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A method for seismic microzonation of a large metropolitan area is examined. It utilizes
information on the location of active faults and their relative levels of seismicity, the
three-dimensional source to station geometry, the frequency dependent attenuation, the effects of
local amplification of wave amplitudes in terms of the depth of sedimentary deposits beneath the
site, and the scaling in terms of earthquake magnitude.

The method presented here does not require any new or difficult steps to gather data, when
compared to other microzonation procedures employed in the United States or abroad. The
advantage of the method lies in its ability to properly balance different contributing factors to the
seismic risk at a point, in time, space and frequency of strong ground shaking.

INTRODUCTION

The seismic zonation maps, usually presented on a scale
which only distinguishes areas as large as states or
countries, are intended to show the overall distribution of
seismic risk. The quantity plotted in such maps may
represent a coefficient for use in seismic resistant design?®,
maximum intensity of shaking!-2*, or some amplitude of
the expected future strong ground motion®. Typically,
such maps will only include the overall patterns of the
geographical distribution of seismicity and may reflect the
presence of only some major fault systems or of large
seismically active zones. Most seismic design codes
include such maps'' and show the zones requiring
different lateral force coefficients.

The characteristics of strong earthquake ground
shaking at a point, however, also depend on numerous
soil and geological features surrounding the site, as well as
on the distribution and on the level of activity of the
earthquake sources in the area®. These may be too
detailed to include in typical seismic zoning maps'?, but
can be included in and represent the basis for the detailed
microzonation maps. The variety of published micro-
zonation maps results from their many different uses in
design!-2*, insurance?’, urban design and in the
prediction of earthquake induced soil failures and land
slides, for example.

A systematic large scale program to develop zonation
maps of the entire country, as well as to develop
microzonation maps for large cities started in the USSR in
the 1930’s'. Following the publication of the first USSR
zoning map in 1937 many researchers there have worked
on the development of the microzonation methodology,
which today continues to be dominated by the concept of
the largest observed intensity and by the local geologic
and subsoil conditions at a site!. In Japan the early work
on microzonation was influenced by the studies of Sezawa
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and Kanai on the wave propagation through soil layers
and by the effort to measure the transfer function
properties of each site experimentally, by studying the
local amplitudes of microtremors'3. In various countries
of Europe'*, Central and South America'®?! and in
China?®°, the zonation and microzonation work closely
followed and combined the Russian and the Japanese
experience. In the United States, with few exceptions (e.g.
Ref. 25) the microzonation work has not attracted many
researchers. In 1972 and 1978 international conferences
were held, first in Seattle, Washington, and second in San
Francisco, California, to promote international exchange
of ideas in microzonation. As can be seen from the
proceedings of these two conferences the emphasis in the
US seems to be directed towards individual basic or
applied studies while an integrated approach to
microzonation appears to be lacking.

Following Cornell’s pioneering work in 1968, on how
to integrate the contributions to the seismic risk at a site,
the computational capabilities for evaluating seismic risk
have been developed to a point>*>717:22 where this
approach can be used now for constructing probabilistic
microzonation maps. So far this work has been carried
out using mainly the peak ground acceleration and the
description of seismicity on the scale of the State of
California (for example, Refs 15 and 28). Extending this
approach to scaling with frequency dependent spectra
(directly) offers major and new possibilities for the
development of microzonation maps in which many
contributing factors can be considered simultaneously
and in a balanced way. To illustrate this method and its
capabilities in this paper the results of Lee and Trifunac'®
are presented for microzonation maps of a hypothetical
metropolitan area with geometry corresponding to that of
the Los Angeles basin.

One of the most important assumptions underlying
almost any microzonation method is that the local
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geologic and soil conditions possess some intrinsic wave
amplification properties which are independent (or
almost independent) of the type and of the direction of
seismic waves approaching the site. This is the basis of all
experimental work of Kanai!?, who assumes that by
measuring the ‘predominant period’ of each site, through
the experimental measurement of the site transfer
function, it is possible to evaluate the local amplification
effects?. It is also assumed, in this work, that the repeated
excitations by different earthquakes will continue to be
dominated by the local site effects. For this to be so, it is
essential that the local site transfer functions should play a
major role in modifying the input ground motion®’.
However, this seems to be so only when the local site
consists of exceptionally soft soil and alluvium deposits*®,
and when the wave excitation arrives from a limited pencil
of azimuths. Detailed analysis of the two- and
three-dimensional effects of wave propagation shows that
the peaks of the transfer function of the local site effects
can shift in their ‘predominant period’ and in amplitude,
and can disappear altogether with changing the direction
of wave incidence®®3!. Though there are many examples
of the patterns of building damage following many
earthquakes, which are clearly a consequence of the
variations of the amplitudes of shaking on a very small
(microzonation) scale, there are no adequate data to
verify experimentally the extent to which such patterns
will be repeated during the future strong earthquake
shaking.

Theoretical wave propagation studies and the
empirical descriptions of the wave amplitudes do lead to a
consistent conclusion that those waves will be amplified
which propagate from ‘hard’ to ‘soft’ material®®38,
However, this agreement is only in the sense of the mean
overall amplitudes and does not involve any detailed
description of the spectral amplification or deamplifica-
tion at given frequencies or at given locations. This
observation thus rules out the concept of the predominant
period!?, as it has been associated with the depth of the
soft soil deposits??.

The detailed description of the empirical results which
describe the dependence of strong earthquake ground
motion amplitudes and duration is beyond the scope of
this paper. The most recent results and detailed references
on many earlier studies can be found in the reports by
Trifunac and Lee**3°, For the purposes of this work it is
sufficient to state that the repeatable site effects are
characterized by the amplification of the average wave
amplitudes for periods longer than about 0.5 seconds at
geologically ‘soft’ sites3#:3>.

In this paper the methodology for computing the
uniform risk spectra will not be presented in detail. This
methodology was discussed and illustrated previously
through many examples®*. Recently this methodology
has been refined by Lee and Trifunac'” but no new basic
principles have been added to the original method. Thus,
in the following sections, for completeness of the
presentation only, a summary of this method is given so
that the reader is reminded briefly of the procedures
required for computation of URS.

The purpose of this paper is to show how, by repeating
the calculation of URS at a discrete grid of points, a map
of URS can be constructed, thus leading to a new method
for seismic microzonation. By contrasting the procedures
and the results presented with the classical methods for
microzonation (e.g. Refs 1, 2, 14, 20, 23, 24, 25), the

quantitative and the statistically balanced features of the
method proposed here will become clear.

Uniform Risk Spectra

The methodology for estimating the uniform risk
spectra at a site>*'”7 involves: (1) Description of the area
surrounding the site in terms of all seismic sources, their
activity and geometrical extent, (2) Site characteristics in
terms of the depth of sedimentary deposits or the site
geological classification®? and (3) Description of
attenuation of strong motion amplitudes with distance
from the earthquake source®®. Then the probability
pLS(w)] that some spectral amplitude will be exceeded at
least once in Y years is?

pLS(w)]=1—exp{—N[S(w)]} (1)

where N [ S(w)] is the expected number of times that S(w)
will be exceeded at the site. The recurrence time of a given
amplitude S(w) is

TS(0)]=Ng[S(w)] )

where the time unit is Y years (in all examples in this paper
Y=350 years). The above equation (2) then gives the
recurrence time of S(w). Taking the logarithm of
equation (1) gives

Ng[S(w)]= —In{l —p[S(w)]} 3)

Since, for this discussion, a Poisson sequence of
earthquakes in time has been assumed, equation (3) can
be used to compute the probabilities of exceeding S(w)
during another observation period of Y years.

In this paper the examples of microzonation of a
metropolitan area are presented assuming that all sources
contributing to the risk are represented by a Poissonian
sequence in time. However, the computer program which
has been employed for all calculations”, is also capable of
considering a combination of Poissonian sources in time
with events which will occur with certainty. For example,
if a reliable prediction is made that an earthquake of
certain magnitude will occur at one of the sources in the
model, that source can be assigned the Poissonian
sequence plus this deterministic sequence (e.g. main shock
and its aftershocks) and the resulting Uniform Risk
Spectra can be computed. For examples in this paper such
cases have not been considered. Clearly, when final
microzonation maps are developed for a region for a
period of Y years, and when at some later time an
earthquake prediction is made, it is easy to rerun the
probabilistic calculations of the microzonation maps to
see what is an impact of such a prediction and how and
where it may change the previous results based on the
Poissonian sequence only, or Poissonian and the
predicted sequence, but excluding the prediction just
made.

EXAMPLE:

Seismic microzonation of a metropolitan area

To show how the URS methodology could be used to
present a microzonation map of a metropolitan area'®,
the seismic region and the geometry of the Los Angeles
basin in Southern California have been employed.
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However, the seismic activity has been chosen arbitrarily.
Even though this activity is very similar to the actual one,
it cannot be taken to represent the author’s interpretation
of what the seismicity for this area should be. Detailed
microzonation of a large metropolitan area like Los
Angeles will require very detailed studies of the active
faults and of the distribution of all active zones and will
call for much more detailed knowledge of the local soil
and geologic conditions than what has been adopted for
this illustrative example. While many overall features and
trends of the ‘microzonation maps’ presented in this paper
will not change much when such detailed information
becomes available, the reader is cautioned that this paper
presents only an illustration of the methodology and is an
example of how the results (Pseudo Relative Velocity

(PSV) spectral amplitudes with 5% damping) might vary
geographically and with local geologic conditions. From
the maps presented here and from the report by Lee and
Trifunac!® one may obtain some idea about the difference
of the nature of the PSV spectra at two different sites in the
Los Angeles basin, for example, but one cannot take the
results to represent reliable estimates of the expected PSV
amplitudes for a chosen probability of exceedance.
Figure 1 (modified from Jennings!?) suggests the
distribution of major quaternary faults in Southern
California. Figure 2 shows the same region of Southern
California and the faults which have been adopted to
represent the geometry of earthquake sources in this
example. Table 1 presents the seismicity parameters
which have been assigned to all sources in Fig. 2

Table 1 Coefficient a in equation (12) and the moment rates per year, M, for 29 faults in Fig. 2. Coefficient a' corresponds to a when M in equation (12} is

replaced by site intensity'®

FAULT NAME a a' MOMENT/YR
(50 YEARS)
1 ELSINORE FAULT - WHITTIER FAULT 3.77 2.69 1.2E+24.
2 CHINO FAULT 1.61 0.55 8.3E+21.
3 ROSE CANYON FAULT 3.28 2.22 3.9E+23.
4 NEWPORT - INGLEWOOD FAULT ZONE 2,92 1.86 1.7E+23.
5 PALOS VERDE FAULT 3.09 2.03 2.5E+23.
6 SAN JACINTO FAULT ZONE 5.05 4.00 2.3E+25.
7 SAN ANDREAS, CAJON TO IMPERIAL VALLEY ON NORTH BRANCH 4.55 3.48 1.5E+25.
8 OAKRIDGE FAULT 2.50 1.44 6.4E+22.
9 SANTA SUSANA FAULT 3.05 2.00 2.3E+23.
10 SIERRA MADRE - CUCAMONGA FAULT ZONE 4.29 3.23 4.0E+24.
11 MALIBU COAST - SANTA MONICA - RAYMOND FAULT SYSTEM 2.50 1.44 6.4E+22.
12 ARROYO PARIDA - SAN CAYETANO FAULT ZONE 2.09 1.03 2.5E+22.
13 SAN ANDREAS FAULT - CAJON PASS TO SAN LUIS OBISPO 5.29 4.23 8.3E+25.
14 BIG PINE FAULT 3.51 2.45 6.6E+23.
15 SANTA YNEZ FAULT - SLIP RATE VERY SPECULATIVE 3.80 2.73 1.3E+24.
16 SAN GREGORIO - HOSGRI FAULT ZONE 4.94 3.88 1.8E+25.
17 PINTO MOUTAIN FAULT 3.25 2.18 3.6E+23.
18 PISGAH - BULLION FAULT 3.67 2.61 9.5E+23.
19 SOUTH DEATH VALLEY FAULT 3.07 2.01 2.4E+23.
20 CALCIO - WEST CALCIO FAULT 3.34 2.29 4.5E+23.
21 CAMP ROCK - EMERSON FAULT ZONE 3.25 2.18 3.6E+23.
22 LOCKHART - LENWOOD FAULT 3.69 2.63 10.0E+23.
23 GARLOCK FAULT 4.68 3.62 9.7E+24.
24 SIERRA NEVADA FAULT 4.03 2.98 2.2E+24.
25 PANAMINT VALLEY FAULT 3.35 2.30 4.6E+23.
26 HELENDALE FAULT 3.32 2.27 4. 3E+23.
27 WHITE WOLF FAULT 2.71 1.65 10.4E+22.
28 RINCONADA FAULT 4.14 3,08 2.8E+24.
29 SAN ANDREAS, CAJON TO IMPERIAL VALLEY ON SOUTH BRANCH 4.55 3.48 1.5E+25.
30 DIFFUSE REGION:
MAG EXPECTED # MMI EXPECTED #
IN 50 YRS IN 50 YRS
3.5 480.00 4 400.00
4.0 140.00 5 125.00
4.5 42 .00 6 25.00
5.0 12.50 7 2.50
5.5 3.65 8 0.00
6.0 1.10 9 0.00
6.5 0.32 10 0.00
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(identified by arabic numerals) and which have been used
in the computer program NEQRISK!” to calculate the
examples presented in this paper.

There are two sets of inputs for the seismic risk program
NEQRISK. The first set of the inputs consists of a
description of the seismicity in the region. The second
input is the description of the attenuation of seismic waves
from the seismic source to the site. Either the magnitude
or the MMI models of Trifunac and Lee*® for the
attenuation of the amplitudes of the pseudo-relative
velocity spectrum (PSV) at period T can be used. In the
model with magnitude scaling,

log,, PSV(T)=M .+ A1t(A,M, T)
+b(T)M ., +b,y(T)h+b3(T )
+bs(T)+bs(TIM% . 4)

where T is the period, M is the magnitude of the
earthquake, .o7tt(A, M, T) the frequency dependent
attenuation function developed by Trifunac and Lee?®,
A=A(S,H,R) a representative distance from the
earthquake source of size S at depth H and at epicentral
distance R, h the depth of alluvium, v a component
variable set to O for horizontal and to 1 for vertical
motions and

M =min(M, M,,,)
M. =max(M,, M o)
where
M in=—b(T)/(2bs(T))
and
M o= — (1 +b(T))/(2b6(T)) )

Using one of the above two sets of inputs, the seismic
risk program calculates the PSV amplitudes for a selected
set of probabilities of exceedance and a selected set of
periods in the range between 0.04 sec—7.50 sec at each site
(grid point).

The seismicity of each fault in the region may be
described by the occurrence rate of earthquakes on the
fault. In selecting this occurrence rate the approach of
Anderson and Trifunac® has been employed. The
seismicity can be estimated from the geological
information on the slip of each fault, through the
determination of the seismic moment rate, M,, which
satisfies the following equation,

M= f © 10N G) dy )

-0

where N(y) dy is the long term average rate of occurrence
of seismic events with moments between y—dy/2 and
y+dy/2, where y=log,,M,. N(y) is usually described by

N(y)=10"% (7)
Assuming that N(y) is zero outside some range

Vmin <7< Ymax» SUbstituting (7) into (6) and integrating
gives

10°

M. =— (10" =DV _ 10~ Dmin 8
" (1—d)n 10( ) ®)
For earthquakes in Southern California, Thatcher and

Hanks?® give, for M representing the local magnitude,
y=16.04+3/2M 9)

The frequency of the occurence of earthquakes can be
described also directly in terms of magnitude by

loa—bM, MmingMngax

10
0, otherwise (10)

with M, <M <M

min ~= max>

tudes for the fault, with

the range of allowable magni-

b=3/2d
and
a=c—16d +log,,(3/2) (11)

Here N(M)dM gives the number of events with magnitude
between M, and M,. In the present analysis b=0.86.
Then from given My, a can be determined through (8) and
(1n).

To include the uncertainties in the estimation of
seismicity through the use of the parameters a, band M,
in the magnitude model'’, a probability distribution is
assumed for

log,o N(M)=a—bM for M, <M<M

min ~=X

max (12)

In the examples of seismic risk analysis in this paper, the
log,, N(M)is assumed to follow a triangular distribution
(Example b, Section 4.3 of Lee and Trifunac!”), which is
characterized by additional parameters da and ob.
Similarly, M_,, can also be described by triangular
distribution in the range M_,, + oM ...

Table 1 presents all required information for the
seismicity of the 29 faults considered in this study.
Column 1 lists the fault numbers, from 1 to 29 (see also
Fig. 2). Column 2 gives the ‘name’ of the fault. Columns 3
and 4 present the coefficients a and o' for calculating N(M)
during 50 years. Column 5 gives the adopted moment rate
M, per year for each fault. All other coefficients used in
the description of seismicity are the same for all the faults,
as follows:

b=0.86
0a=0.42
ob=—0.035

475 for faults No. 7, 13, 29
max 170 for all other faults

oM, =05

Figure 2 is a plot of the assumed fault sources in the
Southern California region that are used in the example
for seismic risk analysis in this paper. There are a total of
29 line faults and one region of ‘diffused seismicity’®. Each
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Table 2 Depth of sediments h, in thousands of feet at grid points with 5' spacing for greater Los Angeles metropolitan area (after Yerkes et al.>®)

30 25" 20 15" 10 5' 118°00' 55' 50" 45' 40

20'
15' 0 0 0 0 0 0 0 0 0 0
10' 6 10 8.5 0 0 1 0 0 0 0 0
5! 0 0 7 9 4 7 10.5 8 2 0 2
34°00' 6 N 20 26 17 18 5 7 55 2.5 2
56' 5.5 7.5 1 21 31 25 17 18.5 16.5 5 5
50' 1 5 5.5 11 16 28 23 12 1 10 0
45! 2.5 0 8 10 15.5 18 15.5 8.5 8 5
40' 7.5 4.5 15 13.5 9.5 15 9.5 6 7
35' 9 8 8 6 13.5 8 9
30' 10.5 12
h in thousands of feet
of the 29 line faults is labeled by the corresponding fault o — :
Faults No. T and No. 29 have the same beginmingandend. | £emen e M 0
as can be scen from the figure. They correspond s i

respectively to the north and south branches of the ‘San
Andreas’ fault from ‘Cajon’ to ‘Imperial Valley’. The
diffused region is enclosed by the dashed lines. It ranges
from 33°N to 35°30' N and from 117°30'W to 121° W,
Within this region the earthquakes can occur at any point
with uniform probability and with frequency according to
the data in Table 1, and for Y=150 years.

The scaling equations which relate PSV amplitudes at a
given period of motion further require one to specify the o2 _', (') "
‘depth’ of sediments beneath the station®>. Using the
maps of Yerkes et al.>° as a general guide, an idealized tog,ol . sec
model of the depth of sediments has been developed. It is
presented, in tabular form, in Table 2 for a rectangular Fig. 3.

MAGNITUDE SCALING
(TABLE 1.2.3}

PSVygrTicAL
PSV L4oR1ZONTAL

Iog'o[
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most earthquakes in Southern California, which have
been recorded by strong motion accelerographs, have H
in the range from 0 to about 25 km*® for simplicity in this
paper it has been assumed that all activity occurs at
H=5km. While this assumption should lead to
reasonable overall distribution of spectral amplitudes, it

must be noted that in localized regions, close to active
faults for which H is different from the assumed 5 km, the
shape of the Uniform Risk Spectra will be different from
what is presented here. This effect is important for high
frequency spectral amplitudes only.

Since 1977, when the concept of Uniform Risk Spectra
had been proposed3 we have been developing and
improving, in parallel, two independent scaling pro-
cedures, one using earthquake magnitude and the other
based on the local site intensity (e.g. Ref. 33). In all these
analyses we continue to find certain advantages in using
the local site intensity. These advantages result from
greater simplicity and a smaller number of intermediate
computational steps which are involved in scaling with
MMI. Though the resulting URS computed with M and
with MMI scaling are somewhat different in shape'® their
overall amplitudes agree very well (Figs 4 and 5).

The URS in Figs 6 through 11 have been calculated
from a sequence of events at all adopted sources (Table 1
and Fig. 2). In Figs 4 and 5 the two resulting spectra are
compared for two sites, one on deep sediments (h=25 000
feet) at 33°55'N, 118°5' W (Fig. 4). In both figures the
dashed lines represent the uniform risk PSV spectral
amplitudes computed via MMI scaling relations. These
have been extracted from the report by Lee and
Trifunac'®, and are shown here to illustrate the level of the
agreement between URS based on magnitude and MMI
scaling equations. The three solid lines in Figs 4 and 5
represent the same spectra, for the probabilities of
exceedance p=0.90, 0.50 and 0.1, and computed for the
same seismicity model. Comparing the dashed lines for
MMI scaling from Lee and Trifunac'® with the results
presented here, it is seen that the two methods of
calculation agree remarkably well. For short periods,
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1.

: M. D. Trifunac

The method involving uniform risk spectra®* 7! can

be used to construct maps of spectral amplitudes with
constant probability of being exceeded, at least once
in Y years. The method offers excellent means to
account for all sources of seismicity and to combine
all sources of uncertainty in a uniform and balanced
way. It is most efficient in showing the relative
significance of different sources, given the different
epicentral distances, of the levels of source activity, of
the largest magnitude expected at each source, and of
the local geologic conditions beneath the site.

For the seismicity model selected in the examples
presented here, the results are dominated by the
expected earthquake occurrence on the ‘San Andreas’
fault. Its contribution to the risk overshadows all
other faults in the metropolitan area.

In the central region of the example area, the assumed
depth of sediments (Table 2, up to 31000 feet)
significantly amplifies long period ground motion.
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