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SUMMARY

New empirical scaling equations of Fourier amplitude spectra of strong earthquake shaking are presented for the site
characterization in terms of local geologic and local soil conditions simultaneously . It is shown that using only the local
soil site classification may lead to biased results, and it is suggested that both soil and geologic conditions should be used
together in estimation of the site specific spectrum amplitudes.

INTRODUCTION

The possibility that the local site conditions influence the amplitudes of recorded seismic waves have been
investigated by many researchers. This has been studied theoretically' -3 and experimentally 4 - 9 by
considering various overall measures of strong shaking or its effects on different types of structures. In the
1960's and 1970's these studies took on a more detailed and more complete nature because of the increased
availability of recorded strong motion accelerograms. Through comparison of the shapes of the Fourier and
response spectrum amplitudes, it became possible to describe the effects the local soil conditions have on the
local site response' ° and to extend the results of Gutenberg6 about the effects of the local geologic conditions
to the high frequency spectral amplitudes." Through the 1970's and early 1980's these studies were refined by
detailed regression analyses which were made possible by still larger numbers of well documented records of
strong ground motion."-is

To this date these studies considered either the local soil or the local geologic site conditions and never
combined the simultaneous effects of both media in the development of one or more general scaling relations.
Since the typical dimensions of the local soil versus the local geologic site conditions are so different, one
might expect that their effects would be reflected in the recorded spectral amplitudes in high and in low
frequencies respectively. If both of these effects can be shown to contribute significantly to the variation of
spectral amplitudes between 0.05 and 25 Hz, the frequency range of interest to earthquake engineering, then
both soil and geologic site conditions should be considered simultaneously. The purpose of this paper is to
analyse this and to show how these effects could be used in the empirical scaling of Fourier amplitude spectra.

SCALING OF FOURIER SPECTRA IN TERMS OF M, R, H, S, h, SL and v

The current model

Trifunac and Lee14 recently studied the scaling of Fourier amplitude spectra FS(T) in terms of magnitude
M, source-to-station distance R, focal depth H, `size' of fault S, component orientation v, and local geology,
characterized by the representative depth of sediments h (or by the local geological site parameter s). Their
scaling relation takes the form

log10FS(T)=M+.sdtt(A, M, T)+b,(T)M+b2(T)h+b3(T)v+bs(T)+b6(T)M2 (1)
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They did not include the term b4(T )A because it was found to be insignificant. Here 4tt(A, M, T) is the new

frequency dependent attenuation function. It is of the form13

= J do(T) loglo A R <Ro
^tt(A,M,T)

1do(T)log,oAo-(R-Ro)/200 R>Ro (2)

with A, the representative source-to-station distance , given by

A=Q In

and

R2 +H2 +S2 1/2

[R2 z SZ
+ H + 0 1 -

(3)

C Ro +H2 +S2 1
-1/2

(4)A=Sln
Ra+H2+So

So is the coherence radius of the source.16 The term do(T)log,,,A is used to calculate the attenuation
function at distances R less than some transition distance Ro, where A = Ao. For distances R > Ro, the

attenuation becomes a linear function of distance R with slope equal to - 1/200; Ro is13

Ro-1 ( 200do(T)(1-So/S2)+ /200. o(T)(1-So/SZ)-4H2 (5)

In 10 In 102(_

and is a function of H, S, So and do(T). Replacing the Richter empirical attenuation function" with the
frequency dependent attenuation function above has not only contributed the additional flexibility for

estimating the Fourier spectral amplitudes, but also has decreased the residuals of actual relative to the model
predictions, relative to our earlier regression models.' 1.12

Updating the database

The database of Trifunac and Lee14 consists of 438 free-field records with 3 components each, from 104
earthquakes for the years from 1933 to 1983. Table I presents the list of all earthquakes in this database. It
contains information on the name, date and time of each earthquake, the latitude and longitude of its
epicentre, its focal depth, local magnitude and maximum intensity, if available. Each of the 438 free-field
records is accompanied by the information on the address of the recording station, the latitude and longitude
of the station, the local Modified Mercalli Intensity that has been reported for the station site or estimated' 8
and the local geology classification characterized by the site parameter s or the depth of alluvium h. This list of
earthquakes has been updated now to a total of 106, with the addition of two recent earthquakes, the Coalinga
earthquake of 1983 and the Morgan Hill earthquake of 1984, both in California. With the addition of 56 free-
field records from these two earthquakes, the total number of free-field records is now 494.

To proceed with the present analysis, information on the soil site properties has been collected from various
available sources, including different reports of the United States Geological Survey (U.S.G.S.), California
Division of Mines and Geology (C.D.M.G), Nuclear Regulatory Comission, university reports and various
consulting reports. At first these data have been characterized by a soil parameter SL, which was assigned
values 1 for deep soil sites, 2 for stiff soil sites and 3 for `rock' sites.' 9 Subsequently, this characterization was
changed to 0 for `rock' sites, 1 for stiff soil sites and 2 for deep soil sites, for convenience in regression analysis.

The new regression analysis

To include the soil classification in the regression analysis, the regression equation of the Fourier
amplitudes will now take the form

log,,FS(T)=M+dtt(A, M, T)+b,(T)M+b2(T)h+b3(T)v+b4(T)hv+bs(T)

+b6(T)M2+b^')(T)Si1) +b^2) (T)Si2) (6)

Equation (6) is of the same form as equation (1), but with the addition of the new terms b4(T)hv, b,1^(T)S(')

and b7(2) (T )Si2). The terms b4(T)hv and b2(T)h will result in the factor multiplying the depth of alluvium h to

I
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Table I

1 3 10 1933 1754PST 33 37 00 -177 58 00 16.0 6.3 9 Long Beach, CA
2 10 2 1933 O11OPST 33 47 00 -118 08 00 16.0 5.4 6 Southern California
3 7 6 1934 1449PST 41 42 00 -124 36 00 5 Eureka, CA
4 12 30 1934 0552PST 32 15 00 -115 30 00 16.0 6.5 9 Lower California
5 10 31 1935 1138MST 46 37 00 -111 58 00 6.0 8 Helena, MT
6 10 31 1935 1218MST 46 37 00 -111 58 00 3 Helena, MT
7 11 21 1935 2058MST 46 36 00 -112 00 00 6 Helena, MT
8 11 28 1935 0742MST 46 37 00 -111 58 00 6 Helena, MT
9 2 6 1937 2042PST 40 30 00 -125 15 00 5 Humboldt Bay, CA

10 4 12 1938 0825PST 32 53 00 -115 35 00 16.0 3.0 Imperial Valley, CA
11 6 5 1938 1842PST 32 54 00 -115 13 00 16.0 5.0 Imperial Valley, CA
12 6 6 1938 0435PST 32 15 00 -115 10 00 16.0 4.0 Imperial Valley, CA
13 9 11 1938 221OPST 40 18 00 -124 48 00 5.5 6 NW California
14 5 18 1940 2037PST 32 44 00 -115 30 00 16.0 6.7 10 Imperial Valley, California
15 2 9 1941 0145PST 40 42 00 -125 24 00 6.4 NW California
16 6 30 1941 2351PST 34 22 00 -119 35 00 16.0 5.9 8 Santa Barbara , California
17 10 3 1941 0813PST 40 36 00 -124 36 00 6.4 7 Northern California
18 11 14 1941 0042PST 33 47 00 -118 15 00 16.0 5.4 8 Torrance-Gardena, CA
19 10 21 1942 0822PST 32 58 00 -116 00 00 16.0 6.5 7 Borrego Valley, California
20 3 9 1949 0429PST 37 06 00 -121 18 00 5.3 7 Northern CA
21 4 13 1949 1156PST 47 06 00 -122 42 00 7.1 8 Western Wash
22 1 23 1951 2317PST 32 59 00 -115 44 00 16.0 5.6 7 Imperial Vally, CA
23 10 7 1951 2011PST 40 17 00 -124 48 00 5.8 7 NW California
24 7 21 1952 0453PDT 35 00 00 -119 01 00 16.0 7.7 I 1 Kern County, California
25 7 23 1952 35 17 00 -118 39 00 Kern County, CA
26 9 22 1952 0441PDT 40 12 00 -124 25 00 5.5 7 Northern California
27 11 21 1952 2346PST 35 50 00 -121 10 00 6.0 7 Southern California
28 6 13 1953 2017PST 32 57 00 -115 43 00 16.0 5.5 7 Imperial Valley, CA
29 1 12 1954 1534PST 35 00 00 -119 01 00 16.0 5.9 8 Wheeler Ridge, CA
30 4 25 1954 1233PST 36 48 00 -121 48 00 5.3 7 Central California
31 11 12 1954 0427PST 31 30 00 -116 00 00 16.0 6.3 5 Lower California
32 12 21 1954 1156PST 40 47 00 -123 52 00 6.5 7 Eureka, CA
33 9 4 1955 1801PST 37 22 00 -121 47 00 5.8 7 San Jose, CA
34 12 16 1955 2117PST 33 00 00 -115 30 00 16.0 4. 3 Imperial County, CA
35 12 16 1955 2142PST 33 00 00 -115 30 00 16.0 3.9 Imperial County, CA
36 12 16 1955 2207PST 33 00 00 -115 30 00 16.0 5.4 7 Imperial County, CA
37 2 9 1956 0633PST 31 42 00 -115 54 00 16.0 6.8 El Alamo, Baja CA
38 2 9 1956 0725PST 31 42 00 -115 54 00 6.4 El Alamo, Baja CA
39 3 18 1957 1056PST 34 07 06 -119 13 12 13.8 4.7 6 Southern California
40 3 22 1957 1048PST 37 40 00 -122 28 00 3.8 5 San Francisco, CA
41 3 22 1957 1144PST 37 40 00 -122 29 00 5.3 7 San Francisco, CA
42 3 22 1957 1515PST 37 39 00 -122 27 00 4.4 5 San Francisco, CA
43 3 22 1957 1627PST 37 39 00 -122 29 00 4.0 5 San Francisco, CA
44 1 19 1960 1926PST 36 47 00 -121 26 00 5.0 6 Central California
45 6 5 1960 1718PST 40 49 00 -124 53 00 5.7 6 Northern California
46 4 8 1961 2323PST 36 30 00 -121 18 00 11.0 5.7 7 Hollister, CA
47 9 4 1962 0917PST 40 58 00 -124 12 00 5.0 6 Northern California
48 4 29 1965 0729PST 47 24 00 -122 18 00 6.5 8 Puget Sound, WA
49 7 15 1965 2346PST 34 29 06 -118 31 18 15.1 4.0 6 Southern California
50 6 27 1966 2026PST 35 57 18 -120 29 54 6.0 5.6 7 Parkfield, CA
51 8 7 1966 0936PST 31 48 00 -114 30 00 16.0 6.3 6 Gulf of California
52 9 12 1966 0841 PST 39 24 00 -120 06 00 6.3 7 Northern California
53 12 10 1967 0407PST 40 30 00 -124 36 00 5.8 6 Northern California
54 12 18 1967 0925PST 37 00 36 -121 47 18 5.2 6 Northern California
55 4 8 1968 1830PST 33 11 24 -116 07 42 11.1 6.4 7 Borrego Mtn, CA
56 9 12 1970 0630PST 34 16 12 -117 32 24 8.0 5.4 7 Lytle Creek, CA
57 2 9 1971 060OPST 34 24 42 -118 24 00 13.0 6.4 11 San Fernando, CA
58 10 15 1979 1417PST 32 37 59 -115 19 59 12.0 6.6 Imperial Valley, CA
59 8 6 1979 0805PST 37 06 43 -121 31 59 9.6 5.9 Coyote Lake, CA
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Table I (contd.)

60 8 13 1978 2254GMT 34 21 04 -119 42 00 12.5 5.5 Santa Barbara, CA
61 1 24 1980 1100PST 37 49 37 -121 47 13 5.9 5.9 Mt. Diablo, Livermore, CA
62 1 26 1980 1833PST 37 45 00 -121 42 47 7.3 5.2 Mt. Diablo, Livermore, CA
63 08 02 1975 2022GMT 39 26 58 -121 28 25 4.1 5.2 Oroville, Aftershock
64 08 02 1975 2059GMT 39 26 00 -121 28 31 5.1 5.2 Oroville, Aftershock
65 08 03 1975 0103GMT 39 29 19 -121 30 59 8.8 4.6 Oroville, aftershock
66 08 03 1975 0247GMT 39 28 52 -121 30 21 7.4 41 Oroville, aftershock
67 08 05 1975 0228GMT 39 24 18 -121 29 43 62 3.2 Oroville, aftershock
68 08 06 1975 0350GMT 39 29 46 -121 31 49 92 47 Oroville, aftershock
69 08 06 1975 1641GMT 39 29 31 -121 31 45 9.7 3.9 Oroville, aftershock
70 08 03 1975 0700GMT 39 29 50 -121 30 41 7.7 48 Oroville, aftershock
71 08 11 1975 0611GMT 39 27 29 -121 28 59 3.1 44 Oroville, aftershock
72 08 11 1975 1559GMT 39 30 20 -121 31 35 9.8 3.8 Oroville, aftershock
73 08 16 1975 0548GMT 39 28 12 -121 31 42 8.5 41 Oroville, aftershock
74 08 16 1975 1223GMT 39 29 52 -121 30 16 7.1 3.1 Oroville, aftershock
75 09 27 1975 2234GMT 39 31 12 -121 31 56 10.4 46 Oroville, aftershock
76 11 28 1974 2301GMT 36 54 0 -121 30 0 9.0 0• 6 Hollister, CA
77 1 11 1975 1737PST 40 13 12 -124 15 36 2.0 4.7 6 Northern California
78 5 6 1975 1835PST 40 16 48 -124 40 12 0• 40 Northern California
79 6 7 1975 0846GMT 40 34 12 -124 08 24 21.0 5.7 7 Northern California
80 3 8 1971 1508PST 35 40 0 -118 24 12 6.0 4.7 5 Central California
81 5 2 1971 0608GMT 51 24 0 -177 12 0 43.0 7.1 6 Andreanof, AK
82 9 12 1971 1132PST 41 17 54 -123 40 24 20.0 46 5 Northern California
83 7 30 1972 2145GMT 56 49 12 -135 40 48 25.0 7.1 7 Southeast Alaska
84 9 4 1972 1804GMT 36 38 13 -121 17 13 2.0 48 6 Central California
85 5 26 1980 1857GMT 37 32 37 -118 51 41 2.8 49 Mammoth aftershock
86 5 27 1980 1450GMT 37 27 49 -118 49 24 2.4 6.3 Mammoth aftershock
87 5 27 1980 1901GMT 37 36 15 -118 46 11 3.8 5.0 Mammoth aftershock
88 5 28 1980 0516GMT 37 34 49 -118 53 09 3.3 48 Mammoth aftershock
89 5 31 1980 1516GMT 37 32 22 -118 54 22 8.2 5.1 Mammoth aftershock
90 6 11 1980 0441GMT 37 30 24 -119 02 34 14.1 5.0 Mammoth aftershock
91 6 28 1980 0058GMT 37 33 23 -118 51 45 5.1 41 Mammoth aftershock
92 10 16 1979 1616PDT 33 4 29 -115 33 16 5.0 4.9 Imperial Valley aft
93 10 16 1979 1445PDT 33 2 44 -115 29 24 3.9 4.6 Imperial Valley aft
94 10 16 1979 1114PDT 32 58 19 -115 36 22 4.7 42 Imperial Valley aft
95 10 15 1979 2319GMT 32 46 0 -115 26 29 9.5 5.0 Imperial Valley aft
96 4 26 1981 1209GMT 33 7 48 -115 39 0 8.0 5.6 Westmoreland, CA
97 1 24 1980 1900GMT 37 50 24 -121 48 0 5.9 5.9 Livermore, CA
98 1 26 1980 0233GMT 37 45 36 -121 42 0 7.3 5.2 Livermore, CA
99 5 25 1980 0934PDT 37 36 32 -118 50 49 9.0 6.1 Mammoth aftershock

100 5 25 1980 0949PDT 37 37 41 -118 55 37 14.0 6.0 Mammoth aftershock
101 5 25 1980 1245PDT 37 33 40 -118 49 52 16.0 6.1 Mammoth aftershock
102 5 25 1980 1336PDT 37 37 30 -118 51 32 2.0 5.7 Mammoth aftershock
103 5 26 1980 1158PDT 37 32 35 -118 53 17 5.0 5.7 Mammoth aftershock
104 5 27 1980 0751PDT 37 30 22 -118 49 34 140 6.2 Mammoth aftershock
105 5 2 1983 1642PDT 36 15 00 -120 16 48 9.0 6.5 Coalinga earthquake
106 4 24 1984 1315PST 37 19 01 -121 40 48 9.0 62 Morgan Hill earthquake

be component dependent, so that for horizontal components with v = 0, and vertical components with v = 1, it
takes the form

b2(T)h+b4(T)hv=(b2(T)+b4(T)v)h={(b((T)+b4(T))h; v=01 (7)

The addition of the other two terms , b(7')(T)S() and b(2)(T)Si ), is to characterize the soil at the site, where

S^ ) - 1 if SL = 1 (stiff soil)

t o otherwise

I
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and

Sit) _ f 1 if SL = 2 (deep soil) (8)

0 otherwise

The use of the two variables SL('L ) and Si ) instead of one for SL is because SL is a qualitative or categorical
variable which takes on the discrete values of 0, 1 and 2 for three distinct types of soil classification. It is thus
different from all the other variables used, like magnitude or depth, h, which are quantitative variables, that is,
variables with a well defined scale of measurement. It is thus necessary to use indicator variables to account
for the different levels of the classification20.

Database selection for regression analysis

The database selection procedure for the Fourier amplitude data, FS(T), is essentially the same as that in
our previous analysis.14 The data are partitioned into six groups corresponding to magnitude ranges 2.0-2.9,
3.0-3.9 , 4.0_4•9, 5.0-5.9 , 6.0-6.9 and 7.0-7.9. Then each of these magnitude ranges is subdivided first according
to the site classifications 14 of s=0 , 1 and 2. The data within one magnitude range and one site classification
are then further subdivided according to the soil classifications I. = 0, 1 and 2 . Finally, the data within each of
these subgroups are separated into two sets according to component orientation : one set for horizontal (v = 0)
and one set for vertical (v = 1). To balance properly the effects of attenuation at small and large distances, the
data in each of the subsets are further subdivided into 2 groups: one for epicentral distances < 100 km and the
other for distances > 100 km . The data in each of these two final subsets are then arranged, in increasing order
in terms of their amplitudes . If the number of data in the first group (R < 100 km) is less than 19 , all the data
points are kept . Otherwise at most 19 points are selected from among the ordered set of data so that they
correspond uniformly , as close as possible, to the 5th , 10th,. . . , up to the 95th percentiles. Similarly, at most 5
points are selected for the second group (R > 100 km) of data so that they correspond uniformly to around the
1/6, 1/3, 1/2 , 2/3 and 5/6 x 100th percentiles . The above selection process is repeated for each of the 91 periods
in the range 0.04 to 15 sec. In addition , at the long period end, data points with amplitudes that are smaller
than the average digitization noise, i.e. those with signal -to-noise ratio less than one, are automatically
elimated from the selection process.

The fitted coefficients at each period T resulting from linear regression will be denoted by b1(T), b2(T),
b3 (T ), b4(T), b5 (T ), b6 (T ), b;l"(T ), b (2) (T) [see equation (6)] respectively . For given values of T, h, v, 0 and 5L,
log10 FS(T) represents a parabola when plotted versus M. Following our preceding analyses14 it is again
assumed here that equation (6) applies only in the range Mmin z M 5 Mma„ where, for each period T:

and
Mmin( T)= - bI (T )/(2b6 (T ))

Mmax(T) _ -(1 +b1(T ))/(2b6(T )) (9)

For M Mm in, M is used only in the first term of equation (6) and Mmin is used with b1 (T) and b6 (T). For

M i Mmax, Mmax is used in all the terms for M.

Results of the regression analysis

Figure 1 shows b1 (T) to b6(T), b,l^(T) and b72> ( T) as full lines, and the corresponding estimates of the 90
per cent confidence intervals represented by the dashed lines . The coefficients for M, b1(T) and M2, b6(T) are
both significant in practically the whole period range considered except possibly at the short and long period
ends. Note that this is in good agreement with the conclusions of our previous analysis,14 where it was shown
that the Fourier amplitudes do not just grow linearly with magnitude . It is noted here that the coefficient
multiplying the depth of alluvium h, b2(T), remains positive all through the period range and is essentially
significant for all periods T, including the high frequency (low period) end. This is again in agreement with our
previous analyses for both Fourier amplitudes14 and pseudo relative velocity amplitudes ," PSV(T), at all
five damping values. The coefficient for the component direction v, b3(T), is also in agreement with previous
analyses. The new coefficient for hv, b4 ( T), which was not considered in our previous work is negative in the
whole period range and is significant in the mid period range . It is significant, with 90 per cent confidence, in
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Figure 1. Functions b, (T) to b; 2)(T) (full lines) in equation (6) and the estimates of their 90 per cent confidence intervals (dashed lines)

the range from 0.25 to 2.5 sec. This term should thus be included in all subsequent analyses of Fourier and
response amplitudes. The coefficient for the constant term, 66(T), is also in agreement with our previous work

)(T) and b(2)(T),and is significant essentially in the whole period range. Finally, the new coefficients, b(7 7

corresponding to the indicator variables S()(sL = 1) and S(2) (SL = 2), show an interesting trend. For periods up
to 0.35 sec both are negative and then become positive up to 10 sec periods. This means that in the period
range below - 0.35 sec the Fourier amplitudes are attenuated and between 0.35 and 10 sec, the Fourier

amplitudes are amplified.
With FS(T) representing the Fourier amplitude spectra computed from recorded accelerograms, the

residues are calculated from

e(T) = logto [FS(T)]- log10 [fS(T)] (10)

It is assumed that e ( T) can be described by a normal distribution Tunction with mean µ(T) and standard

deviation Q(T) as follows:
CE(T) -y(T) 2

P(e, T) _ ( ) exp
2 ^x Q(T)

dx
QT 2rc -^

where p(e,T) represents the probability that logto[FS(T)- log, O[FS(T)]<e(T). For a given residual value

E(T) at particular period T, the actual probability p*(e, T) that e(T) will not be exceeded can be evaluated by

finding the fraction of residuals e(T) (computed from the database at the particular period) which are smaller

than the given value.
Using equation (11), the estimated probability fi(e, T) that e(T) will not be exceeded can also be evaluated

and compared with the above fractions. For p*(E, T) calculated at 91 periods, the residuals e(T) corresponding
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Figure 2. Distribution of residuals (irregular full lines and smooth full lines) relative to the scaling model equation (6). Smooth dashed
lines represent p(e, T) computed from equation (11) as an approximation to the p" (e, T) (full lines)

to p* = 0- 1, 0.2, ... , 0.8 and 0.9 are plotted in Figure 2. The nine sets of curves, plotted versus period T from
bottom to top correspond to the residual values at each of the probability levels 0.1 to 0.9. At each such level,
the rough solid line represents the actual calculated residue values. The smooth solid curves are obtained by
smoothing the rough solid curves along the period (T) axis. The smooth surface, p*(s, T), from the nine solid
curves thus represents the distribution of the computed Fourier amplitudes FS(T) about the estimated
amplitudes FS(T) given in equation (6). By fitting p(e,T) in equation (11) to p*(e,T) at 91 periods, the mean
and standard deviation of the normal distribution function, µ(T) and 6(T), are evaluated. Substituting
these values into equation (11), with p(e,T) taking values 0.1 to 0.9, will result in @(T) for the nine probability
levels. These are the nine dashed lines in Figure 2. The surface p*(s, T) that resulted from the new regression
model in the present analysis is narrower in the a range when compared with that of our previous
analyses.11, 12, 14, 21, 22, 23

Figure 3 shows a plot of the statistical parameters. The smooth amplitudes of µ(T) and 6(T) and their 95
per cent confidence intervals are repectively given in the top two plots of the figure. The two full curves in the
bottom of the figure are the smoothed amplitudes of the computed X2, X2(T) and Kolmogorov-Smirnov,
KS(T), statistics. The dashed lines are their corresponding 95 per cent cutoff levels. It is seen that in the whole
period range considered, both the X2 and K-S tests fail to reject the hypothesis that the distribution is normal.
The density function in equation (11) thus represents an acceptable approximation to p*(e, T).

Table II presents, for 12 periods, between T= 0.04 sec and T= 14 sec, the values of the smoothed regression
coefficients b1(T), b2(T), b3(T), bq(T), bs(T), b6(T), b,ll(T), b(2)(T), Mm;n(T), Mmax(T), the nine smoothed
calculated residue levels corresponding to p*(e, T)=0.1 to 0.9, the smoothed coefficients µ(T), 6(T), in
equation (11) and the X2 and the Kolmogorov-Smirnov statistics. The 12 periods presented will be sufficient
for most practical computations, especially since the smoothness of the coefficients is such that any
interpolation scheme will yield adequate estimates of FS(T) in the entire period range, from 0.04 to 14 sec.

Examples of estimated Fourier spectra

Figure 4 presents four plots of estimated FS(T) spectra using equation (6). The top two plots are examples
of FS(T) computed for magnitudes M = 4.5, 5.5, 6.5 and 7.5 at epicentral distance R = 0, focal depth H = 5 km,
soil parameter SL = 1 (stiff soil), for p(a, T) = 0.5 [equation (11)], and for horizontal and vertical motions. The
solid lines in both plots correspond to the depth of sediments h = 0 km, while the dashed lines correspond to
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Figure 3. µ(T) and &(T) in equation (11) (full lines) and their 95 per cent confidence intervals (top two diagrams). Actual (full lines) and
permissible (dashed lines), with 95 per cent confidence, amplitudes of the X2(T) and Kolmogorov-Smirnov KS(T) tests are shown in the

bottom two diagrams

that of h = 4 km. The lower left figure illustrates the effect of epicentral distance R on the changes of spectral
amplitudes for magnitude M = 6.5, focal depth H = 5 km, sedimentary depth h = 2 km, soil parameter SL = 1,
p(s)=0.5 and for horizontal (solid lines) and vertical (dashed lines) components. Four sets of curves
corresponding to R = 0, 25, 50 and 100 km are presented. The lower right plot in this figure illustrates the effect
of focal depth H on the changes of spectral amplitudes for p(a, T) = 0.5, M = 6.5, R = 0 km, h = 2 km and SL = 1
for both horizontal (solid) and vertical (dashed) components.

The diagonal dashed lines at the bottom of each plot in this and in all subsequent similar figures represent
the average FS amplitude of the digitization and processing noise. The plot of each FS spectrum is presented
only for those periods where the signal-to-noise ratios are not much less than unity, or where the slope of a
curve in the log- log scale is not significantly greater than - 1.

The trends of the computed FS(T) amplitudes in the figures presented here (Figure 4) are in many ways
similar to those discussed in our previous analyses.21 The top two sets of graphs show that, as before, the rate
of growth of amplitudes with magnitudes M decreases as M approaches 7.5. The effect of local geologic
conditions (alluvial depth) is significant for the whole range of periods from 0.04 to 14 sec for both horizontal
and for vertical motions. This is now different from what we found in our previous analyses, where the
geologic site characteristics were found to play an important role only at intermediate and long periods and
no significant role at high frequencies. This difference can be attributed to the new form of the dependence of
the site characteristics in the present analysis [equation (7)] on h and v simultaneously:

b2(T)h+b4(T)hv=(b2(T)+b4(T)v)h (12)
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Figure 4. Top: Estimated Fourier amplitude spectra (in/sec), p(e, T)=0-5 for M=4-5, 5-5,6-5 and 7.5, alluvium depth h =0 km (full lines)
and 4 km (dashed lines) for focal depths H=5 km, stiff soil sites sc=1, zero epicentral distance (R=0 km) and for horizontal (left) and
vertical (right motions. Bottom: Estimated Fourier amplitude spectra (in/sec), p(e, T)=0.5, for M = 6.5, h = 2 km, horizontal (full lines) and
vertical (dashed lines) motion, and stiff soil (sL =1). Left: Focal depth H = 5 km and epicentral distances R = 0, 25, 50 and 100 km. Right:

Epicentral distance R = 0 km and focal depth H = 5, 10, 25 and 50 km*

which results in the coefficient for the site characteristics being component dependent. These new trends are
also dependent on the simultaneous consideration of soil and geologic site conditions.

Figure 5 presents another four plots of estimated FS(T) amplitudes, to illustrate the effect of local soil
conditions on FS(T). The top two plots are examples of FS(T) computed for magnitudes M =4.5, 5.5, 6.5 and
7.5 at epicentral distance R = 0, focal depth H = 5 km, alluvial depth It = 2 km, for p(c, T) = 0.5, and for the

horizontal (v=0) and vertical (v=1) motions. The solid lines in both plots correspond to the local soil
condition sL = 0 (rock) while the dashed lines in both plots correspond to sL = 2 (deep soil). The bottom two
plots show examples of FS(T) for magnitude M = 6.5, epicentral distances R = 0, 25, 50 and 100 km, focal
depth H = 5 km, alluvial depth h = 2 km, for p(e, T) = 0.5, and for horizontal (v = 0) and vertical (v =1) motions.
The solid lines again correspond to sL = 0 and the dashed lines to SL = 2. In each set of the graphs, it is observed
that, for periods up to -0.35 sec, the Fourier amplitudes FS(T) at `rock' sites (sL=0) are higher than those at
deep soil sites (sL = 2). Beyond 0.35 sec, this trend is reversed up to the periods of about 10 sec so that, for these
intermediate periods, the Fourier amplitudes at deep soil sites are higher than those at the rock sites.

Figures 6 and 7 compare the differences of the effects the local geologic and local soil site characteristics
have on FS(T). Figure 6 consists of three plots, one for each local soil classification (sL = 0, 1 and 2). For each

*I in/sec=0.0254 m/sec.

I
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Figure 5. Top: Estimated Fourier amplitude spectra (in/sec), p(s, T) =0-5 for M =4-5, 5-5,6-5 and 7.5, alluvium depth h=2 km epicentral
distance R=0 km, focal depths H = 5 km for `rock' sites SL =0 (full lines) and deep soil sites, sL=2 (dashed lines). Bottom : Estimated
Fourier amplitude spectra (in/sec), p(e, T) = 0.5 for M = 6.5, epicentral distances R = 0, 25, 50 and 100 km, focal depth H = 5 km , alluvium
depth h = 2 km, `rock' sites sL=0 (full lines) and deep soil sites SL = 2 (dashed lines) for horizontal (left) and vertical (right) motions

plot, FS(T) has been computed for the depth of alluvium equal to 0, 2 and 4 km. This figure shows that, for all
local soil site classifications, in the whole period range considered, the greater the alluvial depth, the higher
will be the Fourier amplitudes. Figure 7 also shows three plots, one for each alluvial depth equal to 0, 2 and
4 km. For each alluvium depth, the soil classification ranges from sL = 0 (rock) to 1 (still soil) and to 2 (deep
soil). It is seen that for periods up to - 0.3 sec the Fourier amplitudes FS(T) on SL = 0 (rock) sites are higher
than those with SL = 1 (stiff soil) or SL = 2 (deep soil). Beyond - 0.3 sec, this trend is reversed up to periods of
about 10 sec, a trend also indicated earlier in Figure 5. The two figures (6 and 7) show that local alluvium
depth and local soil parameters have different characteristics at different period ranges and that both are

significant but in a different way.

Actual versus estimated Fourier spectra

Figure 8 shows an example of how horizontal and vertical Fourier spectra computed from equation (6)
compare with the actual Fourier spectra for the corresponding components of recorded strong-motion data.
The record reference name of the file used here (AA001) corresponds to the standard accelerogram file name in
the uniform database24 used in this work . In Figure 8 the log10 FS ( T) spectra were computed for the
probability of exceedance p(e, T) = 0- 1, 0.5 and 0 .9. The interval between the spectra for p = 0.1 and 0.9 then
represents an estimate of the 80 per cent confidence interval. As can be seen from this figure , the agreement
between the recorded and the estimated spectra is good.
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Figure 6. Estimated Fourier amplitude spectra, p(e, T)=0.5 for M=6.5, source depth H=5 km, epicentral distance R=25 km,
horizontal motions and depths of sediments h=4 km (short dashed lines), 2 km (long dashed lines) and 0 km (full lines) for `rock' sites SL

= 0 (left), stiff soil sites sL=1 (centre) and deep soil sites sL=2 (right)
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Figure 7. Estimated Fourier amplitude spectra, p(e, T) =0.5, for M = 6.5, source depth H = 5 km, epicentral distance R = 25 km,
horizontal motions and `rock' sites sL = 0 (full lines), stiff soil sites SL = 1 (long dashed lines) and deep soil sites SL = 2 (short dashed lines) for

depth of sediments h = 0 km (left), h = 2 km (centre) and h = 4 km (right)

The residue two-step model

The previous sections in this paper dealt with the direct, `1-step' model where the scaling of Fourier spectra
in terms of M, R, H, S, h, SL and v has been performed in one step, with the soil indicator variables included in
the regression equation directly. Here we consider another alternative in which the previous regression
model21, 23 [equation (1)] which does not include soil classification may have already been developed and the

I
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Figure 8. Comparison of actual (AAOO1, El Centro 1940, M = 6.4, R = 9.3 km, H = 5 km, h = 15,000 feet (4.57 km), sL = 2) and estimated
Fourier spectrum amplitudes for p(r, T)=0.1, 0.5 and 0.9 and for horizontal (left) and vertical (right) motion

scaling functions b1(T) to b6(T) estimated . To study the influence that the additional soil classification may
have on the Fourier spectral amplitudes , the residues with respect to that regression model can first be
calculated:

E(T)= log10 FS(T) - log10FS(T) (13)

with log10 FS(T) representing the actual Fourier amplitudes . The residues at each site where soil
classification is available can then be fitted by the equation

E(T)=b;il (T)SL l+b;21 (T)S;,ZI +b8(T) (14)

where SLl and SLl are the indicator variables for SL as defined previously, b,l>(T) and b(2) (T) are
corresponding scaling functions and b8(T) is a new additional `constant coefficient'. Equation (1) can now be
combined with equation (14) to become

log10FS(T)=M<+dtt(0, M, T)+c1(T)M<,+c2(T)h+c3(T)v+c4(T)hv+c5(T)

+c6(T)M <> +c'^1)(T)SLI+E^?1(T)Sil

where

and

M < = min (M, Mmax)

1011

(15)

Mme, =max (Mmin, M<)

and a (T)=b;(T) except for the scaling function c5(T) for the constant 1, which is

c5(T)=b5(T)+b8(T) (16)

The variance of c5 (T ), dc5 (T), is given by the root-mean -square of the variances of b5 ( T) and b8(T ):

&.5(T )=(6 b5(T)+6b8 (T ))112 (17)

This procedure can be referred to as the residues `2-step' model in contrast with the direct `1-step' model
presented earlier . Detailed comparisons of corresponding results of the direct `1-step' model and the residues
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`2-step' model show a lot of similarity between the two analyses.23 The shapes of the scaling functions are very
similar, the residues for the nine probability levels have almost identical widths and the estimated FS
amplitudes are also very similar. One advantage that the residues `2-step' model has over the direct `1-step'
model is that, in the `2-step' model, the first step of regression [equation (1)] can be performed on a larger
database including sites where information on soil classification is absent. It is only in the second step
[equation (14)] that regression has to be performed on that part of the database for the sites with available soil
classification. Thus as more information on soil site classification becomes available, only the second step of
iteration needs to be repeated to update the scaling functions. As for the direct `1-step' model, the regression
analysis can be performed only on that part of the database which corresponds to the sites with data on soil
classification. Every time this part of the database is updated, the whole regression has to be repeated.

SCALING OF FOURIER SPECTRA IN TERMS OF THE LOCAL SOIL CLASSIFICATION ONLY

The scaling equation: Magnitude, distance and soil classification

The preceding parts of this paper have presented the scaling of Fourier amplitude spectra in terms of
magnitude, source-to-station representative distance, local geological site characterization, local soil site
classification and for horizontal and vertical component directions. This part deals with the following
question: What will happen to the scaling of Fourier amplitude spectra if the local site is characterized only by
the local soil classification and no geological characterization is to be included? Seed et al.19 carried out such a
study for the scaling of response spectra, using only the local soil classification. Subsequently, other analyses
have been carried out along similar lines. With a larger database now available, it is interesting to see how
different such scaling will be if compared with the results in the preceding parts of this work. The scaling
equation now becomes

log10FS(T)=M+dtt(A, M, T)+b1(T)M+b3(T)v+bs(T)+b6(T)M2

+b(1)(T)S^ )+b(2)(T)Si) (18)

Here the equation is in the same form as equation (6) except that the b2(T) term for h and b4 (T) term for by are
dropped. The scaling functions b1(T), b3(T), bs(T), b6(T), b,l)(T) and b(2)(T) are determined through the
regression analysis of the same database as in the previous section. The scaling functions computed from
linear regression will be denoted by b1(T) to b 7(2)(T), respectively.

Substituting the fitted coefficients in equation (18) gives FS(T), the extimated spectral amplitudes. As before
equation (18) applies only in the rage Mmin ^< M ^< Mmax, and can be modified to

1og10FFSS(T)=M< +dtt(A, M, T)+b(T)M< ,+b3(T)v+bs(T) +b6(T)M2,

)(T)Si1) +b(2)(T)SL2) (19)+b(17 7

The regression coefficients

Figure 9 shows the smoothed coefficients bl(T), b3(T), bs(T), b6(T), b;l>( T) and b;2>(T) (solid lines)
together with the estimates of their 90 per cent confidence intervals (dashed lines ). It is interesting to compare
this figure with the corresponding Figure 1 where the local site geological condition in terms of the local
alluvium depth is included in the regression analysis. The comparison shows that the scaling functions b, (T),
b3(T), b5(T) and b6(T) corresponding respectively to the parameters M, v, 1 and M2 are similar both in shape
and in amplitudes on both figures . The scaling functions b^l)(T), b,2)(T) for the soil parameters AL" (s,= 1)
and sL (sL = 2) are similar only in shape but exhibit differences in amplitudes . The scaling function b;2^ (T) for
SL in Figure 1 has amplitudes around - 025 for periods less than 0.1 sec. Beyond 0.35 sec it is positive, but is
not higher than about 0.15 in the period range 0.35 to 3 sec. On the other hand , the scaling function b7(2) (T) for
SL2, in the present model (Figure 9) has amplitudes close to - 0- 1 for periods less than 0.1 sec. Beyond 0.3 sec it
turns positive and has amplitudes as high as 0.3 around period T= 5 sec. Comparison of the scaling function
b,l>(T) leads to similar observations.

i
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Figure 9. Functions b1(T) (full lines) in equation (19) and the estimates of their 90 per cent confidence intervals (dashed lines)

The residues E(T)=log10 FS(T)-log10 FS( T) describing the distribution of the recorded FS(T) about the

estimated FS(T) are next calculated . Figure 10 shows the plot of the residue levels corresponding to p*(E, T)
=0.1 to 0.9 for log10 FS(T). Refer to the corresponding Figure 2 for a complete description of each of nine sets
off curves . As before , E(T) can be described by a normal distribution function with mean µ(T) and standard

de,iiation a(T). Figure 11 shows the plot of the statistical parameters in the description of the residues,

na:nely, µ (T), d(T), X2(T) and KS(T). The trends shown in both figures are very similar to those (Figures 2

anIl 3) in the first part of the work.

DISCUSSION AND CONCLUSIONS

The aim of this paper has been to extend and to improve the previous scaling equations in the parametric
representation of the Fourier spectral amplitudes of the observed strong earthquake ground motions. The
functional forms of the empirical equations we used are not new, but have evolved, with minor refinements,
from our previous work.t 1,12,14, 15 The idea, which has been introduced here for the first time was to use the
local soil and the local geologic characteristics of the site simultaneously in the development of the regression
models. Also, the term hv, reflecting the directional dependence of the amplification, has not been employed in
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our previous analyses. We found that the proposed model fits the data quite well and that there is consistency
among different regression models.23 No significant differences in the overall residual amplitudes have been
observed between `1-step' and `2-step' regression models. Relative to our previous studies, the amplitudes of
the residuals we found in this investigation are smaller.

To enable qualitative comparison of our results with some earlier investigations, which employed the local
site characterization in terms of the local soil classification only, we carried out such analyses as well, by
ignoring the local geologic features of the sites. Since the functional form of the dependence of the spectral
amplitudes on the depth of sediments is similar to its dependence on the local soil conditions, we found that
ignoring the local geologic conditions may lead to exaggerated amplitude factors `representing' the local soil
conditions. We conclude that both the local soil and the local geologic site conditions must be used together in
the selection of the site spectific Fourier amplitude spectra.

One of the principal uses of the above new regression models is expected to be in the computation of
uniform risk Fourier amplitude spectra for estimation of synthetic accelerograms25, 26 and for various studies
related to seismic microzonation.27 For such applications the databases on earthquake occurrence in terms of
the available catalogues are essential and must be used for as long time windows as the completeness and
uniformity of the catalogues would allow. Therefore, as in our previous studies of spectral amplitudes, t 3 -I 5
and for practical reasons, constrained by the availability of data, we have used the published magnitudes, M,
rather than some specific instrumentally or physically defined scale. For example, for most earthquakes in our
data base with M < 6.5 to 7, the published M is essentially same as the local magnitude' 7 scale ML, and thus
the variations in the use of such scaling parameters are expected to result in only minor changes of the
resulting spectral amplitudes.
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