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SUMMARY - An approach has been presented for the probabilis-
tic estimates of the response peaks of fived-base, symmetric mul-
tistoried buildings which are subjected to the combined excitation
of translational and torsional components of eanthquake ground
motion. An additional case of the rocking component included
with this excitation has also been considered. The formulation
considers the phase differences between the translational and the
rotational components. The proposed model has been illustrated
by considering two example buildings and synthetically generated
earthquake records.
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1. Introduction

Recently, various investigators /3, 4, 9, 10, 11, 14, 16,
18, 21,22,28/ have made attempts to study the struc-
tural response excited by the torsional component of
earthquake ground motion. This component is caused
by the action of obliquely incident plane SH waves and
the surface Love waves during passage of seismic dis-
turbance. Due to the presence of this component in the
free-field ground motion, torsional deformations of the
structure take place even when there exists a symmetry
in the structural configuration.

Most of the previous analyses have been based on
approximate characterizations of the torsional compo-
nent and have consistently ignored the dispersion and
the presence of different modes in the propagating
waves. Gupta and Trifunac /4/ accounted for these fac-
tors in their statistical study of the torsional response
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peaks of the fixed-base, symmetric buildings. For this,
they used the results of Trifunac /23/ and Lee and Tri-
funac /12/ based on the elastic wave propagation in the
layered ground. Their approach is more general than
the other methods as it can give the response estimates
of any order of peak (not just the largest), and for a
desired level of confidence. However, they did not con-
sider the phase difference between the translational
and torsional components of motion for the study of
combined effects of these components. They computed
the peak responses separately for these components
and then added them algebraically. This approach how-
ever appears to be too conservative, particularly in the
light of theoretical results /12, 23/ which show, in the
ideal conditions, that the two components act orthogo-
nal to each other.

This study is aimed at generalizing the approach of
Gupta and Trifunac /4/ by including the effects of phase
difference between the ground translation and torsion,
and also by accounting for the modal interaction which
has so far been ignored in such studies. To do this,
formulation has been derived along the similar lines as
in Gupta and Trifunac /7, 8/ for the case of combined
excitation of translational and rocking components.
The formulation has been extended to include effects
of rocking component as well. Using the synthetic acce-
lerograms /12, 13, 27/ and related Fourier spectra along
with certain example sites and buildings, the proposed
model has been shown to provide good estimates of the
structural response peaks.

2. Brief Review

Foundations of the approach considered in this
paper go back to the works of Rice /19, 20/, Longuet-
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Higgins /15/ and Cartwright and Longuet-Higgins /1/ on
the distributions of the maxima of a random function,
and to that of Gupta and Trifunac /6/ on the appli-
cation of order statistics to generalize their results for
the various orders of peaks. These are briefly reviewed
in the following for the sake of continuity and comple-
teness in this presentation.

For a random response function f{t) having N inde-
pendent and identically distributed peaks, the n order
peak (in decreasing order of magnitude) with n<N is
distributed as /6/

< (N , ‘
Fan®)=2 ( l. ) (PODY A=PE)™, @21)

n being the height of the peak normalized by a,,,, the
root mean square (r.m.s.) amplitude of f{t} and P(xn)
being the probability distribution function of the height
of a maximum. P{z) is expressed /1/ in terms of # and ¢
where £ is a measure of the width of the energy spec-
trum. E{w) of f(t) and is defined by
2
P i i i 2.2)
Moy

In Eq. (2.2), mg, m;, and m, are the moments of
E(w) about the origin defined by

S

m, = J' 0" E(w)dw, n=0,1,2,...(2.3)

The total number of peaks, N in f{t) and the rm.s.
value of f{(t), a,,,, are /1/

N=T (m“)u2 24
- (= @)

and
e = 37, (25)

where T is the total duration of the response, taken
same as the duration of input excitation. For a given
value of F,y(5) (corresponding 1o the desired level of
confidence), Eq. (2.1) can be used to obtain 5 which,
on being multiplied with a,,,,,, given the peak amplitude
of a,y, the n** order peak of f(¢). If r.m.s. value @ of the
peaks of f{r) is used in place of a,,, for calculation of
the peak amplitude by denormalization of %, 5/V2
should be used in place of # as @ = V2a,,,, assuming
f(t) as a narrow band process /25/. For the expected
value of a,, the approximation proposed by David and
Johnson /2/ and illustrated by Gupta and Trifunac /6/
may be used.

For the malti-degree-of-freedom (MDOF) system
shown in Fig. 1, modal analysis can be carried out in
Fourier-transformed frequency domain for the desired
response function and since the energy spectrum E(w)
is related to F(w), the Fourier transform of f(r)
as /17, 26/

1
Ew)=— | Fl) |7 (2.6)
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Fig. 1 — Multi-Degree-of-Freedom System for Translational
Vibrations.

the amplitude of any peak of the response function can
be calculated using the above procedure for obtaining
probabilistic estimates. For example, if the n-DOF sys-
tem in Fig. 1 is excited at the base by the horizontal
component of ground acceleration, #(¢) alone and the
interaction between various (translational) modes is
accounted for, it is possible to obtain the following
expression for energy spectrum, EDy{w), of displace-
ment at i floor /7, 8/,

n

1
ED®) = — | Z () |2[2A5af|H,(w) 52{1+

J=1
wZ

Poyt (I*EE) ‘IDJ;‘} :I (2.7)
4

Here, | Z(w) | is the Fourier spectrum of input exci-
tation 2(t); A=[A;l,x, is the modal matrix; a,=
2:21 Akjmk,’}::zl AZm, is the modal participation
factor in j* mode for floor masses m,, my, ..m,; w; and
§; are the natural frequency and damping ratio in j*
mode; ppy and gp; represent the interaction of j*
translationa! mode with the other translational modes
(for displacement at # floor) under the excitation of
translational component alone; and

33



1

2_ 2.1 9; -
W —o +21Cjij

H, (o) =

(28)

To account for the nonstationarity of response (in case
of first few peaks), the r.ms. value of the peaks of
response function may be modified as explained in
Appendix I (for displacement response at the i floor)
and then be used along with the other statistical para-
meters (N and ¢) to determine the peak amplitudes of
response function.

3. Combined Action of Translation and Torsion

When a multistoried building is subjected to the
torsional component of ground acceleration, #,{f} at its
base, the rotational vibrations are set up in each floor
about its center of mass. It is convenient to model the
building for these vibrations by masses concentrated at
the floors and connected with the massless torsional
springs and dashpots as shown in Fig. 2. Using modal
decoupling of the equations of motion, the transfer
function for the response (relative rotation) of the i
floor in the j* torsional mode of vibration can be writ-
ten as /4/

H r(w) = Ai,j:rajTH,-T (w), (3.1

where H;r (w) is the transfer function for the relative
rotation of equivalent SDOF oscillator for the j*# tor-
sional mode, given by

1
2 _ 2.~
W W +21§J7~a)j7u)

and ;7 is the modal participation factor in j* torsional
mode given by

Hy (w) =

(3.2)

D A
Gy = — =12 .n; (3.3)

> A

Ay 7 is the k™ element of mode shape vector for the j*
torsional mode; w7 is the natural frequency and &7 is
the fraction of critical damping in the j* torsional
mode; J; is the mass moment of inertia of the &, floor
about the vertical axis through its center of mass. Using
(3.1), the Fourier transform of relative rotation res-
ponse at the # floor becomes

71
V0)= DA, 707 H ()8 (0) (34)

j=1
where @{(w) is the Fourier transform of #(t). From
this rotation follows the translational displacement at
the i* floor for the m™ column by its multiplication
with the transverse distance, b, of the column from
the center of rotation at the floor. To consider the
combined action of translational and torsional compo-
nents, the so obtained contribution of torsional vib-
rations to translational displacement may be added to
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Fig. 2 — Multi-Degree-of-Freedom System for Torsional Vib-
rations.

that due to the translational component of ground
motion alone. Thus, the expression for Fourier trans-
form of the total relative displacement at the i floor
for the m* column becomes

X (0)= ifh 4 (@) Z(w) +

i=1

+ me:Ai,jTajTI_I_;‘T(w)@T(w) (3.5)
i=1

where Z(w) is the Fourier transform of 3r). The cor-
responding expression for the energy spectrum ED,, {w)
(using Eq. {2.6)) becomes

1 n ” .
ED, (w)= ;VFI: 2 2 Ay Ay a;a H, (w)H;(C”) (Z(w)]*+

+ Y A e A b B @) i (0) | O4w) | 2+
j=1k=1

+2bmi2 Z A A8y | B0} | Z(w)

J=1k=1

|Re{f47{w)H;(w)e“f”}] (3.6)
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where H,'{w) is the complex conjugate of H {w); T is
the phase difference between the translational motion
Z(w) and torsional motion @) as in

Z(w) | Z{w)
Orw) Ow)
Though the phase difference @T does depend on fre-

quency o, for simplicity it has been assumed here to be
independent of .

Let

eier (3.7)

My =08 "’I |€() | *H r{w) | " da

]

k=0,1,2, .. (3.8)

A{j:u’fzkk)J’ | Z(w) | | @(w)| |H; (w) | 0 dw;

0

k=0,1,2, .. (3.9)
and
j'k?.-j?' =ay 3“k)J’ |Z(w |@T(‘U)! I T(ﬂ’)l whda;
0
k=0,1,2, .. (3.10)

where w,; is the k* normalized moment of
|@Hw}|*|Hif{w)|? for an equivalent single-degree-of-
freedom (SDOF) oscillator of the j* torsional mode;
1,LT and J.,LT respectively are the moments of
|Z(@)] [@r(@)| [H{w)|?  and  |Z(w)[|O7(w)]|
| H;r{w)|? for the SDOF oscillators of j* translational
and torsional modes, and let 4, , denote the moment of
| Z(w) | 2| H{w)|? for the oscillator of j** translational
mode as defined in Eq. (A1.4). Then, the &* moment
of ED,(w) (according to Eq. (2.3)) can be written
as /7/

n

1 _
My i = Ef;Aifajzwj(k i [ (1 +Po,q' + qD,t:,l');{'k,t' —4ny ’lk +2,j

+ bmicosqp?"{ (pg.g + qg,tj )A"Z:_] —qD Jif k + 2,7 } +

b sind,

% {(Sg,q -{2- 4@_;'2)131;,9‘ WL, 1.J +P1§,zjlkr+ 3.f 1 ] +
2

ZAa TG b wf# ‘)[ (1 +Pg,ro +qg,sjr )#k?:)T -

;-l

7 cos®T
Qo yrtic vttt b

i

{(.PD 4D, gT)j‘k T

sin®@T
‘ID,;;'leT+ 2,7 P % {(SD.Q‘T_ (2- 4{;}% )pD,:'jT)
it T

A'kT-v-l,jT +pD,t)‘T’1kT+ 3,;7}] (3.11)
o
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where the coefflments Po.; 9o PhiT quT, Poyr
.47 DT> Pl un and s, ; characterize the interac-
tion between various modes. The coefficients pp, ; and
dp, represent the interaction of j* translational mode
with the other translational modes for the displacement
at i" floor under the translational excitation; pJ .- and
45,7 represent the interaction of j* torsional mode
with other torsional under the excitation of torsional
component; pp, .r, gp ;r and sp ;v describe the interac-
tion of j* torsional mode with all the translational
modes under the simultaneous action of translational
and torsional components; coefficients pj ;, ¢, and
s describe the interaction of j* translational mode
with all the torsional modes under the simultaneous
action of translational and torsicnal components. It
may be noted in the above expression that the terms in
each of the translational and torsional modes are modi-
fied due to two types of modal interactions, one due to
the interaction between modes of the same type (trans-
lational or torsional) and second, due to the interaction
between modes of different types (translational and
torsional). The extent of interaction in both cases is
dependent on the closeness of frequencies of the inter-
acting modes.

It can be shown that for the shear force response,
following substitutions are required in the various
expression applicable for the displacement response,

i) aw?  forg

i1) (mA+ . +tmA) for A,
iii) Gr oG for a;r
iv) (J]AI‘J-T+ +J,-A:-“,-T) for A, ;r

V) Mg, forb,, (3.12)

Here, f§,.; is a quantity, dependent on the geometry of
columns and floors, and given the shear force in longi-
tudinal direction in the m* column at the i* floor, by
multiplication with the cumulative torque at that
floor /7/. M is the total number of columns. If all the M
columns have equal stiffnesses in the longitudinal direc-
tion as well as in the transverse direction, it can be
shown that

b
B> (3.13)
D Ak tbl

where a,, is the longitudinal distance of the k,, column
from the center of rotation at the i floor and k,, is the
ratio of stiffness of a column in the transverse direction
to that in the longitudinal direction. It may be noted
that the torsional vibrations of symmetric buildings do
not lead to any story shear and hence, the substitutions
as in (3.12) will lead to energy spectra of «fictitious
shear force» which varies from column to column
unless all the M columns are symmetrically placed in
longitudinal and transverse directions. The idea behind
obtaining «fictitious shear force» is to form a basis for
calculating the relative contribution of the torsional
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component of ground motion to the column shears in
comparison to that of the transiational component
alone. In calculating the fictitious shear force, longitu-
dinal column shear in the m™ column has been multip-
lied by the total number of columns for the assumption
that in the case of translational component, the story
shear is equally shared by all the M columns. Further,
since torsional vibrations do not lead to any story
shear, no additional overturning moment results in the
symmetric building due to the torsional component of
ground motion.

In the case of the combined action of translational
and torsional components, the nonstationary nature of
excitation may be accounted for {as in the case of
translational component alone) by modifying the r.m.s.
peak value first to account for the nonstationarity while
neglecting the modal interaction and then by account-
ing for the interaction. Let the r.m.s. value a,; (for
displacement response peaks at the i floor and m*
column) be modified to @g),,; and (ag)... respectively.
In parallel with Eq. (A1.5}, (ag),; may be expressed as

(@) = [Z (EE)QZ' + Z (@ )rii,kT :I”z (3.14)

where (ag)y; is as defined in Appendix I and (@g)miur 18
the factor for normalizing the maximum value of res-
ponse function {as calculated from the torsional res-
ponse spectrum) at the # floor, in &** torsional mode
and for the m* column, to E[a(]}]kr/\/2(E[a(1)]kT is the
expected value of first order peak in &* torsional mode
for the distribution in (2.1). For determining the (nor-
malized) expected value of the first order peak in j*
translational mode i.e E[a(;]; the same set of equa-
tions for ¢ and N; will hold good as in (Al.3). For
determining Efa¢kr, ¢ and N values k* torsional
mode (i.e. £, and Np) are

T s 1/2
8k'r= [1 - (:’Z,RTT)__ ]
Horr#a T

and
T Hagr
Nyp=— —_— 3.1
o e 619

where pdsy, ier and ug.p are as defined in (3.8).
Maximum values of displacement and shear force, D;
and S;; for the i floor and j* translational mode, are as
in (A1.1) and the following expression /5, 7, 8/,

Sy=(mA;+myAy+ . +mA)aw’SD,  (3.16)

where $D; is as defined in Appendix I. In torsional
modes, displacement and shear values are D, ,.r and
Swmisr (i.. the fictitious story shear) as defined by

Do g7 =As jr e SDB b, (3.17)
and
Sisr = (h Ay pr + LAy jr+ .+
+Jz‘Ai,kT)akka2TSDﬁkTMﬁmi (3.18)
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where SDhd,r is the spectral rotation corresponding to
the modal frequency w,r and damping ratio £,7. Once
(@E)mi is calculated, it may be modified to {#g)... (10
account for modal interaction) by using zeroth mo-
ments of the energy spectrum (with and without modal
interaction) following similar principles as mentioned
in Appendix I.

4. Combined Action of Translation, Rocking and Tor-
sion

If the building considered in section 3 is subjected
to the rocking acceleration, ﬂR(t) at its base in addition
to the translational and torsional components of exci-
tation, it is possible to obtain the following expression
for X,.(®w) by including the rocking contribution /7, 8/
in Eq. (3.5),

Xow)= En:Aij(ai Z(w)+ aHOxr(w))H(w) +

i=1

+ D b G Hor (0)Or (o) (4.1)
i=1

where aH, (= EAkjmka/ ZA YiMei=1,2, n) is
k=1 k=1

the modal participation factor for the response to roc-
king ground motion and @R(w) is the Fourier transform
of #xf). Assuming the phase difference @x{(w) between
the translational motion Z(w) and the rocking motion
Gglw) to be a constant value @p,

Z{w)
Orlw)

Z(w)
Ole)

e*id’R(w) (42)

and Pgr=dr+®p, the expression for my,, can be
obtained as /7/

[ZA'J Jw(k ‘)((1 +PD.:;+QDU)’L<J

b A 2;t b, cos®r{ (pg,ﬁ + qg,z‘j )}“k;,,"j - qg;,fj A 2, }
b,.Sing.

21:‘ {(SDU _(2 4‘:2)th; )j‘k-rlj +pDJ}j'kT+3J } +

aH. , .
+—;LCOS¢R{(1 +pi +qD’i‘j)j'k —4'h qj'k+2 St
¥

+aH sindy,
a 2

{(pD if _(2 4CZ)‘?O.!})’{,Q+1 J

+pDRu'1kR+ 3 ) ] +‘“'"*‘|: EA‘ }Ta,l%"bnzu J(if 1)((1 +pi;ij +
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+ qg,fjr‘ ):“Lk?,.jT - qg,qrﬂkra- 2t {(pD.t;T +

sind,
2brm€j?‘
-(2- 4C}2T )PD.:IT)j'kT+ 1.jT +PDJJ'TJ"‘T+ 34T } +
cose,
+ RT

b

mi

+ QD.J}'T)}*I:TJ'T - ‘ID,UT)LJ(T+ 2,iT H- {Gpyr—

{(PD.qT +45 o7 WeaT QDJfTYk-v—Z jT}

_ Sin®pr

2%, L {(D,qT 2- %T)quT)yk+IJT+
T

1
+p.[§,leYk+3,jT} ) ] +ﬁ

[ EA; ah;'zwj(k - 3)( (1 ‘i‘Pg,q +qg,ij )TN Y, _qg,qﬂf 2.

F=1

i 'R ‘R
+ aH_COSq)R{(1+pD.£j +‘h),:j)}~k1 qu k+2,.}+
I
a;, sin®,

aH; 2

{(Pg?y —(2- 4‘:;‘2)101”)\1';' )’Lﬁ 1t

g A s
+5 cos¢RT{(pr+qD,,)}’k, G Ve ez, +

Sin@g-
+ bmr T{(Sgtj - (2 - 4§r2)pg.f)yk +1.j +
3}

+Pgﬁ}’k + 3,jT} ) ] (4.3)

where y, ; and y, ;r are respectively the &% normalized
moments of |@x(m)] |OHw)||H{w}|* and |Ox(w)]
|@H{w)| |H;{w)|? for the equivalent SDOF oscillators
of j# translational and torsional modes; u ¢ and A%, are
the moments of |Bg(w)|?|Hjw)|*> and [@R(w)l
| Z(w) | [Hy(w)|? for the oscillator of j* translational
mode. Various p’s, g’s and s’s are the interaction coeffi-
cients. In the cases of negligible modal interaction, the
terms involving these coefficients may be neglected and
Eq. (4.3) is then greatly simplified. Details of the above
formulation may be found in Gupta and Trifunac /7/.
Various expressions for shear force response can be
directly obtained by the substitution of certain terms
into those for displacement response (as discussed in
section 3); but since the effects of torsional vibrations
will be included in the resulting expression, the so
obtained energy spectra will again be for the fictitious
story shear (see section 3),

The statistical parameters required for determining
the normalized expected values of the first order res-
ponse peaks in various translational and torsional
modes may be calculated using the expression of ¢; and
N; (for the translational modes) as proposed by Gupta
and Trifunac /7/ for the combined case of translational
and rocking components and the expressions of e,y and
N (for the torsional modes) as in section 3. Similar is
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the case for the expressions of Dy, S;; D,.;47 and S, .7
Various values of (ag); and {@g)msr are combined
using (3.14) and further, the modification to account
for the modal interaction in the nonstationary response
may be carried out using the zeroth moments of the
energy spectra as in the previous section,

5, IHustrations of the Proposed Model

The approach presented in preceding sections (3
and 4) is illustrated here by comparing the probabilistic
estimates of the largest peak values of displacement
and shear force with the corresponding results of the
time domain analysis involving step-by-step numerical
integration. Two fixed-base buildings have been con-
sidered, one with 10 stories and the other one with 20
stories, These buildings are the same as those con-
sidered by Gupta and Trifunac /8/ in a parallel develop-
ment of the probabilistic approach for the rocking
component. Each building has constant story height of
10 m, four symmetrically arranged columns and 25 m
(lungitudinal) x 100 m (transverse) floor dimensions at
each story level. The story heights and transverse floor
dimensions are taken to be unrealistically large for sub-
stantial contributions of the rotational components and
thus, for more obvious testing of the results. In both
the buildings, floor masses and story stiffnesses vary
linearly from top to bottom as illustrated in Fig. 3.

k= 0.6

Mpwz

Mp-2

Mp.) ¢
My
kl\
begrirrrrs Lerrrerred
<1.0-042t : 2
, — k; =1.0-0.4 17
=12 j=1,2,0,n

Fig. 3- Story Stiffnesses and Floor Masses in a n-Story Build-
ing.
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Fig. 4 — Response of 10-Story Building Subjected to Transla-
tional + Torsional Components at Imperial Valley Site.

20 ; | 20
r i 1
L : d N
16} ! d 16}
= 'l 'f -
—_— L] < F
. 7 / C
:‘>5 12: ; // E 12:
- 'lr >‘ b=
| Y 5 8F
e H — -
wn [: Ly w -
£ A7 4k
C L
C r
0 ok
0.0 0.5 1.0 0.0 0.5 1.0

Displacement Shear Force

Time Domain Analysis
~--=~ Expected Value

— = =5 Percent Prob. Value
-------- 95 Percent Prob. Value

Fig. 5 — Response of 20-Story Building Subjected to Transla-
tional + Torsional Components at Mexico City Site.

Their relative values are so proportioned that the fun-
damental period of vibration is 1 and 2 sec respectively
for the 10 and 20-story buildings. The critical damping
ratio has been assumed uniformly equal to 0.05 in all
the modes for both buildings. Further, the column stiff-
nesses in the transverse and longitudinal directions are
assumed to be same (i.e. k,,=1). Torsional stiffnesses
of various stories have been computed by neglecting
the contributions of the torsional stiffnesses of the col-
umns about their longitudinal axes. Thus, the torsional
frequencies are approximately 1.73 times the translatio-
nal frequencies.

To provide the base excitations to the buildings,
synthetic accelerograms and the corresponding Fourier
spectra have been generated /12, 13, 27/ for two sites;
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Fig. 6 — Response of 20-Story Building Subjected to Transla-
tional + Rocking + Torsional Components at Imperial Val-
ley Site,
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Fig. 7 - Response of 10-Story Building Subjected to Transla-
tional + Rocking + Torsional Components at Mexico City

Site.

Westmoreland, Imperial Valley, California, and Mexico
City, Mexico. Same earthquake parameters and group
and phase velocity curves have been taken for this pur-
pose as in Gupta and Trifunac /7, 8/. The total duration
T of the input excitation which corresponds to the sta-
tionary part of strong ground motion has been com-
puted as 12.44 and 46.44 sec respectively for these sites
based on the results of Trifunac and Brady /24/.
Further, in the absence of better estimates, all the re-
sults of probabilistic approach have been presented
here using the phase differences @, ®r=x/2 (as shown
analytically by Trifunac/23/ and Lee and Trifu-
nac /12, 13/) for all frequencies.

Figs. 4 through 7 show comparison of the results of
the proposed approach with those of time domain
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analysis. In each figure, envelopes of the maximum
peak displacement and shear force have been plotted
(for certain combination of the excitation components)
by normalizing various response values with respect to
the respective overall maximum response values. Pro-
babilistic estimates are represented by the dotted lines,
the middie one denoting the expected values and the
other two (extreme) lines enclosing the 90% confidence
interval. It can be observed in these figures that the
time domain results as represented by the solid lines
are bounded on either side by the 5% and 95% confi-
dence estimates, They are in good agreement with the
expected values depending on how good is the approxi-
mation of phase differences to the value of /2 in each
individual case. The assumption of phase difference to
be independent of frequency does not appear to result
in noticeable errors. These observations are seen to
hold good in many such figures including some repre-
senting very large lorsional contributions.

Above results do not show explicitly how significant
are the contributions of torsional component as com-
pared to the transiational component. For that pur-
pose, a separate study which focusses on the
comparison of these contributions, will be required
while considering several combinations of buildings,
sites and earthquakes.

6. Conclusions

It has been seen that the proposed approach can
give good estimates of the peak displacement and shear
force at all levels of the structure and with the desired
level of confidence. Although the testing was carried
out here for the first peak values only, this approach
can be used to estimate the higher order peak values as
well /6/. It is certainly an improvement over the pre-
sently available methods as it alone can account for the
phase between the translational and rotational compo-
nents, The assumption of constant phase defference
simplifies the analysis considerably without compromis-
ing on the accuracy within the reasonable limits.

The presented approach must be used with the cor-
rect phase differences. The phase approximation of x/2
seems to work well but it may not be good enough
when the contributions of rotational components are
substantially large. Also, greater confidence can be
established in the probabilistic estimates if these are
based on the phase values obtained from more detailed
investigations accounting for the actual ground con-
ditions, source mechanism and the wave propagation
from source to site. Additional research efforts should
therefore be directed at obtaining more reliable esti-
mates of the phase differences.
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Appendix 1
Modification of r.m.s. peak value for nonstationarity

In case of the displacement response at # floor and
the translational excitation, the r.m.s. value z; of peaks
may be modified as explained below.

a; is first modified to (@g); to take care of the non-
stationarity of the response /5, 7/ while neglecting the
modal interaction and then, {@g); is modified to (ag)’;
to account for this interaction /7/. To calculate (&), all
the n modes are considered independently and (@), is
computed for the /" mode using Dy, the maximum
value of displacement at # floor and j** mode, calcu-
lated from the response spectra and defined as

D,;=A,;a,5D, (AL1)

where SD; is the spectral displacement corresponding

to the modal frequency w; and damping ratio {;. (ag); is
defined as

D,;V2
E[a(l)]j

(ag);= (A1.2)

where E[ay]; is the expected value of the first order
peak of the displacement of an equivalent SDOF oscil-
lator of j* mode, as for distribution of Eq. (2.1). The ¢
and N values in j* mode {i.e. ¢ and N;) are taken for
this calculation as

and

Ay (A13)

N="—w,

X
2

where, in general,

=00 [ 1200 o) ot
0

k=0,1,2, .. (A1.4.)

is to calculated by the numerical integration. Once
(@g); is calculated for all j modes, (ag), is obtained by

(A1S5)

n 1/2
(@g) = [ Z(EE)S ]

i=1

For modification of (@g); to (2g)'; (to take care of the
interaction between various modes), m'y; is calculated
by neglecting all the modal interaction terms in the
expression of myg,;. mg, being the zeroth moment of
energy spectrum of the response function at i* floor.
Thus in the case of displacement response, m’y; should
have the following form

41



n 3.2
o _2 Ao Ay,
04 3

=1 Y

(AL6)

where &, is in accordance with Eq. {Al.4). (ag)’; may
then be expressed as

(EE)’.:(EE),-E?’—‘_] (A1.7)

i

where the contribution of modal interaction terms is
negligible, m’y; = my; and then, (@g) ;=@ g
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