e N N
- ¢ A 7 \iE T N\ O
SINZZEA e p—— Vi o, S i
= \-\ "/;//:‘.‘_‘ - G o T H
= ANl AN i S

0
=
‘‘‘‘‘

Figure I1.12 a), b) and c)



42

Incident P—waves _ y=0°
_ _ _ P ¥=30°
£=4.0, H/a=8, W/H=0.25, v=1/3 T =60°
h/a=1, m;/mg=0.2, mp/ms= 8 7=85°
Vi
102 =3
= e)
10 g
M NS
/A
10!
0

Figure I1.12 d) and e)



—

Phase/m
— O~ NDWR OO 2®©O© O

—

Phase/m
—OR MWD TI®©OO

—

Phase/m
—_— O NWA OO 20O O

43

Incident P—waves - A
¢=4.0, H/a=8, W/H=0.25, v=1/3 gjgel
h/a=1, m;/ms=0.2, m,/ms= 8

~ y=30° a)

— '

| l,/ _______ o T~
————————— 4

- o J

| ST T

| a4 '

P Y A— N

B

e e

0 2 . .
— (o] i
=8> —— )

7 )

ST TN

I —— I e o -~ //

.

B — _J/

- S _/ yd

= - ,//

— |  ——— m——

e

- 4,..__.__.// /

===/

7~

| [ |

0 2 . :

k'gCl

Figure 11.13



44

the interaction. It is always at frequency that is lower than the fundamental frequency of
the fixed-base model.

11.2.5.3 Effect of the Size of the Building

In Fig. I1.12a, b and c, the same quantities are shown as in Fig. II.11, but for a higher
and heavier building (H/a = 8, W/H = 0.25, my/ms = 8, ¢ = 4, ms/m, = 0.2). The
different curves correspond again to different incident angles (y = 0°, 30°, 60° and 85°).
|A| and || now have different “backbone” curves than the same curves in Fig. II.11. For
the higher building, the “backbone” curves for |p| are lower for frequencies < 2.5. A and
@ are in fact a superposition of the foundation input motion and the additional motion of
the foundation, relative to the foundation input motion, due to the inertia forces of the
building, with amplitudes proportional to the mass of the building. When the building is
heavier, those additional displacements reduce the resultant amplitudes of the foundation
input motion. (The density of the foundation is small relative to the density of the soil
and its inertia forces do not play a significant role in the interaction). Comparing the
curves in Fig. II.11 and Fig. II.12, it can be concluded that, when the building is heavier,
(1) the first peak in the response is shifted more towards lower frequencies relative to the
first fixed-base natural frequency. (2) The first peaks of |A| and |p| are higher, but (3)
the peaks of the relative building response |u}®!| are lower. (4) The peaks of the relative
vertical response |v§e1| are also lower for the heavier building. The reduction of the peak
relative responses is caused by the soil flexibility and by the radiation of the vibrational
energy of the building into the soil. It is especially pronounced in the relative horizontal ,
response for the heavier building where some of the peaks are practically lost (e.g. the
third, fourth and fifth peaks).

In Fig. II.13a, b and c, the phases of the transfer functions of A, ¢ and uiel have been
plotted for the higher building (H/a =8, W/H = 0.25, my/ms = 8, e = 4, ms/m, = 0.2
and h/a = 1) for incident angles v = 30°, 60° and 85°. As kga — 0, Phase (A) — 0
and Phase (p) — —Z, and the phase of ul®! is same as the phase of A. At the first peak
frequency, both A, ¢ and ugel have same phase. That is not the case for the higher order
peaks. For example, at the frequency of the second peak ugel and ¢ have almost opposite
phases. Between the first peaks, the phase difference between A and ¢ is = 7, and between

u{el and A also ~ .

I1.2.5.4 Effect of the Relative Stiffness

The relative stiffness of the building and of the soil is controlled by the parameter
€= g,,ia Leaving all the other parameters unchanged and decreasing & would correspond
to placing the same building on softer soil. Increasing € would be equivalent to placing he
same building on harder soil. To see the effects of € on the response of the building-soil
system, and also of the building mass, in Fig. II.14 and Fig. I.15 the amplitudes of the
transfer functions of A, ¢, and ugel, and of V and v,‘,’el are shown for the same buildings
(H/a =2, W/H =1, hja = 1, vy = 30°, ms/m, = 0.2, mp/m; = 1,2 and 4), but on
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different soil. In Fig. I.14 the soil is softer (¢ = 2) than in Fig. IL.15 (¢ = 4). Those
results lead to the following conclusions. (1) In the same interval of wavelengths of the
incident waves compared with the size of the foundation (0 < n = %% < 2), more modes

of vibration of the building will be excited if it is situated on stiffer soil. (2) When € = 2,
the first shear fixed-base natural frequency of the building is at n = 1/4 (kga = 7/4),
and when € = 4 it is at n = 1/8 (kga = 7/8). The first peak of |ul®!| of the building on
flexible soil is at n ~ 0.22 when € = 2, and at 7 ~ 0.12 when € = 4. The reduction of the
first frequency is about 12% when the soil is softer (¢ = 2) and about 4% when the soil
is harder (¢ = 4). (3) The peaks of |u}®'| and |v®!| are significantly lower when he soil is
softer (¢ = 2). This is especially the case for the first peak of |ul®|. (4) The shift of the
first peak of the longitudinal building vibrations is not so large as for the shear vibrations
for which there is coupling of the translational and the rotational motions.

The different dashed lines in Fig. I1.14 and Fig. I1.15 correspond to different values of
mp/m, but for € kept constant (the ratio §/8y is also constant and the fixed-base resonant
frequencies are the same). Then, larger my/m; (i.e. increasing py/p) implies smaller p/ps.
The results show that when the building is heavier and the rigidity of the soil is smaller,
so that the fixed base resonant frequencies are unchanged, the reduction of the first peak
frequency of |u,‘;el|, relative to the first fixed-base frequency, is more pronounced. Then the
peaks of |A| and || are higher but the relative building response |ul®!| is smaller. The
same holds for the vertical foundation and relative building responses, V' and vgel. The
amount of the building energy radiated into the soil is also larger.

The curves in Fig. I1.16 are for a heavier and a higher building (H/a = 8, W/H =
0.25, ¢ = 4, my/m, = 0.2, h/a = 1, v = 30°). The different dashed lines correspond to
mp/mys = 4,8 and 16. In this figure the reduction of the peaks of the relative building
response is even more pronounced. It can be concluded from Fig. II.15 and Fig. II.16 that
the reduction of the peaks of |ul®!| is associated with large rotations of the base. When
the peak relative response is lower the rotation is larger. Some of the higher order peaks
in part ¢ of this figure are almost lost. The reason for this is the significant reduction of
uiel at the peak frequencies, because of the interaction, and the large base rotation that

causes larger amplitudes of u{el away from the peak frequencies.

I1.2.6 Interaction for Shallow Embedment

In the rest of this chapter examples will be presented for buildings on shallow foun-
dations (h/a = 0.5), and the effect of the depth of the embedment will be discussed. To
keep the same value of the ratio of the density of the building and the density of the soil
(pv/ps = 0.2), since the area of the foundation with h/a = 0.5 is approximately half of that
of the area of the semi-circular foundation (h/a = 1), the ratio my/my will be taken twice
larger than in the previous examples. The following examples are arranged in the same
order as in the first part of the chapter. For comparison, the same examples presented
for h/a = 1 will be repeated but for h/a = 0.5. In Fig. II.17, the amplitude spectra of
the foundation input motion are shown for angels v = 0, 30°, 60° and 85°. In Fig. I1.18
and Fig. I11.20, the amplitudes of the transfer functions of foundation response are shown
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for v = 30° and my/m,s = 1, 2, 4 and 0.2. In Fig. II.19, the amplitudes of the transfer
functions of the base motion of a rigid building are shown for vy = 30° (¢ = 0, H/a = 2,
W/H =1, ms/ms = 0.2) and for my/ms = 2, 4 and 8. In Fig. II.20, the transfer functions
of the building base and building relative responses are shown for a flexible building (e = 4,
mys/ms = 0.2, my/ms =4, H/a =2, W/H = 1), for incident angles v = 0°, 30°, 60° and
85°. In Fig. I1.21, the same is shown, for the same incident angles, but for a taller building
(mp/mys =16, H/a =8,W/H = 0.25, my/m, = 0.2 and € = 4). Fig. 11.22, I1.23 and 11.24
are similar to Fig. I1.14, I1.15 and I1.16. The only difference is in the values of the my/my,
which are twice larger for the shallow foundation, in order to preserve approximately the
same value of the mass of the building. '

I1.2.6.1 Foundation Input Motion

For low frequencies of the incident waves A, ¢ and V do not depend much on the
embedment. For higher frequencies, A has larger amplitudes and V has smaller amplitudes
when the embedment is deeper. For the shallow foundation, in a broader frequency range
(n € (0,2) and n € (0,3)), |pa| versus kga is almost a straight line. The rotation am-
plitudes for low frequencies are larger for a deeper foundation, but for higher frequencies
become much bigger for the shallow foundation, especially for v = 30° (two times). So
are the rotational amplitudes of the foundation responses when my/my = 0. (Fig. I1.18).
These effects were anticipated as shown earlier in the discussion (section II.2.2).

I1.2.6.2 Building-Soil Interaction

During the building-soil interaction, the soil appears as “softer” if the foundation is
shallower. It can be more “easily” deformed by the forces from the building. This can
be seen from the larger reduction of the frequency and amplitude of the first peak of the
relative horizontal response when the foundation is shallower. In the presented results,
for a shallow foundation, the first peaks of |A| and |p| are also smaller. The reduction of
the relative response may be because of the larger apparent flexibility of the soil and/or
the smaller amplitudes of the foundation driving fores (see section II1.2.2). This implies
that neglecting the depth of the embedment may cause nonconservative estimates for the
forces in the building, and also for the base rotation, whose large amplitudes may cause
failure of the soil surrounding the foundation. For higher frequencies, the base rotation
has larger amplitudes when the foundation is shallow. Also the relative building response
u{,e‘ is larger. This may be because of the larger base rotation of the foundation input
motion. This is especially so far the examples with v = 30° and 60°.

The amplitudes of the vertical foundation motion and of vgel are in general larger

when the foundation is shallow, because the vertical component of the foundation input
motion is, then, larger (which is related to the filtering effect of the foundation as discussed
earlier).
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CHAPTER III

SOIL-STRUCTURE INTERACTION
FOR INCIDENT PLANE SV-WAVES

II1.1 The Model

In this chapter, the response of the model in Fig. II.1 to incident plane SV-waves will
be analyzed.

I11.1.1 The Free-field Motion

Let the incident plane SV wave have unit potential with the following representation
" = explikp(zsin s — zcos bp) — iwt] (I11.1)

where w is the circular frequency, kg = w/f is the wave number of the shear waves in the
half-space and i = {/—1. As it reflects from the surface of a stress-free half-space, two
other waves are generated: another plane SV-wave with angle of reflection 83 = v and a
P-wave with angle of reflection 8, (which can be real or complex, depending on the value
of the incident angle 7). As in Todorovska and Lee (1990,1991), those two waves have
potentials 1" and ¢", respectively, with the following mathematical representations

¢" = K exp|tkqy(zsin b, + zcos by) — twi] (I11.2)

Y" = Ky expltkg(zsinfs + z cos Og) — iwt] (I11.3)

where k, = w/a is the wave number of the P-waves in the half-space. The reflection

coefficients are R
K = —2(a/B)” sin 205 cos 205
'™ sin 20, sin 20p + (a/B)% cos? 205’

_ sin20,sin205 — (/)2 cos? 204
2~ sin20,sin205 + (a/B)? cos? 205

(I11.4q)

(I11.4b)

where 6, and 03 are related by the Snell’s law

sinf,  sinfp
. - g (I11.5)

which implies that 8, is real valued only if ¥ < 0., wWhere 0.4 = sin™! (g) When
~ > Ocrit, 0, becomes complex

0, = g —¢cosh™! (% sin0p>
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and the reflected P-wave is an inhomogeneous (surface) wave. Then ¢" can be written as
¢" = K exp[—712 + thz — iwt] (I11.6)

where v; = \/k? — k2 is a real valued quantity and k = k,sind, = kgsinfg > k, is the
horizontal wave number of the incident and of the reflected waves.

II1.1.2 Displacements and Forces in the Half-space
and Dynamic Equilibrium of the Foundation

II1.1.2.1 Incidence Below Critical Angle

For incidence below critical angle, all the equations for the displacements and forces
are essentially the same as for incident P-waves except that the free-field potentials now
are

" (r1,0;) = Z Jn(kar1) (Ao,n cosny + By, sinnd;) exp (—swt) (I11.7)
n=0
and
¢i+’(r1, 0,) = Z Jn(kpr1) (Co,pn sinnby + Dy, cos nb;) exp (—iwt) (I11.8)
n=0

with ‘ '
AO,n — Gni"' cos naa ((_l)nezkad cos b, + Kle—-zkadcos 0,,) (III.9a)
Bo,n = €ni" sinnfy (—(—1)"e*adcosba | |, g=thadcosba) (I11.9b)
Co,n = €nKpe hpdcos0pinginng, (I11.10q)
Do = €qKyethodcos0sm o5 gy (I11.100)

where €0 = 1 and ¢, = 2 for n > 1. (Lee and Cao 1989). Therefore, only the case of
incidence beyond critical angle will be considered in the further discussion.

II1.1.2.2 Incidence Beyond Critical Angle

For incidence beyond critical angle, when ,, is complex, the series in equation (IIL.7)
diverges and some other form of expansion of the displacements and the stresses, that the
P-potential produces along the arc r; = b, —0y < 8, < 8y, is required. The method used
in this work is a modification of the method used by Lee and Cao (1989) in their paper
on scattering of plane SV-waves from shallow circular canyons. They expanded ¢" along
r1 = b in finite Fourier series of §; with period 27. In the calculation of the coefficients
of those series they assigned the value 0 to ¢” in the region above the half-space. (Note
that by eq. (IIL6), along r; = b, ¢" grows very fast as §; = 7 and may take values
that cause overflow in the computer memory.) They assumed that the coefficients of this
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expansion must be products of some constant coefficients and Jn(kab), since the radial
part of the potential ¢" must satisfy the Bessel differential equation and can have only
the Bessel J, functions as solution. Those constant coefficients were the coefficients of
the Fourier-Bessel series expansion of ¢”. Then, they calculated the displacements and
stresses by differentiating the series representing the potentials. Because the function
that they approximated had jumps at §; = 46y, the finite Fourier series could oscillate
significantly about the exact function in the neighborhood of the boundary points. Those
oscillations propagated through the whole region 0 < 8 < 27, and therefore the amplitudes
and the derivatives of the series did not represent very accurately the amplitudes and the
derivatives of the actual potential. The amplitudes of these oscillations became larger for
shorter wavelengths of the incident wave.

To overcome this disadvantage, in this work a modified version of the method of Lee
and Cao is used. The displacements and the stresses at r; = b are first calculated directly
by differentiating the expression for ¢" as a function or r; and 01, and then those are
expanded in finite Fourier series of §;. In polar coordinates ¢"(ry,8;) is

¢" = K, exp|—tkad cos Oy + tkory cos(0; — 8,) — twi| (I11.11)

If ufl , ug’l 75, and Tf’l p, are the displacements and the stresses induced by ¢” only, then

uﬁ’l (r1,01) = 32?1 (I11.12a)
u (r1,01) = }S—Z (I11.126)
2, (r1,01) =X (%‘%+%+ }%’%) +2uégf (111.13a)
d

" 724, (r1,01) =u(%%-%+%%%)- (II1.13b)

This implies |
u? (b,0;) = %Klz'kab cos(0; — 0,) exp[yd + tkabcos(; — 0,) — dwt] (I11.14q)
ul (5,0;) = —%Klz'kab sin(0; — 0,) explyd + ikobcos(0y — 0,) — iwt]  (I11.14b)

2
?,. (b,0,) = —%I;-KI (kob)® [% <2> — sin®(8; — 0a)] exp[vd + tkobcos(8; — 0,) — iwt]

B
(I11.15q)
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and

r1 9, (0,01) = b2 LK, (kob)?sin(8; — 04) cos(8; — 0,) exp[yd + 1kob cos(8y — 0,) — twt].
(I11.15b)

Then, one can search for analytical extensions, in the region above the half-space, that
would satisfy the following conditions: (1) have comparable amplitudes everywhere in
the interval [0,27], (2) be continuous and have continuous slope at §; = +8o and at
9, = 27 — 0o, and (3) be also continuous at §; = 7. Let the function to be extended be
denoted by f(8). Then the extension was constructed by the following steps:

1. to satisfy condition (1), in the region 8 € [0y, 7] f was extended symmetrically about
0, = +0o, and in the region 8 € (7,27 — 0p) symmetrically about §; = 27 — 6o;

2. to satisfy condition (2), the function constructed in step 1. was set to be f(6;) =
2f(00) — f(61) in the region 8 € [0, 7|, and f(01) = 2f(27 — 6o) — f(61) in the region
0 € (m,2m — 0p);

3. condition (3) is automatically satisfied by the real parts of u,, and 7., and the
imaginary parts of ug, and 7,,4,, which are symmetric about 6; = 0. The imaginary
parts of u,, and 7,,,, and the real parts of ug, and 7, ¢,, which are antisymmetric
about #; = 0, were forced to satisfy this requirement, and without violating the
first two requirements, by multiplication of the function constructed in step 2. by
cos(;—7/2), in the region 8 € [0o, 7|, and by — cos(f; —7/2) in the interval 8 € [fo, 7].

Under those conditions the corresponding finite Fourier series closely represented the free-
field motion everywhere along the canyon walls.

The finite Fourier series, representing those displacements and stresses, at r; = b are

uy (b,0;) = A Z(A cosnf; + By, sinnb;) exp(—iwt) (I11.16a)
n=0
1 X
up (b,01) = 3 Z(Ag:’n sinnf; + By, cosnf;) exp(—iwt) (I11.160)
n=0
N
77 (0,01) = _’2ﬁ Z (Ag, cosnby + By, sinnd) exp(—iwt) (I11.17a)
and
. 2oy 7 :
77 9, (b,01) = 2 Z(Aofn sinné; + By, cos nd;) exp(—iwt). (I11.17b)
The coefficients {Ag,' "0’ {B =0a {ASj’ n=0’ {B n—O’ {A n= o’ { n= 0’

{AT, Z:o’ {B, f:o can be calculated as in Hamming (1962) or as in Lee and Cao
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(1989). This does not require any numerical integration, but only straightforward appli-
cation of available formulae.

In the following discussion, only the expressions related to the displacements and the
forces in the half-space that are different when Y > “erit, Will be mentioned. The new
expressions, relating the coefficients of the scattered waves with the displacements of the
free-field motion and the components of the rigid body motion of the foundation, are

. * V
Al, B Al 0
[ R o] I AR
' woH
\ : / \ : J
( . ) )
’ Vi
Bl’n —_—T Bun _ 0
’ poH
: y, )
where .
{ Al } _ | A8+ 03 (m,B)Co,n (I11.19q)
C¥n A+ D{3) (n,b)Co,p
and (1)
u Uy
o,n BO,n + 022 (n) b)DO,n

The coefficients on the left-hand-side of egs. (II1.19) a and b are the coefficients of the
Fourier series in 6; of the total free-field displacement at r; = b. Ao,ns Bon, Co,n and
Do,n are as in eq. (II1.10) a and b, and the matrices [W+], [W~], [X*] and [X~], and the

coefficients D

i s t,J =1, 2, are as in eq. (I.21). The new expression for the generalized
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force vector {Fés)} of the foundation driving forces is then

{FO(S)} _ [3;_‘ [ [i+(n)]3x2...] {02:}

) . , (I11.20)
20 ot O,n
EAIR {cg,n}
\
(
2/// + Bg,n —iwt
450 { 2 )
where
[8%] = [TE]W*]! (I11.21)
and where
~ % [ costy —sinf, - [cosnf#; cosnby ]
[L(n)¥] =/ sin 6, cos 0, oo TR dg, (I11.22q)
—8, isin01 _}% " %cosﬂl | sinnf; sinnd,; |
L H : i
. 9, [ cosb —siné, 1. . 1
Ln)"] = sin 6, cos 8, sinnd;  sinndy db;. II1.22b
cosnf; cosnb
—6o | £sinf, —% + L cosh | L ! 1
After integration
3 I, -1
[Lt(n))=]0 0O (I11.23a)
0 0

and

0 0
[L(n)7] = [ Iy I } (I11.23b)
d I,
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where Iy, I4 and I5 (functions of n) are same as in the analysis for incident P-waves. Also,
in eq. (III.20)

{ Gon } _ | A5+ €5 (nb)Co,n (I11.24a)
Cg,n Agjn + 82(21) (n, O)Co,n
and (1)
{ B, } _ ] Bont+ €15’ (n,8)Co,n (I11.24b)
Da,n Bg,)n + 82(21)("', O)Co,n

where the coefficients in the left-hand-side are the Fourier coefficients in the expansion
of 7..,, and 7,4, of the total far-field motion at r1 = b, and where Ei(jl) y 6,7 = 1,2,
are the same as in the corresponding P-wave problem. The equilibrium equation for the
foundation remains the same as for incident P-waves if the incident SV-wave has unit
amplitude potential. If the displacement amplitude of the SV-wave is unity, then the
generalized displacement in (I.39b) has to be normalized by kpb instead of by kb, i.e.

(8} = 5K (R (111.25)

II1.2 Results and Analysis

As in the analysis for incident P-waves, in all of the following examples v = 0.3333.
Also, it is assumed that W = 2a and the effect of the gravity forces is neglected. Essentially
the same building models will be analyzed as in Chapter II, first on a semi-cylindrical
foundation (2 = 1) and then on a shallow foundation 2 = 0.5. In all the following

examples the incident SV wave has unit displacement amplitude.

II1.2.1 The Foundation Input Motion

The amplitudes of the free-field motion, |u//| and |v/f|, as well as the point rotation
off (Trifunac, 1982) depend on the angle of incidence ~ and the Poisson’s ratio v. The
point rotation is a linear function of w and of the amplitude of the SV-waves, and, in terms
of the variables defined in this chapter,

ff— 1 1+ K 2 tkpg(z sin y—z cos y)—iwt
pll =01+ 2)ﬂ€

where K3 is the reflection coefficient as defined in equation (IIL.4Db).

The features of the free-field motion on the half-space surface are summarized in
Table III.1. The critical angle for v = 1 /3, exactly, is equal to 30°. Since in our examples
v = 0.3333 < 1/3, 74t is slightly larger than 30°, ( Yerst = 30.0025°). When = 7,,4; the
reflected P-wave has largest possible amplitude for a given value of the Poisson’s ratio,
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Table III.1

Free-field motion characteristics on the half-space surface for incident plane SV-wave
with unit displacement amplitude and for Poisson ratio v = 0.3333

~ [uff] v/ |Ki| | |Kz2] | |1+ Kz| | Comments

0° 2 0 0 1 0 No reflected P-wave

30° 3.392 0.042 3.39 0.96 0.04 Reflected P-wave propagates
horizontally

45° 0 1414 0.80 1 2. No reflected P-wave

60° 0.459 1.124 0.80 1 1.95 Reflected P-wave is
inhomogeneous

85° 0.169 0.295 0.34 1 0.59 Reflected P-wave is
inhomogeneous

it propagates horizontally, and the incident and the reflected SV-waves have opposite
phases (their vertical displacement components cancel each other), and, consequently, there
is no vertical component of motion. The incident angle 4 = 45° is a characteristic angle
for SV-wave incidence. Then, |uff| = 0 and there is no reflected P-wave regardless of the
value of the Poisson’s ratio. When 4 > ~.,i; the reflected P-wave is inhomogeneous and,
then, the reflected P- and SV-waves are, in general, not in phase with the incident wave
(K, and K, are complex). The point rotation is zero both for vertical and for critical angle
incidence. For vertical incidence, there is no reflected P-wave. In the table, the amplitude
of vff is not exactly zero at 7 = 30° because ., is slightly larger than 30°. The point
rotation pf/ is zero for vertical incidence and practically equal to zero for v = 30°. It
is largest when v = 45° and 60°. Then |1 + K3| ~ 2, while for v = 85° it is about four
times smaller. The comparison of those values with the largest values of the rotation for
incident P-wave with same displacement amplitude, shows that the incident SV-waves can
produce much larger point rotations (four times).

In Fig. IIL.1 a, b and c, the amplitudes of the components of the foundation input
motion are shown for five values of the incident angle (v = 0°,30°,45°,60° and 85°) in the
frequency domain Q1 € (0, 27]. It can be seen that, as @ — 0, |A| — [u/f|, |V| — |v/f| and
|pa| — 0O for all incident angles. As 1 increases, |A| and |V | tend to decrease, in general,
and the rotation is non-zero. Exceptions are made by |A| when v = 45° and by |V| when
~ = 30°. Both increase relative to their values for ! — 0. Reasons for the decreasing |A|
and |V'| with increasing frequency are (1) the filtering effect of the embedment and (2) the
scattering of the incident waves from the rigid foundation. The reason for the increase of
|A| and V| (when v = 45° and 30°, respectively) is in: (1) the scattering of the waves
from the rigid foundation that creates components of motion in those directions and (2)
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Incident SV-waves
Foundation input motion, v=1/3

h/a=1, m¢/mg=0, my/ms= 0
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Figure III.1
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in the rotation of the foundation about the instantaneous axis of rotation that in general
does not pass through O. The rocking amplitudes, in the frequency interval considered,
first increase from zero to some maximum value and then start decreasing with increasing
frequency.

Several factors influence the rotational amplitudes: (1) the point rotation of the free-
field motion, (2) the wave passage effects, and (3) the filtering property of the embedment.
This can be explained as follows. The point rotation of the free-field motion plays an
important role when the wave length of the incident wave is much longer than the size
of the foundation. For example, in Fig. IIL.1 b, for small frequencies (long wavelengths),
the rocking amplitudes are significantly higher for v = 45°,60° and 85° (p/f # 0) than
for v = 0° and 30° (<pf f= ). For shorter wavelenghts, the effect of this factor is less
significant because of the spatial variations in the phases along the contact between the
soil and the foundation, as explained in section I11.2.3. The wave passage effects due to
the embedment play an important role in the rocking of the foundation for wavelengths
that are comparable with the size of the foundation, since it enables the incident wave to
drive consistently different points on the foundation surface to move in different directions.
For example, for 4 = 0° and 30°, the rocking response is not zero, even though the point
rotation of the free-field motion is zero. When v = 0, the free-field motion, which is
horizontal, is a standing SV-wave in the vertical direction with an antinode at the surface.
If n = 0.5, then, the bottom point of the foundation is sitting on the first node while the
upper part moves horizontally. This tends to rotate the foundation, about it’s “bottom
point”. As n increases the location of the first node is at smaller depth and the axis about
which the foundation rotates changes. When n = 1, the top and the bottom move in
opposite directions. A similar situation occurs when 4 = 30°. Than, the SV-wave motion,
also horizontal, is practically a standing wave, but with vertical phase velocity different
from B. Since then Ivf f | = 0, the rotation is affected by the difference in phase along the
vertical. The scattered waves also contribute to the rotation. When ~ = 0, the scattered
waves are also anti-symmetric relative to the axis of symmetry. Their amplitude and effect
on the rotation also depend on the incident angle and on the wavelength.

In the frequency domain Q1 € (0,27], which is equivalent to n € (0,2], for a vertically
incident SV-wave, the rotation is maximum at about n = 1.7 (pa =~ .74). Then, a/c?T ~
0.85 and 2a/c®T = 0. When 4 = 30°, the maximum is at n ~ 1.2 (pa =~ 1.1). Then,
a/cPT ~ 0.43 and, when v = 45°, 60° and 85° (¥ > Aerit), it is near n = 0.5 (pa =~ 0.9,
0.8 and 0.25, respectively). When v = 60° and 45° the rocking amplitudes are similar.
Then, for v = 45°, 2a/c2T = 0.36 and a/c?T ~ 0.18, and for v = 60°, 2a/cPT = 0.43
and a/cPT = 0.13. Then, the difference in the phase of the vertical motion of the corners
probably contributes most to the rotation.

In Fig. III.2, the spectra of the phases of the foundation input motion are shown.
When v = 0° and 60°, as kga — 0, A and ¢ are in phase. As the wavelength of the
incident waves decreases, the phase difference between them slowly increases. It appears
that when v = 30°, as kga — 0, the phase difference between A and ¢ approaches /2.
However, since then |pa| and its slope approach zero, this is of no interest for our analysis.
To help visualize the rotation, in Fig. IIL.3 a, b, ¢, d and e, the displacement amplitudes
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along the half-space surface and the canyon rim have been plotted, for the five values of the
angle of incidence (as in Fig. III.1), and for frequencies at which the rotation is maximum.

IT1.2.2 Foundation-Soil Interaction

In Fig. IIL.4 a, b and c the responses |A|, || and |V| are plotted versus dimensionless
frequency for a foundation with foundation-soil mass ratio L= (—x—:’- = 0) and for
the same values of the incident angle as in Fig. III.1. Similar conclusions can be drawn
about those responses, as in the case of incident P-waves, i.e. faster decrease of the
response amplitudes for higher frequencies, and a slight increase of |A| and |V| for very
low frequencies, relative to the foundation input motion. The rotation amplitudes are
significantly higher than for incident P-waves, by a factor of about 2, and have a maximum
near {} = 1 — 1.5. Those maxima have higher or comparable values with the maxima of
the foundation input rocking amplitudes.

In parts a, b and ¢ of Fig. IIL5, |A|, |p,| and |V| are plotted versus dimensionless
frequency for v = 30°. Different types of lines in these plots correspond to different values
of the foundation-soil mass ratio ( ,—'::-f = 0,1,2 and 4). The dependance of the amplitude
spectra in these figures on the value of %f is similar as in the case of incident P-waves. The
peaks, at low frequencies, corresponding to the frequencies of the foundation-soil system
can be seen. For higher values of %ﬁ, those peaks are higher, sharper and shifted toward
lower frequencies. ’

II1.2.3 Building-Foundation-Soil Interaction

In this section, example cases of interaction of a building on a rigid foundation and

the soil will be analyzed for incident SV-waves, as in the corresponding sections of Chapter
II.

In the first part, Fig. II11.6 through Fig. III.11, the foundation has a semi-cylindrical
shape. In the second part, Fig. III.12 through Fig. III.16, similar cases are considered,
but when the foundation is shallow (% = 0.5). In all the examples, %f =0.2, W = 2a and
the gravity forces are neglected.

In the examples in Fig. IIL.6, it can be seen how the responses of the foundation
and the relative responses of a flexible building (e = 2, % = 2 and % = 1) depend

on the angle of incidence. It can be seen that |A|, |pa| and |u®!| are, in general, higher
for incident angles for which |uf/| is higher, while |A| and [vie!| are higher for angles of
incidence for which |v//| is higher. The base translation has highest amplitudes when
v = 30° (Juff| ~ 3.4) and lowest amplitudes when ~y = 45° (Juff| = 0). Since the building
is relatively low, back bone curves for |A|, || and |V | are | Al, |¢| and |V | of the foundation
input motion. At the first three “natural” frequencies, the peaks of || are the highest
for v = 30°. This is the case even for the first peak which is at a frequency at which the
rotation of the free-field motion is practically zero. The reason for this is the moment of
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the horizontal inertia forces of the building, caused by the large input base translation,
which is much larger for v = 30° than for the other incident angles.

How important is the contribution of the rotation of the foundation input motion can
be seen if the peak amplitudes of ugel are compared with the amplitudes of uff or with
the amplitudes of A of the foundation input motion. In Fig. IIL6, the ratio lug®|/|uff|,
where |u{,°l| is measured at the first peak, varies a lot depending on the incident angle.
When 4 = 0° it is approximately equal to 6, when v = 30° to 4, when v = 60° to 20,
and when v = 45° to infinity. Neglecting the rotation of the exciting motion can by far
underestimate the forces in the building. If the ratio |vf®!|/|v//] is calculated for the peak
responses, it can be seen that the vertical forces in the building can also be underestimated
if the embedment is neglected, and if v/f is taken as the driving vertical motion of the
building base. When v = 30° the second peak of |v}®!| is higher than the peaks for 4 = 60°,
45° and 85°, even though |vff| is practically zero for v = 30°.

In Fig. IIL.7, the same quantities are shown as in Fig. II1.6 but for a higher and heavier
building (H/a = 8, W/H = 0.25, my/mys =8, ms/m, = 0.2 and € = 4). As mentioned
in the previous chapter, this would correspond to a 50 story building, e.g. in Mexico City
(8 ~ 100m/s), while the previous example could correspond to a 10 story building in Los
Angeles. It can be seen that, because of the interaction, the transfer function of u{el for the
taller building does not have higher first peak than the shorter building (recall that uiel is
the relative response on the top of the building), it is even lower. So, when the building
is situated on softer soil, the “damping” due to radiation is larger. || of the foundation
input motion is not the backbone curve for the base rotation of the higher building. It is
important to notice that [u}®|, at frequencies kga ~ 4, away from the natural frequencies,
is even higher than the corresponding first peak, whose amplitude is sometimes taken as
the only measure for the forces in the building. The reason for this is the high amplitude
of the rotation of the foundation input motion at those frequencies.

For the purpose of completeness, as in Chapter II, in Figs. II1.8, II1.9, III.10 and
III.11 the amplitudes of the transfer functions of the building base and top responses are
shown versus kga, for two types of buildings (H/a = 2, ¢ = 4; and Hj/a = 8, ¢ = 4)
for different values of the ratio m;/m, (mp/ms = 1, 2 and 4 for the lower building, and
my/mys = 4, 8 and 16 for the higher building). In Fig. III.8 and Fig. II1.10 v = 0°, and in
Fig. II1.9 and IIL.11 v = 60°. The discussion of the similar examples in Chapter II would
apply for those figures also. I can be added that, because of the large amplitude of the
rotation of the foundation input motion that is superimposed on the rotation due to the
dynamic interaction, when v = 60°, in Fig. IIL9, for the lower building, the backbone
curve is higher and the height of the peaks of [pa| relative to the backbone curve is very
small (e.g., the second peak can hardly be recognized).
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II1.2.4 Effect of the Depth of the Embedment

In the remaining examples in this chapter, in Fig. IIL19 through Fig. IT1.25, the
foundation is shallow and has depth-to-half-width ratio % = 0.5. The selection of the
other parameters is similar as in the previous examples for semi-circular foundations.

In Fig. II1.12 a, b and c, the components of the foundation input motion are shown
versus {) for v = 0° and 30°. Results for ¥ > A4t Will not be shown because of the
lack of accuracy throughout the entire interval n € (0,2]. Namely, lower value of h/a
and the special expansion of the inhomogeneous wave require more terms in the series
and, therefore, evaluation of Bessel functions of very high order, which have very small
amplitudes and which, because of the finite arithmetics of the digital computer, cannot be
evaluated with high degree of accuracy. For the purpose of this study, additional effort to
improve the accuracy of the computer program for those cases was not considered to be
of high priority. Comparing the foundation input motion for the semi-circular foundation
with those for a shallow foundation, similar conclusions can be drawn as in Chapter I.
For longer waves, the rotation of a deeper foundation is larger, and for shorter waves the
rotation of a shallow foundation is larger. As kga — 0, |pa| — O regardless of the size and
the shape of the foundation. As kga increases, loa| grows at a higher rate for the deeper
foundation, but it saturates and starts decreasing at lower frequencies than for the shallow
foundation. For vertical incidence, at about 5 = 2, the rotation of the shallow foundation
reaches approximately in amplitude the rotation of the deeper foundation. When v = 30°,
la| for the deeper foundation is higher than |pa| for the shallower foundation for all
kga € (0,2]. The horizontal translation A decreases with ksa at a much lower rate for
the shallow foundation. When ~ = 0°, the vertical translation is always zero, and when
7 = 45° it is significantly higher when the embedment is deeper.

In Fig. IIL.13, the foundation response is shown without the building at v = 30° and
for my/mys = 1,2, 4 and my/mys = 0.2. The rotational amplitudes are largest at kga =~ 1,
where the rocking frequencies are located.

In Fig. II1.14 and III.15, the transfer functions of the building responses are shown
for the lower building (H/a = 2, € = 4, ms/m, = 1) for incident angles v = 0° and 30°,
respectively, and for my/ms = 2, 4 and 8. In Fig. II1.16 the same is done for the higher
example building (H/a = 8, ¢ =4, ms/m, = 0.2, my/m; = 8,16 and 32). The first peaks
of |Al, || and |u}®!| are lower for the building on shallow foundation, probably because of
the smaller amplitudes of the foundation driving forces, as in the case of incident P-waves.
In the relative horizontal building response, the higher order peaks have larger amplitudes
than the first peak. The “damping” effect of the interaction is significant only for the first
peak. In Fig. III.16, very high rotation can be seen in the rotation amplitudes at the
second natural frequency.
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CHAPTER IV

SOIL-STRUCTURE INTERACTION
FOR INCIDENT RAYLEIGH-WAVES

IV.1 The Model
IV.1.1 The Free-Field Motion

A monochromatic Rayleigh wave can be represented by its potentials
¢ = Ce br2¢ik(z—ct) (IV.1a)

¥ = Deb2z¢ik(z—ct) (IV.1b)

where C and D are complex constants, b; and b, are real and positive constants and k and
¢, both real, are the wave number and the phase velocity of the surface waves propagating
in the positive z-direction. These constants are related as follows

by = kv/1 - (c/)?
b2 = k\/ 1- ((:/,3)2

1

"~ 2bytk
(Eringen and Suhubi, 1975). The eigenvalues of the phase velocity ¢ satisfy the Rayleigh
equation and have values ¢ = 0.9194f for v = 1/4 and ¢ = 0.9320 for v = 1/3. The
particle motion is elliptical retrograde up to certain depth, and then the direction of
rotation changes.

and

(k* + b3)C

The ratio of the coefficients C' and D, as well as the eigenvalue of the phase velocity
¢, follow from the zero-stress condition 7,, = 7,;, = 0 at z = 0, where the stresses are
calculated from the potentials (through the displacements),

_ 8¢ B

Uy = 5; - E (IV.ZG,)
_09¢ 3¢
ur= oo+ oo (IV2b)
_ Ou; Ou, ou,
Toz = A ( % + 52 ) +2u % (IV3a)

and

_ Jdu, Odug
Tzz = K ( Y + e ) . (IV 3b)
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IV.1.2 The Interaction Equations

It is convenient to introduce complex angles 8, and 3, defined by

T .
0o = 5 —1¢q
0p =5 —ids
where ¢, and ¢g are real quantities such that
coshgo = a/c
cosh¢p = f/c.

In terms of those angles
¢ — Cebldeikarl cos(8;—04)—iwt

and
. = Debgdeikﬂrl cos(6;—0p)—iwt

(IV.4a)

(IV.4b)

Then, the displacement components u, and ug and the stress components 7,,,, and 7, g,

can be calculated as follows:

% 109
url o 87'1 ry 301
d
. _13 o
“Troe, o
ou,, u, 10ug, ou,,
Tr1r1 - )‘ ( 31’1 ry r 301 2” 37”1
and

_ Oug, up, 1 du,,
Tr101 =4 ( 6r1 r1 + r1 301

(IV.5a)

(IV.5b)

(IV.6a)

(IV.6b)

where A is the Lamé constant. The final expressions for the displacements and stresses

evaluated along the canyon rim, at r; = b and for —0y < 8 < 6o, are

ur, (b,01) = 1 Cikqobcos(8; — 0a)€b1 d+ikabcos(6;—0,)

b

_ Dzkpbsm(ﬂl _ 0ﬁ)ebgd+ikpb cos(Ol—Op)] e Wt

ug, (b,71) = % [—C’ikab sin(0; — 0, )ebrd+ikabeos(6:—0a)

_ Dzkﬁb cos(01 _ 0ﬁ)ebgd+ikpbcos(01 —Op)] e-—iwt

(IV.74)

(IV.7b)
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2 la X
Triry = b/; C (ikqb)? <_ﬁ — sin?(8; — 0a)>eb1d+’k“b°°3(91‘9a)
— D(ikgb)?sin(8; — 8) cos(8; — 0ﬁ)eb2d+"’°ﬂ”°°s("1-"ﬂ>] e Wt
Tr 0, = zf. —C(ikab)z sin(Bl _ 0a) COS(01 _ 0a)eb1 d+ikabcos(6;—64)

— D(ikpb)2 (% _ sin2(01 _ 0ﬂ))eb2d+ikpbcos(01—0ﬂ)} e——iwt.

(IV.8a)

(IV.8b)

To match the displacements of the foundation with the displacements of the half-space
at r; = b, and to expand the foundation driving forces in series of 6; (with period 27), the
same method is used as for the displacements and stresses induced by the inhomogeneous
P-wave potential in the case of incident SV-waves. The finite Fourier series approximating

those displacements and stresses are as follows

N
1 .
uflf(b, 0;,t) ~ 5 E (Ag"n cosnf; + Bg"n sin n01> e Wt

n=0

I -

N
b 01,t) ~ Z <A8f’n sinnb; + By, cos n01) e twt

N
2
'r,flfrl (b,0;,t) ~ El"’i Z (AS"n cosnb; + By, sin n01) e iwt
n=0

and

2 .
r1 01 (b,01,t) = b—l; Z (Agin cosnby + By, sin n01> e HE,
n=0

(IV.9a)

(IV.9b)

(IV.10q)

(IV.10b)

where the Superscript “ff” stands for “free-field”. The interaction equations and the
related equations are same as the corresponding equations for incidents SV-waves beyond
critical angle, (egs. (II1.20), and (IIL.25)), with the exception that for Rayleigh waves

As | _ [ Ay
cyfT4AY
By | _ [ Bor
Dy~ BY
Aol _ [ Ay
c3f = 14r

(IV.11a)

(IV.11b)

(IV.11c)
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B\ _ By
o) =158 (1v-114)

and that the normalizing factor for the displacement amplitudes is usually the amplitude
of the horizontal component of the incident Rayleigh wave at the surface.

IV.2 Results and Analysis

In all of the following examples, v = 1/3, W = 2a, the foundation is semi-cylindrical
and the gravity forces are neglected. The presented results will be for the same type of
buildings as in Chapter II and Chapter III. The incident Rayleigh wave has unit horizontal
displacement amplitude on the surface, which implies [uff| = 1 and |v/f| = 1.56.

IV.2.1 Foundation Input Motion and Foundation-Soil Interaction

In Fig. IV.1 the response of the foundation (without the building) is shown for
different values of the foundation-soil mass ratio (:: =0, 1, 2, 4 and 0.2). The solid
lines correspond to the foundation input motion. The amplitudes of A and V for very
low frequency are smaller than the free-field surface amplitudes, because they are the
average value of the free-field motion, that exponentially decreases with depth. On the
other hand, the rocking amplitudes grow fast even for low frequencies, because of the large
point rotation of the Rayleigh wave field. We recall that the motion of individual points
of the elastic half-space, during the passage of the Rayleigh wave, is a retrograde ellipse
on the surface. A periodic growth and decay with frequency (the period is n ~ 1) can
be seen in the amplitudes of A,  and V related to some particular values of the relative
size of the foundation with respect of the wavelength of the incident wave. The rotation
of the foundation input motion (m; = 0) has local maxima at n =~ 0.5 and at n=~15
and has minima at 7 ~ 1 and 2. When 5 ~ 0.5 and 1.5, then the width of the foundation
2a ~ ¢T'/2 and 3cT'/2, respectively, i.e. the phase difference between the incident motion
at the two corners is 7 and 37. Then, the corners are pushed to move vertically in opposite
directions. At the minima, when n ~ 1 and 2, the incident motion at the two corners is
symmetric (phase difference of 27 and 47). At the minima, ¢ rapidly changes in phase,
as it can be seen from the phases versus kga curves in Fig. IV.2, and the direction of
rotation reverses. The trends of |A| and |V| with increasing 7-L are similar to the trends
we discussed for incident P- and SV-waves. The translatlonal frequencies are lower and
the peak response amplitudes are higher when —L is larger. However, the rocking peaks
are not so obvious since the rotation due to the mertla forces competes with the rotation
of the foundation input motion and those, in general, are not in phase. From the phase
curves in Fig. IV.2, it can be seen that the frequencies at which the rotation reverses do
not depend on the mass of the foundation, while A reverses at lower frequencies when the
mass of the foundation is larger.



104

Incident Rayleigh—waves — my/mg=
c o e my/ms=
Foundation response _
——— m¢/mg=
h/a=1, my/m=0, uff=1, v=1/3 SN, - mg/mg=
5 S S ms/m¢=0.2

Figure IV.1
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Figure IV.2
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Figure IV.3
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IV.2.2 Building-Foundation-Soil Interaction

In Fig. IV.3, the response of the lower building is shown (H/a = 2) when ms/m, =
2 and for four values of the relative stiffness parameter (¢ = 0, 1, 2 and 4). In the case of
incident P-waves, the smaller the value of ¢, the larger is the rotation at the first “natural”
frequency. For incident Rayleigh waves this is not the case (the first peak is highest when
e = 1), and the height of this peak depends on the rotation of the foundation input motion
at the frequency of that peak. It is lowest when & = 4, when the peak frequency is lower,
and for which the rotation of the foundation input motion is smaller. It can be concluded
that the rotation of the base has a very strong influence on the building base response.

In Fig. IV.4 and IV.5, the building base and relative responses are shown for different
values of my/my (my/my = 1, 2 and 4) for the lower building (H/a = 2) for € = 2 and
€ = 4, respectively. The relative building horizontal response (on the top) is larger when
the soil is stiffer (¢ = 4). The influence of the value of m;/my on the response is same as
in the case of incident P and SV waves and, therefore, will not be commented on.

For completeness of the presentation, in Fig. IV.6, the response of the higher building
(H/a = 8) is also included in this presentation.
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CHAPTER V
SUMMARY AND CONCLUSIONS

Linear soil-structure interaction was studied using an analytical model, for a build-
ing on a cylindrical rigid foundation embedded in a homogeneous, isotopic semi-infinite
medium, in the state of plane strain and for obliquely incident plane P-and SV- waves
and surface Rayleigh waves. The motion in the half-space was represented as a super-
position of cylindrical standing and waves propagating from the origin, at the center of
curvature of the foundation. This representation is complete. The zero-stress condition on
the half-space surface was applied approximately, while the conditions at the contact be-
tween the foundation and the soil were applied exactly for incident P- and SV-waves below
critical angle. The free-field motion is expanded in series of those waves with the help of
the expansion theorem for cylindrical Bessel functions. For incident Rayleigh waves, the
displacements and stresses along the contact surface, produced by the inhomogeneous po-
tential, were expanded in Finite Fourier series (with period 27) of the angular coordinate.
The building motion was represented by a one dimensional model, with its deformations
being function only of the distance from the base. The horizontal deformations were as-
sumed to be of pure shear and uncoupled from the longitudinal vibrations. Solution of the
problem was obtained in an analytical closed-form. The response of the foundation and
the relative response of the building were analyzed in the frequency domain. Such results
can be used as transfer functions in calculation of the response in the time domain. The
results by this method were physically sound and causal.

The objective of this work was to understand the interaction phenomenon and to
see how different factors affect the transfer functions of the foundation response and the
relative building response. The following factors were considered: type of incident waves
and angle of incidence, mass per unit length of the foundation and of the building, stiffness
of the building relative to the soil, height of the building, the effects of the wave passage
and the depth of the embedment.

The results can be summarized as follows:

1. The foundation input motion depends significantly on the type of incident waves
and the incident angle. In the limit when n — 0, A — uff, V = v/ and o — 0, i.e.
for very long incident waves the translation of the foundation input motion approaches
the translation of the free-field motion on the half-space surface. In the limit as n — 00,
A — 0,V — 0and ¢ — 0, i.e. for very short wavelengths of the incident waves both
the translations and the rotation approach zero. The foundation acts as a low-pass filter
because it averages the differential motions of the free-field motion along its boundary. For
small n’s (e.g. n < 0.2), ¢ ~ pff and the rotation of the foundation input motion can be
approximated by the free-field point rotation. Then ¢ increases with n almost linearly. As
n increases, |p| < |<pf f |, i.e. as the wavelength of the incident waves becomes shorter, the
rotation of the foundation input motion has smaller amplitudes than the point rotation.
For wavelengths comparable with the size of the foundation (0.5 < n < 2), the wave
passage effects become important. The rotation seems to be the largest when the width of
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the foundation is approximately equal to half of the horizontal apparent wavelength and
the depth is approximately equal to half of the vertical apparent wavelength of the S-waves
in the soil. Then the two corners of the foundation are forced to move vertically, and /or
its top and bottom are forced to move horizontally with opposite phases. For incident
Rayleigh waves, for which the free-field motion is an exponential function of the depth,
in the interval n € (0,2], the rotation has maxima when 2a = ¢T/2 and 3¢T/2. The
comparison of the maximum rotational amplitudes in the interval n € (0, 27| for incident
unit amplitude plane P- and SV-waves at incident angles v = 0°, 30°, 60° and 85°, and
a Rayleigh wave with unit surface horizontal displacement, for a semi-circular foundation,
showed that the rotation is the largest for incident Rayleigh waves and smallest for incident
P-waves. The maximum rotation for P-waves (at 4 = 30°) is more than two times smaller
than the maximum rotation for incident Rayleigh waves, and more than 1.5 times smaller
than the maximum rotation for incident SV-waves (at v+ = 30°). In the conventional
analyses of the response of a building to seismic excitation, that include or exclude the
interaction, the building models are excited only by horizontal and vertical translations.
Our analysis showed that in some cases (e.g. incident SV-wave with v = 45° and 60°) the
rotational amplitudes can be larger and at the same time the horizontal translation can
be small (Ju/f| = 0 and |pa|max = 1) for v = 45°, and |[uff| < 0.5 and |pa|max ~ 0.9
for 4 = 60°). Therefore, in the conventional analyses a major component of the realistic
foundation input motion is being neglected. Some authors include rocking motion to the
base excitation, but approximated by the free-field point rotation. Our analysis showed
that, as a result of the embedment, the foundation input motion may have significant
rotational amplitudes even through the point rotation is equal to zero (e.g., incident SV-
waves with 47 = 0° and 30°). Therefore, those analyses may also underestimate the realistic
building excitation. The realistic input base rotation can be represented by the free-field
point rotation only for very long wavelengths of the incident waves.

2. A rigid cylindrical foundation, embedded into the half-space and excited by in-
plane excitation, acts as a damped oscillator with three degrees-of-freedom (horizontal
and vertical translations and a rotation) and system frequencies which are in the lower
range of 7. At those frequencies, the foundation response relative to the foundation input
motion is the maximum. If the vertical motions are uncoupled from the horizontal and
the rocking motions, there are two system frequencies: one for the coupled horizontal and
rocking motion and one for the vertical motion. The system frequencies are lower and
the corresponding peak response (relative to the foundation input motion) is larger when
the foundation mass is larger. For shorter wavelengths of the excitation, the foundation
response has smaller amplitudes than the foundation input motion. The response ampli-
tudes decay with frequency at a faster rate when the foundation mass is larger and when
the embedment is deeper. This behavior has been explained by the analogy with a single
degree-of-freedom oscillator. As n — 0, the foundation response approaches the free-field
motion on the surface. For long wavelengths, the foundation driving forces are larger
when the foundation is deeper, because the stresses of the free-field motion, which vary
little along the contact area, are integrated over a larger area. For shorter wavelengths the
situation reverses, because the deeper embedment averages more the driving forces. For
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intermediate wavelengths, the rocking response depends on the amplitude of the rocking
of the foundation input motion for the particular frequency and shape of the foundation.

3. The building-soil interaction modifies the amplitudes and the shape of the transfer
function between the building relative response and the incident wave motion, relative to
the transfer function of a fixed-base model subjected to base translations only. Changed
are the characteristic frequencies and the peak relative responses. Even when there is no
damping in the building, the peak responses are finite, because of radiation of the building
vibrational energy into the half-space. However, the reduction of the relative response is
accompanied by large rotations of the base. The modification of the transfer-function is
a result of the dynamic and of the kinematic interaction (the wave passage effects). The
dynamic interaction depends on the mass of the building, on its height relative to the
base and on its stiffness relative to the stiffness of the half-space. It also depends on the
foundation mass and on the depth of the embedment. The kinematic interaction depends
on the shape of the foundation and on the type of waves and incident angle. It affects
the building relative response through the modification of the foundation input motion
relative to the free-field motion. Our analysis showed the following:

a) The dynamic interaction changes the system frequencies of the building relative re-
sponse. The first peak is most affected. It is shifted towards lower frequencies and
the amount of the shift is larger when the building mass is larger and when the half-
space is “softer” relative to the building. Then, the reduction of its amplitude is the
largest. The higher-order peaks are affected less by the interaction. The damping
effect is smaller for those peaks, but the peak amplitudes are always finite.

b) The shape and size of the embedment affects the apparent flexibility of the half-
space. When the foundation is deeper, the half-space acts as a “stiffer” medium.
This was concluded from the larger reduction of the fundamental system frequency,
when the same building model was placed on a shallower foundation (h/a = 0.5).
The amplitude of the first peak of the relative response is smaller when the depth
of the foundation is smaller. Our results showed that the first rocking peak may be
lower when the foundation depth is smaller. This might be because of the smaller
foundation driving forces for the shallower foundation, because the stresses of the
foundation input motion (which do not vary much in the neighborhood of the first
system frequency) are integrated over a smaller area.

The height of the relative response peaks and of the rocking response peaks depends
also on the amplitudes of the foundation input motion in the particular frequency range.
For deeper foundations, those are higher for n’s between 0.5 and 1.5, where the input
rotation is the highest. For a shallow foundation, those are higher for #’s higher than 1.5,
where also the input rotation is the largest. It may happen (for very soft soil and a high
building), as a result of the large input rocking, the relative response to be larger away
from the system frequencies.

From the above analysis the following conclusions can be made:
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(1) The dynamic soil-structure interaction can significantly affect the building relative
response and therefore has to be included in the analysis of buildings, especially when
founded on soft foundation medium.

(2) The kinematic interaction due to the embedment can significantly modify the
building input base motion. Neglecting it may lead to nonconservative estimates of the
building design forces. It has to be included even when the soil is “harder”, especially
for analysis of taller buildings for which the “additional” rocking excitation, due to the
embedment, may induce large forces in their components.
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APPENDIX A

LIST OF SYMBOLS

= dimensionless wave length, frequency
= dimensionless wave number
= measure of the flexibility of the
building relative to the soil
= shear wave velocity, shear modulus, longitudinal
wave velocity and Poisson’s ratio for the soil
= shear wave velocity, shear modulus, longitudinal
wave velocity and Poisson’s ratio for the building.
= depth, half-with and radius of curvature of
the foundation
= width and height of the building.
= circular frequency and period of the incident wave
= horizontal and vertical displacements and rocking angle
of point O on the foundation
= relative horizontal and vertical displacements of the building
= horizontal and vertical components
of the free-field motion and a

point rotation
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APPENDIX B

VALUES OF ¢ FOR THE FORMER IMPERIAL COUNTY
SERVICES BUILDING IN EL CENTRO, CALIFORNIA

The former Imperial County Services Building in El Centro was a four story reinforced
concrete building (height H = 22.5m, length L = 38.10m in the East - West (EW) direction
and L = 22.86m in the North - South (N-8) directionE), Kojié et al., 1984. Its fundamental
fixed base natural frequency was estimated to be T ~W =~ 1sec, for horizontal vibration
in the E-W direction, and T}' ~° = 0.28 sec, for horizontal vibration in the N-S direction.
Then the equivalent shear wave velocity of the shear beam building model would have
been By ~ 100 m/s for horizontal vibration in the E-W direction, and By ~ 360m/s for

horizontal vibration in the N-S direction (,Bb = %)

The shear wave velocity of the soil can have values as low as e.g. § =40 m/s (in the
soft basin of Mexico City) or # = 250 m/s (in Los Angeles basin). The high values would
be B =~ 2000 m/s (e.g. for basement rock). Then the range of the representative values of
the parameter € = SH/Bpa for this building would be

B[m/ s ¢ in E-W dir. ¢ in N-S dir.
40 0.25 0.52
250 1.55 3.25
800 4.96 104
2000 12.39 26.
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