
ORDER STATISTICS OF PEAKS IN EARTHQUAKE RESPONSE

By I. D. Gupta' and M. D. Trifunac2

ABSTRACT : In its present form the response spectrum superposition
technique provides only the highest peak of the response at various
levels of a multistory structure. For better understanding of the pro-
gressing damage as the structure is subjected to successive excursions
beyond the design level, and to estimate the number of times certain
responses may be exceeded, it is essential to know all the peaks of the
response, not just the highest peak. In this paper, a probabilistic theory
is presented, using order statistics, to find the expected, the most
probable, or with any desired confidence level, the amplitudes of all the
local maxima in the random response functions at any point in a
multistory structure.

INTRODUCTION

Many investigators have applied and extended the work of Rice (1944,
1945), Longuet-Higgins (1952) and Cartwright and Longuet-Higgins (1956)
on the theory of probability distributions of a random function to the field
of earthquake engineering and strong motion seismology. Udwadia and
Trifunac (1974) studied the response spectra using the statistics of the
largest peak of the response of a single-degree-of-freedom system.

Many studies have been carried out on the response of structures from
a stochastic viewpoint. A few examples are those by Amini and Trifunac
(1981, 1985), Balasubramonian and Iyer (1977), Bycroft (1960), Caughey
and Gray (1963), Davenport (1964), DerKiureghian (1979, 1980), Gasparini
(1979), Gasparini and Deb Chaudhury (1980), Grigoriu (1981), Gupta and
Trifunac (1987a, b), Hammond (1968), Rosenblueth (1956, 1964), Rosen-
blueth and Bustamante (1962), Ruiz and Penzien (1971), Singh and Chu
(1976), Tajimi (1960), Vanmarcke (1975), and Yang et al. (1980).

Amini and Trifunac (1981, 1985) extended the theory of Cartwright and
Longuet-Higgins (1956) for the largest peak of a random function to study
the statistics of higher-order peaks in the response of a structure under
strong-motion earthquake excitation. To understand these response char-
acteristics, which depend on the duration of the excitation, knowledge of
all the peaks above certain threshold level is essential. For example,
isolated in space and infrequent excursions in time of the response of
ductile materials "not too far" into the nonlinear response range and
beyond the linear design amplitudes are of particular interest for under-
standing the early phases of nonlinear and damaging response. For this
purpose, the knowledge of the amplitudes of the first, second, third, etc.,
peaks of response is invaluable for estimating the number of times a certain
response level will be exceeded. While ductile structures may experience
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repeated excursions beyond their elastic design amplitudes, without fail-
ing, the brittle structures might tolerate only one or two such excursions.
Thus, to understand the onset of the damaging response it is essential to
understand the relative peak amplitudes and the total number of the peaks
of response to transient excitations.

Assuming that the history of response is a stationary process in time and
that the peaks are statistically independent, Amini and Trifunac (1981,
1985) presented the results on the expected and the most probable
amplitudes of higher-order peaks. Their theoretical results show good
agreement with the first two or three highest peaks of computed response,
and become poorer for higher-order peaks. Amini and Trifunac (1981,
1985) did not use the order statistics to derive the distribution functions for
amplitudes of the higher-order peaks.

In this study, order statistics is applied to refine the theoretical distri-
bution function for the amplitudes of n-th-order peak in a total of N peaks
of a random function f(t). Using this, relations are developed to compute
the most probable and the expected amplitudes of the n-th-order peak. The
use of order statistics has resulted in excellent improvement in theoretical
predictions. The results on the expected and on the most probable peak
amplitudes now show very good agreement with the trend of calculated
response for all orders of peaks, even though the assumptions of station-
arity and mutual independence of peaks have still been carried on.
Improvements in the theory presented here over the earlier results by
Amini and Trifunac (1981, 1985) are also confirmed by the ability of the
present theory to predict negative peak amplitudes in accordance with the
observations, as discussed later in this paper.

Most probable and expected values of the peaks are found to have about
50% probability of exceedance. The results are also presented on the
values of peak amplitudes for the various probabilities of exceedance.
These may be useful in determining the peak amplitudes with a desired
degree of confidence.

STATISTICAL DISTRIBUTION OF MAXIMA OF RANDOM FUNCTION

Following the work of Rice (1944, 1945) and Cartwright and Longuet-
Higgins (1952, 1956), a random function of time, f(t), which may represent
the response of a structure to an earthquake excitation, can be represented
by

f(t) _ Cn cos (W' t +'„) ................................ (1)
n

where w„ are the circular frequencies, (^,, are the random phases uniformly
distributed between 0 and tar, and C„ are the amplitudes related to the
energy spectrum of f(t) by the following relation

o+dw 1

I 2 Cn= E(w) dw .................................... (2)
.,=W

In the previous equation, E(w) is the energy spectrum of f(t).
Using previous definitions , Cartwright and Longuet -Higgins (1956) have

derived the probability density function for the distribution of the maxima
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off(t), which depends only on two parameters: the root-mean -square (rms)
value of f(t), a,m,, ; and a parameter e, which is a measure of the width of
the energy spectrum E(w). These parameters are defined in terms of the
moments of the energy spectrum as follows

v2arms= mo ............................................ (3)

and

2
mom4 - m2

.........................................(4)
mom4

where, in general , the n-th moment , m„ , of the energy spectrum is defined
by

Mn = f o E(w ) dw (n = 0 , 1, 2, 3....) ................... (5)

The probability density function of the maxima of f(t) normalized with
respect to rms value m 12 , is given by Cartwright and Lonquet -Higgins
(1956) as

1P(TI) _ [re -
1/2(TI2/e2) + (1 - E2))rzle - 1)2T) e - vzr^ dx .......... (6)fx'

For s = 0, this becomes Rayleigh distribution and for s = I it becomes
Gaussian distribution.

The cumulative probability that the height of a maximum will be greater
than q can be defined as

P(q) = J p(u) du ...................................... (7)

Using Eq . 6 for p (u), Eq. 7 gives

1 a E)
x2a dx + (1 - e _ 2/2 E dx ......... (8 )P(Ti) _ [L: e

The integrals in Eqs. 6 and 8 can be expressed in terms of error function

( 2 ) V2 x
erf(x) _ j e - `2/2 dt for x 0 ...................... (9)

0

and

erf(x) erf(- x) for x < 0 ........................... (10)

Thus, one can write
„2

'/,') + (1 2)11',le- irTi I I I + er f n( £) for ? 0 ..... (11a)P(T1) _ (2 e- irz(
,j Nr2 11

))n_

P(T))=(2Tr)1/2
e-1a( 22)+(1-ez))rzge - Tivz^.^ I1 erf _ 1(^

V
2 for r)<0.... (11b)
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and

P(9) = 2 1 - e r f K+ _ (1 - e2)irze - 1/2/,2 f 1 + errI0 -r2)2
1
} for Tj ? 0 .... (12a)

2 ) 1/21
P(1) I + erf + 2 (1 _F 2) v'e - uz 2) 1 erf ^(sI for -9 < 0 (12b)

To evaluate p(r)) and P(i1) for particular values of q and E the following
approximation for erf(x) (Hastings 1955) can be used

erf(x) = 1 - (alt + a2 t2 + a3t3 + a4t4 + a5t5 ) e-X2 + E(x) . . . . . . . . . . (13a)

Ir(x)I 1.5 x 10-7 .................................... (13b)

where t = 1/(1 + px), with p = 0.3275911, and al = 0.254829592; a2 =
-0.284496736 ; a3 = 1.421413741 ; a4 = -1.453152027 ; and a5 =
1.061405429.

PROBABILITY DISTRIBUTION OF n-TH LOCAL MAXIMUM

One can represent the N peaks of a random function f(t) by random
variates a, , a2 , ..., aN ; each with cumulative distribution function P(-q)
given by

P(q) = Prob{a; >,q} = 1 p(u) du .......................... (14)

where p (u) is the probability density function of the peaks of f(t). The
probability functions for the peaks of f(t) normalized with respect to its
rms amplitude are given by Eqs. 6 and 8. Let the peaks be now arranged
in decreasing order of magnitudes as shown in Fig. 1. The new random
variates are denoted by a(,) , a(2) , a(3) , ..., a (N) ; where a(,) >_ a(2) >_
a(3) _> a(N) . The probability that the n -th-order peak will exceed a
value rl can be written as

F(n)(-Q) = Prob{a(n) > -q} .................................. (15)

Because the peaks are arranged in decreasing order of magnitudes, the
previous probability is equal to the probability that at least n of the peaks
are greater than q. Therefore

F(n)(,q) = Prob{at least n of a (,) are greater than -q} ........ (16)

It can also be written as

F(n)(q) = Prob{exactly n peaks are greater than -9 or

exactly n + I peaks are greater than rl or

exactly n + 2 peaks are greater than r) or

exactly N peaks are greater than ii} .............. (17)

Assuming that the peaks are statistically independent, the above probabil-
ity can be rewritten as
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F(„)(1) = Prob{exactly n peaks are greater than TI}

+ Prob{exactly n + I peaks are greater than 9}

+ Prob{exactly n + 2 peaks are greater than TI}

+ Prob{exactly N peaks are greater than TI} ......... (18)

TABLE 1 . Amplitudes of First Ten Peaks Normalized by rms Amplitude for Different
Values of N and Epsilon with Probability of Occurrence P = 0.01

N

(1)

First
(2)

Second

(3)

Third
(4)

Fourth

(5)

Order of Peak

Fifth
(6)

Sixth

(7)

(a) Epsilon = 0.0

Seventh

(8)

Eighth
(9)

Ninth

(10)

Tenth

(11)

4 2.447 1.781 1.401 1.074 - - - - - -
6 2.529 1.903 1.572 1.326 1.107 0.877 - - - -
8 2.585 1.983 1.674 1.454 1.272 1.109 0.946 0.760 - -

10 2.628 2.042 1.747 1.542 1.377 1.234 1.103 0.975 0.839 0.680

50 2.918 2.411 2.176 2.022 1.908 1.819 1.742 1.676 1.618 1.565

100 3.035 2.552 2.330 2.189 2.085 2.005 1.936 1.876 1.827 1.781

(b) Epsilon = 0.2

4 2.443 1.775 1.394 1.064 - - - - - -
6 2.525 1.898 1.566 1.318 1.097 0.866 - - - -

8 2.581 1.977 1.668 1.447 1.265 1.099 0.935 0.746 - -

10 2.624 2.037 1.741 1.535 1.370 1.227 1.093 0.963 0.827 0.665

50 2.915 2.407 2.171 2.016 1.903 1.812 1.735 1.670 1.612 1.556

100 3.031 2.547 2.327 2.185 2.081 2.000 1.931 1.871 1.822 1.774

(c) Epsilon = 0.4

4 2.430 1.757 1.369 1.032 - - - - - -

6 2.511 1.880 1.544 1.292 1.067 0.826 - - - -

8 2.568 1.961 1.648 1.424 1.237 1.069 0.898 0.700 - -

10 2.611 2.020 1.722 1.513 1.344 1.198 1.062 0.928 0.785 0.613

50 2.903 2.393 2.154 2.001 1.886 1.794 1.717 1.650 1.589 1.537

100 3.021 2.535 2.313 2.170 2.066 1.981 1.912 1.855 1.801 1.756

(d) Epsilon = 0.6

4 2.401 1.718 1.319 0.965 - - - - - -
6 2.484 1.844 1.500 1.237 1.002 0.742 - - - -

8 2.541 1.926 1.606 1.375 1.183 1.004 0.821 0.604 - -

10 2.585 1.986 1.682 1.468 1.294 1.141 0.997 0.853 0.699 0.507

50 2.880 2.364 2.122 1.967 1.850 1.756 1.677 1.608 1.547 1.491

100 2.998 2.507 2.283 2.139 2.033 1.946 1.876 1.818 1.763 1.717

(e) Epsilon = 0.8

4 2.341 1.633 1.212 0.829 - - - - - -

6 2.426 1.765 1.404 1.125 0.869 0.584 - - - -

8 2.484 1.850 1.516 1.271 1.065 0.872 0.670 0.428 - -

10 2.529 1.912 1.595 1.370 1.185 1.020 0.865 0.705 0.533 0.316

50 2.829 2.303 2.054 1.893 1.770 1.673 1.589 1.517 1.452 1.396

100 2.949 2.450 2.219 2.071 1.961 1.872 1.799 1.736 1.682 1.631

(f) Epsilon = 1.0

4 1.984 1223 0.762 0.339 - - - - - -
6 2.075 1.366 0.973 0.667 0.383 0.064 - - - -

8 2.138 1.458 1.095 0.829 0.600 0.385 0.162 -0.110 - -

10 2.185 1.525 1.182 0.935 0.733 0.551 0.378 0.202 0.009 -0.235

50 2.503 1.943 1.678 1.504 1.372 1.265 1.175 1.096 1.025 0.963

100 2.630 2.101 1.854 1.694 1.577 1.481 1.404 1.335 1.273 1.222
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or

N

F(,)(1) _ Prob{exactly i out of N peaks are greater than q} ........ (19)
i=n

The probability that any one of the peaks is greater than i is given by
P(r) and is a constant for fixed values of mo and e. Further, there are only

TABLE 2 . Amplitudes of First Ten Peaks Normalized by rms Amplitude for Different
Values of N and Epsilon with Probability of Occurrence P = 0.10

N

(1)

First

(2)

Second

(3)

Third

(4)

Fourth

(5)

Order of Peak

Fifth
(6)

Sixth

(7)

(a) Epsilon = 0.0

Seventh

(8)
Eighth

(9)

Ninth -
(10)

Tenth
(11)

4 1.911 1.396 1.067 0.759 - - - - - -
6 2.013 1.543 1.267 1.049 0.845 0.620 - - - -
8 2.083 1.637 1.386 1.196 1.033 0.879 0.723 0.537 - -

10 2.136 1.706 1.469 1.295 1.150 1.019 0.897 0.773 0.641 0.481
50 2.483 2.131 1.952 1.829 1.734 1.657 1.591 1.534 1.481 1.435

100 2.619 2.289 2.122 2.011 1.927 1.858 1.799 1.750 1.704 1.662

(b) Epsilon = 0.2

4 1.905 1.389 1.057 0.745 - - - - - -
6 2.008 1.537 1.259 1.039 0.834 0.603 - - - -
8 2.078 1.631 1.378 1.188 1.022 0.868 0.708 0.518 - -
10 2.131 1.700 1.462 1.287 1.140 1.010 0.884 0.761 0.626 0.458
50 2.479 2.126 1.946 1.824 1.729 1.652 1.585 1.527 1.475 1.428
100 2.615 2.284 2.118 2.006 1.922 1.853 1.794 1.744 1.697 1.657

(c) Epsilon = 0.4

4 1.888 1.365 1.025 0.700 - - - - - -
6 1.991 1.514 1.232 1.007 0.793 0.546 - - - -
8 2.062 1.611 1.354 1.159 0.989 0.829 0.660 0.451 - -
10 2.115 1.681 1.439 1.260 1.1 11 0.976 0.846 0.715 0 .570 0.384
50 2.466 2.111 1 .929 1.804 1.710 1.631 1 . 564 1.506 1.451 1.404
100 2.602 2.269 2.103 1.990 1.904 1.834 1 .775 1.724 1.679 1.637

(d) Epsilon = 0.6

4 1.852 1.314 0.958 0.604 - - - - - -
6 1.957 1.469 1.176 0.938 0.706 0.431 - - - -
8 2.029 1.568 1.303 1.099 0.919 0.746 0.559 0.321 - -
10 2.082 1.640 1.391 1.205 1.048 0.905 0.766 0.621 0.458 0.242
50 2.437 2.078 1.894 1.766 1.669 1.588 1.519 1.459 1.405 1.355

100 2.576 2.239 2.070 1.955 1.868 1.797 1.736 1.684 1.638 1.594

(e) Epsilon = 0.8

4 1.773 1.206 0.821 0.427 - - - - - -
6 1.882 1.371 1.058 0.799 0.543 0.231 - - - -
8 1.957 1.476 1.194 0.975 0.779 0.587 0.377 0.104 - -

10 2.012 1.551 1.289 1.090 0.919 0.763 0.608 0.447 0.263 0.013
50 2.378 2.008 1.817 1.685 1.583 1.498 1.426 1.361 1.303 1.250
100 2.520 2.175 2.000 1.881 1.790 1.716 1.653 1.598 1.549 1.505

(f) Epsilon = 1.0

4 1.374 0.756 0.330 -0.111 - - - - - -
6 1.493 0.937 0.593 0.305 0.019 -0.333 - - - -
8 1.573 1.051 0.742 0.501 0.283 0.068 -0.167 -0.476 - -
10 1.633 1.133 0.846 0.628 0.440 0.265 0.093 -0.089 -0.297 -0.580
50 2.024 1.627 1.422 1.279 1.167 1.076 0.996 0.926 0.862 0.804
100 2.175 1.806 1.619 1.490 1.393 1.312 1.244 1.185 1.130 1.083
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Prob{exactly i out of N peaks are greater than ri}

= (N) [P(-1)]'[1 - P(-q)]N - / .............................. (20)

Using Eq. 20 in Eq. 19 we get

TABLE 4. Amplitudes of First Ten Peaks Normalized by rms Amplitude for Different
Values of N and Epsilon with Probability of Occurrence P = 0.50

N

(1)

First
(2)

Second

(3)

Third

(4)

Fourth

(5)

Order of Peak

Fifth
(6)

Sixth

(7)

(a) Epsilon = 0.0

Seventh

(8) 1
Eighth

(9) -A
Ninth

(10) 1
Tenth
(11)

4 1.356 0.976 0.698 0.416 - - - - - -
6 1.488 1.153 0.930 0.740 0.544 0.340 - - - -
8 1.578 1.266 1.067 0.906 0.762 0.622 0.474 0.295 - -

10 1.644 1.349 1.163 1.018 0.892 0.775 0.662 0.547 0.421 0.264
50 2.070 1.844 1.713 1.618 1.542 1.478 1.422 1.372 1.326 1.285

100 2.231 2.023 1.904 1.819 1.751 1.695 1.647 1.604 1.565 1.530

(6) Epsilon = 0.2

4 1.348 0.966 0.683 0.391 - - - - - -
6 1.482 1.144 0.919 0.726 0.536 0.309 - - - -
8 1.571 1.258 1.057 0.895 0.748 0.605 0.452 0.258 -
10 1.638 1.341 1.154 1.008 0.880 0.762 0.647 0.528 0.396 0.222
50 2.065 1.839 1.707 1.612 1.535 1.471 1.414 1.364 1.319 1.277
100 2.226 2.018 1.899 1.813 1.746 1.689 1.640 1.597 1.558 1.523

(r5 Epsilon = 0.4

4 1.323 0.930 0.633 0.305 - - - - - -
6 1.459 1.115 0.881 0.678 0.471 0.204 - - - -
8 1.550 1.232 1.025 0.856 0.702 0.548 0.376 0.140 - -
10 1.618 1.316 1.125 0.974 0.841 0.717 0.593 0.463 0.310 0.093
50 2.049 1.821 1.688 1.591 1.513 1.448 1.391 1.340 1.293 1.250
100 2.211 2.001 1.881 1.795 1.726 1.669 1.620 1.576 1.537 1.501

(d( Epsilon = 0.6

4 1.271 0.856 0.530 0.148 - - - - - -
6 1.412 1.053 0.803 0.581 0.345 0.026 - - - -
8 1.505 1.175 0.957 0.776 0.607 0.433 0.233 -0.054 - -

10 1.575 1.263 1.063 0.903 0.760 0.623 0.485 0.335 0.155 -0.112
50 2.016 1.783 1.647 1.548 1.468 1.400 1.341 1.288 1.239 1.195
100 2.180 1.967 1.845 1.756 1.686 1.628 1.577 1.533 1.492 1.455

(e) Epsilon = 0.8

4 1.161 0.709 0.344 -0.097 - - - - - -
6 1.311 0.925 0.651 0.401 0.132 -0.241 - - - -
8 1.410 1.058 0.821 0.621 0.431 0.234 0.002 -0.336 - -

10 1.483 1.152 0.936 0.761 0.602 0.450 0.293 0.120 -0.089 -0.405
50 1.943 1.701 1.559 1.455 1.370 1.298 1.235 1.179 1.127 1.079
100 2.113 1.893 1.766 1.674 1.601 1.539 1.486 1.439 1.396 1.357

(/') Epsilon = 1.0

4 0.706 0.205 -0.205 -0.706 - - - - - -

6 0.871 0.445 0.140 -0.140 -0.445 -0.871 - - - -
8 0.980 0.592 0.330 0.106 -0.106 -0.330 -0.592 -0.980 - -

10 1.060 0.697 0.458 0.263 0.086 -0.086 -0.263 -0.458 -0.697 -1.060
50 1.558 1.297 1.142 1.028 0.936 0.857 0.788 0.726 0.668 0.615

100 1.741 1.504 1.367 1.267 1.187 L121 1.063 1.011 0.964 0.921
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F(n)(q) = in ()[P()]'[l - P(-q)]N - i ....................... (21)

This gives the cumulative probability that the n-th-order peak in a total of
N peaks of a random function f(t) will exceed an amplitude -9. Let a be the
rms amplitude of the peaks, defined by

TABLE 5. Amplitudes of First Ten Peaks Normalized by rms Amplitude for Different
Values of N and Epsilon with Probability of Occurrence P = 0.70

N

(1)

First

(2)

Second

(3) 1

Third

(4)

Fourth

(5)

Order of Peak

Fifth
(6)

Sixth

(7)

(a) Epsilon = 0.0

Seventh

(8)

Eighth
(9)

Ninth

(10)
Tenth
(11)

4 1.161 0.822 0.564 0.298 - - - - - -
6 1.306 1.010 0.804 0.625 0.448 0.244 - - - -

8 1.403 1.130 0.947 0.797 0.660 0.525 0.383 0.211 - -
10 1.475 1.218 1.048 0.913 0.793 0.682 0.574 0.462 0.340 0.189

50 1.933 1.742 1.626 1.539 1.468 1.409 1.356 1.309 1.266 1.226
100 2.104 1.929 1.824 1.747 1.685 1.633 1.588 1.547 1.511 1.478

(b) Epsilon = 0.2

4 1.152 0.810 0.545 0.262 - - - - - -

6 1.298 1.000 0.791 0.608 0.425 0.199 - - - -

8 1.395 1.121 0.936 0.784 0.644 0.505 0.355 0.159 - -

10 1.468 1.209 1.039 0.901 0.781 0.667 0.556 0.440 0.309 0.131

50 1.928 1.736 1.619 1.532 1.462 1.401 1.349 1.301 1.258 1.217

100 2.099 1.923 1.818 1.741 1.679 1.627 1.581 1.541 1.504 1.470

(c) Epsilon = 0.4

4 1.122 0.768 0.482 0.146 - - - - - -
6 1.272 0.966 0.748 0.551 0.344 0.062 - - - -

8 1.371 1.091 0.900 0.740 0.590 0.437 0.262 0.008 - -
t0 1.445 1.181 1.006 0.864 0.737 0.616 0.494 0.362 0.204 -0.032

50 1.911 1.717 1.598 1.510 1.439 1.378 1.324 1.276 1.231 1.190

100 2.083 1.906 1.800 1.722 1.659 1.606 1.560 1.519 1.482 1.448

(a) Epsilon = 0.6

4 1.061 0.679 0.357 -0.046 - - - - - -

6 1.217 0.894 0.657 0.437 0.195 -0.151 - - - -

8 1.321 1.028 0.824 0.649 0.481 0.305 0.096 -0.220 - -

10 1.398 1.123 0.937 0.784 0.645 0.510 0.371 0.217 0.026 -0.271

50 1.875 1.677 1.556 1.465 1.391 1.327 1.272 1.221 1.175 1.132

100 2.050 1.870 1.762 1.682 1.618 1.563 1.516 1.474 1.435 1.400

(e) Epsilon = 0.8

4 0.934 0.512 0.147 -0.327 - - - - - -

6 1.103 0.752 0.488 0.238 -0.042 -0.452 - - - -
8 1.214 0.897 0.674 0.478 0.289 0.086 -0.158 -0.535 - -

10 1.296 1.001 0.799 0.630 0.474 0.322 0.162 -0.017 -0.241 -0.597
50 1.797 1.590 1.463 1.367 1.288 1.221 1.161 1.107 1.057 1.010

100 1.979 1.792 1.679 1.596 1.529 1.471 1.421 1.377 1.336 1.298

(/) Epsilon = 1.0

4 0.455 -0.015 -0.428 -0.969 - - - - - -
6 0.642 0.253 -0.043 -0.324 -0.643 -1.113 - - - -

8 0.765 0.415 0.165 -0.053 -0.267 -0.496 -0.775 -1.210 - -

10 0.854 0.530 0.305 0.166 -0.058 -0.230 -0.411 -0.614 -0.870 -1.281
50 1.401 1.176 1.037 0.932 0.847 0.772 0.707 0.647 0.592 0.540

100 1.597 1.395 1.273 1.182 1.109 1.046 0.992 0.943 0.898 0.858
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2
vl

........................(22)

For a narrow-band function f(t) (i.e., for F ^ 0), a can be approximated in
terms of

TABLE 6. Amplitudes of First Ten Peaks Normalized by rms Amplitude for Different
Values of N and Epsilon with Probability of Occurrence P = 0.90

Order of Peak

N First Tenth
(11)
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arms = T
j

T

f(t) dt

1/2

... .............................. (23)

the rms value of f(t), as follows (Udwadia and Trifunac 1974)

vza = 2 arms = 2 m0................................ (24 )

TABLE 7 . Amplitudes of First Ten Peaks Normalized by rms Amplitude for Different
Values of N and Epsilon with Probability of Occurrence P = 0.99

N

(1)

First

(2)

Second

(3)

Third

(4)

Fourth
(5)

ORDER OF PEAK

Fifth
(6)

Sixth

(7)

(a) Epsilon = 0.0

Seventh
(8)

Eighth
(9)

Ninth

(10)

Tenth

(11)

4 0.615 0.390 0.206 0.047 - - - - - -
6 0.789 0.589 0.434 0.296 0.162 0.039 - - - -

8 0.908 0.725 0.587 0.468 0.358 0.250 0.141 0.035 - -

10 0.997 0.826 0.700 0.592 0.496 0.401 0.311 0.219 0.122 0.028

50 1.558 1.439 (.357 1.292 1.239 1.189 1.146 1.107 1.070 1.036
100 1.760 1.654 1.582 1.526 1.479 1.437 1.400 1.367 1.339 1.311

(b) Epsilon = 0.2

4 0.600 0.361 0.153 -0.110 - - - - -
6 0.777 0.572 0.410 0.260 0.097 -0.137 - - - -

8 0.896 0.711 0.571 0.466 0.328 0.206 0.063 -0.156 - -

10 0.988 0.815 0.684 0.575 0.473 0.376 0.277 0.170 0.039 -0.170

50 1.552 1.431 1.350 1.284 1.230 1.180 1.138 1.099 1.063 1.028

100 1.753 1.647 1.575 1.521 1.471 1.429 1.392 1.359 1.329 1.303

(c) Epsilon = 0.4

4 0.541 0.269 0.001 -0.402 - - - - - -
6 0.732 0.511 0.328 0.144 -0.079 -0.447 - - -

8 0.859 0.663 0.509 0.369 0.228 0.073 -0.129 -0.478 - -

10 0.954 0.772 0.636 0.514 0.401 0.288 0.165 0.023 -0.166 -0.501

50 1.529 1.409 1.324 1.258 1.204 1.152 1.107 1.067 1.030 0.994

100 1.735 1.628 1.556 1.496 1.450 1.407 1.369 1.336 1.307 1.277

(d) Epsilon = 0.6

4 0.426 0.107 -0.230 -0.762 - - - - - -
6 0.640 0.392 0.178 -0.049 -0.332 -0.824 - - - -

8 0.780 0.564 0.391 0.226 0.056 -0.138 -0.397 -0.867 - -

10 0.881 0.684 0.533 0.396 0.263 0.127 -0.022 -0.2(H) -0.445 -0.899

50 1.486 1.359 1.274 1.205 1.144 1.094 1.045 1.002 0.962 0.925

100 1.696 1.585 1.510 1.452 1.400 1.357 1.318 1.283 1.251 1.221

(e) Epsilon = 0.8

4 0.225 -0.146 -0.547 -1.200 - - - - - -
6 0.469 0.186 -0.063 -0.330 -0.670 -1.278 - - - -
8 0.624 0.382 0.184 -0.005 -0.204 -0.437 -0.750 -1.331 - -

10 0.737 0.518 0.347 0.191 0.039 -0.121 -0.298 -0.511 -0.807 -1.371

50 1.388 1.255 1.164 1.089 1.026 0.968 0.920 0.870 0.826 0.785

100 1.609 1.494 1.416 1.352 1.300 1.253 1.212 1.175 1.140 1.107

(f) Epsilon = 1.0

4 -0.339 -0.762 -1.223 -1.984 - - - - - -
6 -0.064 -0.383 -0.667 -0.973 -1.366 -2.075 - - - -
8 0.110 -0.162 -0.385 -0.600 -0.829 -1.095 -1.458 -2.138 - -

10 0.235 -0.009 -0.202 -0.378 -0.551 -0.733 -0.935 -1.182 -1.525 -2.185
50 0.957 0.811 0.709 0.626 0.556 0.496 0.437 0.387 0.336 0.290

100 1.198 1.071 0.986 0.918 0.859 0.810 0.763 0.721 0.683 0.648
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In Eq . 23 T is the total duration of f(t). The value of I obtained from Eq.
21 by using the distribution functions of Eq. 8 is the height of a peak
divided by m /2 . Therefore , i/\/2 gives the height of a peak normalized by
a.

Computations have been made for the normalized amplitudes of the first
10 peaks for various values of e and N. Tables I to 7 show these results for
the probability of exceedance equal to 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.99.

MOST PROBABLE VALUE OF n-TH ORDER PEAK

From Eq. 21, the probability density function for the n-th-order peak can
be written as

dF(n)(TI)
4(n) (Tl) = dTl

f(n)(Tl) = - j n
(

) {Z[P(Tl)]` 1[1 - P(Tl)]N

- (N - i)[P(T1)]'[1 - P(Tl)]N-i- I} dP(q)dTj (25)

dP(q)
Since dTl = - p(-q), Eq. 25 can be written as

.f")(n)= n ( ii' '[1 P(l)]N - (N - i)[P()]'[ 1 - P(1)] - - 1}p() (26)

Expanding the summation in the above equation gives

fin) (Tl)-t(n)n[P (T1)]n -1 [1 -P(Tl )
]N-n- (nN 1)(n +1)[P(Tl)]n

[1 -P(T))]N-n-1 }P(q) + ^ C nN I) (n + 1)[P(T1)]n[ 1 -P(T))]N-n-

( N \n
2 (n + 2)[P(Tl)]n

+ 1 [ 1 - p(,q)]N - n - 2
I P(Tl)

+ 1 (n N
2)

(n + 2)[P(-9)]n [1 - p(,q)]N - n - 2 - N

n+3)

(n+3)[P(1)]n+2[1 -P(Tl)]N-n- 3} (Tl)

+ {(Z)P()JN- '[1 - P(Tl)]N-N - 0}p(j) ................. (27)

In writing the above expansion, the following equality has been used
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N N
()(N - i) =

(+1)(
i +l) for i=n , n+1,...N........ (28)

Thus, the probability density function for the n-th-order peak becomes

f(n)(Tl) = n N n) [p(Tl)]n - I[ 1 - p(T1)]N - "p (,q) .................... (29)

TABLE 8 . Most Probable Peak Amplitudes Normalized by rms Amplitude for First
Ten Peaks and for Different Values of N and Epsilon

N

(1)

First
(2)

Second

(3)

Third
(4)

Fourth

(5)

ORDER OF PEAK

Fifth

(6)
Sixth

(7)

(a) Epsilon = 0.0

Seventh

(8)

Eighth

(9)

Ninth

(10)

Tenth
(11)

4 1.291 0.936 0.658 0.354 - - - - - -

6 1.426 1.119 0.902 0.713 0.524 0.289 - - - -

8 1.516 1.235 1.043 0.886 0.742 0.601 0.448 0.251 - -

10 1.583 1.318 1.141 0.999 0.875 0.759 0.646 0.529 0.398 0.224

50 2.011 1.815 1.694 1.604 1.531 1.468 1.414 1.365 1.320 1.279

100 2.172 1.994 1.885 1.805 1.740 1.686 1.639 1.597 1.559 1.524

(6) Epsilon = 0.2

4 1.284 0.927 0.648 0.352 - - - - - -

6 1.420 1.111 0.893 0.702 0.511 0.284 - - - -

8 1.510 1.227 1.034 0.875 0.730 0.587 0.433 0.242 - -

10 1.577 1.311 1.133 0.990 0.864 0.747 0.632 0.513 0.381 0.221

50 2.006 1.810 1.689 1.598 1.524 1.461 1.407 1.357 1.312 1.271

100 2.168 1.989 1.880 1.799 1.735 1.680 1.632 1.590 1.552 1.518

(c) Epsilon = 0.4

4 1.263 0.899 0.612 0.300 - - - - - -

6 1.399 1.085 0.861 0.663 0.462 0.210 - - - -

8 1.490 1.202 1.005 0.841 0.690 0.539 0.372 0.151 - -

10 1.558 1.287 1.105 0.959 0.829 0.707 0.586 0.458 0.310 0.107

50 1.990 1.792 1.669 1.577 1.502 1.439 1.383 1.333 1.287 1.245

100 2.153 1.973 1.862 1.781 1.715 1.660 1.612 1.569 1.531 1.495

(d) Epsilon = 0.6

4 1.218 0.835 0.524 0.166 - - - - - -

6 1.356 1.029 0.791 0.575 0.348 0.051 - - - -

8 1.449 1.150 0.943 0.767 0.602 0.433 0.241 -0.024 - -

10 1.518 1.237 1.048 0.892 0.753 0.619 0.484 0.338 0.165 -0.080

50 1.956 1.754 1.629 1.534 1.457 1.391 1.334 1.282 1.234 1.190

100 2.122 1.939 1.826 1.743 1.676 1.619 1.570 1.526 1.486 1.450

(e) Epsilon = 0.8

4 1.115 0.697 0.348 - 0.063 - - - - - -

6 1.260 0.906 0.644 0.403 0.143 -0.201 - - - -

8 1.357 1.036 0.81 0 0.616 0.431 0.239 0.018 -0.293 - -

10 1.429 1.129 0.924 0.754 0.599 0.449 0.296 0.129 -0.072 -0.360

50 1.884 1 . 674 1.541 1.442 1.360 1.290 1.229 1.173 1.122 1.074

100 2.055 1.865 1.747 1.661 1.590 1.531 1.479 1 . 432 1.390 1.352

(/) Epsilon = 1.0

4 0.662 0.196 -0.196 -0.662 - - - - - -

6 0.821 0.428 0.136 -0.136 -0.428 -0.821 - - - -

8 0.926 0.572 0.321 0.104 -0.104 -0.321 -0.572 -0.926 - -

10 1.004 0.674 0.446 0.257 0.084 -0.084 -0.257 -0.446 -0.674 -1.004

50 1.497 1.268 1.124 1.015 0.926 0.849 0.782 0.720 0.664 0.611

100 1.679 1.475 1.348 1.253 1.176 1.112 1.005 1.004 0.958 0.916
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The most probable value of n-th -order peak is the value of q for which
f(n)(1) has the largest value. In order to find the most probable value
µ[a(n)], the function f(n)(-q) has been evaluated for various values of 11 at
closely spaced points with intervals equal to 0.05. By comparing the values
offn(-q) at three consecutive points and by scanning the whole range of q,
one can locate three points around the peak. A parabola fitted through
these three points can locate the value of T) for which the first derivative of
the parabola vanishes. This value of T) has been taken as the most probable
value of the n-th-order peak . Table 8 lists the most probable amplitudes of
the first 10 peaks for e = 0.0, 0.2, 0.4, 0.6 , 0.8, and 1.0 and for total number
of peaks N = 4, 6, 8, 10, 50, and 100. Most probable values of the
first-order peak are found to be in excellent agreement with the results of
Amini and Trifunac ( 1981).

EXPECTED VALUE OF n-TH ORDER PEAK

Using the probability density function f(,)(11) given by Eq. 29, the
expected (mean) value of n-th-order peak can be found from

P[a(n)] = f
x

d-q ............................... (30a)

f= )
Tl[P(T))]n - I[I - p(rl)]N- np(Tl) dT) .......... (30b)

One can write p(T))dT = -dP(-q). Therefore

(N)
P[a(n)] n n f qPn I (1 - P)N - n dP ................. (31)

Making the change of variable X = P(-q), Eq. 31 can be written as

(N)
Ef _ n 1 -I/ )Nna (,,)]= n ( P I/^ nX 1- X dX ............. (32a)

f
P[a(n)] = n n

N

)
P - I (X)Xn - I (1 - ^N - n dX ............... (32b)

Expanding X = P-I [P(X)] -- Q[P(X)] in a Taylor series about P0 = n/(N +
1), where the choice of PO will be explained later in the paper, one can write

X = Q[P(X)] = Q(Po) + [P(X) - Po]Q'(Po) + 2 [P(X) - Po]2Q"(Po)

+ I [P(X) - P0]3Q(P0) .................................. (33)

It has been shown by David ( 1980), using the expansion of Eq . 33, that the
value of the integral in Eq. 32b can be approximated , to order (N + 2)-2 ,
by
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E[a n^] = Q(Po) + P0(1 -PO) ) + PO(1-PO) 1 ,
2(N + 2) Q (P0 (N 2)2 3 (1 - 2Po)Q (P0)

+ 8 PO(1 - PO)Q,,,,(PO)I ................................. (34)

In Eq. 34

Q(P0) = P '(PO) ....................................... (35)

and

n
-

N + 1 '
..........................................(36)

PO is the expected value of the n-th-order statistic for the density function
p(x), uniform in (0, 1)

PO = n
N
n XX" -' (1 - X)N - n dX ...................... (37a)

0

n
n n

PO = - (37b)
(N + 1)

n

Derivatives of the function Q(P) in Eq. 34 can be found as follows

dQ 1 1 1

Q (P)_dP _dP d _ P(Q) ..................... (38)
dQ dQ [P(Q)l

d[Q'(P)] d[Q'(P)] dQ d 1 1_
Q (P) = dP dQ dP dQ P(Q)

dP(Q) ......... (39a)

dQ

Q„(P) = I P Q

Using Eqs . 6 and 8 for p(Q) and P(Q) it can be seen that

Q(P0) f(Q)
Q"(PO) F (-Q)

_
P 3(Q) ..................................(40)

where

f(Q) = (1 - s2)"2e - I/2Q" e - vex dx ............. (41)
(2)

Next, it can be seen that

Q(P0) = - 2 2Q2 + g(Q)+5Qf(Q) - 3j (Q (42)
P (Q) P (Q) P (Q) ................
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where f(Q) is given by Eq. 41, and

g(Q)
1 1

e - 112(Q2/r2)=F'
N//'2-Tr (43)

Similarly,

TABLE 9 . Expected Peak Amplitudes Normalized by rms Amplitude for First Ten
Peaks and for Different Values of N and Epsilon

N

(1)

First

(2)

Second

(3)

Third
(4)

Fourth

(5)

ORDER OF PEAK

Fifth
(6)

Sixth

(7)

(a) Epsilon = 0.0

Seventh

(8)

Eighth

(9)

Ninth

(10)
Tenth
(11)

4 1.385 0.994 0.717 0.442 - - - - - -
6 1.518 1.169 0.943 0.752 0.569 0.360 - - - -
8 1.609 1.282 1.078 0.916 0.771 0.632 0.486 0.312 - -

10 1.676 1.364 1.174 1.026 0.900 0.783 0.670 0.556 0.432 0.279
50 2.103 1.859 1.723 1.625 1.548 1.483 1.426 1.375 1.330 1.287
100 2.264 2.038 1.914 1.826 1.757 1.700 1.651 1.607 1.568 1.532

(b) Epsilon = 0.2

4 1.377 0.983 0.700 0.409 - - - - - -
6 1.512 1.160 0.931 0.737 0.547 0.319 - - - -
8 1.602 1.274 1.068 0.904 0.757 0.614 0.461 0.264 - -

10 1.670 1.356 1.165 1.016 0.888 0.769 0.654 0.535 0.403 0.226
50 2.099 1.854 1.718 1.619 1.541 1.476 1.419 1.368 1.322 1.280
100 2.260 2.033 1.909 1.821 1.751 1.694 1.644 1.601 1.562 1.526

(r) Epsilon = 0.4

4 1.350 0.945 0.643 0.308 - - - - - -
6 1.488 1.129 0.891 0.686 0.476 0.201 - - - -
8 1.580 1.246 1.035 0.864 0.708 0.552 0.378 0.134 - -

10 1.648 1.330 1.135 0.981 0.847 0.722 0.597 0.465 0.310 0.085
50 2.084 1.836 1.698 1.598 1.519 1.453 1.395 1.343 1.296 1.253
100 2.245 2.017 1.891 1.802 1.732 1.674 1.624 1.580 1.540 1.504

(d) Epsilon = 0.6

4 1.294 0.865 0.533 0.141 - - - -
6 1.438 1.064 0.810 0.583 0.343 0.014 - - - -
8 1.534 1.187 0.965 0.781 0.609 0.433 0.230 -0.068
10 1.605 1.276 1.071 0.908 0.763 0.625 0.486 0.333 0.150 -0.129
50 2.050 1.798 1.657 1.555 1.473 1.405 1.345 1.291 1.242 1.197
100 2.214 1.982 1.855 1.763 1.692 1.633 1.582 1.536 1.495 1.458

(e) Epsilon = 0.8

4 1.180 0.715 0.342 -0.111 - - - - - _
6 1.335 0.933 0.654 0.401 0.127 -0.260 - - - -
8 1.437 1.068 0.826 0.623 0.431 0.231 -0.005 -(1.358 - -

10 1.512 1.164 0.943 0.764 0.604 0.450 0.291 0.116 -0.098 -0.429
50 1.977 1.716 1.569 1.462 1.376 1.303 1.239 1.182 1.129 1.081
100 2.148 1.908 1.775 1.681 1.606 1.544 1.490 1.442 1.399 1.359

(/) Epsilon = 1.0

4 0.724 0.209 -0.209 -0.724 - - - - - -
6 0.895 0.453 0.142 -0.142 -0.453 -0.895 - - - -
8 1.007 0.602 0.334 0.108 -0.108 -0.334 -0.602 - 1.007 - -

10 1.089 0.708 0.464 0.266 0.087 - 0.087 -0.266 -0.464 -0.708 -1.089
50 1.594 1.312 1.152 1.035 0.941 0.862 0.792 0.729 0.671 0.618
100 1.777 1.520 1.377 1.274 1.193 1.125 1.067 1.014 0.967 0.924
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Q(Po) = Q(15 h(Q) - 17f(Q) - 9Qg(Q) - 26Q2f(Q)
P (Q)

+
P 5 (Q)

+ 35Qfz(Q) + 10g(Q)f(Q) - 15.f3(Q)
................. (44)P 6(Q)

P (Q)

where f(Q) and g(Q) are given by Eqs. 41 and 43, and

1 _1Q
h(Q) Qe -

2Tr exp 2 ........................ (45)

For e = 0, the above expressions simplify to

Q(Po) = In 1 \ vz ..................................... (46)
TOC

P(Q)= Po In 1 ^ \ vz .................................... (47)
PoC

.f(Q)= Po ............................................ (48)

and

g(Q) = h(Q) = 0 ....................................... (49)

Table 9 lists the expected values of the first ten peaks for e = 0.0, 0.2,
0.4, 0.6, 0.8, and 1.0 and for the total number of peaks N = 4, 6, 8, 10, 50,
and 100. There is good agreement between the expected values and the
most probable values of the peaks for e = 1.0, as seen from Tables 8 and
9. This confirms the validity of the above approximate expressions for
finding the mean amplitudes of the peaks.

APPLICATION TO SINGLE -DEGREE-OF- FREEDOM OSCILLATOR

Preceding results have been applied to predict the relative peak ampli-
tudes of the response of a viscously damped single-degree-of-freedom

f (t)

FIG. 1. Typical Example of Random Response Function , fit) with a(„ , a(2), a(3), etc.
as First-Order , Second-Order , Third-Order , etc., Peaks
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oscillator , excited by ground acceleration of strong motion earthquakes.
Such an oscillator is described by the differential equation of motion

Mx, + Cx, + Kx, = - Mxg ................................ (50)

and its relative displacement amplitude at time t is given by the Duhamel
integral for zero initial conditions

x,(t)
w 1 -

xg(T)e -T) sin wn 1 - (t - T) ...... (51)
j

wn = K ....... (52)

is the square of natural frequency of the oscillator

C
2-\IK-M .................................(53)

is the fraction of critical damping, and z g(t) is the input ground acceleration
time history.

Response of the above oscillator has been considered for four different
accelerograms as input excitation . These accelerograms are for the Sep-
tember 12, 1970 , Lytle Creek Earthquake ; June 27 , 1966, Parkfield
Earthquake ; July 21, 1952, Kern County Earthquake ; and May 18 , 1940, El
Centro Earthquake ; and have been selected to produce varying degrees of
departure from the assumptions of the stationarity and the mutual inde-
pendence of the peaks of response.

Figs. 2-5 show the plots of the ratios of the highest- and the n-th-order
peaks computed from the relative displacement response for values of
critical damping ^ = 0.01, 0.02 , 0.05, 0.07, and 0.10; and also the
theoretical ratios of expected value of the highest- and the n-th -order peak.
Similar comparisons for the most probable value of the highest - and the
n-th-order peak lead to essentially the same results as those illustrated in
Figs. 2 to 5. The theoretical ratios E[a(,)]/E[a(„)] and µ[a(,)]/µ[a(„)] have the
same trend as the computed ratios a( ,)/a(,,) for all values of n and for a wide
range of damping values ^. Though the assumptions of stationarity and
independence of the maxima of response function f(t) still continue, the
order statistics has made remarkable improvement in the theoretical
predictions, for large n , compared to the results obtained by Amini and
Trifunac (1981), which are also plotted in these figures for the purpose of
comparison.

DISCUSSION

The results presented in this study have been derived under the
assumptions of stationarity and mutual independence of the amplitudes of
the maxima of random function f(t). However, it has been observed that
the theory is in good agreement with the actual computations.

As discussed by Amini and Trifunac (1981), results for E[a(„)] and µ[a(„ )]
may be used to scale the relative response spectral amplitudes to get the
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TABLE 10. Comparison of Proportion of Negative Peaks Computed from Equation
54 and that Obtained from Theory for N = 50

Number of
negative peaks

from theory

Proportion of
negative peaks

from theory

Proportion of
negative peaks

from Eq. 54

(1) (2) (3) (4)

0.4
0.6
0.8
1.0

2

5

10

25

0.04
0.10
0.20
0.50

0.04
0.10
0.20
0.50

expected and the most probable values of spectral amplitudes that will be
exceeded once, twice, thrice, etc., during the shaking corresponding to the
unreduced spectrum. Results of Tables 1-7 may be used to find the spectral
amplitudes that have specified probabilities of exceedance only once,
twice, thrice, etc., during the shaking history of the structure.

As pointed out before, the success of the theory presented here is also
supported by its ability to predict negative maxima. On physical grounds,
the higher-order peaks should attain negative values as the value of
parameter e increases. Cartwright and Longuet-Higgins (1956) have shown
that the proportion of negative maxima is given in terms of the parameter
£ as

r=2[l-(1-r2)v2] .................................... (54)

As shown in Table 10 for total number of peaks N = 50, predictions from
Eq. 34 for expected value of peaks are in exact agreement with the results
from Eq. 54. The same agreement has been found for other values of N and
for the most probable values of the peaks. Thus, the order statistics makes
the variation of the peak amplitudes more predictable on a physical basis.
However, the negative peaks are not the result of the order statistics. Their
origin lies in the probability density function p(i) of peak amplitudes. As
seen from analysis of p(q), q may take on some negative values for
nonzero values of E. Variable q is a measure of height of peaks relative to
the mean level of the function f(t). Negative values of q simply mean that
the corresponding maxima lie below the mean level.
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APPENDIX II . NOTATION

The following symbols are used in this paper:

a = rms amplitude of peaks off(t);
a„ = n-th order peak off(t) when peaks are arranged in decreasing

order of amplitudes;
ar,,,,, = rms amplitude of f(t);

c = viscous damping coefficient;
E[a(„)] = expected value of a(,) ;

E(w) = energy density spectrum of f(t);
erfx) = error function;

F(„)(q) = probability distribution function for n-th order peak;
F(w) = transform of f(t);

f(„)(,q) = probability density function for n-th-order peak;
f(t) = random response function;

K = stiffness;
M = mass;

Mk = k-th order moment of E,(w);
N, NT = total number of maxima (peaks ) in response, f(t);

P(i1) = probability distribution function;
p(q) = probability density function;

r = proportion of negative maxima;
T = total duration of the response;

xg = absolute ground displacement;
xr = relative displacement of M;
e = parameter describing the width of energy spectrum;

r; = parameter e for i-th story response due to j-th mode;
= critical damping ratio;

,q(t), q = function f(t) normalized by (m0)"2 ;
µ[a(j = most probable value of a(„ ,

= phase; and
w„ = circular frequency.
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