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In a typical inversion of an earthquake source mechanism, using recorded strong motion data in
the near field, the fault surface is subdivided into a rectangular mesh (Fig. 1) and the final
dislocation amplitudes in ^1 and b2 directions are found for each subfault by means of some
inversion algorithm.

In this paper an alternative to the above approach is presented. We will describe the final
dislocation amplitudes on the fault surface in terms of two-dimensional Fourier series and then,
through inversion, we will compute the coefficients of these spatial harmonics. This leads to certain
computational advantages and is helpful for understanding the spatial resolution of the
dislocation amplitudes.

INTRODUCTION

So far most researchers have formulated the solution of
the least square (LSQ) problem in earthquake source
mechanism studies in terms of the unknown components
of the dislocation vector2 6,1. Using the constraints and
the regularization method, it is possible to estimate the
dislocation vector at a discrete set of points on the fault
(Fig. 1). However, the resolution of the small details of the
dislocation amplitudes on the fault depends on the
adopted number of subfaults. Therefore, to recover as
much of the spatial details of the dislocation as possible,
one is forced to use a dense set of subfaults. This will lead
to an increase in the number of unknowns and the LSQ
system of equations will become more unstable and ill-
conditioned'.

We note that for a typical case, the sampling rate At of
the recorded strong motion is not a significant factor in
the determination of the subfault sizes, instead, it is the
computer storage and the numerical stability. In typical
applications, the size of the subfaults is several kilometers
by several kolometers. This does not yield good spatial
resolution.

In general, a linear least square problem leads to the
system of equations

AD=f (1)

where A is m x n matrix, 5 is nth order unknown vector
and f is mth order data vector . In the singular value
decomposition of the resulting LSQ matrix A, by

UT AV=S, A=USV"
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'

(2)

where U is m x m orthogonal matrix and V is an n x m
orthogonal matrix3. The columns of the orthogonal
matrix VT are linearly independent and form a base in the
vector space where the unknown dislocation vector lies.
Following an application of the Tikhonov regularization,
the solution is then given by

K
D_ µ 2 2 (f Un)Un (3)

n= (1+a lzn)

where the triple (vn, un; µn) is called the singular system for
the matrix A2, and a is the Tikhonov regularization
parameter. For the sake of discussion we assume that the
Tikhonov regularization parameter a is zero4'5. Then (3)
takes the form:

D= y- U. (7, ii.)b. (4)
n=1

From (4) it is seen that D belongs to the subspace
spanned by the vectors {un}i. Then a question of
resolution can be investigated by analyzing the linear
combination (4) and the set of vectors {ti}K.

Due to the Picard's theorem' the coefficients

I in(J' un)l - 0

as n-+ oo. Therefore, depending on the rate of
convergence of µn('f-un) we can have more or less
significant contributions from the higher order
eigenvectors i3n. To maintain stability, very often small
singular values µn are set to zero (truncated SVD) which
means that we do not include some vn in the expression
(4), and consequentl the resol ti f D i dy u on o s re uced. For

Present address: MIS, P.O. Box 101 91000 Skopje, Yugoslavia the time being we are concerned with the vectors {lln}i
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Fig. 1 Illustration of the subfaults, rupture function and theoretical data used to form the LSQ model

and we assume that the coefficients in (4) are well
behaved.

The components of the u„ are of the same nature as D
and represent dislocation values at some selected point of
the fault surface, usually centre of the subfault. According
to the formulation of Jordanovski et al.2 we may take the
odd components of v„ to represent dislocations in the l:,-
direction D1(i, j), while the even components then
represent dislocations in the b2-direction 2(i,j) (Fig.
1). Consequently, the number of u„ vectors is limited by
the number of subfaults. The calculated values of D1(i, j)
or D2(i,j) represent the final offsets of the ramp function
of the (i, j)th subfault and represent the average values of
the dislocations D1(S1, ^2) or D2(^1, b2) over the subfault.
Hence, if the subfault has significant dimensions then
averaging can introduce significant error. One way to
avoid this error is to make fine subdivision of the fault,
but then the number of unknowns will increase, and also
due to growing instability one may be forced to reject
some small singular values. This results in taking only
first k vectors in the expression (4). Therefore, there is
some upper index no such that we cannot obtain $„ for
n> no. To extend the resolution we will use the following
approach.

as

N M

(5)

Least square model with spatial expansion

Since the dislocation components D1(S1, S2) and
D2(^1, ^2) are defined over the two-dimensional fault
plane and are elements of the real vector space L2(E), one
can ztrys to find a set of orthogonal base functions
{l/ij(S1, s2)} E L2(E), and express D1(S1, Y2) and D2(K1, ^2)

where

D(^1, b2 ) = Y- Y_ dij0ij (^1, b2)
i=1 j=1

dij=<D(S

'

1, b2),

h'

Kij(S1, Szz2)> xx

b2 )h'ij(S1, ^2)d
KK

ld b2Jo o
(6)

using the orthonormal properties of the 0ij's. Here L and
W are the length and the width of the fault. The
orthogonality conditions require that:

<V'ij, Vkl>=6ijSjl (7)

Since the choice of 0ij(S1, ^2 ) is arbitrary , one can choose
them to satisfy the dislocation conditions on the fault
boundaries . Thus Oij have to vanish at the edges of the
fault . If the fault breaks the surface then we can replace
the zero displacement by the zero stress boundary
conditions for the surface part of the fault.

It seems natural to choose the sine and cosine
functions. Besides, the harmonic expansion has certain
familiar meaning when we discuss the resolution.
Therefore , for deep faults (h>0 in Fig . 2) we may use

W ij(S1, z2)= 2 sin
in

Y 1 sin H z2
LW

(8)
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Fig. 2. Spatial position of the station with respect to the
fault

and for the surface fault (h = 0 in Fig. 2)

0i,( 1, ^2 ) 2 sin in b1 sin n (9)LW L 2H

Note that in both cases the applicable boundary
conditions are satisfied. Also the condition (7) is satisfied.
Then the coefficients dig are given by (6).

To incorporate the expansion of (5) into the LSQ
model two procedures can be used . In the first procedure
the LSQ system

AD=f (10)

is obtained by employing the theoretical displacements
from each subfault (Fig. 1 ). In the next step one can
introduce new unknowns dif through expansion (6).
Following the ordering mapping, such that for K =1, 2,
3, ... , J, where J = M • N

D2x-1=D1 (i. 1,jA 2)

Dzx =D2 (iA1, jA2)

where K is defined by

K=(i-1)M+j; i=1, N j=1, M (12)

and N and M represent the number of fault segments in b l
and ^2 directions. The set of values D(iA^1, j, 2) are
transformed into one dimensional unknown vector
{Dk}i', where `J' is the number of subfaults. Here
(it 1, jA^2) is the coordinate of the centre of the (i,j)th
subfault element, with Abl by AS2 being the size of each
subfault element (Fig. 1). The relationship between b and
the coefficients {di;} can be expressed in a matrix form

D=Hd (13)

where H is (2J) x (M • N) matrix and its elements are the
values of the functions Ojj(iAcl, jAi;2), and d is an (M N)
vector.

If we substitute D from (13) into (10), the new LSQ
problem in terms of the unknown vector d will be

or after singular-value decomposition of A

USVTHd = f

or

(15)

USK d=

with

(16)

K=HTV

and if there are constraints

(17)

GD>h

the new constraints involving the vector d are

(18)

G11d>- 'h (19)

Therefore, the new LSQ system is now given by (16) and
(19). It can be shown that

HT H = I (20)

and that the elements in the i-th column of the matrix K,
are the coefficients of the i-th column of the matrix V with
respect to the base. Since the new base functions are
harmonic spatial functions, one can gain better
knowledge and understanding of the resolution level.

In general, KT is not a square matrix and depends on
the matrix H, or on the number of coefficients taken in the
expansion (5). If one chooses to consider only the first few
harmonic functions, then the number of columns can be
less than the number of rows. This will certainly reduce
the number of unknowns, but unless we know that the
dislocation is smooth enough, this will also reduce the
accuracy.

Theoretically, it seems that the number of harmonics
taken in the expansion (5) can be as large as one wishes
but due to the sampling theorem, the highest spatial
harmonic is limited to

N 1 _ 1
L 2A^1' MW 2A^2

or

(21)

2 and M= 2 (22)

where N is the number of subfaults in the ^1 direction and
similarly, M is the number of subfaults in the b2 direction.
Therefore, with this approach there appear to exist
similar limitations as with the original LSQ problem. Yet,
there are two advantageous points that should be
emphasized. Firstly, for the same resolution as in the
original LSQ model, one now requires only one half the
unknowns in the LSQ model. Secondly, once the
coefficients {d,j} ssareKK calculated, the dislocations
D1(^1, S2) and D2(S1, b2) are known as a continuous

function over the fault plane.
In the second approach, which avoids the

representation in terms of fa ltu segments , we consider
AHd= f (14) each harmonic function as a final offset of the ramp time

Soil Dynamics and Earthquake Engineering, 1990, Volume 9, Number 6, November 281



Least square model with spatial expansion: L. R. Jordanovski and M. D. Trifunac

I

b

c

d

WA P/A
VIA VIA VA VA I ^2

VIA VIA VIA VA 0L:I

Fig. 3 Illustration of the differences between ramp (solid
lines) and sine shape of the fault dislocation (dashed lines).
The surface displacements (square in Fig. 2) are shown for
the displacements in X1 (left), X2 (centre) and X3 (right)
directions

function and calculate the theoretical displacement due to
this type of dislocation. Therefore, one can write that

D(S1, b2)=Wij(^1, S2) (23)

or a dislocation function isKof the form:

a(S1, b2, t)=
oij( 1'

b2) t O<t<T
T

W ij(^1, ^2) T <t (24)

Justification for this step can be sought in the fact that
final offset of the ramp function does not depend explicitly
on time . This means that at a given point , the dislocation
grows as a ramp function in time until it reaches the value
determined by Y'ij(^11 ^2) at that point.

Example

A set of computer programs has been written for this
case. Test examples have been compared with the results
from the previous programs2 which used constant ramp
functions. In Fig. 3 these results are illustrated where the
two solutions are compared. The solid line represents the
constant unit ramp dislocation while the dashed line is a
dislocation given by (24). Different approximations for
the final offset of the ramp functions are presented here.

For example, in Fig. 3(a), to model constant
dislocation over the entire fault we used only the first
harmonic in the expansion, i.e. a half-sine in the 1;1-

direction and a half-sine in the ^2-direction and with unit
amplitude. Obviously one cannot expect to have the same
values of the displacements, only the waveforms are
expected to be preserved. This is the case for all three
components of a station (square) of Fig. 3. As shown in
Fig. 3(b), we took D(c 1i ^2) to be one (+ 1) over the first
half of the fault (plain area) and negative one (- 1) over
the second half of the fault (shaded area). This is modelled
by the full sine in the c1-direction and by a half sine in the
Z:2-direction. Again, the waveform is well preserved.
Following the convention that the shaded areas have
negative dislocation (equal to -1) and the plain areas
have positive dislocation (equal to 1), one can peruse the
rest of Fig. 2. As it might be expected for higher
resolutions, the two models are in good agreement due to
the fact that the higher order sine function can be
approximated successfully by the rectangular wave form.

It appears that this approach does not limit the higher
spatial resolution. The only difficulty is in the required
computational time as well as in the ill-conditioned
nature of the resulting LSQ system. The resulting inverse
procedure can be summarized by the following steps:

(I) Calculate the response at a given site due to each
dislocation 'Yij(S1, S2) by setting the
corresponding coefficient to one.
Form the least squares system with dd as unknown
from:

Ad = f (25)

(III) After solving (25), calculate the dislocation at a
given point using expansion (5), written in the
matrix form,

D=H'd (26)

(IV) If there are constraints then with (26) express
them in terms of d as

GHd >, h (27)

Note that the representation of the dislocation through
the series (5) is especially convenient for any linear
constraints . For example , if the p-th order derivative is
used for the regularization , then we are able to obtain the
exact p -th derivative instead of its discrete counterpart.

For a detailed example of how this approach can be
implemented in the study of the source mechanism of a
particular earthquake , we refer the reader to Chapter V of
Jordanovski et al.2.

CONCLUSIONS

In search of the fine details in the spatial variations of the
dislocation amplitudes over a fault surface, one may
proceed by making progressively smaller subdivision of
the fault (Fig. 1), i.e. make A^1 and A^2 progressively
smaller. However, then the number of the unknowns will
increase, and due to the growing instability of the
generalized inverse or in the method of Tikhonov
regularization, one may be forced to reject some small
singular values. This results in taking only the first K
vectors in expansion (3) where K < N • M.

In this paper we have presented a natural alternative
which consists of expanding the dislocation amplitudes
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over the fault surface into a Fourier series involving sines
and cosines. The advantages of this approach are that the
number of harmonics is limited only by the sampling
theorem, that for the same resolution as in the original
LSQ model one now requires only one half the unknowns
and that the dislocation amplitudes are now known as
continuous functions over the fault plane. The
disadvantage of this approach lies in the considerable
computational time.
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