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A common problem in inversion which involves fitting of the recorded data by some model time
series is the lack of knowledge of the absolute time of the recordings. This results in errors in the
relative timing between the calculated and the recorded data. Such errors are present, for example,
in the inversion of the earthquake source mechanism in terms of the recorded accelerograms.

In this paper a method for optimizing the choice of the relative timing between theoretical and
the recorded time history is presented. This highly nonlinear problem is solved by splitting it into
two least square problems (LSQ) and by using the method of optimized exhaustive search. The
method is illustrated by the inversion of the data for the 1979 Imperial Valley earthquake. It is
shown that major differences exist between the results of the inversion with and without time
shifting optimization. While the method is illustrated on the problem of the earthquake source
inversion, the procedure presented here can be directly applied to many other identification
problems involving fitting of the time histories in many vibration or wave propagation problems.

1. INTRODUCTION

The work on a three-dimensional dislocation model for
the San Fernando, California, earthquake of February 9,
1971 ", initiated the research in the field of detailed
earthquake source inversion using the near-field strong
motion data. This first spatial inversion over the fault
surface, although very simple, has uncovered wide
possibilities for this work and has pointed out to some
problems in applicability and in the usefulness of the
source inversion studies with strong motion data. There
were two main reasons for this. The first one was the
overall complexity of the problem and its mathematical
modelling involving the earthquake source and the wave
propagation problem through the surrounding in-
homogeneous medium. The second problem was
associated with the lack of the near field data, and other
independent but detailed observations required to check
the inversion results and hence to prove the theoretical
and the practical possibilities of the earthquake source
inversion. Many other investigators have also studied the
earthquake source mechanism using the strong motion
data but with the forward theoretical simulations with
essentially `trial and error' procedures to find the `best'
source mechansim and fitting the recorded data.

In the following years more strong motion data has
been collected thus improving the opportunities for
further and more detailed research of the earthquake
source mechanism19. The Imperial Valley earthquake in
1979 was one of the most fruitful contributors in terms of

As communicated by M. D. Trifunac.
Paper received October 1988. Discussion ends February 1991.

© 1990 Computational Mechanics Publications

the recorded near-source ground acceleration data and
other observations'. This earthquake has been subjected
to exhaustive research by many researchers focusing on
the inversion of its source' 1,6,9,12 who presented
faulting models and the synthetics of the strong motion
time histories.

The objective of this paper is to analyze further one
specific problem which arises in the source inversion. This
is a problem of relative timing between the theoretical and
the recorded data or as it will be called here the time
shifting error. In the above mentioned papers, this type of
error has been pointed out and it has been investigated,
and in some cases included in the source inversion model.
However, no one has so far presented a method of
solution for eliminating this type of error or for its
reduction through some optimization algorithm.

In what follows we give a short introduction about the
source inversion modelling with special attention to the
problem of the time shifting error, and a brief review of the
previous work that in some sense has touched on this
problem.

2. FORMULATION OF THE INVERSION
PROBLEM

The main objective of the source inversion problem is
determination of some earthquake source parameters
from the analysis of a finite number of recorded strong
motion data (acceleration, velocity or displacement).
Based on the body force equivalent representation' 1,2 a
displacement at a point z, due to discontinuity in the
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displacement across the fault surface E is given by: of the dislocation along the fault , or more precisely,

uJX t
)-

dT
f

ai (b, T)Kin(z, , t-T) di (1)
E

where

Kin(x, S, t-T)=Cijpgnj(S)a Gn(x, 5, t-T) (2)

9

is the kernel of integral equation (1). The quantity u,,(z, t)
is the nth component of displacement at the point z and at
time t due to the ith component of the dislocation vector
d(i, t), defined over fault surface E. Gn(z, , t) is dynamic
Green-tenzor , nj(e) unit vector of the fault normal and

Ciipg the elasticity tenzor. Knowing the left side of
equation ( 1) and solving for the unknown vector function
d(e, t), the inverse problem is solved . However , practical
realization is not so straightforward and one is faced with
many problems. Depending on a priori knowledge about
the faulting process and the computational difficulties the
simplifying assumptions are often made about:

(a) dislocation vector d(5, t),
(b) geometry of the fault, and
(c) dynamic Green -tenzor.

In general there are four basic parameters that must be
specified everywhere on the fault plane to describe the
dislocation vector: (a) temporal behaviour of the
dislocation, (b) rupture velocity or more generally the
time when the dislocation starts at some point, (c) the
dislocation rise time (the time required for the dislocation
to reach final value) and (d) the rake (direction) of the
vector d(e,t).

Geometry of the fault is usually defined by four
parameters: (a) length, (b) width, (c) strike angle and
(d) dip angle. With these parameters it is a priori assumed
that a plane represents an acceptable geometric
description of the fault12,6,1,9 or a combination of the
planes to fit more complex fault geometry''.

Finally, in the calculation of the dynamic
Green-tenzor, one has to make certain simplifications
depending on the quality of the information and the data
about the geological structure of the surrounding
medium. Hence in the literature one can find the
Green-tenzor for layered viscous half space12,6, ' as well as
the simplified models of the full and half space"°9. In
some instances the layered half space model may lead to
more realistic representation of the geologic medium,
while in other cases it cannot be justified and the simple
half or full space models may be preferable. Since the real
earth is highly irregular in the three-dimensional sense,
particularly for the distances and the wavelengths
(frequencies) considered in strong motion seismology, the
proper balance between the complexity of the geologic
model and of the implied resolution of the overall analysis
should be selected. Only those refinements which
uniquely contribute to the higher resolution of the end
result should be included in the model.

the final offset of the dislocation time history. In
this case study the Haskell ramp is used for the temporal
shape of the dislocation equation (3)',17

0 t<T(5)

d(,T)= D(o)t T(5)<t<T(5)+T, (3)

D'(5) T(5)+T<t

where the final offset D(5), rise time T (5) and , T(() the time
when the rupture starts to grow at_point ^ are the
functions of the position on the fault , ^. In the examples
presented here we assume that the rise time is constant for
all parts of the fault and the rupture arrival time is defined
by the constant rupture velocity . Therefore , the unknown
vector D represents the dislocation offset amplitudes at
different points of the fault. We consider only the shear
type of rupture with two components of. dislocation. To
achieve the satisfactory resolution , the fault is divided into
N columns. This approach was used for the first time by
Trifunac" and subsequently in many other inver-
sions'2,6,' For each subfault element , the theoretical
displacement at an observation point P, due to unit
dislocation in the ^' and S 2 directions (Fig. 1 ) is calculated
by solving the forward problem . A linear combination of
the contributions from the dislocations D1 in the ^'
direction and D2 in the S2 direction of all subfaults will
lead to the total theoretical response. To estimate the
actual values of the coefficients in the data the least square
error criterion is used for finding unknown dislocations
D, and D2. The numerical model will result in a system of
linear equations of the form

ATA§=AT (4)

The system of equation (4) is obtained by minimization of
the square error with respect to unknown vector
D= (D" D2 ... D,) 17,'2'5 or:

min. E(D)=mint Cf,(t)- J
f r

J 2

D

(pij(t).D,] dt (5)
fi i for i=1

where

4ij(t) i=1,2,...,1; j=1,2,...,2K=J (6)

represent the theoretical displacements obtained from the
jth unit dislocation at the ith recording site. Here I is the
total number of recorded time histories (three com-
ponents per station), K is the number of subfaults, and

.fi(t), i=1, ...1 (7)

represent the recorded displacement data.
Solution of equation (5) leads to the normal equations

(4) where the elements of matrix ATA are given by

3. METHOD OF SOLUTION and

After all necessary parametrization has been completed
the selected unknown quantity is the spatial distribution

[ATA] jk= f'o
T Oij(t)0ik(

t)dt k=1,...J

j= 1.... J

n ]j= f
T Oij(t)fi(t) dt (8)
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Fig. 1. Illustration of the subfaults, rupture function and the theoretical data used to form the LSQ model

If in the numerical integration of equations (8) the time
step is taken equal and the functions 41(t) and f;(t) are
represented by their sample values, then equation (4)
originates from the LSQ problem

AD=f. (9)

THEORETIC DATA

can be found in the features of strong motion
instruments '4-'6,'8 and in the complex velocity structure
between the source and the recording station . In contrast
to the seismological instruments which record continu-
ously, the strong-motion instruments have relatively high
trigger levels. Therefore, when an instrument starts
recording it is usually not recording the very first
strong-ground motion. On the other hand, the
calculation of the theoretical data is a controlled process
and one is able to define the exact time of all arrivals at a
station . So if the first motion is used as a reference point in
the LSQ fitting and to form the system (9), an error, which
is difficult to estimate is introduced.

One procedure to reduce this time shifting error, could
be to begin by first estimating the reference time of each
record. That reference point could be, for example, the
first arrival of the S-waves, which are often identifiable on
most strong motion records. Attempts to reduce the
effects of this time shifting error have been made by several
researchers . Hartzell and Heaton in their paper , dealing
with inversion of the Imperial Valley data, have obtained
significantly better fitting with a small time shift of
synthetic data for four records. They used shift no greater
than 1 sec. Since they have not presented the method of
solution for the unknown time shift one can assume that
their approach consisted of testing several models with
different relative timing and starting from the very
beginning of the inversion process. Archuleta has
associated the time shifting error with the rupture time or
with the time when the rupture starts at the same point on
the fault. Clearly the rupture time here is nonlinearly
related to the synthetics, and through his parametric
investigation, he has concluded that the parametrization

Equation (9) requires that at each discrete time the
theoretical displacement be equal to the recorded time
function. Since the number of time points may be large, in
practice, equation (9) is overdetermined and unstable.
The ill-conditioned nature of the system (9) requires
attention and special methods for solving it. Since the full
treatment of the numerical solution of equation (9) is
beyond the scope of this work, the reader is referred to
Jordanovski et al.9 and the paper by Olson and Apsel'2
where the method of damped least square is used to solve
equation (9). One important source of errors which makes
this inversion problem even more ill -posed is the time
shifting-error. In the following we consider this type of
error in more detail.

STATEMENT OF THE PROBLEM FOR THE
TIME SHIFT OPTIMIZATION

The LSQ model in equation (9) is formed by equating the
theoretical with the recorded data at the same time
coordinates. However, in practice one may not be able to
meet this requirement . Most recorded strong motion
data, used in the source inversion, usually do not have
absolute time14. Even if one knew how to obtain the
absolute recording time one would still not know
precisely the starting time of shaking. The reasons for this
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of the nonlinear variables becomes a very critical element
in the process of inversion. Archuleta did not give any
solution for this problem, but he stressed that `because of
the importance of the rupture time to the synthetics, an
inversion method tailored to determine the rupture time
should be developed'. Olson and Apsel suggested one
method to handle this problem. They allowed each fault
cell to slip five times with sequential time delays, centred
on the time when the rupture front arrived at the centre of
the cells. In the resulting LSQ model the amplitude of
each slip is thus considered as an independent unknown.
In this way the number of unknowns is increased five
times, which clearly has an offset in the numerical stability
of the solution. Though it has different physical meaning,
this approach has a numerical advantage over the method
of Hartzel and Heaton since the LSQ model is solved only
once, but the meaning of the time delays is different. Olson
and Apsel essentially model the changes in the rupture
propagation, not different delays at the recording stations
caused by irregular geology. In this work we assume
constant rupture velocity implying that the time shifting
parameter is associated with each recording station. Then
instead of fitting the recorded data with theoretical data
O;j(t) we can use O;j(t-T;), where T; is unknown shift in
time. Here `i' refers to the ith station and T; is the same for
all O;j(t) (all subfaults), due to the assumed constant
rupture velocity. This model is different from that of
Olson and Apsel who, through multiple slipping of
subfaults, model variable dislocation velocities. Our
optimization of the time shifts is associated with the effects
of the propagation path which should be different for each
station.

To derive the mathematical foundation of the proposed
method, the LSQ system, consider equation (9) in a more
abstract way. For simplicity only one station is
considered in the fitting. Then the LSQ system can be
derived by requiring that the residual error

K

e(t) =Y Djoj-f
1

(10)

be orthogonal with respect to the set of the functions
{Oj(t)} j =1, ... , J, where Oj(t) are the synthetics of thejth
unit dislocation . The orthogonality condition leads to the
system of equations,

Y (Dkok -f, Oj) = 0, j=1,2,...J

where % , Oj ) is the scalar product in the set of functions
L2(0, T).

Looking at the problem this way, one recognizes the
method of weighted residuals , where the weighting
functions are 0j (t). These functions , as members of the
vector space L2 (0, T), span a linear subspace Yc L2 (0, T).
Hence (11) also means that the residual error has to be
orthogonal to the subspace Y or e(t) e Y1. It is known that
for e (t) to be orthogonal to Y it is sufficient that e(t) be
orthogonal to a set of base vectors of Y. If the set of
functions { 0j(t)}i is linearly independent , then {(pj}i can
be considered as the base. For the full treatment and
discussion of the set {¢j}i, one is referred to Jordanovski
et a1.9. We shall only point out that the physical similarity
of the functions {(pj}; is one possible reason for the
inversion instability.

Instead of using the set of functions { 0j(t)} i as a base in
the YcL2(0, T), one may choose a different set {0j(t)}K,
in the residual method , to derive the LSQ system. For
further numerical treatment it is very convenient to take
for the new base a set of orthogonal functions such as sines
and cosines. It is known that any function g(t) e L2(0, T)
can be represented by its discrete Fourier series:

g(t)= Y ^9. sin
T

kt+g' cos
T

kt
k=1 )))

number of stations

Expanding each record f; (t) and synthetics 0,, (t) in terms
of sin (2a/7)kt and cos(2a/T)kt.

° k 22a
f;(t)=

{b sinf kt+d ccs __ktt;
k=1 T T

O;j(t)= {S i sinkt+C i coskt}
k=1

(12)

(13)

number of unknown dislocations

one can form the equivalent LSQ system, after taking
sufficiently large k = K

AL =]'

where

(14)

. ={bi,di,bi,di,...,bi,di>...,bl,dK} (15)

a;_{S ,C ,S ,C SK ,Cl^}. (16)

From the numerical standpoint , there is no difference in
solving (9) and (14), but this LSQ problem enables us to
include unknown time shift in the optimization.

One can write the series expansion, equation (13), for
';j(t+T; ). After some calculations , the relation between
new coefficients in this discrete Fourier series and the
previous series is given by

Sikj M S(0)
(17)

where (S(T;), C(Ti) are the kth pair of discrete Fourier
coefficients of 0' (t+T;) function , and (S (0), C (0)) are
the kth pair of discrete Fourier coefficients of O;j(t), and

R k= [cos wkT; - sin O kt;

sin cukTk COS (0,T;
(18)

when a = Zak/T. The transformation mapping given by
the matrix R; is unitary and orthogonal and represents a
rotation through an angle wkT;. If T;« 1 then for small %
the rotation matrix R is close to the identity matrix.
Therefore, the optimization for small T; in lower frequency
bands does not give much advantage. However, for the
higher frequencies even small T; can significantly change
the coefficients (S(0), C(0)) and consequently the
matrix A in equation (14). Clearly, the optimization of T;
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will result in a nonlinear LSQ problem, and to solve it one
will need to use one of the methods developed for
nonlinear optimization. In what follows it is shown that
this nonlinear problem can be transformed into two linear
least squares problems.

Since the mapping (17) is linear, the new LSQ system
matrix can be obtained as follows

A(f)=R(f).A (19)

where

RK

R=

0

and

0

RK

(20)

shifting the data of the corresponding station by -T. This
is done by transformation (17) and from the computa-
tional point of view is not time consuming. The Fourier
components of the vector b; which do not belong to the
station i are set to zero. The total number of such vectors
is equal to the number of stations times the number of
discrete values of Ti in the interval (0, T).

Since only one combination of Ti, i =1, 2, ...,1 will
minimize (22) one can see the nature of the new unknown
vector z,

ZT={Z1,z1i...,z1T ,...,zi,zP,...,z)T}. (25)

The components of vector i, can be only zero or one. For
the components belonging to the same station only one
component can be equal to one, while the rest are equal to
zero. The next expanded LSQ system then becomes

AD = Y
(i,

z;b;
1=l -T,

or

(26)

A15= Bz. (27)

The problem is now linear in variables D and i.
To solve (26) we use the singular value decomposition

method and replace A by USVT10 Hence (27) can be
written in the form

f= (T1,T2,...Td.

Each submatrix R;` in (20 ) is given by (17) where k
corresponds to the kth sine or cosine term , k =1 to K and i
corresponds to the ith recording station . The vector f
contains the unknown time shift parameters associated
with different recording stations. The new LSQ system is

R(f)A15=f (21)

or due to unitary and orthogonal properties of R,

[U1: U2] 0
S

01 LVz
T
J D=Bi

or

[0 0JLVTJD-LUTBJz

where [U]=[U1: U2] and

(28)

(29)

AD= RT (f)T. (22) VT =
T

V
1
T'

Vz
Equation (22) is the final form of the LSQ model in this

application . Note that (22) means that instead of having
synthetics shifted by Ti, we shift the measured record by
- Ti. The problem is still nonlinear, but now the nonlinear
part is on the right -side and this enables one to perform
the transformations on matrix A only once. For example,
if one uses the method of damped least squares , one has to
perform only one singular value decomposition of A. This
significant saving in computational time enables us to
represent the right hand side of (22) in the following form

t=t T

R TJ > Y z; b; (23)

where

1611 T = {0, 0'.. . 0, bi (T ), d; (T ), ... bf(T ), d f (T ), ._0 0 ...}
(24)

and T takes on discrete values on the interval (0, T), not
necessarily at equal intervals AT. Thus for each Tr(0, T)
and for each station a new vector bi is generated by

are orthogonal matrices. Then for a given i, the solution
of (29) is given by

SVl D = UfBi

and the error is

Error = II UT Bz Il

(30)

(31)

The final error is a function of i. Therefore to minimize the
error (31) one has to solve the linear least square problem
given by

UTBi=O (32)

where i is subjected to the conditions after equation (25).
This type of problem is known in the theory of integer

optimization as a quadratic zero-one programming' 3,4,3
However, the problem that we have here is uncommon
due to the special constraints imposed on the vector I. To
the authors knowledge, there is no known general method
for a straightforward solution for this type of problem.
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Fig. 2. Strong-motion stations in Imperial Valley, California

A common method used to solve the problem (32) is
one of exhaustive search. By testing all possible combina-
tions of the vector i, the solution can be obtained.
However, if the dimension of i is large the number of
combinations becomes large so that in any reasonable
computational time, it is not possible to check all
combinations. The method that has been used here is an
optimization of the exhaustive search procedure with
respect to the computational time.

Singular value decomposition of matrix UZB in
equation (32), yields the following LSQ system

or

USVTi=0 (33)

SVTi= O. (34)

The dimension of the matrix SVT is of the same order as
that of the vector Y. Considering the special requirements
that vector i has to meet , ;! will be written in the following
form

iT={ii,i2,...,i^} (35)

K

\^G BONDS
•CORNER

EPICENTER
1 15-10-1979

where iT is associated with the ith station. Similarly the
matrix SVT can be partitioned into I submatrices as
follows

it

[Q1, Q2, ... QI]

iI]

Solution of (37) means, choosing one column vector from
each of the Q; such that the norm of their sum is minimum.
The algorithm used in the numerical realization is the
following.

(a) First one vector column is chosen as a starting vector,
for example, the first column of the matrix Q1. This
means that the first component of the vector it is one
and all other components of it are zero. Obviously
the error is different from zero.

(b) In the next step one scans over all other columns in
the rest of the matrices Q;, excluding Q 1. The criterion
for obtaining the second vector is either to reduce the

(c)
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previous error or to increase it by the least possible
amount.

(c) After the second vector is chosen one scans for the
next vector over the rest of Q;. This procedure
continues until all submatrices Q; have been used.

Since the iteration procedure usually depends on the
initial point (in our case initial column vector), the final
solution is not necessarily the global minimum. There-
fore, the above procedure is repeated using each column
of the starting submatrix as initial vector. The method was
tried successfully on several theoretical examples. These
examples consisted of generating data through linear
combination of harmonic functions with known co, and r,
and fitting these data by the same combination of
harmonic functions, but now r;=0 for Vi.

Although the proposed algorithm is based on the
searching approach, its advantage lies in significant
reduction in the number of combinations that have to be
considered. For example, in the following case study, the
number of stations is eight (I = 8) and each vector i; has
ten elements, so that all possible combinations add up to

U. S. A.

Table 1. Parameters of the model used in the inversion

Strike N37W
Table 2. List of the stations used in this example

DipSlip 90°
180°

Station name Estimated S-arrival Code

Epicentre
Ru t l i

32.63°N, 115.33°W El Centro #5 5.0 sec EL05p ure ve oc ty
Ri ti

2.5 km/sec El Centro #8 5.0 sec EL08se me
L h

0.8 sec Bonds Corner 2.4 sec ELBCengt 40 km El Centro # 11 5 0 secWidth 10 4 k
. EL l l

Depth
P vel it

. m
10.5 km

Calexico
El Centro #4

3.4 sec
4.7 sec

ELCA
EL04- oc y

S-velocit
5 km/sec El Centro #2 5.0 sec EL02y 3 km/sec El Centro # 1 5.0 sec EL01

MEXICO

f£2

10.5km

I

r ELBC rELCA

N= 108

while with the above algorithm N = 22 440.
By solving for unknown time shifts , one can substitute

the vector i into equation (31) and solve for D.

DISCUSSION

The above proposed algorithm has certain limitations. To
obtain the LSQ system in terms of vector i, one must
associate unknown time shifts with the recording station.
This means that at this stage this algorithm does not
consider repeated slips for different subfaults. To include
that possibility in the LSQ model of source inversion one
can use the approach of Olson and Apsel12. However,
even with their approach implemented, one will still
require the shifting optimization with respect to the
recording stations.

In choosing the time interval (0, T), over which the
unknown shifts are searched it is seen that by increasing
this interval will increase the dimension of vector Y. This
can be avoided by looking for the reference times in the
recorded and synthetic data with phases which are clearly
identifiable.

ELI I

EL04

ELOB

( E L 0 2Ir E L 0 5

I r ELOI

8

7

6

5

4 7_1 1 11
3

2

1 2 11 1 3 4 5 6 7 8F 9 10 11 1 2 1 3 14

40 km I

Fig. 3. Schematic representation of the fault and subfaults, together with stations ' projections on the fault
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Fig. 4. Strong-motion displacements used in the inversion analysis

It is shown that shifting synthetic motions by i; is
equivalent to shifting the recorded data by -r;. It could
happen that Ti is such that the reference point for
collocation is in negative time for the recorded data.
Physically at that time the recorded data are zero but due
to the representation of the data by discrete Fourier series
and its properties, the data is periodically repeated with
periods T. To avoid this possible error one can put enough
zeros at the end and at the beginning of the recorded data
to cover the maximum expected time shift.

The method proposed here still belongs to the group of
trial and error procedures, but its form significantly
reduces the number of the required trials. However, the
efficiency of the method should not be considered out of
the context of the whole inversion problem. The fact that
one requires only one singular value decomposition of

ELi

E1J1

matrix A, and that the shifting of the recorded data for
-Ti can be efficiently programmed by the scheme using
equation (17) and that the optimization model for f is a
simple LSQ linear problem, all significantly save the
computer time in favour of the search algorithm. The
proposed method is thus much more economical than the
trial and error procedure used in the very beginning of the
inversion6.

CASE STUDY: IMPERIAL VALLEY 1979
EARTHQUAKE

The Imperial Valley, California, earthquake of 1979 is
taken here as an example to demonstrate the effects of the
time shifting optimization. This earthquake has been the
subject of many investigations12,6,1,9 More than 40
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Fig. 5. Dislocation vectors (damping parameter a=0.02, see Jordanovski et al.9) without shifting optimization. Top andbottom figures represent , respectively , the right lateral and vertical offsets in cm

strong-motion instruments in the United States and in
Mexico recorded the near-field ground acceleration at
distances less than 35 km from the Imperial fault, Fig. 2.
Since the subject of this paper is not the complete
inversion of the Imperial Valley earthquake source, in
what follows we present only a brief review of relevant
data for illustration of the shifting optimization.

In Table 1 the parameters of the model used to form
subfaults with dimensions 3 x 2 km the LSQ system are
listed. Thus the fault was modelled by a plane divided into
120 subfaults (Fig. 3). In the process of inversion, eight
stations have been used, Table 2. In Fig. (4) the time
histories of the recorded displacements at these eight
strong-motion stations are presented. The Haskell's dislo-
cation time function and Green-tenzor for the full space
have been used to calculate synthetic displacements. For
the solution of the LSQ system the damped least square
algorithm is used to avoid instability and to obtain
physically acceptable results. For the purpose of compari-
son the following solutions are presented: (a) dislocation
vectors calculated without the time shifting optimization
(Figs 5 and 6) and (b) dislocation vectors with the time
shifting optimization (Figs 7 and 8). The optimal r; are
given in the Table 3. Figures 5 and 7 show dislocation
vectors at the centre of each subfault. Figures 6 and 8
show comparison between the recorded and the cal-
culated displacement data. All displacement data are
scaled to 40 cm maximum value.

The top and bottom graphs in Figs 5 and 7 represent
the amount of the final horizontal and vertical surface

movement calculated from the model. Positive values of
the surface displacement correspond to the right lateral
faulting. For the vertical motions, the west side goes up
relative to the east side for positive motion. The field
measurements show that the motion on the Imperial fault
was right lateral with the west side going up and with most
of the faulting at some 30 km north from the epicentre. In
light of this information one can see the important
differences between the inversion model with and without
the time shifting optimization. While the improvement is
not noticeable in the fitting of the displacement in Figs 6
and 8, the effect of time shifting optimization is significant
for the dislocation vectors, Figs 5 and 7. While the
dislocation vectors and their values in the case with time
shifting resemble and are in good agreement with other
independent observations, the inversion model, without
shifting, shows physically unrealistic dislocations which
are not in agreement with the observations. For example
the large dislocation is obtained in the beginning of the
fault resulting in the large surface displacements in the
southeastern end of the Imperial fault, which is contrary
to the field observations. The other unrealistic result is
very random behaviour of the dislocation vectors. Obvi-
ously, this model should be rejected although the fitting of
the displacement data appears to be acceptable. It was
also shown by Olson and Apse112, that a good match
between the recorded and the synthetic data can be
achieved without any time shifting optimization and
regularization (damped inversion), but that the resulting
dislocation vectors are physically unacceptable. Hence in
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the earthquake source inversion more weight must be
given to the dislocation vectors and, as it is illustrated
here, to the time shifting optimization.

The aim of this paper is not to suggest that the example
presented here represents the best source mechanism
solution, for the Imperial Valley 1979 earthquake, but to
illustrate the degree of improvement that can be expected
by incorporating the time shifting optimization at each
recording station. The final solution is affected by many
other details in the analysis, starting from the parametriz-
ation of the model, up to the numerical methods used in
the process of solution, where the time shifting optimiz-
ation is only one important step in the inversion process.

CONCLUSIONS

(1) The quality of the LSQ solution, involving inversion

(2)

(3)

of the dislocation amplitudes in earthquake source
mechanism studies can be improved by considering
an additional parameter which represents the opti-
mum time shift between the recorded data at each
station and the synthetic motions. This has been
illustrated for the Imperial Valley, California earth-
quake of 1979.
The nonlinear LSQ problem with time shifts has been
transformed into another LSQ problem with the
nonlinear part on the right side of the equation. This
problem can be linearized and solved by the method
of exhaustive search. Optimization of this method is
presented resulting in significant reduction of the
required computer time.
The dimension of the time shifting vector depends on
the time interval (0, T) in which the time shifts r; are
sought and on the chosen sampling rate 4ri+I-ri.
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Table 3. Optimal shifting parameters

Station code Optimal shift r; in seconds

SOS 1.2
S08 1.0
SBC 0.0
S11 0.0
SCA 0.0
S04 1.4
SO2 0.0
SO1 0.0
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