UNIVERSITY OF SOUTHERN CALIFORNIA
DEPARTMENT OF CIVIL ENGINEERING

INVESTIGATION OF
EARTHQUAKE RESPONSE
OF LONG BUILDINGS

by

Marija I. Todorovska, V. W. Lee and M. D. Trifunac

Report No. 88-02
February 1988






TABLE OF CONTENTS

AB S T R A C T . i e e e e e e e iv
CHAPTER I: INTRODUCTION ...ttt et ettt eee e, 1
1.1 General Introduction......covuiiiniiii ittt e 1
1.2 Organization of this Work .........c.oiiiiiiiiiiiiiiiiii i, 4
CHAPTER II: WAVES IN STRUCTURES ..ottt et ie e eeee e eaeeanaannns 5
2.1 Discretization of Structural Models..........covviiiiiiiiiniiieinniannnnnns, 5
2.2 Continuous Representation and its Advantages ...........covuvveinnenennnnn.. 7
2.3 Equivalent Physical Constants ..........cvuiiiininininrnneneneeeianannnnnnn, 10

2.3.1 Equivalent Shear Wave Velocity
in the Vertical Direction ..........coovviiiiiiiiiiiiiiiiiiiiiieennnn, 10

2.3.2 Equivalent Shear Wave Velocity
in the Horizontal Direction.........cocvviiiiiiiiieieeinannnnnn.. 15

2.3.3 Example: The Equivalent Shear Wave Velocities
for the Imperial County Services Building
N El Centro.....coiviiii i it e e e e 18

2.3.4 DISCUSSIOM s vttt vttt ettt ettt e e e e e e e 21

CHAPTER III: SHEAR WAVES IN CONTINUOUS

STRUCTURAL MODELS...ctiitiitiii i e iii i 23

3.1 General Description of the Models.........ouvviiiniuneen e, 23
3.2 The Homogeneous Model..........coiuiiuiiiiiiiiiin i, 28
3.2.1 Formulation and Solution of the Problem ................ccovennnn.... 28
3.2.2 Discussion of the Solution............coovviiiiiiiiiiiiiiiiiineeinn.. 33

3.2.3 The Dimensionless Parameters of the Model and
Discussion of the Frequency Equation .............coovvvveeinnninnn... 36

3.3 Plate Having Vertical Discontinuities in the Material Properties.............. 38



ii

3.3.1 Formulation and Solution of the Problem .................ooiiiia.... 38
3.3.2 The Dimensionless Parameters of the Model........................... 43
3.3.3 Discussion of the Frequency Equation..............oovviiiiiiiia... 44
3.4 Plate with Horizontal Discontinuities in the Material Properties ............. 55
3.4.1 Formulation and Solution of the Problem ..................ccooiiiit. 55
3.4.2 The Dimensionless Parameters of the Model...........................60
3.4.3 Discussion of the Solution.........cooviviiiiiiiiiiiiiiiiiiiiiiii. 60
3.5 Response of the Buildings to Rotational Excitation.......................... 63
3.5.1 The Rotational Excitation ...........c.coiiiiiiiiiiiiiii i, 63
3.5.2 The Response of the Building........cocvviiiiiiiiiiiiiiiiiiiii., 66

CHAPTER IV: RESPONSE OF THE BUILDING

4.2

TO GENERAL GROUND MOTION ....iiiiiiiiiieiieeeeaannnss 68
4.1 Fourier Synthesis of the Response of the Building to
Nondispersed Propagating Waves ........ccooeiiiiiiiiiiiiiiiiiiiiiiinnennnn, 68
Fourier Synthesis of the Response of the Building to
General Dispersed Wave Motion .......c.ooviiiiiiiiiiiiiniinninnenennnnn. 72
The Response of a Building Placed Over Inhomogeneous Soil ................ 7

4.3

4.3.1 The Displacement in the Half-Space Having a
Vertical Discontinuity for Incident

Plane SH-Waves . ....oieiiiiiiniiiii it iiiiiiiiieinenennenn. 80
4.3.2 The Response of the Building.........covviiiiiiiiiiiiiiiiiiiiiinn... 83
4.4 Response of the Building to Random Ground Motion...............c.ooetn 85
CHAPTER V: RESULTS AND DISCUSSION .....ciitiitiiiiiiiiiiiiiiinineiienanns 87
5.1 The Nature of the Strong Ground Motion ..........cooeviiiiiiiiiinian... 87
5.2 The Range of the Dimensionless Parameters..............ooeviiiiniinenn.. 89
5.3 The Transfer of Energy of the Ground Motion

into Continuous Structural Systems.........c.coiiiiiiiiiiiiiiiiiiiiiinn., 90

5.4 Excitation of Symmetric and Anti-Symmetric Modes of

Y1 o3 % 5 To) « N 97



iii

5.5.2 Buildings with Central Core.......oovvvvuenevennnnnn...

5.5.3 Buildings with “Soft” First Floor ..........ccvvvuenn....

5.6 Response of the Building Placed Over Soil with Vertical
Discontinuities in the Material Properties .....................

CHAPTER VI:

REFERENCES

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E:

APPENDIX F:

CONCLUSIONS ..t iiiietiieieeeieieeienaennann.

FACTOR f IN THE EQUATION (2.3.3b)...........

ORTHOGONALITY OF THE EIGENFUNCTIONS
IN THE z- DIRECTION FOR THE MODEL
WITH VERTICAL DISCONTINUITIES.............

ANALYTICAL EXPRESSIONS FOR THE COEFFI-
CIENTS Cp,n =0,1,... IN EQUATION (3.3.11a)...

PROOF THAT THE WAVE NUMBERS IN THE
z-DIRECTION IN THE “SOFTEST” LAYER OF
THE MODEL WITH VERTICAL DISCONTINUI-
TIES ARE ALWAYSREAL ........civvvinnnnnn...

THE COEFFICIENTS C,,n =0,1,... IN THE
EQUATIONS (3.2.14a,b) WHEN 75 IS VERY SMALL

ANALYTICAL EXPRESSIONS FOR THE
COEFFICIENTS C,,n =0,1,..., OF THE
EXPANSION OF THE DISPLACEMENT

AT THE BASE OF THE HOMOGENEOUS
MODEL, PLACED OVER THE HALF-SPACE
WITH A VERTICAL DISCONTINUITY ........ e



iv
ABSTRACT

In this work the physical phenomena associated with the wave passage under
long buildings have been studied. Two-dimensional, continuous models have been used to
represent the building vibration. Buildings without major discontinuities, with shear walls
at the ends, with a central core and with a soft first floor have been considered. Analytical,
closed form solutions have been obtained for the response to incident monochromatic, plane

SH waves. The soil-structure interaction has been neglected.

Response of a building to a translational and rotational excitation has been cal-
culated also, as an approximation when the ratio between the length of the building and

the apparent wave length of the ground wave in the horizontal direction is very small.

Methods for computation of the response to realistic ground motion have been

suggested, for different forms of incident waves and in terms of Fourier synthesis.



CHAPTER I
INTRODUCTION

1.1 General Introduction

It is customary in the typical analyses of the response of buildings to strong earth-
quake ground motion to neglect the propagating character of the wave motion in the
ground. Detailed three dimensional models, involving non-linear analyses are used but the
spatial dependence of excitation is usually oversimplified. It is assumed, for example, that
the seismic waves arrive with the same phase delay at various points of the base of the
building. This corresponds either to vertical incidence, i.e. to infinite phase velocity in the
horizontal direction, or to waves with angle of incidence other than zero, but with very
large wavelengths compared to the size of the base of the building. However, in general,
the seismic waves arrive at the building foundation with incident angles other than verti-
cal, and may have wavelengths comparable with the horizontal dimensions of the building,
resulting in phased excitation at its base. The above mentioned oversimplification of the
character of the excitation may lead to underestimation of the seismic forces that act upon
the building during seismic response and therefore it is important that these effects be

studied carefully.

The effect of traveling seismic waves on extended structures was studied, for ex-
ample, for long bridges. Werner, et al. (1977) presented a detailed review of the subject
up to 1977, and Kashefi and Trifunac (1986) updated this review up to 1986.

The effect of traveling seismic waves on buildings has been studied very little so far.
Tzenov and Boncheva (1979) and Tzenov (1981) noted the need for the two-dimensional
models of “long in plan buildings” to account for the phase difference between the ex-

citation at different points of the base of the building. However, they did not consider



the excitation to be a propagating wave. In their approximate analysis, they introduced
factors into the calculation of the mode participation factors for the first symmetric and
antisymmetric modes of vibration. The factor corresponding to the first symmetric mode
has been calculated assuming a symmetric non-propagating wave under the building of
frequency equal to the natural frequency of the building and associated with that mode.
Similarly, the factor for the first torsional mode has been calculated assuming an antisym-
metric non-propagating wave of frequency equal to the natural frequency of the bﬁilding
and corresponding to that mode. These factors depend on the ratio of the length of the
building £ and the wavelength in the soil A. Three methods for superposition of the con-
tributions of these modes to the overall seismic forces in the building have been suggested
by Tienov and Boncheva (1979): simple summation, square root of the sum of the squares
and an arithmetic average. The contributions of the higher modes of vibration have been

neglected.

The wave nature of the seismic energy transfer from the ground into the founda-
tion of a building as well as the transport of energy within the building itself, has been
discussed recently in the publication by the Soviet Academy of Sciences (1987) on the
“Wave Processes in Structures During Seismic Interactions.” In Chapter 2 the authors
discuss modeling of buildings and suggest methods for calculating the equivalent P and S
wave velocities of the equivalent continuous model. In the same chapter they discuss the
dependence of the interaction on the incident angle of P and S waves. In Chapter 3 of the
same publication the authors discuss the propagating seismic waves under structures, and
suggest a scheme for resolving a propagating wave into a symmetric and an antisymmetric

standing waves.

The focus of this work will be to understand the physical phenomena associated

with the passage of seismic waves under extended buildings. Simple models which allow



analytical, closed form solutions will be considered. The models studied will be two-
dimensional, isotropic, perfectly elastic plates, placed over the elastic halfspace. A linear
stress-strain relationship will be assumed, the soil-structure interaction will be neglected
and only incident SH-waves will be considered. Such oversimplifications and idealizations
of the real problem are necessary for the fulfillment of one of the aims of this work, that

is providing analytical solutions of the problem.

The first model analyzed in this work is a homogeneous plate placed over a uni-
form elastic halfspace. The second and the third models are also plates placed over the
homogeneous half-space but have vertical and horizontal discontinuities, respectively, in
their material properties. This analysis is aimed to help in understanding the wave phe-
nomena in buildings with a stiff shear elements at the ends, with stiff central core and with
a soft first floor. The fourth model will again be a homogeneous plate, but this time the
soil will have a vertical discontinuity in its material properties. The purpose of analyzing
this model will be to illustrate the phenomena associated with long buildings placed on
inhomogeneous soil. The model of the soil is simple enough to allow a closed form solution
for the displacement of the plate but at the same time possesses the main features of the

displacements in the inhomogeneous soil.

The displacements of the four models will be calculated for incident monochro-
matic waves, representing the transfer function of the system. The ways of synthesizing

the response to polychromatic motion will be suggested, for different types of excitation.

The models analyzed in this work cannot be considered as real buildings, but as
equivalent structures whose response to propagating waves will display the same phenom-
ena which aré expected to occur in the response of real buildings. The main objective of

this work is qualitative analysis and recognizing and understanding of the new physical



phenomena, rather than precise quantiative or engineering design analyses. The simplicity
of these models eliminates many details in realistic buildings, but abounds in the physical
phenomena. More realistic analyses involving more complicated geometries, anisotrophy

and nonlinear stress-strain relationships are left for future work.

1.2 Organization of this Work

The material in this work has been presented in six chapters and in several ap-

pendices.

Chapter I is the introduction. Chapter II presents general discussion on modeling
of buildings and a method for estimation of the equivalent material properties of contin-
uous models. In Chapter III, the theory of the homogeneous model and of the models
with vertical and horizontal discontinuities, placed over the homogeneous halfspace will
be presented. Also, the displacement response of the homogeneous model will be derived
to pure translation and rotation at the base. In Chapter IV the theory of the Fourier
synthesis of the displacement of the building to dispersed and non-dispersed wave motion,
the effects of the inhomogeneous soil and the response of the building to random ground
motion will be discussed. In the same chapter, the displacement response of the homoge-
neous model will be derived when it is excited by the displacement on the surface of the
half-space with a vertical discontinuity in the material properties and for incident plane
SH waves. Chapter V contains the discussion and the supporting results on the following
phenomena associated with the wave passage under “long” buildings: transfer of the seis-
mic wave energy into the building, excitation of symmetric and antisymmetric modes of
vibration, the influence of the inhomogeneities within the building oﬁ its response, and the
influence of the inhomogeneities in the soil on the building response. Chapter VI presents

the conclusions.



CHAPTER II
WAVES IN STRUCTURES

2.1 Discretization of Structural Models

In common practice the structures as buildings, bridges, dams, etc., are modeled

by discrete models, for example, by lumped mass or by finite element models.

The simplest lumped mass model of a building is the one-dimensional one. It
assumes that the mass of one floor level has been lumped at a point. The masses corre-
sponding to each floor are usually connected by massless springs representing the stiffness
of the structural elements connecting the floor levels (Meirovitch, 1975). The dash-pots are
added to represent the damping of the system. In Figure 2.1.1 a one-dimensional lumped
mass model of an n-story building has been drawn where m;, k; and C; are the mass,

stiffness and the damping coefficient of the i-th level.

There are two and three-dimensional lumped mass models with translational and
rotational degrees of freedom that can give accurate representation of the mass and stiffness

distribution of the structure. The equations of motion written in matrix form are:

[M{5(%)} + [CH{s(®)} + [K]{(t)} = {F(2)} (2.1.1)

where: [M],[C] and [K] are the mass, damping and the stiffness matrices, {v(¢)} is the
displacement vector and{F(t)} is the force vector. This equation of motion can be solved

by various numerical techniques.

The finite element method discretizes the structure into small, but finite elements.

The displacements at certain selected points of the finite elements, called nodes, become
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Figure 2.1.1 Lumped mass model of an n story building. m;, k; and £; are the
mass, stiffness and damping of the i-th floor. k; is the equivalent story height

between the (i — 1)-st and the i-th floors.




the degrees of freedom of the system. The finite element models can be two and three-
dimensional and can include translational as well as rotational degrees of freedom. The

resulting equations of motion are usually solved numerically.

Both the Iumped—ma,ssv and the finite element methods give only approximate
solutions of the problem, but their advantage over the analytical models, is that they
can be used for a structure of arbitrary shape. On the other hand, the geometry of the
structures that can be modeled by an analytical model has to be simple, thus limiting
the number of practical applications. The availability of electronic computers permits the
number of degrees of freedom to be increased, thus increasing the accuracy of the method.
At the same time, the finite arithmetics used by the electronic machines limits the number
of the degrees of freedom that can be used, because the accumulated round-off error, from

a large number of calculations, can also produce considerable errors in the final solution.

2.2. Continuous Representation and its Advantages

An example of a simple continuous representation of a building is a one- dimen-
sional beam of length L, stress-free at the top and cantilevered at the bottom (Figure
2.2.1a), with shear wave velocity 8 and shear modulus u. It can be a good representation

for vibration of a tall building with the in-plan dimensions smaller than its height.

For long structures two-dimensional models may be used. The building can be
represented by a rectangular plate of length L and height H, with physical parameters 3,
and u., in the horizontal direction and 3, and u, in the vertical direction. These represent

the shear wave velocities and the shear moduli of the building (Figure 2.2.1b).

An example of a three-dimensional continuous model of a building is a rectangular

solid with in-plan lengths L; and L, and height H (Figure 2.2.1c). The physical parameters
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Figure 2.2.1 Continuous models of buildings. a) one-dimensional model: 3 and
u are the shear wave velocity and the shear modulus. b) two-dimensional model:
Bz and g, and B, and u, are the shear wave velocities and the shear moduli in
the z and in the z-directions, respectively. c) three-dimensional model: 4. and
Bz, By and py, and B, and p. are the shear wave velocities and the shear moduli
in the z,y and z-directions, respectively.



Bz, tez, By, iy and B and p, for the three coordinate directions now represent the respective
velocities and rigidities in the respective coordinate directions. This representation may

be required where Ly ~ Lo =~ H.

For example, the displacement of the continuous model in Figure 2.2.1b, associated

with shear waves only, has to satisfy the differential equation of motion

v 0%y 9%y

(2.2.1(1)

Haga? THegz =P
where:
v(z,z) : displacement in y direction (2.2.2a)
z,z: spatial coordinates (2.2.20)
t: time variable (2.2.2¢)
p: density. (2.2.24d)
When devided by p, equation (2.2.1a) can be written in the following form
0% d%v 9%
2 2 —_
e o0z? + 2 922 82 (2:2.3)

where 32 = p./p and $2 = pu,/p. For certain boundary conditions and simple excitations

it is possible to solve the equation of motion exactly.

The exact analytical solutions of the wave propagation and vibrational problems
are desirable because those are convenient to study the physics of the problem. The
analytical expressions of the solution directly involve the physical parameters of the system
and make it easy to change them and to study their effects. The pdssibility of getting an
analytical form of the solution is very advantageous also because the exact solutions can

provide a basis for the testing of the approximate methods. The biggest disadvantage of
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the continuous models is that only a limited number of problems, with simple geometrical

features, can be solved analytically.

2.3 Equivalent Physical Constants

A simple method to estimate the equivalent shear wave velocity in continuous
modeling of buildings will be presented in this section. For this rough estimate it can be
assumed that only the frame of the structure, consisting of reinforced concrete columns
and of horizontal concrete panels transmits the seismic waves. Schematic representations
of the horizontal and vertical plans of a moment resisting frame of a reinforced concrete
buildihg are shown in Figures 2.3.1a and 2.3.1b. The lengths of the frame in the z and
y- directions are L and D, and H is the height of the frame. The distance between the
columns is A in the z-direction and B in the y-direction, and h is the average height
between the floors. The reinforced concrete columns have rectangular cross-section with

size a in the z-direction and b in the y-direction.

2.3.1 Equivalent Shear Wave Velocity in the Vertical Direction

To find the equivalent shear wave veloity in the vertical direction, the equivalent

(2)

shear modulus peg’ and the equivalent density pg’;) for this direction need to be known.

From the definition, the equivalent shear wave velocity in the z-direction will be

(2) ”’gg)
ﬂeq = z) (2.3.1)
Peg

A shear wave with displacement in the y-direction is being transmitted vertically
through the frame mainly by the elastic deformation of the columns in the y-direction. The

space in between the columns of one floor level can be evenly divided between the columns
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so that the equivalent shear modulus and the equivalent density of a typical element, shown
in Figure 2.3.2a and Figure 2.3.2b, will be the equivalent shear modulus and the equivalent

density for the whole frame.

If the element in Figure 2.3.2b is given a displacement A in the y-direction, the
column will deform in the double curvature, as shown in Figure 2.3.3a, and the shear force
Q at each support will be

Q=kA (2.3.2)

where k is the stiffness of the column in the y-direction. If the column were made of

concrete only, the stiffness & would be

12E.I,
h3

k= (2.3.3a)

where E, is the Young’s modulus of elasticity for the concrete and I, = -‘*i%s- is the area

moment of inertia of the section in the y-direction. Because of the steel reinforcement,

12E.1,
k= f—}—zg_l , (2.3.30)
where, f > 1, is a factor depending on the percentage of steel in the cross-section. A

method of calculating the factor f is described in the Appendix A.

If the element in Figure 2.3.2b were made of homogeneous material (with shear
modulus ,ug;)), deforming in shear only, the shear force Q at the top of the element and

corresponding to the displacement A at the top (Figure 2.3.3b) would be

) (4-B)
z=h (2.3.4)

2 OT
Q= T(A'B) = (/J’gq)'a—z'

where 7 is the stress at the top of the element.
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15

Equating equations (2.3.4) and (2.3.2) the equivalent shear modulus ,u( 2) is

h 12E I,
pl) = 25 k= —f 5
_ b 12ES q’;’
AB h3

(2.3.5a)

The equivalent density pgg) of the element shown in Figure 2.3.2b can be calculated
if the total mass of the concrete column is divided by the volume of the element. The result

is:
(z) _ mass of the column _ pa-b-h ab
= h-4-B  h-A-B 4B

(2.3.5b)

where p, is the density of the concrete. (The difference between the densities of the steel

and of the concrete has been neglected here.)

Substituting equations (2.3.5a) and (2.3.5b) into equation (2.3.1), the equivalent

shear wave velocity for the vertical direction is

B = ped _ 1B
o3 h?pe

(2.3.6)

2.3.2 Equivalent Shear Wave Velocity in the Horizontal Direction

The equivalent shear wave velocity in the z-direction can be calcualted similarly,
i.e. by separating the frame into elements whose equivalent shear wave velocity will be the

equivalent shear wave velocity for the whole frame.

A wave traveling in the z-direction is carried through the frame mainly by the

concrete floor slabs. This suggests partitioning the frame by passing horizontal planes



16

halving the space in between the two floor levels. A typical element is shown in Figure

2.3.4a. The equivalent shear wave velocity in the z-direction ﬂg; ) will, by definition be

(z) #gg)
P’ =7\l ~m (2.3.7)
Peq

where u&;) and pﬁf;) are the equivalent shear modulus and the equivalent density for the

element in Figure 2.3.4a.

When a shear wave passes through the floor slabs, they deform in shear and
(=)

bending. For simplicity, the equivalent shear modulus peq’ will be calculated assuming

pure shear deformation of the floor slabs.

If the element in Figure 2.3.4a is given lateral displacement A in the y-direction at
one of the lateral surfaces, as shown in Figure 2.3.4b, the floor slabs will deform as shear

beams, with shear stress 7z, at the cross-section equal to

Tzy = K - strain

A (2.3.8)
= Hc 'I""

where p. is the shear modulus of the concrete. The total shear force Q acting on the
lateral surface of the typical element will be equal to the shear stress in the concrete slabs

times the area of the surface in concrete, i.e.
Q= Tzy * (D : d) ’ (2.3.9)

since the rest of the element consists of the empty space. Combining equations (2.3.8) and
(2.3.9), the shear force Q is:

Q= uc%p d . (2.3.10)
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Figure 2.3.4 a) Typical element of the frame in Figure 2.3.1 used to calculate
the equivalent shear wave velocity in the z-direction. b) The element in part a)
of this figure deformed in shear. c) Continuous equivalent of the element shown
in part agugf this figure.
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If the typical element were made of homogeneous material with shear modulus

ug‘;), the shear force @ would have been (Figure 2.3.4c)

@2p.p (2.3.11)

Q——-l‘l'cq L

From the equations (2.3.10) and (2.3.11) it follows that

d .
pl® = p z - (2.3.12)
Using similar analysis as in section 2.3.1, the equivalent density pgz) for the typical
element will be

d
’D = o (23.19)

where p. is the density of the concrete.

Substituting equations (2.3.12) and (2.3.13) into equation (2.3.7), the equivalent
shear wave velocity in the z-direction will be found to be the same as the shear wave
velocity for the concrete, i.e.

Be _ 3, . (2.3.14)
Pc

B =
2.3.3 Example: The Equivalent Shear Wave Velocities for the Imperial

County Services Building in El Centro.

In the following section the methods for estimation of the equivalent shear wave
velocity of a continuous model, described in sections 2.3.1 and 2.3.2, will be applied to an
example of a real building, the Imperial County Services Building in El Centro, California
(Koji¢ et al., 1984). Figure 2.3.5 and Figure 2.3.6 represent a West-East longitudinal

section and a typical floor layout of the building, respectively.



19

. . "(v861) "1® 92 2oy
195e ‘orqua)) |4 ut Surpjing sad1Alag Ajunoy [erradw] ayy Jo U01}298 [RUIPNYBUO] ISR -ISIA §°€°Z 2131

Sdvd 3IId
N3IamL3G
avis Hood SWv3e
noyo
L =l TN 1 I
(] ( ob| r 1 |/r 1 B g | 1|
1 1 1 ) | i i | A Y 1 —
— “ Y | i
HOO04
annowo o¢ |l ot — Q- o¢ —JT— EQOm\'\v - !
N—— 9Ly — N gqanvd €l - £0’s
1-. LAl ..b— L 1 2 0 11 1 Ly 4 L1 i B
| m(._ - || (2
A a1l 2 ‘ [ S WS I I | s a1 [ FL!I_(
e
_— wh— m.\n- | | w
L i 2 s 2 b 3 -T- N L If@?.mN
Tivm — T1IvM
— 301S 1Sv3
A oL - 3ais Lsam—_f 11y
ﬂ. [ | — [ . . A a2 2 1 LLﬁll..
sislior m_s_wﬂ\wm b
9. ./ GL 3
el : S -
[ . L — AL 24 [l [ 1 A 2 2. a 12 1 'l br'll
mmﬁm.\ 19719
sanwn10o k| Liow
whp H001d JJ<|\ |
A8 A [ Y W W 4 B U W 2 & a2t —

i
iflnlln 29°2

L\i 297,

2o

ol'sg

|||YTI| 2972




20

¥861) 'I®
19 pifoy] Ieyje ‘oxqua) [g ul Buip(ing S3[AIRG Kyunop [epredu] ayjy jo ynoke| 00y [eadAy, 9 % ‘? o:v&_.m

) ol'8¢
8’| . I . . 8’|
29'L _ 29°L — 29°L |||_‘l 29°L lv_&l 292
@ @ st~y | © (O] N S
) I—- .
@T—H __.Lwl__ﬂm ______—'_imm..
ol Tugn
N\ 201 TIVM g0
1sv3 SIN3IW313 3avOovd 1SvI3yd 301S 1S3M
g1—]—
Y S1SI0F NO 8Y1S HOOMd 291
(3] . oo W oo T o oM L] oW T T Appy BN by n S
99'22
=pvnN —-—
92/19 SWvaE .
L HOIMALNI 19719 SNWN10D 29'L
81 HOIILNI T
ov/0b cve
D S I N _ Z2/cb'2 ONINIJO w_w
O - _____ xr__ i giun el piaghenl Syl ApapR l—‘:
81 SWv3d 81— 29°L
uo<u<u./ SNWN10D 3QVOV4 - nmml_ e
® | 1l S5 |
N LEEEE EERN LN BN M oo
L ._ ~ll-s2 om.n_N




21

The building was a six story reinforced concrete structure, with a base 4170m
(136 feet 10 inches) by 26.02m (85 feet 4 inches) and height of 25.48m (83 feet 7 inches).
The columns had rectangular cross-sections 61 by 61cm (24 by 24 inches), with the area of
compression steel A, equal to the area of the tension steel A}, such that A, = A}, =0.4—1
percent of the total cross-sectional area. The ratio between the Young’s moduli of elésticity
of the steel E, and of the concrete is E;/E. = 8. The distance between the columns in
both the longitudinal and the transverse directions is 7.62 m (25 feet). The building has
two lateral shear walls, consisting of 18 c¢m (7 inches) thick panels, increasing the stiffness
of the building in the transverse (North) direction (Figure 2.3.6). The concrete floor slabs
have thickness of 7.5¢m (3 1/8 inches) and the distance between the floors is 4.11m (13.5
feet). The building has been described in more detail by Koji¢ et al. (1984) from where

the Figure 2.3.5 and Figure 2.3.6 have been reproduced.

For the percentage of steel in the cross-section, the factor f in the equation (2.3.6)
has values between 1.1 and 1.3. The Young’s modulus of the concrete is E, = 3-108#/in2,
the shear modulus is G, = 1.3-10#/in2? (= p.) . If an average value for f = 1.2 is taken,
the shear wave velocity in the vertical and in the longitudinal directions in the inside of

the building will be
B(Z) ~ 420m/s ~ 1400.ft /s
(2.3.15)
BZ) ~ 1950m/s ~ 6400.ft /s

2.3.4 Discussion

The values for the equivalent shear wave velocities in the vertical and in the
longitudinal directions obtained from equations (2.3.6) and (2.3.14) are only approximate
and are meant to be used in the further analysis only to estimate the order of their

magnitude. If the shear walls at the ends of the building were included in the analysis
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(Figure 2.3.5 and 2.3.6), the value of the shear wave velocity in the vertical direction would
have been larger (because the stiffness would have increased). Also, if the contributions of
the non-structural elements were included into the analysis, the values for ﬂg;) and ﬁe(f; )

would have increased.

The Soviet engineers (Soviet Academy of Sciences, 1987) have found the eqﬁivalent
shear wave velocities for six different types of buildings to be in the range 300 — 1800m /s
(1000-5900 feet/sec). The calculated value for the equivalent shear wave velocity in the
vertical direction for the El Centro building is within this range, while the value of the

shear wave velocity for the longitudinal direction is slightly above the upper limit.

The anisotropy is thus evident for the El Centro building and it must be considered
in the continuous modeling. The degree of anisotropy depends on the type of the structure.
For a structure with strong masonary non-structural elements, the degree of anisotropy will
be smaller during linear vibrations, while for a building with light non-structural elements

(e.g. glass, plastic) the degree of the anisotropy may be high.

In this work only isotropic continuous models will be analyzed, because the main
purpose of this work is qualitative analysis of the physical phenomena of the waves prop-

agating through the buildings.
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CHAPTER III
SHEAR WAVES IN CONTINUOUS STRUCTURAL MODELS

In this chapter, two-dimensional models of long buildings excited by the propa-
gating, monochromatic SH-waves will be considered. These models will account for the
time and space dependent character of the excitation, and their simplicity will allow exact,
analytical form of the solution. The solution can be interpreted as a transfer function of

the system.

3.1 General Discription of the Models

A simple continous model of a long building can be represented by a two-
dimensional plate, placed over the homogeneous half-space. A slice of the plate of thickness
1 has been shown in Figure 3.1.1. Let L and H represent the length and the height of
the plate and B(z,2) and u(z,z), where z and z are the spatial coordinates, the shear
wave velocity and the shear modulus in the plate. Let 85 and us; denote the shear wave
velocity and the shear modulus of the homogeneous half-space. When an incident, plane
SH-wave, with angle of incidence 8, reflects from the surface of the half-space, with the
structure placed over it, the time dependent displacement of the plate v(z, z,t) and of the
half-space v,(z, 2,t), where t is the time coordinate, have to satisfy the stress free condi-
tion at their outer boundaries and the continuity of stresses and displacements condition
at the interface between the plate and the half-space. The solution of this problem requires
numerical solution of the governing system of equations and must consider all the details
the of the soil-structure interaction problem with wave energy propagating in and out of

the structure, and with the scattered wave field being transmitted into the half-space.



24

+g 81 @ouapioUl jo ajFue Ay ], sIARM-[[S JudpIoUl £q
pajioxa pue adoeds-jjey] snosuadouroy ayj} 1940 paoejd ‘Burp[inq e jo [opouws [euoisudWIp-oM], T'T'E aindiyg




25

In this work the soil-structure interaction will not be considered and it will be
assumed that the presence of the building does not change the motion of the elastic half-
space. Assuming the linear stress-strain relationship in the building and requiring only the
continuity of the displacements at z = H it is possible to obtain an analytical solution.
Such assumptions are justified in the case of a building having much smaller stiffness than
the half-space, so that the presence of the plate has no effect on the motion in the half-space.
Then, the mathematical model of the building may be represented by a piece of Iengfh H of
a semi-infinite plate in the z-direction, with width L, stress-free boundaries at z = 0,z =0
and z = L and with prescribed displacements at z = H, equal to the free-field displacement
of the half-space. A slice of thickness 1 of the two-dimensional semi-infinite plate is shown
in Figure 3.1.2. In case of an incident plane SH-wave of frequency w, traveling with velocity
Bs through the homogeneous half-space and with an angle of incidence 8 (Figure 3.1.1) the

motion of the half-space can be expressed as (Achenbach, 1973)

oo =) (=)

ve(z, 2,t) = 2cos @ (3.1.1)
z
where
(3) — ﬂs
¢’ = (3.1.2a)
and
(3) = ﬂa
o) = 2 (3.1.2b)

are the phase velocities of the wave in the z and in the z-direction, respectively. Therefore,

the free field displacement at the surface of the half-space will be

)

iw( &
ve(z, H,t) = 2e °z (3.1.3)

Three models of this type will be analyzed in the present chapter. All three models

have isotropic material constants §(z, z) and u(z,z). The first model considered, Figure
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Figure 3.1.2 Two-dimensional continuous model of a building of length L and
height H. Soil-structure interaction is neglected. ngx, z) and B(z,z) are the
equivalent shear modulus and shear wave velocity of the continuous building
model. The building is excited at z = H by the free-field displacement on the
surface of the half-space.
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(a) (d)

Wt

.
L, - S

(b) (c)

Figure 3.1.3 a) A building without major discontinuities. b) A building with
two shear walls at the ends. ¢) A building with a central core. d) A building
with “soft” first floor.
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3.1.3a, has constant values of the shear wave velocity and the shear modulus, and will
be presented in section 3.2. The second model is piecewise homogeneous, having vertical
discontinuities in the material properties and will be discussed in the third section of this
chapter. It corresponds to a building with stiff shear elements at the ends (Figure 3.1.3b),
or to a building having a stiff central core (Figure 3.1.3c), for example, an elevator core.
The third model, that will be presented in section 3.4, is piecewise and homogeneous, but
having horizontal discontinuities in the material properties. Of interest in this work is a
plate made of two horizontal layers, with the lower being “softer” than the upper one.

This model corresponds to a building with a “soft” first floor (Figure 3.1.3d).

The two-dimensional wave equation, which is the governing equation of motion,
will be solved by the method of separation of variables, and eigenfunction expansion of
the solution will be used to derive the displacement response of the plate to input base

iw(t-2) , where ¢ is the horizontal phase velocity of the motion in the soil for given

motion e
circular frequency w. This solution will also represent the transfer function of the system,
so that the response to any enforced displacement at the base can be calculated by using
the Fourier synthesis, discussed in the next chapter. Thus, without a loss in generality,

in this work the emphasis will be placed on finding and interpreting the response to the

periodic wave excitation only.

3.2 The Homogeneous Model

3.2.1 Formulation and Solution of the Problem

The mathematical model that will be considered in this section is the two-
dimensional, isotropic, semi-infinite, elastic plate of width L, shown in Figure 3.2.1, having
constant u and (3, the shear modulus and the shear wave velocity, for 0 < z < H, and

whose displacement at z = H has to be equal to ¢(t=%). Of interest are the displacements
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Figure 3.2.1 Homogeneous model of a building of length L and height H, and
excited at the base by a wave of amplitude 1, frequency w and propagating with

phase velocity ¢ in the positive z-direction. The soil-structure interaction is
neglected.
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of the plate for 0 < z < H that will correspond to the displacements of a building with
equivalent shear wave velocity # and shear modulus p placed over the elastic half-space

and excited by a wave motion e‘“(t"f) at its base.

The governing equation of motion for the anti-plane displacement of the plate

v(z, z,t) is the two-dimensional, linear wave equation

v(z,2,t) | 8%v(z,2,t) _ 1 8%v(z,2,t)

5od 5ot R (3.2.1)

where z and z are the spatial coordinates, ¢ is the time coordinate and 3 is the shear wave
velocity of the plate. The conditions that the displacement v(z, z,t) has to satisfy are the

following boundary conditions

Tzy=0 at z=0 , 0<z<o (3.2.2a)
Tzy=0 at z=L , 0<z<o0 (3.2.2b)
T,y =0 at z=0 , 0<z<L (3.2.2¢)

and the displacement condition
v=ew(t-%) at z=H , 0<z<L , (3.2.3)

where 72y = pdv/dz and 7,y = udv/9z are the shear stresses in the plate and w and c are

the circular frequency and the phase velocity in the z-direction of the motion at z = H.

The differential equation (3.2.1) and the boundary conditions (3.2.2a,b and c)
define a boundary value problem (also called a Sturm-Liouville problem) and the functions
that satisfy the differential equation and the imposed boundary conditions are called the
eigen-functions of the problem. The set of all the eigen-functions of a Sturm-Liouville

problem is a complete orthogonal set, (Courant and Hilbert, 1953), that may serve as a
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basis in the representation of any solution of the problem. The differential equation (3.2.1)
is variable separable, implying that every eigenfunction can be represented as a product
of a function of z, a function of z and a function of ¢. The following representation of any

solution of the boundary value problem results from the facts mentioned:
v(z,2,t) = Y C;X;(2)Z;(2)T(2) (3.2.4)
J

where X;(z) and Z;(2) are the eigenfunctions for the z and the z-direction, T'(t) is the
time dependent part of the solution, and C';-‘ are the Fourier coefficients of the orthogonal

expansion.

The eigenfunctions X;(z) and Z;(z) that satisfy the boundary conditions (3.2.2a,b
and c) are the following V

X;(z) = coskg ;z (3.2.5)
Z;(z) = cosk, ;z (3.2.6)

where k; ; and k, ; are the wave numbers in the z and in the z-direction, corresponding
to the j-th eigenfunction. The time dependent function T'(t) matching the displacement
condition (3.2.3) is

T(t) = et (3.2.7)

The wave numbers k. ; and k, ; together with the wave number k£ = w/f in the

plate appear as constants in the separation of the variables and are related by the following

kaj = \ /K2 — k2 (3.2.8)

The wave numbers k, ; can have only certain allowable values, specified by the frequency

equation

equa.tion
T
ke =2

'=0,1,2,..., 3.2.9
7 J (3.2.9)
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that follows directly from the boundary condition (3.2.2b). It follows from the frequency

equation that the eigenfunctions of the problem form an infinite set.

The eigenfunctions Xj;,5 = 0,1,2,... are orthogonal with respect to the inner

product (-,-) defined as
L
(o= | 1@z (3.2.10)

where f and g are continuous functions on the interval [0, L], and g(z) indicates the complex
conjugate of g(z). When an inner product is taken of an eigenfunction X with the left and
the right hand side of the equation (3.2.3), after substituting the expression (3.2.4) for v

and the value H for z, the equation
Crp Zn(H)(Xn, Xn) = (67, X;) (3.2.11)

follows. From there, the Fourier coefficients C} are

Chn
Cr = =0,1,2,... 3.2.12
"= 7o) ,n=0,1, ( )
where
w X,
Cp = (—e——")- ,n=0,1,2,... . (3.2.13)

(Xna Xn)
The coefficients Cp,,n = 0,1,... can be calculated analytically by performing direct inte-

gration of the required functions, and their values are

Co= 7}5 [sin wh +1 (cos wh _ 1)] (3.2.14a)
ry ¢ ¢
2 “ no. wL . n_ WL
Cpn= I (_@)2 = (M)z {(—1) sin — +1 ((——1) cos — —1 ,n>1 (3.2.14b)
c L
when w/e¢ # mn/L for any m =1,2,3,..., and

) 0, m even

Com el -y = {2 20 (32150)
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9 X i 0, (n+m) even,n #m
Cp,= f—n_zz——;;z’_‘;—r? [(—1) - 1] = —4immr (n +m)odd, n>1 (3.2.15b)

(m2—n2)x2
L

Cm=1 | (3.2.15¢)

if w/c = mm /L for some integer m. In the limiting case when w/c — 0, the coefficients C,

become

Co=1 (3.2.16q)

and

Cn

Il
L

n>1 . (3.2.16b)

3.2.2 Discussion of the Solution

The wave numbers in the z-direction k, can take on only real values in order for
the boundary conditions to be satisfied, and these values are determined by the frequency
equation (3.2.9). Consequently, the allowable values of the wave numbers in the z-direction

k. are
w?2 n2q2?

prL*

kzn = n=0,1,2,..., (3.2.17)

and are real only for finite number of modes, whose index n satisfies the inequality

- nT
> —_ 3.2.18
> (3:2.15)

™| &

For the rest of the modes, the wave numbers k, , are pure imaginary, and therefore, the

corresponding shape functions Z,(z) are hyperbolic functions of a real argument. Knowing



34

these facts, the displacement of the plate can be written as follows

N w2 _ n2x2
nrz €08\ gz — T2 %
v(z,z,t) = Ch, cos
¥ L w2 n2x2
n=0 Ccos az 'LT—H

(3.2.19)

where N is the largest integer n that satisfies the inequality (3.2.18), and all the arguments

of the functions involved are real.

Some important properties of the behavior of v(z, z,t) can be concluded by analyz-

ing the analytical expression (3.2.19), and without doing any actual numerical calculations.

The coefficients C,,n = 0,1,2,... have always finite values, even when the input
base motion has the same wave number in the horizontal direction as one of the eigenfunc-
tions in the z-direction X,(z),n = 1,2,..., as can be seen from equations (3.2.14a and b),

(3.2.15a,b and c) and (3.2.16a and b). The shape functions

nrT d w2  n27? 0.1
COS—L—- an cos Ez——_L‘z‘—Z, n=4ul,...

are also bounded.

The cosine-hyperbolic function is an increasing function when its argument takes

real and positive values. Therefore, the term

n27r2 71.27r2
— —z cosh

cosh

will have the maximum value equal to 1 at z = H and will rapidly decrease towards the

top of the plate. This simply means that the displacement of the plate resulting from the
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modes corresponding to n > N will be small at the top of the plate (z = 0), will increase -
with increasing z and at z = H will be large enough so that the total displacement can
follow the imposed displacement there. As a result, no energy is being transmitted into

the plate by the modes that are hyperbolic functions in the vertical direction.

On the other hand, the displacement inside the plate, resulting from the modes
that are harmonic functions in the vertical direction, can be very large and become un-
bounded when the following condition is satisfied

2 2.2
ﬁ’__ﬂH=(k+l>,,, n';

5~ I3 > (3.2.20)

The frequencies wyx that satisfy this condition are called the resonant frequencies of the
building. For the first mode (n = 0) they are the same as the resonant frequencies for
a cantilevered shear beam, and for the higher modes (n > 1), the same as the resonant

frequencies of a two dimensional shear plate, rigidly fixed at one side.

When the input wave number w/8 becomes smaller, the number of the modes
having a harmonic shape function in the vertical direction decreases. However, even when
the wave number in the plate w/f is so small that zero is the largest integer satisfying
the inequality (3.2.18), there is a mode that has a harmonic shape function in the vertical
direction, the zero-th mode, through which energy can be transmitted into the interior of

the plate and whose Fourier coefficient C} = C,/ cos(wH /8) may have unbounded values.

The shape functions in the horizontal direction X, (z),n =0, 1,... represent stand-
ing waves, that result from the constructive interference between the waves reflected from
the ends of plates at z =0 and z = L. For even n X, (z) are sylﬁmetric and for odd n

they are antisymmetric functions with respect to z = L/2.
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The expressions (3.2.14a,b), (3.2.15a,b) and (3.2.16a,b) for the Fourier coefficients
of the eigenfunction expansion of the displacement response tell about the contribution of
the particular modes to the overall displacement. The equations (3.2.14a,b) show that in
general all the Fourier coefficients are nonzero, meaning that all the modes of vibration

are excited.

The equations (3.2.15a,b) imply that in the special case when the wave number
in the z—directidn of the input motion equals the wave number in the z-direction of one of
the higher modes, i.e. w/c = mn/L for some m > 1, the m-th coefficient has some value
and the rest of the coefficients are either zero, or pure imaginary, with absolute value less
than 1 If m is even, all the other even coefficients are zero, and the odd ones are nonzero.
If m is odd, all the other odd coefficients are zero, while the even ones are nonzero. Even

in this spacial case both symmetric and anti-symmetric modes are excited.

It is interesting to examine the behavior of the function v(z, z,t), given by the
equation (3.2.19), in the limiting case when the wave number of the input motion w/c = 0.

Then, the input motion at z = H
v(z, H,t) = &'t (3.2.21)

becomes a function of time only. In the previous section it was shown that in this limiting
case all the coefficients C, are zero except C,, which is equal to 1, meaning that only
the first symmetric mode contributes to the total displacement v(z,z,t), and that no

antisymmetric modes can be excited.

3.2.3 The Dimensionless Parameters of the Model and

Discussion of the Frequency Equation

To make the problem more general, it is convenient to set up the problem and to
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carry out the analysis of the solution in terms of dimensionless parameters. The four basic

parameters can be defined as follows

dimensionless length, (3.2.22)

dimensionless circular frequency, (3.2.23)

dimensionless horizontal phase velocity

SIS

in the plate, (3.2.24)

and

dimensionless horizontal phase velocity of the

™o

input motion, (3.2.25)

where T = 27 /w is the period of the input motion and ¢, = w/k; is the phase velocity in

the z-direction. The above parameters are related by the following equation

Q =2mn (3.2.26)

hd
B

The wave numbers k, k;,k, and the wave number of the input motion w/c, ex-

pressed in terms of the dimensionless parameters will have the following form

w wLl 0
b=3=Fi=% (3.2.27)
w wLpg Q/fec; -1
k.= —=—-=—| = 2.
z e 5e. L\PB > (3 2 28)
0 ez \ 2 ‘
ky=+k?—k2= AT (-B‘i) (3.2.29)

% = % (.;.>—1 , (3.2.30)
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The frequency equation (3.2.9) in terms of the dimensionless parameters will be-
come

1
fﬂi ==, n=0,12,..., (3.2.31)

showing that the horizontal phase velocities in the plate are linear functions of the dimen-
sionless circular frequency 1. The dispersion curves ¢;/8 = f(Q2) for the homogeneous
plate are straight lines, with slope 1/n7 and passing through zero. For given frequency ,,
the allowable horizontal phase velocities in the plate ¢/ are the points where the vertical
line } = 1, intersects the dispersion curves. The intersection with the dispersion curve

corresponding to n = 0, and which has vertical slope, will be at ¢,/8 equal to infinity.

The resonance condition (3.2.20) in terms of the dimensionless parameters will

have the following form

Il
© o

(3.2.32)

Va2 - n27r2% = (k+ %) , :

where N is the largest integer n such that nw < (1.

3.3 Plate Having Vertical Discontinuities in the Material Properties

3.3.1 Formulation and Solution of the Problem

The mathematical model discussed in this section is a two dimensional, semi-
infinite, elastic plate of length L that has been made up of three layers of different material
properties and perfectly bonded to each other. The layers are isotropic and homogeneous
and with £;, 8; and p;,t = 1,2, 3 representing their widths, shear wave velocities and shear
muduli (Figure 3.3.1). The displacement response of the plate to the imposed SH wave

w(t-2) at » = H will be derived, again by using the method of separation of

motion e
variables and eigenfunction expansion of the solution. Similarly as in the previous section,

the displacements of the plate for 0 < z < H will correspond to the displacement of a
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[ Z

Figure 3.3.1 Model of a building of length L and height H with two vertical
discontinuities in the material properties. It is excited at the base by a wave of
amplitude 1, frequency w and propagating with phase velocity ¢ in the positive
z-direction. The soil structure interaction is neglected.



40

building of length L and height H placed over the homogeneous half-space and excited by

the same propagating SH wave motion at the base.

The displacement in the plate v(z, 2,t) can have the following representation

v (z,2,¢) , 0<z<{
v(z,2,t) = { v (z,2,t) , Li<z</tli+2L (3.3.1)
v®(z,2,t) , L+la<z<L

Each of the displacements v(*)(z, 2,t),7 = 1,2,3 has to satisfy the two-dimensional wave
equation (3.2.1) with the corresponding value of the shear wave velocity 8. The displace-
ment v(z, z,t) has to satisfy the same boundary conditions (3.2.2a,b and c) and the same
displacement condition at z = H (3.2.3) as the homogeneous plate. It also has to meet

the following conditions requiring continuity of stresses and displacements

vM(Ly,2,8) = v (&, 2,1) (3.3.2a)
i (L1, 2,8) = 1D (L1, 2,1) (3.3.2b)
U(z) (81 + £2,Z,t) = 1)(3) (£1 + Zg,z, t) (3330)
and

T+ by, 2,t) = Dl + £, 2,8) (3.3.3)

where

. (3)

$)(z, 2,t) = u;al—‘%—z—’ﬂ i=1,2,3 (3.3.4)

are the shear stresses in the layers.

Using the method of separation of variables and the eigenfunction expansion of the

solution, the displacement v(z, z,t) can be represented as in equation (3.2.4), where the
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time dependent function T'(t) and the eigenfunctions in the vertical direction Z;(z),; =
1,2,... are the same as for the homogeneous model and are given by the equations (3.2.6)
and (3.2.7). The eigenfunctions for the horizontal direction X;(z),7 =0, 1,... that satisfy

the imposed boundary conditions can be represented as follows

cos kgj).:v, 0<z<Y,
Xj(z) = ¢ AP coskPz + B sink(lz, £ <z<+40 (3.3.5)
AJ(-3) cos kf:'J) (L - z), L+l <z<L

where ka(:,g is the wave number in the z-direction in the i-th layer and corresponding to the

j-th mode of vibration.

The wave number in the vertical direction, k, ;, corresponding to the j-th mode of
vibration, is the same in all the layers because of the continuity conditions, and is related

to the corresponding wave numbers in the horizontal direction by the following equation

K=k, i=123 (3.3.6)
w

where k; = 5 is the wave number in the i-th layer.

The continuity conditions (3.3.2a,b) and (3.3.3a) imply the following form of the

coefficients A§.2), B}z) and AJ(-3) that appear in the equation (3.3.5)

(1)

k.
(2) _ (1) (2) H1 Pz . (1) 1. (2)
A7 = cos kz’jll - cos kz’jll + ;;;(-2—]5- sin kz,j£1 -sin kw-ll , (3.3.7a)
z,
(2) (1) @y, . mke) ) (2)
—_— Zy) 3
Bj = sin lcz,jll - cos kz’jll + ;2--":—(2—) sin kz,jﬁl - cos kz’jel (3.3.7b)
z,]

and
1

AP =
cos ki?j {3

; [A(z) cos kg} (81 + &) + B@sin k,(:,) (& + 52)] . (3-3.7¢)
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The continuity condition (3.3.3b) leads to the frequency equation for the system
F2 2z [ A(z) smk( )(ll +£3) + B(z) cos k(z) (& + 62)] = _A§3) sin kgf}la . (3.3.8)

After applying the relationship among the wave numbers (3.3.6), the frequency equation

(8.3.8) will have only one unknown and its solutions can be evaluated numerically.

It can be proved (Appendix B) that the eigenfunctions X;(z) are orthogonal with

respect to the weighted inner product (-,-),, defined as follows

(f,9)w = / f(2)3(z)w(z)dz (3.3.9)

where the weighting function w(z) is
p1, 0<z<4¢
w(z) = {/12, i <z< )+ 4, , (3.3.10)
uz, L+l <z<L

f and g are continuous functions of z and the bar over g(z) indicates the complex conjugate

of g(z).

Following the procedure that was used in the previous section, the Fourier coeffi-
cients C,, for this model have the representation (3.2.12) where

(e7%%=, Xn(z)),

= %@, %),

n=0,1,... . (3.3.11a)

Since the eigenfunctions X, (z) and the function €' 2, can be differentiated and integrated
analytically, the coefficients Cp,,n = 0,1,... can be expressed in an analytical form (Ap-

pendix C).

When w/c — 0, i.e. when the motion at z = H becomes Ae*“%, the coefficients

Cp can be calculated as follows

A1) P P

(Xa(z), Xn(2),, ) (3.3.11b)
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and will be non-zero only for even n.

3.3.2 The Dimensilonless Parameters of the Model

The dimensionless length n for this model is defined in the same way as for the
homogeneous model, equation (3.2.22). The other dimensionless parameters are defined in

a similar way

0= %I—' : dimensionless circular frequency, (3.3.12)

1
7;: dimensionless z — phase velocity of the

1

input motion, (3.3.13)

and
0
?i— : dimensionless z — phase velocity

in the 7 — th layer. (3.3.14)
The first three of the dimensionless parameters are related by the following equation

n=mm§ : (3.3.15)
1

The wave numbers in terms of these parameters will be

05
k=15 (3.3.160)
k;=Q/L , (3.3.160)
N\ —2
~ N B:\2 Lo o
() = == Lot =
k; L\J (,Bj> 1+ ( 5 J#t . (3.3.17a)
N\ —1
. 0 c(’)
() = 22| 2=
k; I ( 5 ) (3.3.17b)

and
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9] e -
kz = —4|1- 7 (33.18)

3.3.3 Discussion of the Frequency Equation

The horizontal wave numbers in the “softest” layer are always real (the proof is
contained in the Appendix D), while in the other two layers they may be real or imaginary.
Because the numerical searching for real roots only is more convenient than searching for
roots that may be real or imaginary, all the wave numbers that appear in the frequency
equation (3.3.8) will be expressed in terms of the wave number in the z-direction, Ic,(f),
where ¢ is the index of the layer which has the smallest value of the shear wave velocity.
Because of the same reason the dimensionless parameters have been defined relative to the

“softest” layer.

In Figure 3.3.2 the normalized phase velocities cgz)/ B2 = f(wL/B2) have been
drawn, for a plate with thin and stiff outside layers (i.e. ¢1/L ={3/L=0.1and /B2 =
B3/B2 = 4). The same material density has been assumed in all the layers and therefore
p1/p2 = /B1/Bz = 2 and uz/us = vB3/B2 = 2. The first impression from this figure is
that there is wave dispersion in the solution of this problem, for all the modes. (In the
case of the homogeneous plate there was no dispersion of ¢;/f8 for n = 0). All the phase
velocities in Figure 3.3.2 asymptotically approach straight lines for large wL/B,. For small
wL/B2 the curve for n = 0 approaches a constant value as wL/B, — 0 while the curves for

n > 1 approach zero, as straight lines, when wL/8; — 0.

For a given wL/f,, the allowable phase velocities e /B2 can be determined from

intersection points of the line wL/B2 = constant with the dispersion curves, as shown in
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al-
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wL/B,

Figure 3.3.2 Dispersion curves ) /B2 = f(wL/B2) for the model with thin and
stiff shear walls. £;/L = £3/L = 0.1 and (3:/B2 = B3/B2 = 4 (see Figure 3.3.1).

‘ c&z) is the z-phase velocity in the central layer.
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Figure 3.3.2. In Figures 3.3.3a, b and c the first five mode-shapes (n = 0,1,2,3 and 4)
for the z-direction are shown, for wL/fB; = m,27 and 4, respectively. The mode-shapes
corresponding to n = 0,2,... are symmetric, while those that correspond to n = 1,3,...

are anti-symmetric.

The characteristics of the dispersion curves and of the mode-shapes are closely
related and the asymptotic behavior of the curves is reflected in the appearance of the
mode-shapes. For example, for large wL/f, the dispersion curves asymptotically approach
the dispersion curves of a homogeneous plate of width £, (which is the width of the soft
layer of the layered plate) and fixed at z = 0 and z = £;. The shape functions for the
plate fixed at both sides are

Xn(z) =sinkz nz (3.3.19q)

and the allowable wave numbers are

=2 n=1,2,3... . (3.3.190)
£y

(kz = 0 is not an eigenvalue, because the corresponding eigenfunction would be identically
equal to zero, and by definition the eigenfunctions cannot be identically equal to zero).
The shape functions of the layered plate for large wL/fB, instead behave like sin Tz for
large wL/B3, which can be seen in Figure 3.3.3c. The shape function for n = 0 in this
figure resembles a half wavelength of a sine wave, the mode-shape for n = 1 contains one
wavelength of a sine wave, the one for n = 1 contains 3/2 wave lengths of a sine wave etc.
From this behavior of the mode-shapes it can be concluded that for the waves with large
frequencies, i.e. small wave lengths, the stiff layers act as stiff barriers so that the waves

will propagate only through the central soft layer.

Comparing parts “a”, “b” and “c” of Figures 3.3.3 one can see that as wL/8; — 0

the mode-shapes have longer wavelengths. For small wL/8; (e.g. wL/B2 = m, Figure
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3.3.3a), the mode-shape for n = 0 approaches a straight line, and the mode shape for
n = 1 looks almost like a coswz/L. In other words, these modes start to look like the
shape functions of a homogeneous plate with stress free boundaries at z = 0 and z = L.
This means that the first two modes, and corresponding to the waves with small phase
velocities for this frequency, do not “see” the discontinuities at the ends of the plate. The
higher modes for this frequency still look like the modes for a building with fixed ends.
This means that the waves with shorter wave lengths will still “see” the thin “h#rder”

layers at the two ends as a barrier.

Another feature of the asymptotic behavior of the dispersion curves in Figure 3.3.2
is thaf. for small frequencies as w — 0 the dispersion curves for n > 2 have the same slope
as the dispersion curves for n —2 at high frequencies. For example, the curve for n = 2, for
small wL /B4, has almost the same slope as the curve for n = 0 for higher frequencies, the
curve n = 3 for large wL/B, has the same slope as the curve for n = 1 when wL/B, — 0,
etc. The curves with similar slope will have similar wave numbers k. and therefore the
corresponding mode shapes will contain almost the same number of wave lengths. Even
though the lower order modes at higher frequencies may look like higher modes at lower
frequency, the number of zero crossings, which is equal to the order of the mode, is not

changed.

In Figure 3.3.4 the dispersion curves eV /B1 = f(wL/B1) have been illustrated for
a layered plate with one stiff central layer (¢, = 0.2L, £; = €3 = 0.4L, (,/B2 = B3/B2 =
1/4). The first five mode-shapes for wL/B; = 7, 27w and 4~ are illustrated in Figures 3.3.5a,
b and c.

For large freqeuncies the phase velocitiesforn =0andn =1,n=2andn =3,n =

4 and n = 5, etc. asymptotically approach the phase velocities for a homogeneous plate,
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Figure 3.3.4 Dispersion curves c( /B1 = f (wL/,Bi) for the model with stiff
central layer (central core), with £, /L = £3/L = 0.4 and 85 /81 = B2/B3 = 4 (see

Figure 3.3.1). cg) is the z-phase velocity in the outside layers.
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with width and material properties the same as the width and the material properties of

the soft layer, and fixed at £ = £;. The eigenfunctions for such a bpla.te are
Xn(z) =coskgnz (3.3.20a)

where

k,n=(n+1>1 n=0,1,... . (3.3.200)
' 2) 4 .

This means that for large frequencies the above pairs of modes will have almost the same
wave numbers and therefore will contain the same number of wavelengths. This can be
observed for the mode-shapes in Figure 3.3.5¢. In this figure (wL/B; = 4m) the modes
for n = 0 and n = 3 have almost the same value of the wave number k,. The only
significant difference in the mode shapes is that one of them is symmetric and the other
one is antisymmetric with respect to £ = L/2. Both pairs of those mode-shapes in the first
layer look like cos(n + 1/2)rz/¢;, for n = 0 and 1, respectively, which would be the mode
shapes of the first layer if it were fixed at z = ¢;. Physically, this means that for higher
frequencies the central layer acts as a barrier for the waves, and that the soft layers will
vibrate “independently” of each other. With wL/f8; — 0, the mode shapes become more

flat and the mode shape for n = 0 approaches a constant.

For small and for high frequencies, the anti-symmetric mode-shapes are not very
different from the anti-symemtric mode-shapes of a homogeneous plate. It can be ex-
pected, therefore, that the central core will not change appreciably the anti-symmetric

displacements of the plate, but that it will change the symmetric ones.

3.4 Plate with Horizontal Discontinuities in the Material Properties

3.4.1 Formulation and Solution of the Problem

The model considered in this section is a two-dimensional, semi-infinite plate of
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width L, composed of horizontal layers with different material properties, perfectly bonded
to each other. The materialA of which the layers have been made is assumed to be homo-
geneous, isotropic and perfectly elastic. The model is shown on Figure 3.4;1, where h;, 8;
and ui,t = 1,2,... M represent the height, shear wave velocity and shear modulus of the
i-th layer and M is the total number of layers. h;, t = 1,..., M — 1 represent the thickness
of the layers and has represents the distance between the top of the semi-infinite bottom
layer and the line z = H. Again, an analytical expression for the displacement response of

iw(t—

fhe plate to the imposed SH wave motion e %) at 2 = H will be derived by using the

method of separation of variables and the eigenfunction expansion of the solution.

Let v(‘)(z, z,t) represent the displacement in the i-th layer. Then, the displacement

of the plate may be written as follows

(v()(z,2,t) 0L z<h}
v (z,2,t) hI<z<h}

v(z, z,t) = < (3.4.1)

v (z,2,t) hl_,<z<h

(vM)(z,2,t) h};_,<z<00

where b} = Z;=1 h;. The displacements in the layers v(!)(z, z,t) have to satisfy the two-
dimensional wave equation (3.2.1) with the constant § equal to the corresponding shear
wave velocity in the layer. The boundary conditions that the displacements v(z, 2, t) satisfy
are expressed in the equations (3.2.2a,b and c), where 75y = p.—g% and 1,y = ,ug% are the

shear stresses in the pla.te, and

rI"'].’ OS$<hI

p=q ki, hi_<z<h] (3.4.2)

( bM, hp_ Sz <00
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Figure 3.4.1 Two-dimensional, continuous model of a building of length L and
height H having horizontal discontinuities in the material properties. The soil-
structure interaction is neglected, and the building is forced to vibrate by the
free field displacements on the surface of the half-space.
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At the interfaces between the different media, the following continuity conditions have to

be satisfied
v®) (e, hf,t) = v0+t (g, h,t) yi=1,...,M —1 (3.4.3a)
8 (z, h,t) = ritl(z,hEt) ,i=1,...,M -1 (3.4.3b)

where T,S,’z) = ug ag(;) is the shear stress in the i-th layer. The displacement condition at

z = H is the same as for the previous models and is given by the equation (3.2.3).

By applying the same methods that have been used in solving the previous two
problems, the displacement v(z,z,t) may have the representation as in the equation
(8.2.4), where the time dependent function T'(t) and the eigenfunctions in the z-direction

X;(z),7 =0,1,2,... are the same as in the equations (3.2.7) and (3.2.5), respectively.

The frequency equation results from the requirement that the allowable wave num-
bers in the z-direction k; ;,5 = 0, 1,... must satisfy is the equation (3.2.9), same as for the
homogeneous model. The allowable wave numbers in the z-direction have different values

in different layers, and can be calculated from the following relationship between the wave

(g)_ 2 2 i=1,...,M
kai = V ki —kz,; j=0,1,... ° (3.4.4)

The eigenfunctions for the vertical direction and satisfying the boundary condition

numbers

(3.2.2c) and the continuity conditions (3.4.3a and b) can be represented in the following

form .
cos kg}z, 0<z<h]
AJ(-z) cos kg’;-)z + BJ(.Z) sin kz,) z, hi<z<h;
I . _ , : 3.4.5
i(2) A;f) cos kg}z + B}') sin kﬁ,‘,}z, hi_1 <z <hf 349
A§M) cos lcg;l)z + BJ(.M) sin kﬁﬁ-‘)z, hy—y Sz <00
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where the coefficients A_S-i) and B}i) can be calculated by the use of the following recursive

equations
A(') A(' 1 [cosk(1 Dpr_ lcoslc(’)h}‘_1

(i-1)

k
HKi-1 Pz (* 1)« (8) p*
” k(') sink, . 'h;_;sink, h,_l]
| (3.4.6a)
+ BJ(.i—l) sin kgf;l)h:-‘_l cos kﬁ,;hf_
pia KDy ()
i—1%2; i— " . *
i k$) cosk,; “hi-ysink, ;hi_
g
B0 — a8 [k ik
k(‘ 1)
4 Bim1 2y smk(' 1)h“ 1coslc(‘)hff—]
Hi k() !
(3.4.6b)
+ B}i-l) sin kg;.l)hfq sin kg}h’i‘_l

kG
+#;:1 :(") cosk(’ Yy lcoskij)h;“_]

2,

fort=2,3,...,M, and A§.1) =1 and BJ(I) =0.

The Fourier coefficients C}, that satisfy the displacement condition at z = H have

the representation as in the equation (3.2.12), where
Zn(H) = AM cos kM H + BM sin k(M H (3.4.7)

and the coefficients Cp,,n = 0,1,... are the same as the corresponding coefficients for the

homogeneous model (equations (3.2.14a,b), (3.2.15a,b) and (3.2.16a,b)).
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3.4.2 The Dimensionless Parameters of the Model

The dimensionless length 7, again is defined in the same way as for the homo-

geneous model in section 3.2.3. The other dimensionless parameters for this model are

defined as follows
wl
l=—:
Bum
Lz
Bm
and
£
B

dimensionless circular frequency, (3.4.8)
dimensionless phase velocity in the

z-direction in the lowest layer, (3.4.9)

dimensionless phase velocity of the input

motion in z — direction. (3.4.10)

The wave numbers expressed in terms of the dimensionless parameters are

and

ki =~

0 Bm

A (3.4.11)

k) = \/ Q2 (@i‘-)z — (nm)? % (3.4.12)

Bi

(i;) o (3.4.13)

3.4.3 Discussion of the Solution

Because of the same form of the frequency equation as for the homogeneous plate

problem, the dispersion curves ¢,/8a = f(2) and the shape function X,(z) will remain

the same as before. However, the shape functions Z,(z) will be different.
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Of interest in this work is the case when the number of layers is equal to two, and
when the upper layer is “harder” than the lower layer (Figure 3.4.2). Such a model will
be used to represent a building with a soft first floor. The wave numbers in the vertical

direction for this model will be

_ |
W= /() (™ .-
k) \/ ( ﬂ1> ( Z ) n=0,1,... (3.4.14a)

(2) w 2 nm\ 2 |
k2) = (E) - (T) n=0,1,... . (3.4.14b)

From the above equations it can be seen that for the first mode (n = 0) both wave

numbers are always real, meaning that the shape function Z,(z) will always be composed
of harmonic functions. The higher modes may be harmonic, or hyperbolic functions,
depending on the frequency w and on the values of the shear wave velocities §; and f,.
The number of modes that have real wave numbers in the z-direction in both layers is
finite. Let N; be the total number of the modes with real wave numbers in the vertical

direction in the i-th layer. Then N; is the largest integer n for which
(3.4.15)

Since the upper layer is “harder” than the lower one N; > N,.

Real wave numbers kéj?, correspond to modes that are harmonic functions in the
t-th layer and imaginary kéf,. correspond to hyperbolic functions in the ¢-layer. If the
upper layer is much “harder” than the lower one, then N; < N, and there will be more
modes that are harmonic functions in the lower layer, continuing as hyperbolic functions
in the “upper” layer. These modes will be associated with propagation of energy into the

lower layer only. The upper part will have displacements that decay exponentially towards

the top of the plate.
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Figure 3.4.2 Two-dimensional, continuous model of a building with soft first
floor. The soil-structure interaction is neglected and the model is excited to

vibrate by the imposed displacement ew(t-%) at 2 = H.
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The Fourier coefficients C,, will become infinitely large when
A cos kg,), + B® sin kg,)‘ -0 . (3.4.16)

The frequencies w for which this happens are called the resonant frequencies of the plate.
During resonance an infinite amount of energy is being transferred into the plate and its
displacements become unbounded. Realistic models have damping and during resonance

their displacements are finite, but may be large.

When n — 0, for the input motion w/¢ — 0 and the excitation becomes Ae®“?,
with A =constant. Similarly, as in the case of the homogeneous plate, only the 0-th mode
will contribute to the displacement, and the displacement of the plate will be symmetric

with respect to z = L/2.

3.5 Response of Buildings to Rotational Excitation

3.5.1 The Rotational Excitation

For small values of the dimensionless length 7, the effects of the wave passage may
be considered approximately by representing the motion at the base of the building as a

translation Ae*“t of the end z = 0, plus a rotation ¢,e*“t about the same end.

For the two-dimensional problem when the seismic waves propagate in the z-
direction under the building, the torsional excitation ®,(z,t) can be defined as follows

dv,(z, 1)

Q18(:t’ t) = ax )

(3.5.1)

where v,(s,t) is the displacement at the surface of the halfspace.
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When the SH-wave displacement at the surface of the halfspace is a propagating

wave with wave number w/c in the z-direction, i.e.
vs(z,t) = ew(t=2/9) (3.5.2)
then, the torsional excitation will be:

B,(z,t) = -’—c-“ie‘“(*-i) , (3.5.3)

having a phase delay of /2 relative to v,(z,t). For small values of the dimensionless length
of the building n, i.e. for L << ¢T, where T is the period of the wave, the displacement
under the building is nearly a straight line, implying that all the points at the base of
the building will have nearly the same amplitude of the torsional excitation, and can be

expressed as

®,(t) = d et (3.5.4)
where the amplitude ®, is
o, = -’7“’ . (3.5.5)

The amplitude A of the translational excitation for the base motion (3.2.2) will be:
A=1 . (3.5.6)

Figure 3.5.1 represents an in-plan view of a building excited by a “long” wave, and illus-

trates the translational and rotational excitations.

The synthesis of torsional accelerograms out of the translational ones was studied

by Lee and Trifunac (1985) and further details about this topic can be found in their work.
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3.5.2 The Response of the Building

The displacement response of the building v, for small values of 7, can be rep-
resented as a summation of the responses to the translational vir., and rotational v,.:
excitations separately, i.e.

V = Vtran + Vrot - (3.5.7)

If the excitation is same as in equation (3.5.2) and the building is represented by
the homogeneous model, the response to the translational part of excitation Vs tran(t) will
be:

Viran = Zo(z)ei“t , (3.5.8)

and follows from the analysis in section 3.2.2. The response to the rotational part excitation
®,(t) can be expanded in terms of the eigenfunctions of the model as follows:
m ~ -
Vpot = E CrXn(2)Zn(2)e™t . (3.5.9)
n=0

Similarly, as in the previous sections, the Fourier coefficients are:

Ct = Cpn/Zn(H) (3.5.10)
where
~ W
Co,= —EZL (35110,)
and
& 0 , 1 even 3.5.115
=142 (&) nodd (3.5.11)

The total displacement v expanded in terms of the éigenfunctions will have coef-
ficients C;; as follows:

C = Cn/Zn(H) (3.5.12)
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where
twl
Co =1- E—-c— (3.5.130.)
and
c 0 , n even 3.1.13b
ST CORNEL (. 1130

It can be shown that the corresponding coefficients C, given by equations (3.2.14)
approach C, and C, above, when 7 is small (see Appendix E). Thus for small n the
response of extended structures to propagating wave motion can be approximated by the

translational, Ae*t, and torsional ®,e*“* excitations only.
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CHAPTER IV
RESPONSE OF THE BUILDING TO GENERAL GROUND MOTION

In reality, the buildings are subjected to arbitrary excitation and not to the peri-
odic sinusoidal motion as discussea in the previous chapters. The actual excitation contains
a wide range of frequencies and the direction from which it comes as well as the spectral
amplitudes are known in advance only with certain level of confidence. The soil inho-
mogeneities increase the degree of complexity. For example, dispersed waves result from
horizontal discontinuities and standing wave patterns may be present in soil with vertical
and near vertical discontinuities. Inside and near alluvium valleys, focusing and compli-
ca.ted‘interference patterns of the incident motion are present (Trifunac, 1971a; Wong,

1979).

The Fourier synthesis of the response of the building to: nondispersed and dis-
persed propagating waves, nondispersed propagating together with nonpropagating waves,
and nondispersed waves of random amplitude and coming from a random direction will be

discussed in this chapter.

4.1 Fourier Synthesis of the Response of the Building to

Nondispersed Propagating Waves

Many seismic waves coming from a distant source and propagating through the
homogeneous halfspace can be approximated by plane waves. The Fourier spectrum of the

motion
Flw) = / ft)etat | (4.1.1)
)

where f(t) is the time history of the incident ground displacement, has amplitudes |F(w)]

significantly greater than zero, for w between zero and up to ~ 50H z.
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The resultant wave motion caused by the interference of an incident plane,
monochromatic, SH wave of frequency w, and of unit amplitude and angle of incidence

6, with the analogous wave, refracted from the stress-free surface of the half-space is

(Achenbach (1973)):

vinetref (! 2l w,0) = 2cos —c(f—z' (%) (4.1.2)
z
where
c= siﬂs ik phase velocity in the z’-direction (4.1.3a)
n
! = cf" rE phase velocity in the z’-direction (4.1.3b)
S
w: circular frequency (4.1.4a)
z/,2': spatial coordinates (4.1.4b)
Bs : shear wave velocity in the half-space (4.1.4¢)
t: time coordinate, (4.1.4d)

as shown in Figure 4.1.1. It represents a wave propagating in the z’-direction with velocity
¢, and having amplitude that is a cosine function of the depth. It is an undispersed wave
because the phase velocities ¢ and ¢+ do not depend on the frequency w. The resultant

displacement at the surface of the half-space due to this wave only is

pinetref (x', 0’,w, 0) — 2eiw(t"z?’) , (4.1.5)

S

and due to a general incident wave motion will be

o0} . -
vo(e,0,8) = / W)t Ddu (4.1.6)
0

where F(w) is the Fourier spectrum of the incident motion.
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Figure 4.1.1 Homogeneous half-space with an incident SH-wave with amplitude
1 and incident angle 4. ¢ and ¢/, are the phase velocities of the wave in the z’
and in the z’-directions, respectively.
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Figure 4.1.2 Two-dimensional model of 2 building placed onto the homogeneous
half-space. The figure illustrates the relationship between the coordinate systems
of the building (z,0, z) and of the half-space (z/,0’, 2’).
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Let H(z,z,w,0) be the response of the building to the wave motion e**(*—%) at
its base. Then, according to the transfer function theory (Meirovitch, 1975), the response

to the génera.l wave motion described by equation (4.1.4) will be

o0
o(e,5,8,0) = 5- / 2P () H(z, 2,w,0)dw (4.1.7)
0
where the relationship between the coordinate system used for the soil (z/,0’,y’) a;id for

the building (z,0,y) is shown in Figure 4.1.2.

4.2 Fourier Synthesis of the Response of the Building

to General Dispersed Wave Motion

The synthesis of the response of the building to a dispersed excitation will be
illustrated here for an example of Love waves in a soft, elastic layer placed over the homo-

geneous, elastic half-space, as shown in Figure 4.2.1a.

The Love waves result from interference of plane SH waves and can exist in the
layered half-space. They represent a solution of the two-dimensional wave equation (3.2.1)
that satisfies the following conditions: zero stress at the upper surface of the top layer,
continuity of stresses and displacements at the interface between the different media and
exponentially decreasing amplitudes with increasing depth in the half-space. For the case
of a single layer over the half-space and the coordinate system as in Figure 4.2.1a, the

displacement in the layer v(Z) and in the half-space v(¥#5) will have the following form,

vB) = Acosqz’ - et (4.2.1)

!

o(HS) = Be=iw(t=%) . g=bz (4.2.2)
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Figure 4.2.1 a) Homogeneous half-space with one soft surface layer of thickness
h. The first two Love wave mode shapes are illustrated. b) A building placed
over the layered half-space.
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where ¢ and b are defined as,

=2 [(Ec;)z _ 1] (4.2.3)
b="< {1 - (3:75-)2] (4.2.9)

¢ : the phase velocity in the horizontal direction
w : the circular frequency

Br : shear wave velocity in the layer

(4.2.5)
Brs : shear wave velocity in the half-space
z',2' . spatial coordinates
t: time coordinate
The constants A and B have to satisfy the following equation:
cos gh —e~bh Al _|O
[sinqh -L—ﬁsq"e-bh] [B] B [o} (4.2.6)

where h is the thickness of the layer, and the frequency w has to satisfy the following
frequency equation (Achenbach (1973))

kES [1— (pﬁ)]m —ian {[(_q_)?' _ 1] v why (4.2.7)

KL [(ﬁ-)z - 1] v

where p; and pggs are the shear moduli in the layer and in the half-space, respectively.

Figure 4.2.2 redrawn from Lee and Trifunac (1985) illustrates Love- and Rayleigh-wave

phase velocity dispersion curves for a realistic site geology.

For a given frequency w there is a finite number of roots ¢p(w),n =1,...,N(w)

satisfying the frequency equation. To each root corresponds a Love mode shape 9(z,w),
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that propagates with the phase velocity ¢,(w). All these modes form a basis and any Love

wave motion of frequency w has a unique representation of the form

ve(z, 2, w) Z Dy (w)¢n (2’ w)e iw(t-545) , (4.2.8)
n=1
where
cos(gn(w)z’) , 0<2'<h
Yn(2',w) = (4.2.9)

cos(gn(w)h) - etn@(r=2) = p < <o

and g, and b, are the values of ¢ and b in equations (4.2.3) and (4.2.4), when ¢ = ¢, (w).

In the time domain, the Love wave motion v,(z,2,t) can be represented by an

integral over all the frequencies,
N(w)

ve(z',2,t) = é};/ooo (w) Z Dy (w)n (2, w)e""( -5 dw ; (4.2.10)

where F(w) as in section 4.1, is a Fourier transform of the time dependent part of the Love
wave motion. At the free-surface all the mode shapes 1, have amplitudes equal to 1 and

the displacement becomes

zOt 27r/F

Let a building be placed over the surface of the layer, and let the coordinate sys-

N(“’) ot —2'—
Do)t ) g . (4.2.11)

tems of the building be (z,0,y) and of ‘the soil (',0',y’), as shown in Figure 4.2.1b.

""’(t‘cn?"'u)) at its base is denoted by

If the response of the building to the motion e
H(z,2,w,¢cn(w)), according to the transfer function theory, the response v(z, z,t) to the

general Love wave motion, given by equation (4.2.11), will be

N(w)
v(z,2,t) = ——/ D, (w)H (z,2,w,cn(w)) dw . (4.2.12)
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Again, in this case, the assumption of continuity of displacement only at the interface

between the structure and the soil has been made.

Comparing the expressions for the response of the building for the general nondis-
persed and dispersed ground motion, the degree of complexity that the dispersion intro-
duces into the problem becomes evident. Equation (4.2.9) is very impractical to solve
numerically. However, it is the exact solution of the problem, under the assumptions

stated above.

4.3 The Response of a Building Placed Over Inhomogeneous Soil

Investigations have shown (Trifunac, 1971a; Wong, 1979; Moeen-Vaziri and Tri-
funac, 1986 1986) that the inhomogeneities in the soil may considerably influence the dis-
placement of the ground motion on the surface of the earth. For example, inside alluvial
deposits vibrational characteristics of the motion are present, as a result of the interference
of the incoming waves with the waves reflected from the interfaces between the different
media. For nearly horizontal incidence, both standing waves and propagating waves are
present in front of alluvial valleys, while a shadow zone may be created behind them. Fig-
ure 4.3.2, redrawn from Moeen-Vaziri and Trifunac (1986), illustrates this phenomenon.
It represents the displacement pattern, for incident plane SH-waves along the surface of
an alluvium valley of irregular shape, shown in Figure 4.3.1 which is representative for the
Los Angeles basin. In these two figures a, represents half of the width of the layer, u, a, 8
and « and pi1, 81,1 and k; represent the shear moduli, P-wave velocities, shear-wave ve-
locities and wave numbers in the half-space and in the layer, respectively. v is the incident
angle of the waves measured from the horizontal and 7 is the ratio between the width of

the layer (2a;) and the wave length, A, of the incident wave.
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In this section a simple model of two quarter spaces with different material prop-
erties will be used to illustrate the nearly standing waves and the possible shadow zones of
the ground displacement under the structure. The simplicity of this soil model will allow
analytical form of the solution for the displacement of the building, modeled as in Chapter

1.

4.3.1 The Displacement in the Half-Space Having a Vertical

Discontinuity for Incident Plane SH Waves

The model consisting of two homogeneous, isotropic and perfectly bonded quarter
spaces is shown in Figure 4.3.3. The shear modulus and the shear wave velocities in
the media on the left and on the right of the discontinuity are ur,Br and ugr and Bgr
respectively. For an incident plane SH wave with angle of incidence « the steady state
displacement in the left medium vy and in the medium on the right vg satisfying the

continuity of stresses and displacements at z’ = d can be expressed as

vp = Aoeiw(t_f?) + Aleiw(H'f?) cos c—w——z' (4.3.1)
zl
and
iw(t—-‘—'-) w
vRp = Age ‘r/cos —z (4.3.2)
F-14
where
er = DL (4.3.3)
sin~y

is the phase velocity in the z'-direction in the medium on the left and cg is the phase
velocity in the z'’-direction in the medium on the right. ¢, is the phase velocity in the
2’-direction, and here for simplicity it is assumed to be the same for both media, implying

the following relationship between ¢y, and cg

) -&)-G)-() sa
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I"’L’BL

Figure 4.3.3 Half-space with vertical discontinuity at z’ = d, and an incident
plane SH-wave, propagating from left towards the discontinuity.
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When the medium on the right hand side of the discontinuity is “harder” than the
one of the left, i.e. Br > B, the wave number ;“i in the medium on the right may be real

or imaginary, depending on the incident angle ~. For real ;“;;

sl -G @ e

so that in the second medium there is a wave propagating to the right. If % is imaginary,

() - () (&)

The continuity of stress and displacements at =z = d implies that

Br wler 4

_ -2i2d pp w/cr
A1 = Aoe L —__——E_L_ /e 1 (437)

BR w/cr

_— = —1

(4.3.6)

w‘
Ao = A —i(-2)d 1+L&R_‘:’&:_l. (4.3.8)
2 = Aoe P . .3.

BR w/cr

The resulting motion in the medium on the left is a standing wave together with a
wave propagating in the positive z-direction, while the motion in the medium on the right
is a wave propagating to the right, or a vibrating motion with exponentially decreasing

amplitude in the positive z-direction. The displacement on the free surface may be written

as

b wier _
—9A Gtitrdpr w/cr 1 c wz’ L iwt
- o w/cL (o] €
}"_L__.L__!_l CcL

z=0 pR w/cr
. Br @/ _ 4 . ,
+ Ao 1— eZt;%d BR wW/cr ezw(t—{;)
Br @/cr 4 g *

bR w/cr

vrL

(4.3.9)

1
jw(t—2n .
Aze""( %) if 2 real

e
°R

2=0 A2€

YR . (4.3.10)
Teiwt if - imag.
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where ,
. 73 wfe
- - )4 LL 22k 1 .
up wicp w
Aoe (cL cR) (1+ Br w/c +1> if Py real
BR w/ep

Ay = . (4.3.11)
Aje orde

B w/er

4 -1

MR w/cR if - i

°R (1+ BT 1) if 2 imag.
BR w/cp

A similar problem for Love waves hitting a vertical discontinuity in the half-space

was studied by Sato (1961).

4.3.2 The Response of the Building

Let the building, represented by the homogeneous model, be placed over the half-
space as shown in Figure 4.3.4. Using the same method and the models as in Chapter III
(i.e. neglecting the continuity of stresses, the displacement in the building will be
w .
o(z,2,t) = ) CpXn(z)Zn(2)e™" (4.3.12)
n=0
where X, (z) and Z,(z),n =0,1,... are the eigen-functions for the z and the z direction

respectively, and the coefficients of the expansion C}’s are
Ci=Cn/Z.(H) , (4.3.13a)

where

(f(z), Xn(2))
(Xn(2), Xn(z))

with the inner product (-,-) defined as in Chapter III, and where f(z) is the displacement

Cpn = (4.3.130)

at the base of the building. If the building is entirely situated over the soft medium, Figure
4.3.4a,i.e. L < d, and d > 0 then

f(z) = Age " r® + Aye'er® (4.3.14)
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Figure 4.3.4 Half-space with vertical discontinuity and a building located: a) in
front of the discontinuity, b) on the discontinuity, and c) behind the discontinuity.
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If the building is partially situated on soft medium, i.e., L > d > 0, then

-y g p
c c 0 < <
f(=) = { i:z—-ic—%z +Aree b ‘z (4.3.15)

If the building is entirely over the hard medium, as shown in Figure 4.3.4c, i.e. d <0,
f(z) = Age " em" . (4.3.16)
With this simple form of f(z) the coefficients can be evaluated analytically (see Appendix

F).

4.4 Response of the Building to Random Ground Motion

If the ground motion is assumed to be represented by a random process and the
direction from which the waves come, as well as the spectral amplitudes are known only

in terms of their statistical parameters, let

F(i,A) = P{c <& A< A) (4.4.1q)
and
2
fle,A) = BcBAF(c’A) (4.4.1d)
where
c= ﬁ =~ (4.4.2)
sin vy

be the joint cummulative and density probability functions, respectively, of the phase
velocity ¢ in the z-direction and the amplitude A, of a plane monochromatic wave of
frequency w, hitting the homogeneous isotropic half-space (Figure 4.1.1), characterized by
the shear wave velocity 8. Then, if for a fixed w the displacement response of the building

v is given, as in Chapter III, by

v=A i CnXn(z)Zn(2)e™! (4.4.3)

n=0
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by the Law of the Unconscious Statistician, (Grimmet and Stirzaker, 1985), the expected
value (if it exists), of the response at a point in the building with coordinates z and z will

be
Ev] = /:: /::A i Chnl(w, ) Xn(2)Z,(2)

n=0

- f (¢, A) dedA
-y [/: /-:Acn(w,c)f(c,A) ded A

n=0

(4.4.4)

« X (2) Zn(2) ™™t

If the spectral amplitude A is independent of the direction from which the waves

are coming (i.e. independent of the phase velocity c), then (Grimmet and Stirzaker, 1985)

fle,A) = fe(e) - fa (A) (4.4.5)

where f.(c) and f4 (A) are the distribution density functions for ¢ and A. In this case the

expected value of the displacement of the building will be

E[v]:/::AfA (4) dA

o oo . (4.4.6)
- [Z / Colw, ) fc(c)dc] X, (2) Zn ()t
n=0Y —®
and the variance of the spectral amplitude and of the phase velocity ¢ will be
Var|A] = E[A?)] — (E[4])? (4.4.7a)
Varlc] = El¢?] — (Ele])? (4.4.70)
respectively, where
E[A%] = / A%f4 (A)dA (4.4.8q)
E[¢?] = / ¢2f.(c)de (4.4.85)

are the second moments (Grimmet and Stirzaker, 1985) of A and c.
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CHAPTER V
RESULTS AND DISCUSSION
5.1 The Nature of Strong Ground Motion

Investigations have shown that most earthquakes in California are shallow, with
the earthquake source lying not deeper than about 25 km. The region around the epiéenter
where the buildings are most threatened has a radius up to about 100-150 km for large
damaging eathquakes. This means that if there are no major discontinuities in the earth’s
crust in the region between the source and the building, the earthquake energy can arrive
at the site of the building in the form of body waves at angles 8 (4 is the angle between the
direction of propagation of the incident wave and the vertical) varying from zero, which
happens when the building is directly above the source, up to very large angles, when the
source is shallow and the building is far from the epicenter (Figure 5.1.1a). If there are soft
layers near the earth’s surface, and the building is not situated directly above the source,
the seismic energy will be transmitted to the building site mainly in the form of surface
waves (Figure 5.1.1b). Trifunac (1971b) has shown that from 70 percent to 90 percent of
the seismic energy arriving at the building sites in California can come through the surface
waves. In the figures mentioned, D is the distance between the epicenter and the building,

d is the depth of the source and A is the thickness of the soft layer in the layered half-space.

The phase velocity in the horizontal direction ¢, can become infinite only in two
cases, (1) when the earthquake waves arrive nearly vertically at the building site, which
is possible if the source is deep under the building, or (2) when it is far from the building
so that the first body waves arrive almost vertically because of the progressive bending of
the rays up towards the vertical. This can result from the presence of low velocity surface
layers. In the above two cases, the earthquake waves arrive at all points of the base of

the building with the same phase. In all the other instances the phase velocities of the
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Figure 5.1.1 An illustration of the relative positions of the earthquake source
and the building sites for typical earthquakes in California, considering: a) ho-
mogeneous half-space and b) layered half-space.
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earthquake motion under the building will be finite and there will be phase difference in
the motion at different points of the base. This fact, that the earthquake energy arrives
the building sites with finite phase velocities in the horizontal direction, calls for the
investigation of the various phenomena associated with the response of buildings to phased

excitation at the base.

5.2 The Range of the Dimensionless Parameters

The phase velocity in the horizontal direction, c, was defined in Chapter III as the
ratio between the shear wave velocity of the soil §; and the sine of the incident angle 4.
The minimum value of the shear wave velocity in the soil is about 8, min = 50 m/s and the
maximum value of sin§ = 1. This gives the minimum value of the phase velocity in the soil
to be ¢pmin = 50 m/s. The maximum value is ¢;nqz = 00, and corresponds to the vertical
incidence of seismic waves. The equivalent shear wave velocity in the building is in the
range 500m/s < # < 1800 m/s (Soviet Academy of Sciences (1986)). The analysis of 57
modern tall buildings in the Los Angeles area, Moslem and Trifunac (1987), for example,

shows that the maximum length for most buildings in that area is Lygz = 80 — 100 m.

Considering all the above facts and taking the value of 40 Hz to be the max-
imum frequency of interest in the spectrum of the earthquake waves, the range of the

dimensionless length 7, (defined in Cha.ptér II1, Section 3.2.3), becomes 0 < n < 60.

In the calculations considered in this work the maximum value of 7 is 4. No higher
values of n were needed, because all physical phenomena associated with the wave passage

under the building are evident even for n = 2.

The values of the dimensionless phase velocity ¢/f3, (defined in Section 3.2.3), are

in the range 0.03 < ¢/# < oo. The following values: ¢/8 = 0.05,1,20 were used in the
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calculations. The value of the dimensionless phase velocity ¢/8 will play an important role
in connection with the transfer of energy from the ground into the building. This will be

shown in Section 5.3.

The range of the height-to-length ratio for long buildings, that are of interest in
this investigation, can be roughly estimated to be .25 < H/L < 3. The values H/L = 0.25,

1 and 2 were used in the calculations.

5.3 The Transfer of the Energy of Ground Motion into

Continuous Structural Systems

Let a building be represented by a two-dimensional elastic plate of length L and
height H placed over the homogeneous half-space. When an incident SH wave hits the
interface between the two different media, it will be partially reflected back into the half-
space and partially transmitted into the other medium. The incident angle 4 and the
refracted angle o (Figure 5.3.1) have to satisfy the Snell’s law (Achenbach (1973))

sina S

sinvy - E:

(5.3.1)

where 8 and 3, are the shear wave velocities of the plate and of the half-space, respectively.
Having in mind that the ratio 8,/sin~ is equal to the phase velocity in the horizontal

direction, the Snell’s law can be written in the following form:
sina = g . (5.3.2)

From the above equation it can be seen that the refracted angle a is real only if 8 < .
If B > ¢, a takes on imaginary values and the wave in the plate will be inhomogeneous
instead of progressive, having exponentially decreasing amplitude towards the top of the

plate, meaning that no energy will be transferred into the plate. Hudson (1961) has proved
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Figure 5.3.1 Refraction of a plane earthquake wave at the interface between the
half-space and the building, modeled as a homogeneous, two-dimensional, elastic

plate.
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for the case of Love waves in a layer, that the energy transmitted from the layer into the
half-space, during half period, goes back into the layer during the other half period, and
that the resultant energy that enters the half-space during the time of one period of motion

is zero. A similar situation occurs in our case too.

The phenomenon of no transfer of energy into the building when the phase velocity
of excitation ¢ is greater than the equivalent shear wave velocity of the building can also
be explained using the semi-infinite models described in Chapter III. The prescribed dis-
placement at z = H represents a one-dimensional wave propagating with velocity ¢ in the
z-direction. According to the Hygens-Fresnel principle in optics, every point of the layer
at z = H acts as a point source of a wave of frequency w and there is phase delay between
them, as shown in Figure 5.3.2. The wave front of the wave in the plate is the envelope
of the wave fronts of the elementary waves originated from the point sources having the
same phase. Let us consider two points on the wave front passing through the points B
and C. The point source at B will have the same phase as the point source at A after time
t = AB/c, where AB denotes the distance between the points A and B. During the same
time the wave from the source at A will travel distance AC = ft, which after substituting
the ¢ becomes

ic =L 43

Then, the angle between the normal N to the line z = H and the direction of propagation

of the wave in the plate can be calculated as follows:
sina = g . (5.3.2)

a will have real values only if ¢ > 3, and only then, energy will be transmitted from the

body forcing the motion of the plate into the plate.
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Figure 5.3.2 An illustration of the transfer of wave energy from the ground into
the building for homogeneous building modeled as an elastic semi-infinite layer

with displacement ¢*“(*~%) at z = H.
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Figures 5.3.3, 5.3.4 and 5.3.5 illustrate the dependence of the transfer of energy
into the building on the ratio ¢/B. They represent the displacements of a vertical cross-
section of a long building (H/L = 0.25) at times equal to 0,7/4,T/2,3T /4 and T, where
T is the period of the incident wave motion. The amplitude of the incident wave is 0.5,
(i.e. the amplitude of surface displacement is 1.0), and the scale in this and in all the
subsequent figures is in the same units as the displacement of the incident wave. From
now one, this convention will hold for all figures of this type throughout this work. The
homogeneous model described in Section 3.2 has been used to represent the building and
these figures show the results for the ratios ¢/ = 0.05,1 and 20, respectively and for

= 2. The figures show that when ¢/ = 0.05 the “hyperbolic” modes are dominant in
the displacement. The displacement is the largest at the base and exponentially decays
towards the top of the building (Figure 5.3.3). When ¢/8 = 1 is can be seen from the
figures that the “harmonic” modes are dominant in the displacement and that energy is
entering this building. When ¢/ = 20 even the direction of propagation of the transmitted

wave can be recognized from the displacement pattern.

5.4 Excitation of Symmetric and Anti-Symmetric Modes of Vibration

The variety of modes, symmetric as well as anti-symmetric with respect to the
center of the building, are used to represent the displacement response, for almost any
base excitation. Thus for seismic densign of large buildings it is important to understand

how the passage of seismic waves excites different modes of response.

In the discussion of the analytical expressions for the displacement response of
the homogeneous model in Section 3.2.2 it was shown that, in general, all the modes
of vibration are excited. Both symmetric and anti-symmetric modes (with respect to

z = L/2) contribute to the overall displacement even when the wave number w/c of the
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input motion equals the wave number k. of one of the modes. However, when the waves
arrive vertically at the base of the building, i.e. w/¢ = 0, only the first symmetric mode
is excited and the problem becomes one-dimensional. This means that the “traditional”
analysis of the response of buildings to strong ground motion neglects the fact that the

higher £ modes of vibration participate in the response of the building.

In section 3.2.2, the resonant frequencies w,x were defined as frequencies at which
the displacement of the homogeneous plate becomes infinite. Realistic buildings possess
damping, and therefore the more realistic continuous model would be made of visco-elastic
medium. The effect of the damping can be added to the theory of the undamped model as
a “perturbation” that will change, but not significantly, the resonant frequencies and the
Fourier coefficients of the expansion of the displacement. At the resonant frequencies such
a model will experience finite, but still large displacements, that can lead to large forces

in the structure.

The frequency content of the earthquake waves is continuous and extends from 0
Hz and practically up to 30 or 40 Hz. High frequencies are present in the Fourier spectrum

of the earthquake source, but will have small amplitudes by the time they reach a building.

In Figure 5.4.1 the resonant frequencies corresponding to the first 6 modes in the
z-direction and the first 3 modes in the y-direction (n = 0,1,...,5 and & = 0,1 and 2),
in the range 0-60 Hz, have been shown for a “long” building (L=100 m, H=25m) and for
a “high” building (L=50 m, H=150 m). For the “long” building the resonant frequencies
corresponding to k =0 and n =0,...,5and k =1and n =0,...,4 fall in this range. For
the “high” building the casefor k=0and n=0,...,3,k=1andn=0,...,3,and k =2

and n =0,...,2 are shown.
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Figure 5.4.1 The resonant frequencies for the first few modes of a long and low,
and of a long and high building (H/L = 0.25 and 3, respectively), represented
by the homogeneous model, in the range between 0 and 60 Hz.
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The building will vibrate with all frequencies that are in the range of significant
amplitudes of the Fourier spectrum of the excitation, including the resonant frequencies.
The contribution of the resonant frequencies to the displacement will depend on the am-
plitude of the Fourier spectrum of the excitation at that frequency and on the coefficients
of the expansion C}(w,c). The displacements and the stresses at the resonant frequencies
corresponding to the higher modes in z (n > 1) can be very large, even larger than the
ones corresponding to the first mode in £ (n = 0) and that are expected by the one-
dimensional analysis. For design purposes, however, the one-dimensional models of the
buildings are commonly used. This means that the buildings may not be designed for

some loads that may occur during their life.

In Figures 5.4.2 through 5.4.5 examples of the displacement response of the homo-
geneous model to monochromatic waves passing underneath it have been shown. In each
figure the out of plane displacement of a vertical cross-section of the “building” has been
shown at five consecutive times: t = 0,T'/4,T/2, 3T /4 and T, where T is the period of the
input wave. Figure 5.4.2 corresponds to the one-dimensional case, because of the small
value of the dimensionless length 7. Energy is being transmitted into the building, which
can be expected because ¢/ > 1, but no anti-symmetric modes in z are excited, as seen

from the figure.

Figures 5.4.3, 5.4.4 and 5.4.5 cofrespond ton =1 and ¢/8 = 1. It can be seen
well from these figures how the contribution of the different modes changes, as the wave
passes under the “building.” At time ¢ = 0,T/2 and T only one of the symmetric modes
in z contributes to the displacement, and that is the one that has the wave number equal
to w/c. At time t = T/4 and 3T/4 only antisymmetric modes in z contribute to the
displacement, and moreover, the displacement at these two moments is larger than the

displacement during t = 0, ¢t = T/2 and ¢t = T. The values of the stresses 7, and 7,,
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Figure 5.4.2 Displacement response of a long and high building (H/L = 2),
represented by the homogeneous model, for nearly vertically incident SH-waves
(7 = 0.01 and ¢/B8 = 10), at times ¢ = 0,T/4,T/2,3T /4 and T. The anti-
symmetric modes are not excited, as can be seen from the displacement patterns,
becraluse the wavelength of the incident waves along the z-axis is long compared
to L.
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vibration are excited.
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are also larger, because of the more “sudden” changes of the slope of the displacement
patterns. It can be concluded that in the cases represented by these three figures, the

anti-symmetric modes may be important for the response analysis of this building.

5.5 Discontinuities within the Structure

Major stiffness discontinuities within the building will change the distribution of
the response amplitudes and the patterns of the displacement response of the building to

the incident ground motion.

The analysis which was done in Chapter III showed that the mode shapes and
their resonant frequencies are different for the homogeneous model and for the models with
major vertical or horizontal stiffness discontinuities. This in turn changes the displacement
amplitudes at certain frequencies of input ground motion and alters the contributions of
different modes to the overall response. These discontinuities also may redistribute the

stress concentrations throughout the building.

5.5.1 Buildings with Shear Walls at Two Ends

The displacement response of a building with shear walls at two ends (Figure
3.1.2b) and represented by the model in Figure 3.3.1, has been analyzed for incident
monochromatic SH waves with n = 0.01,0.05,0.1.,1 and 2 (where n = L/cT, and T and
¢ are the period and the horizontal phase velocity of the input ground motion). The
values of the other parameters were: ¢/(32=0.05, 1, 20 and 100; £;/L = ¢;/L = 0.1; and
H/L = .25,1 and 2. Three ratios of the shear wave velocites were chosen 8;/0; = 2,4 and

10, ¢ = 1,3 (see Figure 3.3.1).
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Selected examples of the response of these buildings are illustrated in Figures
5.5.1a through 5.5.7b. These figures again show the displacements of the vertical cross-
section of the building at times ¢ = 0,T/4,T/2,3T /4 and T. The excitation is such that

at time ¢ = O the displacement of the base of the building is cos “=.

Figures 5.5.1a, 5.5.2a and 5.5.3a are examples of the displacements of the buiidings
with symmetrically distributed stiffness (81/82 = B3/B2 = 4) to a wave with essentially
vertical incidence (7 = 0.01,¢/B2 = 100). The height to length ratios in these examples are
0.25, 1 and 2, respectively. For comparison, the displacements of these buildings, without
the shear walls and for the same ground excitation are presented in Figures 5.5.1b, 5.5.2b

and 5.5.3b, respectively.

It can be seen from Figures 5.5.1a, 5.5.2b and 5.5.3b how the shear walls confine
the motion of the lateral sides of the building, and make it vibrate almost as a “membrane,”
fixed at three sides. The displacements are nearly symmetric in the horizontal direction
(because of the nearly symmetric excitation and the symmetric distribution of the stiffness).
Displacements increase away from the shear walls and are largest in the center at z = L/2.
In the vertical direction, the displacement is largest on the top when H/L = 0.25 and in
the inside of the building when H/L = 1 and 2. For the chosen frequency of the ground

wL

motion (%* = 27 in all these three examples) the number of nodes and anti-nodes in the

vertical direction depends on the ratio H /L.

Because of the small n, the displacements of the ground in the above three exam-
ples may be approximated by Ae*w? (A = 1in our case). The response of the corresponding
buildings without discontinuities is almost symmetric in the z-direction and one dimen-

sional models in the z-direction would be appropriate for the response analysis. On the
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Figure 5.5.3b Displacement response of the building in Figure 5.5.32 but here
without the shear walls and for the same ground motion. The shear walls con-
strain the displacements at the ends of the building, as can be seen from the
comparison with Figure 5.5.3a.
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other hand, the presence of the shear walls makes the two-dimensional aspect of the anal-
ysis important and the higher dimensional representation is necessary for a more realistic

analysis.

When the two end shear walls do not have the same stiffness, the displacement
pattern may become very anti-symmetrical. Figures 5.5.4a and 5.5.5a, for exa.mplev,- illus-
trate the resulting phenomenon of “whipping” of the “down stream” side (z = £; + €2 + {3,
see Figure 3.3.1) of the building at the loaction of the “softer” shear wall. The excitation
in both cases is a propagating wave in the positive z-direction, with n = 1 and ¢/8; = 1.
The ratios of the shear wave velocities in the buildings are 81/82 = 10 and f3/f2 = 4. The
relative thicknesses of the shear walls are £, /L = £3/L = .1 and the height to length ratios
are H/L = 1 and 2, respectively (see Figure 3.3.1). Figures 5.5.4b and 5.5.5b illustrate
the displacement of the same buildings but without the end shear walls and for the same
ground motion. Comparison with the homogeneous model displacements shows that the
stiffer shear wall is “holding” the building as if it were supported at that side. The “softer”
shear wall allows whipping of the opposite side of the building and the displacement pattern

resembles the displacement of a thin plate, fixed at two sides.

The effect of “whipping” cannot be so clearly detected by the one-dimensional
analysis, which can include only the effects of torsional stiffness excentricity. It is not
desirable for it to occur in response of real buildings. It can be avoided by designing the

shear walls with comparable stiffnesses.

In all illustrations above, the selected incident ground motion was such that the
energy was transmitted into the building (¢/8; > 1). Figures 5.5.6a and 5.5.7a show
examples when the energy is not transmitted into the building (¢/8; = 0.05) and the

displacement of the building follows an exponential function in the vertical direction. Both
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figures illustrate a “long” building (H/L = 0.25) with shear walls of relative thickness
¢;/L = €3/L = 0.1 and with relative shear wave velocities 8;/82 = B3/82 = 4. The
dimensionless wave length 7 takes on the values of 1 and 2, respectively. The accompanying
Figures 5.5.6b and 5.5.7b illustrate the displacements of the building, without the shear
walls and for the same incident ground motions. It can be concluded that in these two

cases the shear walls decrease slightly the relative displacements of the buildings.

5.5.2 Buildings with Central Core

Some buildings are designed in such a way that the elevator cores also provide the
lateral stiffness. For example, the Millikan Library at Caltech in Pasadena, Figure 5.5.8,
(Trifunac, 1972) has two shear walls to carry the horizontal forces in the N-S direction
and the central core to carry the horizontal forces in the E-W direction. The question
“what is the best location (distribution) and relative stiffness of the shear walls and of
elevator cores” is of considerable interest for the designer of buildings with large horizontal

dimensions.

Buildings with a central core of width 0.2L, where L is the length of the building,
and with shear wave velocity four times bigger than the shear wave velocity of the sur-
rounding parts of the building (Figure 3.1.3c), will be analyzed in this section. The model
in Figure 3.3.1, also described in section 3.3, was selected to represent the building models
with central core considered in this section. Plane monochromatic SH waves with different

angles of incidence will represent the ground motion.

The analyses show that the central core stiffens the building and constrains its
displacements only in the close vicinity to the core walls. Moreover, it may cause compli-

cated displacement patterns that give rise to horizontal stresses that otherwise might not
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be present in the floor slabs. This can happen even when the motion at the base has as
simple form as Ae*“t, as illustrated by Figures 5.5.9a amd 5.5.10a (A = 1,wL/B; = 4r, or
n = 0.01,¢/B; = 200, amplitude of the vertically incident wave = 1/2, and H/L = 0.25,1,
respectively). For comparison, Figures 5.5.9b and 5.5.10b illustrate the displacement of
the buildings without the central core and excited by the same ground motion. While
the displacements of the homogeneous buildings, for long incident waves, depend mainly
on the z-coordinate, giving rise mainly to the variation of stresses, the displacements of
the buildings with the central cores are highly dependent on the z-coordinate. The core
separates the two “soft” parts of the buildings and those vibrate independently, like two

plates supported at two adjacent sides, with the free sides allowed to whip.

The complicated displacement patterns, the presence of the horizontal stresses
and the whipping of the “unsupported” sides are undesirable. To constrain the motion of
the “soft” parts, the designer might add shear walls at the ends. Also he might replace
the central core by two shear elements (shear walls, or elevator cores) placed between the
center and the ends of the building so as to constrain both the ends and the center of the
building. In section 5.5.1 examples were shown (Figures 5.5.1a, 5.5.2a and 5.5.3a) that the
displacement of the central part of the building may be large if the building has only the

shear walls at the ends.

The central core rises the equivalent stiffness of the whole building, and thus in-
creases its resonant frequencies. In the examples in Figures 5.5.9 and 5.5.10, the frequency
of the ground motion (wL/B; = 47) is closer to the resonant frequencies of the higher

modes in the z direction when the buildings do not have the central core.

The central core reduces the displacements of the building, but mainly close to the

core, i.e. close to the center of the‘ building. Therefore, it modifies only the displacements of
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the symmetric modes. The anti-symmetric modes in z pass through zero at £ = L/2. This
is illustrated by Figures 5.5.11, 5.5.12 and 5.5.13. The first two show the displacements of
the building with and without the core when n =1 and ¢/8; = 1 for H/L = 0.25 and 1,
respectively, and the third one when n = 2,¢/f; =1 and H/L = 0.25. The width of the
core and its relative shear wave velocity compared to the main part of the building are the

same as the previous examples in this section.

5.5.3 Buildings with “Soft” First Floor

Because of the architectural requirements, many buildings have the ground or the
grouna and the first floors with stiffness which is smaller than the stiffness of the upper
floors. These are the buildings that typically have stores or various passages on the first
floor, and therefore one finds there many “walls” and partitions made of glass instead of
concrete or masonry. An example of such a building is the former Imperial County Services
Building in El Centro (Koji¢ et al., 1984), shown in Figures 2.3.5 and 2.3.6. Above the
second floor the building had shear walls at the east and west ends, while at the first
floor it had only four concrete panels. This reduced the resistance of the first floor in the
N-S direction. During the Imperial Valley, California earthquake of 1979 the columns of
the first floor experienced very large displacements in the E-W direction and were badly
damaged. The upper part of the building experienced much smaller deformations. The
building was instrumented and according to the recorded motions during this earthquake,

the upper part of the building vibrated like a “rigid” box placed over flexible columns.

Using the ray theory representation of seismic wave propagation, the transfer of
the energy of SH waves from the ground into the building can be analyzed for the layered
building model as in Figure 5.5.14. In this figure 81,82 and 3, are the shear wave velocities

of the upper part of the building, of the first floor and of the soil, respectively. ~ is the
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Figure 5.5.14 An illustration of the transfer of the wave energy from the ground
into a building with a soft first floor.
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incident angle, @ and B are the angles of refraction in the “soft” and in the “hard” layers,

respectively. Then, according to the Snell’s law, the following relations must be satisfied

c= .ﬂa = _ﬁz = _ﬂl . (5.51)
siny sina sinf

The angle « will be real, i.e. the wave energy will be transmitted into the soft layer only
if ¢/B2 > 1, as it has been explained earlier in section 5.3. If ¢/B1 < 1 then, o will be pure
imaginary and thus 2 will also be pure imaginary (since #; > f2) and the wave energy will
not be transmitted into the building. If ¢/8 > 1, whether the wave energy will or will not
be transmitted into the upper part depends on the value of the ratio 82/81. The energy
will be transmitted into the upper part of the building only if ¢/81 = (¢/B2)(B2/81) > 1.
When ¢/B1 < 1, the displacements in the “hard” layer will be exponentially decaying
towards the top of the building, and it will vibrate as a “rigid box” welded to the vibrating
“soft” first floor.

In this work the model in Figure 3.4.2 and the representation of the displacement
by a series in terms of the eigenfunctions of the model (section 3.3) have been used to
calculate the response of the building with a “soft” first floor. In the discussion in section
3.4 it was mentioned that for the fundamental mode (n = 0 in equation 3.4.4) the wave
numbers in the z-direction kgz,,i = 1,2 are always real in both media. For the higher
modes, they can be real or imaginary, depending on the frequency of the ground motion.
Then, there is some N; such that all the shape functions in the z-direction Z,(z) for
n > N; will be hyperbolic functions in the upper part of the building. There is another
number N2 > N; such that for n > Ny Z,(2) will be hyperbolic functions in both media.
The energy will be transmitted into the “soft” layer only through the modes for which

n < N, and into the upper part of the building only through the modes for which n < N;.
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Figure 5.5.15a illustrates the displacements of a building with a soft first floor
when energy is not transmitted into both the “soft” first floor or into the upper part of the
building. The ground motion at the base is a wave of amplitude 1, propagating with phase
velocity ¢ in the horizontal direction, and with n = L/¢T = 0.5. The height to length ratio
of the building is 1 and the height of the first floor is 25 percent of the total height of the
building. The energy does not propagate through the first floor because ¢/82 = 0.05 < 1,
and through the upper part of the building because ¢/81 = (¢/B2)(82/51) = 0.0125 <1
It can be seen from the figure that the building vibrates with “hyperbolic” modes in the 2-
direction. Figure 5.5.15b illustrates the displacement of a homogeneous building, with the
equivalent shear wave velocity, 3, the same as the shear wave velocity of the first floor of the
building in Figure 5.5.15a, and subjected to the same ground motion (n = 0.5,¢/8 = 0.05).
It can be seen from these two figures that by increasing of the stiffness of the upper floors
(Figures 5.1.15a) decreases the relative displacements of the upper part of the building,

but increases the relative displacements of the first floor.

The parts “a” of the Figures 5.5.16, 5.5.17 and 5.5.18 illustrate the cases when
the energy propagates through the first floor, but does not propagate into the upper floors
of the building. The buildings in these figures vibrate with modes that are harmonic
functions in the first floor and hyperbolic functions at upper floors. In all three figures the
base motion is a propagating wave in the positive z-direction with ¢/82 = 1. The chosen
values of n and H/L are 1, 2 and 4, and 2, 0.25 and 0.25, respectively. The height of the
first floor is 0.25 H in all three figures. The ratios 8/, are 4, 2 and 2, respectively. The
parts “b” of these figures illustrate the displacement response of a homogeneous building
with equivalent shear wave velocity 8 = 8, and subjected ‘to the same base motion as in
part “a”. There is a significant difference between the displacement patterns in parts “a”

and parts “b” of the figures. In all the figures the relative displacements of the upper
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Figure 5.5.16a Displacement response of a long and tall building (H/L = 2),
with a soft first floor (hy/H = 0.25 and f32/B; = 0.25), for a propagating wave
(7 =1 and ¢/B2 = 1), at times t = 0,T/4,T/2,3T /4 and T. The wave energy
“enters” only into the first floor, but not into the upper floors of the building.
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Figure 5.5.16b Displacement response of a “homogeneous” building, of same size
" as the building in Figures 5.5.16a with same shear wave velocity as in the first
floor of the buillding in Figure 5.5.16a for the same ground motion. The wave
energy propagates through the whole building.
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parts of the buildings with the soft floor are small, smaller than the displacements of the
corresponding “homogeneous” buildings. However, the “soft” first floor experiences large
displacements and its columns and shear walls become candidates for where the failure of

the building may occur.

Figure 5.5.16a shows large “torsional” vibrations of the first floor, while the upper
part of the building hardly moves. The first floor vibrates as if it were supported at its
upper edge.

For higher value of # (n = 2) and for the “long” buildings (H/L = 0.25) e.g.
Figure 5.5.17a, the whole upper part of the building rotates almost as a rigid body. This

causes large overall torsional deformations and stresses in the first floor.

The upper part of the “long” building in Figure 5.5.18a (n = 4) deforms as the
wave propagates under the building. However, it illustrates vibrations with modes in z

which do not coinside with the wave length of the ground motion causing this vibration.

Figures 5.5.19a and 5.5.20a illustrate the displacements of buildings, with “soft”
first floors, when the waves propagate into the buildings. In both figures n = d,¢/B2 =
20, 31/B2 = 2 and the height of the first floor is 0.25H. The first building is a “tall” building
(H/L = 2) while the second building has height comparable to its length (H/L =1). The
waves that enter the first floor propagate along the direction which is 2.87° off the vertical
while the waves that enter the upper part propagate in the direction which is 5.72° off
the vertical (sina = f2/¢,sinf = B1/c = (B2/c)(B1/B2)). The buildings vibrate with
modes that are harmonic functions both in the first floor and in the upper part of the
buildings. In these cases the soft first floor does not act as an “isolator” for the upper part
of the building. Parts “b” of these figures illustrate the displacement of the corresponding

homogeneous model, as in the previous examples.
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Figure 5.5.19a2 Displacement response of a tall building (H/L = 2) with a soft
first floor (hy/H = 0.25 and fB2/B; = 0.5), for a nearly vertically incident SH-
wave (7 = 0.1 and ¢/B; = 20), at times t = 0,T/4,T/2,3T/4 and T. The wave
energy propagates through the whole building when the incident wave arrives
nearly vertically.
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Figure 5.5.19b Displacement response of a “homogeneous” building of same
size and for the same ground motion, but with shear wave velocity same as the
shear wave velocity of the first floor of the building in Figure 5.5.19a. The wave
energy propagates through the entire building.
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5.6 Response of the Building Placed over Soil with Vertical

Discontinuity in the Material Properties

The response of a homogeneous model placed over the half-space with a monochro-
matic vertical discontinuity in the material properties and excited by plane SH waves
(Chapter IV, Section 4.3.1) has been analyzed and selected results are presented and dis-
cussed in this section. The medium on the left hand side of the discontinuity is “softer”
than the medium to the right, and the incident waves are traveling from “soft” towards

“hard” medium in all the cases which are presented here.

The following range of the dimensionless input parameters has been considered:
05<n<2 005<¢/f<10, 0.5 < /8 <20and 0.025 < f1/Br < 0.3, where, as
mentioned in Chapter IV, ¢y is the phase velocity of waves in the z-direction in the “soft”
medium and B, Br and Br are the shear wave velocities in the building, the medium on the
left and the medium on the right of the discontinuity, respectively. The choice of the above
ratios of the shear wave velocities is based on the assumption that the smallest value of
the shear wave velocity of soil is 50 m/s (e.g. San Francisco Bay Area, Mexico City), that
typically the shear wave velocity of a very “soft” soil is 100-150 m/s (e.g. in Los Angeles
Area it is 250-300 m/s), that the shear wave velocity of “rock” is 1500-2000 m/s and that

the typical shear wave velocity in the building is of the order of 800 m/s.

Analysis in terms of dimensionless parameters showed that the condition for trans-
mission of the wave motion through the discontinuity and into the “hard” medium, i.e.

for real phase velocities in the horizontal direction in the medium on the right side of the

(2) (&) <+(2) (&) (%) 5

and it does not depend on the dimensionless length 7.

discontinuity, is
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The motions in the “building” have been calculated for the following location of
the “building” relative to the discontinuity: (1) buildilng entirely situated on the “soft”
medium, (2) building lying partly on “soft” and partly on “hard” soil and (3) building en-
tirely situated on the “hard” medium (Figure 4.3.4). Figures 5.6.1 through 5.6.7 represent
the out of plane displacements of the vertical cross-section of the homogeneous model at
five different equally spaced times during one period, T, of ground motion (i.e. at times
0,T/4,T/2,3T/4 and T). If one visualizes the horizontally propagating wave in fhe di-
rection of the positive z-axis and with the wave length A = ¢ T, for “0” its displacement

under the building is v(z) = cos 25, for “T'/4” it is v(z) = cos Zﬂz:{'—’\& and so on.

Figures 5.6.1, 5.6.2 and 5.6.3 represent displacements of the model when it is
entirely placed on the “soft” medium, and the distance between the discontinuity and the
closest point of the building is 0.2 L, when /81, = 0.5 and 2 and for 8 /Br = 0.025. Figure
5.6.1 corresponds to n = 0.5 and ¢ /B = 5, Figure 5.6.1 is for n = 1 and ¢; /8 = 1, and
Figure 5.6.3 for n = 2 and ¢z /B = 1. In all these cases the model is excited by essentially
standing waves in the “soft” medium due to nearly complete reflection of incident waves
from the discontinuity (8g/Sr = 40). This can be concluded also from the fact that there
are points at the base of the model for which the displacements are very small or zero at all
times. These points correspond to the nodes of the standing waves in the soil and around
them the torsional excitations of the plate take place. The points on the base that lie on
the anti-nodes have the largest amplitudes during the cycle. From Figure 5.6.1 it can be
seen, for example, that when n = 0.5 the torsional mode (the first anti-symmetric mode)
is dominant. The position of this node depends on the position of the plate with respect

to the discontinuity.

Analysis shows that when the building is partly situated on both the “soft” and

the “hard” soil, the displacement amplitudes and patterns depend mostly on the values of
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n=1L/erT = L[z, and ¢/B = PBr/Bsin~ (see Figure 5.3.1), and little on the values
of B/Br and Br/PBr, i.e. because the phase velocity in the building in vertical direction
becomes pure imaginary. A 1 is the z-wave length of the incident waves in the medium
on the left. Figures 5.6.4 through 5.6.6 illustrate the displacement of the model situated

so that 70 percent of the base lies on “soft” soil and 30 percent on “hard” soil.

In Figure 564 n = 2, ¢/8 = 0.05, B/Br = 20 and Br/Br = 0.025. The
phase velocity in the horizontal direction in the “harder” soil is real, but the wave that
is transmitted through the discontinuity has very small amplitude. Also, the energy does
not propagate into the building through the interface with the “soft” soil, because the
value of ¢, /8 < 1 i.e. because the phase velocity in the building in the vertical direction
becomes pure imaginary. In the “hard” soil ¢cg/8 > 1. Yet, the hard soil does not excite
large displacements of the building, because of the very small ground displacements in this

medium.

Figures 5.6.5 and 5.6.6 correspond to n = 0.5,¢1,/8 =5, 8/8r = 0.5and B./Br =
0.025 and to n = 2, ¢z /B = 10, B/Br = 0.5 and B /Br = 0.3, respectively. The phase
velocity cg in the “hard” medium is pure imaginary in both cases, meaning that through
the interface with the “hard” soil these buildings are excited by periodic displacements
with exponentially decaying amplitudes towards the right end of the buildings. The left
portion of the building (z < d see Figure 4.3.4b) is excited mostly by the standing waves.
The number of the standing wave nodes there depends on 7. In both figures the part of the
building’tha.t is in contact with the “soft” medium exhibits larger displacements compared
to the part over the “hard” soil. The reason for this is the fact that the waves transmitted
into the building from the “soft” soil are traveling nearly vertically ‘through the building.
The angle o (see Figures 5.3.1 and 5.3.2) is equal to 11.54° and 5.74° for n = 0.5 and

n = 2, respectively.
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Figure 5.6.7 illustrates a building which is entirely over the “hard” soil. The
distance d = —0.2L (see Figure 4.3.4c), and the phase velocity cp is pure imaginary. The
building is excited by the base displacement f(z)e*“*, where f(t) is an exponential function,
decreasing with z. The parameters of the input wave are n = 0.5 and ¢1, /3 = 5. The shear
wave velocity ratios are 8/8; = 0.5 and 81 /Br = .025. The displacements of the plate
are small because of the small displacements of the soil. However, the interesting feature
of this example is that only one side of the building is vibrating (near z = 0), in the region
where the ground is having the largest amplitudes, with the right part of the building
essentially remaining still. It is seen that two types of structural response can occur also
when the discontinuity is within the building (¢ = 0.7 see Figures 5.6.5 and 5.6.6) and
motions are larger and periodic in the area of “soft” soil. In both Figures 5.6.5 and 5.6.6
the waves enter the building nearly vertically (« = 11.54° and o = 5.74°, respectively),

through the contact with the “soft” soil.
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CHAPTER VI
CONCLUSIONS

The principal observations and findings of this study as discussed in the preceeding

sections, can be summarized as follows.

Two-dimensional models of buildings are more representative than the. one-
dimensional models because of the possibility they give 1) to apply a more realistic exci-
tation to the building model and 2) to investigate and understand the variety of physical
phenomena in their response. The models used in this work abound in new phenomena
that cannot be seen from the one-dimensional models, and at the same time are simple
enough to allow an analytical form of the solution. The advantage of the analytical form of
the solution is that it is easier to see and to understand the influence of certain parameters

on the overall response characteristics.

It has been shown that a building will vibrate not only with harmonic modes,
but also with hyperbolic modes in the vertical direction, having exponentially decaying
amplitude towards the top of the building. The number of harmonic modes, with which a
building can vibrate, is finite. The hyperbolic modes are not associated with propagation
of the wave energy into the building and the phenomenon of resonance occurs only for the

harmonic modes. One dimensional models can vibrate only with harmonic modes.

The two-dimensional analysis shows that the transfer of energy from the ground
into the building depends on the phase velocities with which the ground motion propa-
gates. Energy will propagate into the building only when ¢/8 > 1, where ¢ is the phase
velocity in the horizontal direction of the ground motion and S is the equivalent shear wave
velocity of the building. In one-dimensional models of buildings the ground motion repre-

sentation always has infinite phase velocities in the horizontal direction. This corresponds
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to vertically incident waves, and under those conditi01-1$ the energy always propagates into
the building. The fact that the wave energy is not always transmitted into the building
is of considerable practical importance. A soft layer under the building will reduce the
phase velocities of the incident ground motion and can eventually make the ratio ¢/8 < 1.
Another way of reducing ¢ is by chanelling the ground motion to arrive at the buildihg site
nearly horizontally. This way much of the wave energy may be prevented from propagating

into the building.

The waves that are propagating in the horizontal direction excite the building to
vibrate with a variety of symmetric and anti-symmetric modes of vibration, even when the
building is perfectly symmetric. The one dimensional theory neglects all the higher modes,
and the one-dimensional model vibfa.t&s only with the first symmetric mode that has a
constant displacement in the horizontal direction. The current typical design practices
consider 5 to 10 percent accidental torsion of the building and thus the torsional response
because of the excentricity of the building only. Typically the buildings are not designed
for the rotational excitation which is associated with strong ground motion. Gupta and
Trifunac (1987), using a probabilistic approach, investigated the contributions of this tor-
sional excitation to the earthquake response of simple symmetric buildings and concluded
that the rotation of the ground should be considered in the design of buildings. Such ro-
tational excitation is a good representation of the rotational characteristics of the ground
motion only when the wave length of the seismic waves is long compared to the in-plan
dimensions of the building. The two dimensional models used in this work do not put any
limitations on the wave lengths of the input wave motion. The problem has been solved
exactly and can be used in future work to determine the precision of the method of Gupta

and Trifunac (1987), for example.
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If the building is on long and inhomogeneous soil and near a vertical discontinuity
in the material properties of the soil, which partially reflects the incoming waves, the
building will be excited in part by the standing waves. In that case the points of the base
of the building that are standing on the nodes of the standing wave will experience large
torsional excitation. This does not happen if the displacement of the base is a propagating
wave. If the building is long and partly sitting on “soft” soil and partly on “hard” soil
it may happen that the building vibrates asymmetrically because of the large ground
displacements in the “soft” soil and very small displacements in the hard soil. When the
wave that has been transmitted into the building through the contact with the soft soil
propagates nearly vertically through the building, it may happen that only the part of the
building on the “soft” soil vibrates and the other part of the building is relatively quiet.
Only the two-dimensional analysis can meaningfully be used to understand the response

of such buildings.

Major discontinuities within the building will change its modes of vibrations its
resonant frequencies and many general characteristics of the response. It was concluded
that shear walls placed symmetrically near or at the ends constrain the displacements of the
ends and reduce the horizontal “whipping” that could happen otherwise. The central core
constrains only the displacements of the symmetric modes and does not change much the
anti-symmetric mode-shapes. Thus, in general, it should be more desirable to design the
shear resisting elements close to the ends of a building. When a building with soft first floor
is excited by the propagating waves it may happen that the wave energy propagates only
into the soft part and not into the upper parts of the building. The columns of the first
floor, then, may experience very large displacements which are difficult to accomodate

in design, but the overall consequences may be advantageous for the upper part of the
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building. For nearly vertical incidence, the wave energy will propagate always into the

whole building.
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APPENDIX A
FACTOR f IN THE EQUATION (2.3.3b)

The bending stiffness k£ in the y-direction of a rectangular column made of rein-
forced concrete is

R ()

where I, , is the area moment of inertia of the entire section for bending about an axis

perpendicular to y. Therefore, the factor f in equation (2.3.3b) is

f=-L (A.3)
where I, is the area moment of inertia of the concrete section only.

Let A, and A/ be the areas of the tension and compression steel, respectively,
and let these two areas be equal. One can also assume that the concrete and the steel
are perfectly elastic, both in tension and in compression, so that the mutual axis is in the

center of the cross-section.

The area moment of inertia of the reinforced cross-section is equal to the area
moment of inertia of the transformed cross-section, when the steel has been replaced by
concrete, but of area E,/E,. times bigger than the actual area of the steel. E,;/E, is the
ratio of the Young’s moduli of elasticity of the steel and of the concrete. The area moment
of inertia of the transformed section I, ;, is approximately equal to

s g2 , (A.4)

Iy,tr = Iy + 24, L. 3

where d, is the distance from the neutral exis to the reinforcing bars. In equation (A.4)
it has been assumed that the diameters of the steel bars are small compared to the size of

the cross-section.
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Having in mind that I, = ab3/12, the factor f becomes

2
f=1+ 24%‘% (‘—ig‘-) : (4.5)
c

For example, if A, is equal to 3 percent of the total area of the cross-section, if

E;/E. =8 and if d; = 0.4b, then f ~ 2.
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APPENDIX B
ORTHOGONALITY OF THE EIGENFUNCTIONS IN X-DIRECTION
FOR THE MODEL WITH VERTICAL DISCONTINUITIES

The eigenfunctions in the z-direction, X,(z), of the model with vertical disconti-
nuities of the material properties, are discussed in section 3.3 (the model is illustrated in

Figure 3.3.1) and can be written in the following form:

XWD(z) Lo<z<Iy
Xo(z) = XP(2) Li<z<Ly n=0,1,... (B.1)
Xr(;s)(x) Ly<z<Lg

where Lo = 0,L; = 1,Ly = £ + £2,L3 = £y + L2+ £3 = L, and {;,£; and {3 are as shown

in Figure 3.3.1.

All eigenfunctions X,(z), and consequently the functions x& (z) 7 =1,2,3,

satisfy the following differential equation:

”3

Y/) ] . 1
X,(;J) +(kjg-k§,n)Xr(tJ) =0 17:7 0,1,... ~’

=

(B.2)

where k; = w/f; is the wave number in the j-th layer, k., is the wave number in the
z-direction of the n-th mode, and XY " (z) stands for the second derivative of x{ (z).
k. n» is the same in all the layers and its allowable values are the eigenvalues of the problem.

The boundary and the continuity conditions to be satisfied are

XM (Lo) = XP'(Ls) =0, n=0,1,... (B-3)
x9(L;) = xU+(L;), =12, n=0,1,... (B.4)

and

‘[l,jX,(‘j) (L;) = uj+1X,(,.j+1)(Lj), Jj=12, n=0,1,... , (B.5)



172

where p; is the shear modulus of the j-th layer.

If the equation (B.3), written for the n-th mode, is multiplied with X9, and the

same equation, written for the m-th mode is multipled by ,(;j ), the following equations

are obtained:

xWxH" 4+ (k2 - kin)X'(r{)X'(‘f) =0 5=1,2,3 (B.6)
and |
XDxXE" + (k2 - k2, )XPxD =0  j=1,2,3 (B.7)

By subtracting equation (B.7) from the equation (B.6) it follows that
XPXG" ~ XPXG = (0 -B)XOXD =123 . (B

Multiplying each of the equations (B.8) by y;, then integrating each side from L;_; to L;,

and at the end summing up the three equations, results in
L;

- x ) . x @) L
Jz=:1< m S Lz‘—1>—

3 L;
(k2 . -kﬁ,m)z /L ’ uw; XDxWde  §=1,2,3
j=1"Li-1

The left-hand-side of equation (B-9) is equal to zero because of the conditions (B.3), (B.4)

- X,(‘J')ujxg)'

i1

(B.9)

and (B.5). The sum on the right-hand-side of the equation (B.9), by definition, equals
the weighted inner product (Xp, Xm)w, defined in section 3.3 by the equations (3.3.7) and

(3.3.8). Substituting this in the equation (B.9) it follows that

(k2 p— k2 ) (Xn, Xm)w =0 . (B.10)
If m # n, k2, — k2,, # 0 and therefore (X,,X,)w must be equal to zero. When
m = n, (X,,X,)w is always greater than zero, because the eigenfunctions X,(z) are

not identically equal to zero on the interval [0, L]. This proves the orthogonality of the set

of the functions {X,(z)}2

n=0"
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APPENDIX C
ANALYTICAL EXPRESSIONS FOR THE COEFFICIENTS
Cn,n=0,1,... IN THE EQUATION (3.3.11a)

Following the definition of the weighted inner product, in equation (3.3.9}, with
respect to which the eigenfunctions in the z-direction X(z) of the model with the vertical

discontinuities are orthogonal, the inner products (e*“%, X,)y and (X», Xm) are

. el W
(e“"f,Xn)w = U / e *e%cos kg),zd:c
0
b+l
+ p2 / e %A cos kg,),x + B{® sin kg,),z)dz (C.1)
£

L
+ pzA®) e % cos kg‘)‘(z — L)ydz ,
L +4;

and
)

1
(Xns Xn)w = p1 / cos? kg,)‘zdz
0

4144,
i [ (AD coskha + B sin kP da)?ds (c2)
4

L 2
+ u3 / (AS;"’)) cos? kf,‘), (z— L)dz
4 +4

All the integrals in the above equations can be evaluated analytically. The coefficients C,

are then given by the ratios of the two inner products, i.e.

(e—-i%z, Xn)w

Cn = X X

n=0,1,... . (C.3)
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APPENDIX D
PROOF THAT THE WAVE NUMBERS IN THE z-DIRECTION
IN THE “SOFTEST” LAYER OF THE MODEL WITH
VERTICAL DISCONTINUITIES ARE ALWAYS REAL

Suppose that the wave number in the z-direction in the “softest” layer is imaginary
for the k-th mode. Then, because of the relationship given in equation (3.3.6), the z-wave
numbers in the other layers are also imaginary. The sine and the cosine functions of the
form sin ki‘;ka and cos kg}‘a, where 1 = 1,2,3, and a is some length, which appear in the

shape function Xj(z), will change into #sinh |ka(3cla and cosh Ika(:’)k]a, respectively.

Substituting in the frequency equation (3.3.8) the expression for A,(:,') (from equa-
tion (3.3.7c)), and comparing the terms multiplying Ag) and B,(f) on the left and on
the right hand side of the equation, it follows that the following two equations must be

simultaneously satisfied:
k(z) R s
22 tanh [kC)|(£y + £) = tanh [k |25 (D.1)

and

(2)
2k coth k2| (61 + £2) = tanh [k)[es (D.2)

Because the hyperbolic functions are not periodic, equations (D.1) and (D.2) cannot be
simultaneously satisfied, and therefore the imaginary z-wave numbers for the k-th mode
in the layers do not satisfy the frequency equation. This means that imaginary z-wave

numbers are not allowed in the softest layer.
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APPENDIX E

THE COEFFICIENTS C,,n =0,1,...,
IN THE EQUATIONS (3.2.4a,b) WHEN 7 IS VERY SMALL

Expanding sin -“-’{‘- and cos ‘—";L in Taylor’s series around zero, the coefficients

Cn,n=0,1,..., in the equations (3.2.14a,b) will have the following form:

c,:i[ezh.;(eg.)l...,-(l_;(zcé)l..._l)] (B.1)

_ ri e (9L 1 (wD)?,
) D ( (%) + )

[

+ [(_1)" (1_%<%I-'>2+--~) —-1}} n=12,...

Since wL/C = 2m7n, and neglecting the terms in the above equations that are o(n), the

(E.10)

coefficients C,, n = 0,1,... will become
Co=1_§_ (E'Za)

and

0 , N even
Ca=1{4i 5. nodd - (E.2b)
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APPENDIX F

ANALYTICAL EXPRESSIONS FOR THE COEFFICIENTS
Cn,n=0,1,..., OF THE EXPANSION OF THE DISPLACEMENT
AT THE BASE OF THE HOMOGENEOUS MODEL, PLACED
OVER THE HALF-SPACE WITH A VERTICAL DISCONTINUITY

The displacement f(z) at the base of the building, placed on the surface of the
half-space with a vertical discontinuity at z = d, Figure 4.3.4, for an incident SH wave as
in Figure 4.3.3, for the different positions of the building relative to the discontinuity, was

given in equations (4.3.14), (4.3.15) and (4.3.16). The coefficients C,,n = 0, 1,..., of the

oo
n=0’

expansion of f(z) in terms of the basis X,(z) where X,(z) are the eigenfunctions in

the z-direction of the homogeneous model, equation (3.2.5), were defined to be

_ (f(2), Xa(2))
= (@), Xal2)) (F1)

The inner product in the above equation was defined by the equation (3.2.10).

Applying this definition to the denominator of the equation (F.1) gives

L
(X (2), Xn(2)) = / cos? M paz=L (F2)
0 L 2
If the building is entirely situated on the left side of the discontinuity, i.e. L < d
L —f P @ nmw
(f(z), Xn(z)) = f (Aoe Yoot 4 Ageter z) cos —2 dz . (F.3)
0
If the building is “sitting” on the discontinuity, i.e. L > d > 0, then
d . .
(f(z), Xn(z)) =/ (Aoe—’#fz + Ale""“fx) cos =z dz+
0 L (F.4)

L o
+ / Aze °r % cos P e dz .
d L
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And, if the building is entirely situated on the right side of the discontinuity, i.e. d <0,
L —t nmw
(f(z), Xn(z)) = / Agze” R cos Tz dz . (F.5)
0

The integrals in equations (F.3), (F.4) and (F.5) can be evaluated analytically.
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