ANTIPLANE EARTHQUAKE WAVES
IN LONG STRUCTURES

By M. 1. Todorovska' and M. D, Trifunac®

ABSTRACT: In this paper, the physical phenomena associated with wave passage
under long buildings have been studied. A two-dimensional, continuous model has
been used to represent the building vibration. Analytical, closed-form solutions
have been obtained for the response to incident monochromatic, plane SH-waves.
The soil-structure interaction has been neglected. The response of this model abounds
with physical phenomena that cannot be seen from the response of one-dimensional
building models. Some of these phenomena are important and must be considered
in the design practice. For example, the propagating waves excite antisymmetric
horizontal modes of vibration even in perfectly symmetrical long buildings. Thus,
they contribute with forces and deformations that are not present in the one-di-
mensional analysis. It is shown in this paper that buildings can vibrate with modes
that are exponential functions in the vertical direction, and that the transfer of the
wave energy from the ground into the building depends on the phase velocities of
the ground waves.

INTRODUCTION

In the typical analyses of the response of buildings to strong earthquake
ground motion, it is customary to neglect the propagating character of the
waves in the ground. Detailed three-dimensional models involving nonlinear
analyses are used, but the spatial dependence of excitation is usually over-
simplified. It is assumed, for example, that the seismic waves arrive with
the same phase delay at various points of the base of the building. This
corresponds either to vertical incidence, or to waves with angle of incidence
other than zero, but with very large wavelengths compared to the size of
the base of the building. In general, however, the seismic waves arrive at
the building foundation with incident angles other than vertical, and they
may have wavelengths comparable with the horizontal dimensions of the
building, resulting in phased excitation at its base. The previously mentioned
oversimplification of the assumed character of the excitation may lead to
underestimation of the seismic forces that act upon the building during seis-
mic response, and therefore it is important that these effects be studied care-
fully. The effect of traveling seismic waves on extended structures was stud-
ied, for example, for long bridges. Werner et al. (1977) presented a detailed
review of the subject up to 1977, and Kashefi and Trifunac (1986) updated
this review through 1986. ,

The effect of traveling seismic waves on buildings has been little studied
to date. Tzenoy and Boncheva (1979) and Tzenov (1981) noted the need for
the two-dimensional models of “long-in-plan” buildings to account for the
phase difference between the excitation at different points of the foundation.
However, they did not consider the excitation to be propagating waves. The
nature of the seismic energy transfer from the ground into the foundation of
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a building, as well as the transport of energy within the building itself, has
been discussed recently in the publication by the Soviet Academy of Sci-
ences (1987) on the “Wave Processes in Structures During Seismic Inter-
actions.” The authors discuss modeling of buildings and suggest methods
for calculating the equivalent P and S wave velocities of the equivalent con-
tinuous models.

The purpose of this paper is a qualitative study of the physical phenomena
associated with the wave passage under extended buildings on simple models
that allow analytical, closed-form solutions. The simplest model suitable for
this purpose will be used, a two-dimensional, perfectly elastic plate with
prescribed monochromatic SH motion at the base, equal to the free-field
displacement on the surface of the halfspace. Homogeneous soil and soil
with a vertical discontinuity will be considered. The latter will simulate the
displacement patterns in and behind alluvial valleys. This simple model can-
not be considered as a real building, but as an equivalent structure whose
response to propagating waves will display the same phenomena that are
expected to occur in the response of real buildings. Its simplicity eliminates
many details in realistic buildings, but abounds in the physical phenomena.
More realistic analyses involving more complicated geometries, soil-struc-
ture interaction, expansion joints, and realistic excitation are left for future
studies.

ConTINUOUS MODELING OF BUILDINGS

To investigate the effects of traveling seismic waves on extended struc-
tures, two- and three-dimensional models are required. In common practice,
such structures as buildings, bridges, dams, etc. are modeled by finite ele-
ments or by lumped mass models. The advantage in using such methods is
that they can be used for structures of arbitrary shape. The disadvantage is
that they give only approximate solutions. However, some simple continuous
models allow analytical solutions for simple boundary conditions. Further,
selected detailed three-dimensional experimental measurements of the de-
formation of actual buildings (Foutch et al. 1975) suggest that these can be
modeled conveniently by an equivalent continuous representation.

The exact analytical solutions of the wave propagation and vibrational
problems are desirable because they are convenient to study the physics of
the problem. The analytical expressions of the solution directly involve the
physical parameters of the system and make it easy to change them and to
study their effects. They are advantageous also because they provide a basis
for testing the approximate methods.

A two-dimensional rectangular plate or a rectangular solid (Fig. 1) can be
used to investigate the effect of traveling seismic waves on long buildings,
for example.

Equivalent Physical Constants

A simple method of estimating the equivalent shear wave velocities in
buildings may be demonstrated on a building without major discontinuities
in the material properties. It is assumed that only the frame of the building
(Fig. 2) transmits the wave motion. L and D = the lengths of the building
in the x- and y-direction, respectively; H = the total height; A and B = the
average distances between the columns in the x- and y-direction, respec-
tively; h.= the average story height; and d = the average thickness of the
floor panels.

The equivalent shear wave velocity in the z-direction B, for the frame is
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FIG. 1. Continuous Models of Buildings: (8) One-Dimensional Model, 8 and . =
Shear Wave Velocity and Shear Modulus; (b) Two-Dimensional Model: g, and p,,
and B, and u, = Shear Wave Velocities and Shear Moduli In x- and In z-Directions,
Respectively; (¢) Three-Dimenslional Model: B, and p., B, and ., and B, and ., =
Shear Wave Veloclties and Shear Moduli In x, y, and z-Directions, Respectively

equal to the equivalent shear wave velocity of the element of the frame, as
shown in Fig. 3(a). Assuming that the column of the element deforms in
bending only and that the equivalent continuous element deforms in shear
only [Fig. 3(0)] B. = Vin./p, = VfEb'/H’p,, where f = a factor depending
on the percentage of reinforcement in the cross section of the columns; E.
and p, = the Young’s modulus of elasticity and the density of the concrete;
and p, and p, = the shear modulus and the density of the equivalent con-
tinuous model. ) )

The shear wave velocity in the x-direction 3, equals the equivalent shear
wave velocity of the element shown in Fig. 4(a). Assuming that the floors
deform in shear only and that the equivalent continuous model does the same
[Fig. 4(b)], and also assuming that the floors are madec of purc concrete, B,
= B,, where 3. = the shear wave velocity of the concrete.

When applied to the Imperial County Services Building in El Centro, Cal-
ifornia, (Koji¢ et al. 1984), for example, this method gives the values of
420 m/s = 1,400 ft/sec and 1,950 m/s = 6,400 ft/sec for B, and B,, re-
spectively. This method is very approximate and probably overestimates f3;,
since the floors are not made of a single concrete panel. It also underesti-
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FIG. 2. Moment-Resistant Frame of Bullding: (a) Horizontal Cross Section; (b)
Vertical Cross Section

mates [3,, since the nonstructural elements also contribute to the transition
of the seismic waves vertically through the building. The Soviet engineers
(Soviet Academy of Sciences 1987) have found the equivalent shear wave
velocities in buildings to be in the range from 300-1,800 m/s (1,000-5,900
ft/sec). Another approach to estimating B, and B, consists of using experi-
mentally or empirically determined natural periods of vibration. For a tall
building of height H, fixed at its base, the fundamental period of vibration
is approximately equal to 4H /B,. The first natural period corresponds to the
time it takes the shear wave to travel four heights of the building. For a
long building of length L, its first “free-free” horizontal mode of vibration,
if it is associated mainly with shear deformations, would approximately be
equal to 2L/8,.

The anisotropy of the equivalent continuous model is evident for the El
Centro building and is expected for most of the buildings, since buildings
are more flexible in the vertical than in the horizontal direction. The degree
of anisotropy depends on the type of building. For a building with strong
masonry nonstructural elements, the degree of anisotropy will be smaller
during small linear vibrations, while for a building with light nonstructural
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FIG. 3. (a) Element of Moment-Resisting Frame In Fig. 2, Used to Calculate
Equivalent Shear Wave Veloclty in z-Direction for Continuous Building Models
Shown In Fig. 2; (b) Shear Deformation of Corresponding Element of Equivalént
Continuous Bullding Model

elements (e.g., glass or plastic), the degree of anisotropy may be high. How-
ever, during strong earthquake motion, the nonstructural elements may fail
soon after the shaking has started, and only the structure will transmit the
wave motion further.

MopEL

The simplest model to investigate the physical phenomena associated with
the wave passage under long buildings is a homogeneous and perfectly elas-
tic two-dimensional model placed on homogencous soil and cxcited by
monochromatic SH-waves, ignoring the soil-structure interaction. This model
is shown in Fig. 5, where x, y, and z = the spatial coordinates; L = the
length of the building in the x-direction; H = the height; and n and B =
the shear modulus and the shear wave velocity. The material constants may
have different values in the x- and the z-direction (for example p, and B,
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FIG. 4. (a) Typlcal Element of Frame In Fig. 2 Used to Calculate Equlvalent Shear
Wave Velocity in x-Direction; (b) Element Deformed in Shear; (c¢) Continuous
Equivalent of Element Deformed In Shear

and ., and B,). The governing equation of motion for the antiplane displace-
ment of this model v(x,z,¢) is the two-dimensional, linear wave equation

Bz *u(x, 2,0 + a2 *v(x,z,8) _ *u(x,z,1)
x ax? az2 ar?
where x and z = the spatial coordinates; ¢ = the time coordinate; and =

the shear wave velocity of the plate. The conditions that the displacement
v(x,z,t) must satisfy are

z

T, =0 atx=0, 0=z i e (2a)
Ty =0 atx=1L, 0 S 2 € 0 i e e s (2b)
T, =0 atz=0, 0=xsL . i i (20)
and

/,L(x,z)
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FIG. 5. Homogeneous Model of Building of Length L and Height H, Excited at
Base by Wave of Amplitude 1, Frequency v, and Propagating with Phase Velocity
¢ In Positive x-Direction; Soil-Structure Interaction Is Neglected

u= e o ato=x=1L, 2= H e Qd)

where 7, = p.0v/dx and 7, = W,0v/dz are the shear stresses in the plate;
and v and ¢ = the circular frequency and the phase velocity in the x-direction
of the motion at z = H and i = V/—1. By definition ¢ = B,/sin vy, where
B, = the shear wave velocity in the soil; and y = the angle between the
direction of propagation of the incident wave and the vertical.

The eigenfunction expansion of the displacement solution is the following:
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The coefficients C, n=20,1, ... can be calculated analytically from the
displacement condition. Their values are
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if w/c = rfm/L for some integer m. In the limiting case when w/c — O,
the coefficients C, become

Co e S (6(1)
and
C,=0, 2 L (6b)

Some properties of v(x,z,¢) can be seen by analyzing Eq. 3, without doing
any gctual calqulat}ons. For example, the allowable values of the wave num-
bers in the z-direction are real only for a finite number of characteristic func-

Fions iq the x-direction (n = 0, 1, 2, ..., N), whose index n satisfies the
inequality.

w - nm

B T L e @

For the rest of the characteristic functions they are purely imaginary. The
corresponding shape functions are harmonic functions in x; in z, they are
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exponentially decaying functions toward the top of the building. The dis-
placement of these characteristic functions in the z-direction can be called
quasi-static, and they are not associated with propagation of the wave energy
in the z-direction. Resonance happens only for the characteristic functions
that are harmonic functions in z and when the following condition is satis-
fied:

RN
B, ) nw 1
2 (&) - () u-(+3) =
B. B/ \L 2
201,20, andn=0,1,2 o Nooeiiia s (8)

For the first characteristic function (n = 0), the resonant frequences are the
same as the resonant frequencies for a cantilevered shear beam. For higher
characteristic functions (n = 1), the resonant frequencies are the same as
those of a two-dimensional shear plate, rigidly fixed at one side. When the
input wave number /B becomes smaller, the number of the harmonic char-
acteristic functions decreases. However, even when the wave number in the
plate w/B is so small that zero is the largest integer satisfying the inequality
in Eq. 7, there is a solution that has a harmonic shape function in the vertical
direction, through which the energy can be transmitted into the interior of
the plate and for which resonance may occur.

The shape functions in the horizontal direction represent standing waves
that result from the constructive interference between the waves reflected
from the ends at x = O and x = L. For even n, they are symmetric; for odd
n, they are antisymmetric functions with respect to x = L/2.

The coefficients C,, n = 0, 1, 2, ... have always finite values, even when
the input base motion has the same wave number in the horizontal direction
as one of the eigenfunctions in the x-direction as can be seen from Eqgs. 4~
6. These expressions also describe the contribution of the particular char-
acteristic functions to the overall displacement. Eqs. 4 show that, in general,
all the Fourier coefficients are nonzero, meaning that all the characteristic
functions of vibration are excited.

Egs. S imply that in the special case when the wave number in the x-
direction of the input motion equals the wave number in the z-direction of
one of the higher characteristic functions, i.e., w/c = m /L for some m =
1, the mth coefficient has some value, and the rest of the coefficients are
either zero or purely imaginary, with an absolute value less than one. If m
is odd, all the other odd coefficients are zero, while the even ones are non-
zero. Even in this special case, both symmetric and antisymmetric charac-
teristic functions are excited.

In the one-dimensional case, i.e., when the wave number of the input
motion w/c = 0, the input motion at z = H, which is v(x,H,t) = €,
becomes a function of time only. Then all the coefficients C, are zero except
C,, which is equal to one, meaning that only the first symmetric character-
istic function contributes to the total displacement v(x,z,?), and that no an-
tisymmetric characteristic functions can be excited.

ResuLTs

Nature of Strong Ground Motion
Investigations have shown that most earthquakes in California are shallow,
with the earthquake source lying not deeper than about 25 km. The region
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FIG. 6. Relative Positions of Earthquake Source and Bullding Sites for Typlcal
Earthquakes In Callfornia Considering: () Homogeneous Half-Space; (b) Layered
Half-Space

around the epicenter where the buildings are most threatened has a radius
up to about 100—150 km for large damaging earthquakes. This means that
if there are no major discontinuities in the earth’s crust in the region between
the source and the building, the earthquake energy can arrive at the site of
the building in the form of body waves at angles vy (y = the angle between
the direction of propagation of the incident wave and the vertical) varying
from zero, which happens when the building is directly above the source,
up to very large angles, when the source is shallow and the building is far
from the epicenter [Fig. 6(a)]. If there are soft layers near the earth’s sur-
face, and the building is not situated directly above the source, the seismic
energy will be transmitted to the building site mainly in the form of surface
waves [Fig. 6(b)]. Trifunac (1971) has shown that from 70-90% of the seis-
mic energy arriving at the building sites in California can come through the
surface waves. In the figures mentioned, D = the distance between the ep-
icenter and the building; & = the depth of the source; and h = the thickness
of the soft layer in the layered half-space.

‘ The phase velocity in the horizontal direction ¢ can become infinite only
in two cases: (1) When the earthquake waves arrive nearly vertically at the
building site, which is possible if the source is deep under the building; or
(2) when it is far from the building so that the first body waves arrive almost
vertically because of the progressive bending of the rays up toward the ver-
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tical. This can result from the presence of low velocity surface layers. In
both given cases, the earthquake waves arrive at all points of the base of
the building with the same phase. In all other instances, the phase velocities
of the earthquake motion under the building will be finite, and there will be
phase differences in the motion at different points of the base. This fact calls
for the investigation of the various phenomena associated with the response
of buildings to phased excitation at the base.

To make the problem more general, it is convenicnt to describe the input
motion in terms of the dimensionless parameters m = L/¢T and ¢/B,, where
T = 2m/w is the period of the input motion.

The phase velocity in the horizontal direction ¢ was defined as the ratio
between the shear wave velocity of the soil B, and the sine of the incident
angle y. The minimum value of the shear wave velocity in the soil is about
Bsmin = 50 m/s and the maximum value of sin y = 1. This gives the min-
imum value of the phase velocity in the soil to be ¢, = 50 m/s. The
maximum value is ¢, = @, and corresponds to the vertical incidence of
seismic waves. The equivalent shear wave velocity in the building is in the
range 500 m/s < B, = 1,800 m/s. An analysis of 57 modern tall buildings
in the Los Angeles area (Moslem and Trifunac 1987), for example, shows
that the maximum length for most buildings in that area is L., = 80—
100 m. ‘

Considering all the given and taking the value of 40 Hz to be the maxi-
mum frequency of interest in the spectrum of the earthquake waves, the
range of the dimensionless length m becomes 0 < m = 60. In the calculations
considered in this paper, the maximum value of v is four. No higher values
of m were needed, because all physical phenomena associated with the wave
passage under the building were evident even for n = 2, The values of the
dimensioniess phase velocity ¢/B, are in the range 0.03 = ¢/B < «. The
values ¢/, = 0.05, 1, and 20 were used in the calculations. The range of
the height-to-length ratio for long buildings that are of interest in this in-
vestigation can be roughly estimated to be 0.25 < H/L < 3. The values H/
L = 0.25, 1, and 2 were used in the calculations.

Transfer of Energy of Ground Motion into Continuous
Structural Systems

The. local transfer of energy from the ground into buildings can be con-
sidered qualitatively on the two-dimensional continuous model placed over
the homogeneous half-space, as shown in Fig. 7. When an incident SH-wave
hits the interface between the two different media, it will be partially re-
flected back into the half-space and partially transmitted into the other me-
dium. The incident angle v and the refracted angle o (Fig. 7) must satisfy
Snell’s law
B e a}
siny B,

where B, and B, = the shear wave velocities of the plate (in the x-direction]
and of the half-space, respectively. Since the ratio B,/sin v is cqual to the
phase velocity in the horizontal direction, Snell's law can be written in the
following form:
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FIG. 7. Refraction of Plane Earthquake Wave at Interface between Half-Space
and Bullding, Modeled as Homogeneous, Anisotropic, Two-Dimenslonal Elastic
Plate

From Eq. 9a it can be seen that the refracted angle o is real only if B, < c.
If B, > ¢, « takes on imaginary values, and the wave in the plate will be
inhomogeneous instead of progressive, having exponentially decreasing am-
plitude toward the top of the plate, implying that no energy will be trans-
ferred into the plate. Hudson (1961) has proved for the case of Love waves
in a layer that the energy transmitted from the layer into the half-space,
during one half period, goes back into the layer during the other half period,
and that the resultant energy that enters the half-space during the time of
one period of motion is zero. A similar situation occurs in our case too. The
preceding is a qualitative discussion because it applies only to two infinite
media in contact. The finite dimensions of the building (4 and L) and the
boundary conditions (2d) limit such inferences asymptotically only to those
cases in which C, —» 0 for n <= N, C, is large for n > N, and #n is near but
different from wL/mc. This occurs for small wavelengths of the incident
waves, i.e., when ¢ — 0 and for w # ®,, where w, = the resonant fre-
quencies satisfying Eq. 8.

Figs. 8-10 show this dependence in terms of the ratio ¢/B:. They rep-
resent the displacements of a vertical cross section of a long isotropic build-
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FIG. 8. Displacement Response of Long Building (H/L = 0.25), Represented by
Homogeneous and Isotropic Model, for Propagating SH-Waves (n = ,2, and ,C./B =
0.05) at Times ¢ = 0, T/4, T/2, 3T/4, and T; Wave Energy Does Not “Enter” into
Bullding, As Can Be Seen from Exponential Nature of Displacements along Ver-

tical Lines

FIG. 9. Displacement Response of Long Bullding (H/L = 0.25), Represented by
Homogeneous and Isotropic Model, for Propagating SH-Waves at “i Base (’1'1 =2
and c/p = 1) at Times ¢ = 0, T/4T/2, 3T/4, and T; Wave Energy “Enters” Into

Bullding

FIG. 10. Displacement Response of Long Building (#/L = 0.25), Represented by
Homogeneous and Isotropic Model, for Propagating SH-Waves at lts“ Base ('1'1 =2
and ¢/B = 20), at Times ¢ = 0, T/4, T/2, 3T/4, and T; Wave Energy “Enters” into

Building
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ing (H/L = 0.25 and B, = B, = B) at times equal to 0, T/4, T/2, 3T/4,
and 7, where T = the period of the incident wave motion. The amplitude
of the incident wave is 0.5, (i.e., the amplitude of surface displacement is
1.0), and the scale in this and in all the subsequent figures is in the same
units as the displacement of the incident wave. The figures show that when
c¢/B = 0.05, the “hyperbolic” characteristic functions are dominant in the
displacement. The displacement is the largest at the base and exponentially
decays towards the top of the building (Fig. 8). When ¢/B = 1, it can be
seen from the figures that the harmonic characteristic functions are dominant
in the displacement and that energy is entering the building. When ¢/B =
20, even the direction of propagation of the transmitted wave can be rec-
ognized from the displacement pattern.

Excitation of Symmetric and Antisymmetric Characteristic
Functions of Vibration

Varieties of characteristic functions, symmetric as well as antisymmetric
with respect to the center of the building, are used to represent the displace-
ment response for almost any base excitation. Thus, for seismic design of
large buildings, it is important to understand how the passage of seismic
waves excites different characteristic functions of response.

In the discussion of the analytical expressions for the displacement re-
sponse of the homogeneous model, it was shown that, in general, all the
characteristic functions of vibration are excited. Both symmetric and anti-
symmetric characteristic functions (with respect to x = L/2) contribute to
the overall displacement, even when the wave number w/c of the input mo-
tion equals the wave number k, of one of the characteristic functions. How-
ever, when the waves arrive vertically at the base of the building, i.e.,
w/c = 0, only the first symmetric characteristic function is excited, and the
problem becomes one-dimensional. This means that the “traditional” anal-
ysis of the response of buildings to strong ground motion neglects the fact
that the higher x characteristic functions of vibration participate in the re-
sponse of the building.

In the discussion of the displacement solution, the resonant frequencies
w, were defined as frequencies at which the displacement of the homoge-
neous plate becomes infinite. Realistic buildings possess damping, and there-
fore the more realistic continuous model would be made of a viscoelastic
medium. The effect of the damping can be added to the theory of the un-
damped model as a perturbation that will change, but not significantly, the
resonant frequencies and the Fourier coefficients of the expansion of the
displacement. At the resonant frequencies, such a model will experience fi-
nite, but still large, displacements that can lead to large forces in the struc-
ture.

The significant frequency content of the earthquake waves is. continuous
and extends from zero up to 30 or 40 Hz. High frequencies are present in
the Fourier spectrum of the earthquake source, but they will have small am-
plitudes by the time they reach a building. In Fig. 11, the resonant fre-
quencies corresponding to the first six characteristic functions in the x-di-
rection and the first three characteristic functions in the y-direction (n = 0,
1,...,5and k = 0, 1, and 2), in the range 0-60 Hz, have been shown for
a low building (L = 100 m, H = 25 m) and for a high building (L = 50
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resonant frequencies. The contribution of the resonant frequencies to the dis-
placement will depend on the amplitude of the Fourier spectrum of the ex-
citation at that frequency and on the coefficients of the expansion C,. The
displacements and the stresses at the resonant frequencies corresponding to
the higher characteristic functions in x (n = 1) can be very large, even larger
than the ones corresponding to the first characteristic function in x (n = 0)
and that are expected by one-dimensional analysis. For design purposes,
however, one-dimensional models of buildings are commonly used. This means
that the buildings may not be designed for some loads that may occur during
their life.

Figs. 12—14 show the displacement of an isotropic building (B, = B, =

FIG. 12. Displacement Response of Long Building (H/L = 0.25), Represented by
Homogeneous and isotropic Model, for Propagating S/H-Waves (n = 1 and ¢/B
= 1). At Times ¢ = 0, T/4, T/2, 3T/4, and T; Antisymmetric Modes of Vibration
Are Seen to Contribute to Overall Response
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FIG. 13. Displacement Response of Building with Comparable Length and Height
(H/L = 1), Represented by Homogeneous and isotropic Model, for Propagating
SH-Waves (n = 1 and ¢/p = 1) at Times ¢ = 0,7/4, T/2,3T/4; and 7; Antisymmetric
Modes of Vibration Contribute to Overall Response

2702

FIG. 14. Displacement Response of Long and Tall Building (H/L = 2), Repre-
sented by Homogeneous. and Isotroplc Model for Propagating SH-Waves (n = 1
and ¢/p = 1) at Times ¢ = 0, 7/4, T/2, 37/4 and T; Antisymmetric Modes of Vi-
bration are Excited

B) while n = 1 and ¢/B = 1 and when the ratio H/L = 0.25, 1, and 2,
respectively. It can be seen from these figures how the contribution of the
different characteristic functions changes as the wave passes under the build-
ing. At time ¢ = 0, T/2, and T, only one of the symmetric characteristic
functions in x (n = 2) contributes to the displacement; the one that has the
wave number equal to w/c. At time ¢ = T/4 and 3T/4, only antisymmetric
characteristic functions in x contribute to the displacement, and, moreover,
the displacement at these two moments is larger than the displacement during
t = 0, T/2, and T. The buildings experience large torsional deformations
that give rise to horizontal stresses. These large torsional deformations may
be responsible for some failure mechanisms of the long buildings.

Comparing the displacement patterns of the three models in Figs. 12-14,
it can be concluded that for a larger H/L ratio, the displacement patterns
contain more wavelengths in the vertical direction.

Effect of Anisotropy on Response
The anisotropy changes the wave numbers of the characteristic functions
and therefore the displacement pattern. Its effect is equivalent to changing
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FIG. 15. Displacement Response of Long and Low Anlsotropic Building (H/L =
0.25 and B,/B, = 2), Represented by Homogeneous and 1sotropic Model, for Prop-
agating SH-Waves (1 = 1 and ¢/p = 1) at Times ¢ = 0, T/4, T/2, 3T/4, and T;
Antisymmetric Modes of Vibration Are Seen to Contribute to Overall Response

the scale of the z-coordinate. For example, where B,/B, = 2, the z-wave
numbers and the displacement pattern of the building are the same as those
of a building with an H/L ratio twice as large. An anisotropic building that
is “softer” in the vertical direction contains wave forms with higher fre-
quencies than if it were isotropic, as can be seen by comparing the displace-
ment of the building in Fig. 12 with the displacement of the corresponding
anisotropic building, with B,/B, = 2, in Fig. 15. The anisotropy does not
illuminate any new physical phenomena that cannot be seen from the re-
sponse of the isotropic model. Therefore, the isotropic model is satisfactory
for the purposes of this study.

Response of Building to General Ground Motion

The response of the building model to monochromatic wave motion at the
base can be used as a transfer function in calculating the response to the
general excitation. Todorovska et al. (1988) discusses the Fourier synthesis
of the response for nondispersed and dispersed base motion, as well as the
response to a monochromatic wave of random amplitude coming from a
random direction.

To investigate the effects of the wave passage on the response of a build-
ing placed on inhomogeneous soil, two quarter-spaces of different material
properties, perfectly bonded to each other to represent the soil, are used (Fig.
16). In this figure, ., B, and pe, Bz = the shear moduli and the shear wave
velocities of the medium on the left and on the right, respectively, of the
discontinuity at x = d; and x' and z' = the spatial coordinates in the soil.
i and B and x and z are the material properties and the spatial coordinates
in the building. If the soil on the left is softer than the soil on the right and
if an incident monochromatic wave propagates from left to right, the steady-
state displacement in the soft soil will consist of standing and propagating
waves, thus having the main features of the displacements in the alluvium
valleys (Moeen-Vasiri and Trifunac 1986). The displacement behind the dis-
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FIG. 16. Hall-Space with Vertical Discontinuity and Building Located in Front of
Discontinuity :

continuity may be a propagating wave or an exponenti_a]ly decaying function
of x', depending on the material properties. of the soils and on the x-wave
number of the incident wave w/c;. Displacement response 'of the homoge-
neous building model (Fig. 5) placed in front, onto, or behind the soil dis-
continuity can be calculated analytically, if only the part of the displacement
in the soil that satisfies the “Sato condition” is considered (Sato 1961)..

The results show that if the building is situated entirely on the soft medium
there will be points on the base with displacement gmphtude close to zero.
These are the points of the nodes of the nearly standing waves on the ground
surface and also the sources of torsional deformations. This is not the case
when the motion at the base is a propagating wave and each point of it passes
through all the different phases of the wave motion. This is shown in Fig.
17, where m = L/c,T = 0.5, c./B =5, B,_./E:R = 0.025, d/L :u-lx"/%b and
the wave hitting the discontinuity in the soil is described by €™ cos
wz' [c,, where ¢, and ¢, = the phase velocities in the soft medium in the x'-
and in the z'-direction, respectively. .

If the building is partly situated on soft and partly on hard soil, e.g., 18,
where d/L = 0.7 and all the other parameters are the same as in Fig. 17,

FIG. 17. Displacement Response of Long and Low Isotropic Building (H/L = 0.25)
Placed over Soft Soll in Front of Vertica! Discontinulty in Solil (B/B. = 0.5, B./B«
= 0.025 and d/L = 1.2) for Incident SH-Waves In Soft Medlum (n = 0.5 and _fL/B
= 5) at Times ¢ = 0, 7/4, T/2, 3T/4, and T; Building Is Practically “Sitting” on
Standing Wave with Wave Length Equal to Twice Length of Building
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FIG. 18. Displacement Response of Long and Low Isotropic Building (H/L = 0.25)
Placed over Vertical interface between''Soft" and ‘‘Hard" Solls (8/B8. = 0.5, 8./Bx
= 0.025, and d/L = 0.7) for Incident SH-Wave in Soft Medium (n = 0.5 and ¢,/8
= 5) at Times ¢+ = 0, T/4, T/2, 3T/4 and T; Wave Energy Propagates Nearly Ver-
tically into Building through Interface with *‘Soft” Soil Only; Part of Building that
Is Sitting over **Hard” Soil Has Displacement Amplitudes Practically Equal to Zero

it may happen that the displacements of the soft soil have large amplitudes,
opposite to the displacement amplitudes in the hard soil, which may be neg-
ligible. Then if ¢,/B = 1, the wave energy will propagate into the building
only through the contact with the soft soil and not with the hard soil (either
because ¢y is imaginary, or if ¢, is real, because the amplitude of the motion
in the hard medium is practically equal to zero). Further, if the transmitted
wave is propagating nearly vertically (as in Fig. 18), only the part of the
building that is sitting on the soft soil will vibrate. Thus, the consideration
of the propagating character of the seismic waves may be used to explain
the extensive damage in certain areas of a building, in contrast to practically
no damage in the remaining part of the same building.

CONCLUSIONS

The principal observations of this analysis can be summarized as follows.

Two-dimensional models of buildings are more representative than one-
dimensional models because of the possibility they give: (1) To apply a more
realistic excitation to the building model; and (2) to investigate and under-
stand the variety of physical phenomena in their response. The models used
in this paper abound in new phenomena that cannot be seen from the one-
dimensional models. At the same time, they are simple enough to allow an
analytical form of the solution.

It has been shown that a building will vibrate not only with harmonic
characteristic functions, but also with hyperbolic characteristic functions in
the vertical direction, having exponentially decaying amplitude toward the
top of the building. The number of harmonic characteristic functions with
which a building can vibrate is finite. The hyperbolic characteristic functions
are not associated with propagation of the wave energy into the building,
and the phenomenon of resonance occurs only for the harmonic characteristic
functions. One-dimensional models can vibrate only with harmonic char-
acteristic functions.

The two-dimensional analysis shows that the transfer of energy from the
ground into the building depends on phase velocities with which the ground
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motion propagates. Energy will propagate into the building efficiently when
¢/B. = 1, where ¢ = the phase velocity in the horizontal direction of the
ground motion; and B, = the equivalent shear wave velocity of the building
in the x-direction. In one-dimensional models of buildings, the ground mo-
tion representation always has infinite phase velocitics in the horizontal di-
rection, This corresponds to vertically incident waves, and under those con-
ditions, all incident energy always propagates into the building. The fact
that the wave energy is not always transmitted into the building is of con-
siderable practical importance. A soft layer under the building will reduce
the phase velocities of the incident ground motion and could eventually make
the ratio ¢/B, << 1. Another way of reducing c is by channeling the ground
motion to arrive at the building site nearly horizontally. This way much of
the wave energy may be prevented from propagating into the building.

The anisotropy changes the wave numbers of the characteristic functions
of vibration. Typically, the buildings are more flexible in the vertical direc-
tion, which will cause the displacement pattern to have shorter wave lengths.

The waves that are propagating in the horizontal direction excite the build-
ing to vibrate with a variety of symmetric and antisymmetric characteristic
functions of vibration, even when the building is perfectly symmetric. The
one-dimensional theory neglects all the higher characteristic functions, and
the one-dimensional model vibrates only with the first symmetric character-
istic function that has constant displacement in the horizontal direction. Cur-
rent typical design practices consider 5~10% accidental torsion of the build-
ing and thus torsional response due to the eccentricity of the building only.
Typically, the buildings are not designed for the rotational excitation that is
associated with strong ground motion. Gupta and Trifunac (1987), using a
probabilistic approach, investigated the contributions of this torsional exci-
tation to the earthquake response of simple symmetric buildings and con-
cluded that the rotation of the ground should be considered in the design of
buildings. Such rotational excitation is a good respresentation of the rota-
tional characteristics of the ground motion only when the wavelength of the
seismic waves is long compared to the in-plane dimensions of the building.
The two-dimensional model used in this paper does not put any limitations
on the wavelengths of the input wave motion.

If the building is long and on inhomogeneous soil and near a vertical
discontinuity in the material properties of the soil, which partially reflects
the incoming waves, the building will be excited in part by the standing
waves. In this case, the points of the base of the building that are standing
on the nodes of the standing wave will experience large torsional excitation,
This does not happen if the displacement of the base is a propagating wave.
If the building is long and partly sitting on soft soil and partly on hard soil,
it may happen that the building vibrates asymmetrically because of the large
ground displacements in the soft soil and very small displacements in the
hard soil. When the wave that has been transmitted into the building through
the contact with the soft soil propagates nearly vertically through the build-
ing, it may happen that only the part of the building on the soft soil vibrates
and that the other part of the building is relatively quiet. Only the two-
dimensional analysis can meaningfully be used to understand the response
of such buildings.
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