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The scattering the diffraction of plane P and SV waves by two dimensional inhomogeneities have
been studied. A least-squares technique has been employed to solve the problem. The results are
obtained using the series expansion in terms of Bessel and Hankel functions. The method is then
applied to idealized cross sections along profiles of Los Angeles basin, California, to investigate the
effects of subsurface inhomogeneities on scattering and diffraction of plane longitudinal P, and
transverse SV waves. The surface displacement amplitudes and displacement amplitudes along

buried horizontal lines are also discussed.

1. INTRODUCTION

Detailed understanding of the effects of wave scattering
and diffraction through geological inhomogeneities is of
obvious value to earthquake engineering and strong
motion seismology. For studies of the effects of
inhomogeneities smaller than the wavelengths and for
waves with long periods, simple models seem to be
satisfactory. However, there are many cases in strong
motion seismology and earthquake engineering where
near field ground motions should be considered, in which
the waves with shorter periods become important.

In many recent ecarthquake damage studies the
evidence of strong and localized wave amplification has
been observed. Hudson! showed that the influence of
irregular geological structure or topography may
overshadow the effects of local site conditions. The study
by Gutenberg? indicates that the sites with softer
alluvium yield higher amplitudes and longer durations
than the ‘stiffer’ sites, and the intensity of ground shaking
can vary within a short distance.

The model studied by Sezawa? is an example of an early
formulation of elastic wave scattering applicable to strong
motion seismology. He investigated the scattering and
diffraction of elastic waves by embedded rigid circular
and elliptical cylinders in an elastic full space. The review
by Miklowitz* indicates that there have been numerous
efforts to investigate the diffraction of elastic waves by
obstacles of different geometries following Sezawa’s
work.

There has been a considerable amount of work on
scattering of plane SH waves (e.g., Aki and Larner®; Bard
and Bouchon®; England et al.”; Lee and Trifunac®;
Moeen-Vaziri and Trifunac®'!; Sabina and Willis'2;
Sanchez-Sesma and Esquivel!®; Sanchez-Sesma and
Rosenblueth'*;  Sanchez-Sesma et al.'®; Sills!®;
Trifunac'”-'®; Wong and Jennings!®; Wong and
Trifunac?®?!; Wong et al.??) because for the two-
dimensional inhomogeneities this problem is governed by
the scalar wave equation and its solution is thus relatively
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simple. There has been some research done on scattering
and diffraction of elastic waves involving the plane strain
models as well. However, the complexity of the plane
strain models is greater when compared to the antiplane
strain models. This is mainly due to the mode conversion
during reflection and transmission, which does not permit
one to use the method of images, and the coupled
longitudinal and shear wave components at the free
surface.

Cisternas et al.”® presented a theoretical analysis of
body waves in a ‘real earth’. Bouchon and Aki%*
described a method to study the radiation and scattering
near a seismic source in an irregular layered medium.
Using a Green’s function method, Mal and Knopoff?*
studied the propagation of Rayleigh waves past a step
change in the elevation of the surface of a homogeneous
half-space. Wang and Hermann2® published a solution
for the surface displacements due to buried dislocation
sources in a multi-layered elastic medium. Bouchon?’
employed the method developed by Aki and Larner® to
investigate the effects of different topographic features on
surface motion. A generalized inverse method was
developed by Wong?® to study the diffractions of P, SV
and Rayleigh waves by surface irregularities. Dravinski2®
studied the influence of interface depth of ground motion.
He also used a boundary integral method (Dravinski®®)
to investigate the amplification of P, SV and Rayleigh
waves by two arbitrary shaped alluvial valleys.

A few researchers used the perturbation methods to
study the effects of minor irregularities on wave
amplification (e.g., Mclvor®!; Asano3?; Suteau and
Martel**). Due to complicated mathematical analysis,
these methods are not always practical for engineering
applications.

There are very few analyses carried out for elastic wave
scattering by three-dimensional obstacles. With an
acoustic approximation, Singh and Sabina®* obtained
the exact solution for a hemispherical cavity subjected to
incident P waves. However, such an approximation can
be applied in very few cases. Lee®® analysed scattering
and diffraction of P, SV and SH waves by a hemispherical
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canyon in an elastic half-space. Wong>® and Wong and
Luco?” studied the wave scattering problems involving
surface obstacles. Lee and Trifunac®® studied body wave
excitation of embedded hemispheres. Sanchez-Sesma3®
applied a boundary method to solve the scattering and
diffraction of elastic waves by axisymmetric three
dimensional surface irregularities.

The objective of this study is to investigate the effects of
subsurface inhomogeneities and irregularities of arbitrary
shape on the ground motion amplification. The
numerical applications made in this presentation centre
around P and SV waves. The method of analysis used in
this work is mainly an extension of the work done by
Sanchez-Sesma*°, on diffraction of elastic waves by three
dimensional surface irregularities, and Moeen-Vaziri and
Trifunac'®, on scattering of plane SH-waves by
cylindrical canals of arbitrary shape.

1.1 Wave equation in polar coordinates

For the model considered in this work, the polar
coordinate system is suitable for use. Let the function f be
of the form f=f(r,0,t). The wave equation

>*f
cszf—ﬁzo (1.2.1)
in polar coordinates is then
f 1of 10% 182
oty S_Laf (1.2.2)

o ror FWZCZ or?

where c is the wave velocity.

Since an arbitrary time variation of the function can be
represented by Fourier analysis in terms of harmonic
functions, there will be no loss of generality in considering
only the harmonic solution of the form

fr,0,t)=F(r,0) e (1.2.3)
where i=./ — 1, w is the circular frequency and F satisfies
the Helmholtz equation

VZF+K*F=0 (1.2.4)
in which K=w/c is the wave number.

By using the method of separation of variables with
F = R({r)®(0) equation (1.2.4) separates into

r’R"+rR +(K*? —p*)R=0 (1.2.5)

0" +p*@=0 (1.2.6)

where p is the separation constant. The solutions for ©(6)

are
sin pf)
cos pb

For most problems of interest, ® must be single valued,

i.e., @0+ 2n)=0O(H), which requires p=n, where n in an
integer. Equation (1.2.5) then becomes

@ =gt vt (1.2.7)

R +rR +(K’r* —=n*)R=0 (1.2.8)

with the solution that can be expressed in terms of either

Bessel functions of the first and second kind, J,(Kr) and
Y, (Kr) respectively, or in terms of Hankel functions of the
first and second kind, H{"'(Kr) and H®(Kr).

Therefore, let the general solution of equation (1.2.8) be
of the form X™(Kr), m=1,2,3,4, defined as follows:

XD =J,(Kr)
X =Y,(Kr)
X =H(Kr)

XY =H2(Kr) (1.2.9)
Then the general solution of the wave equation (1.2.2) is
any linear combination of two of

sin no

X™(Kr) exp(icot) (1.2.10)
cos nf

with m=1,2,3,4, and n=0,1,2,....

The two dimensional model studied in this work is
shown in Fig. 1. It represents a layered half space (y > 0)
with each layer having arbitrary shape. The soil and
alluvium are assumed to be elastic and linear, and the
contact between the layers is assumed to be welded. The
material property of the jth layer is given by Lame
constants 4; and u;, and mass density p,, j=1,2,3,...,
NL, for which we have

o . A+ 2u;
longitudinal wave velocity: o;= \/ R
Pj

and

transverse wave velocity: ﬁjz\/uj (r.2.11)
Pj

NL is the total number of layers. The characteristic
horizontal linear dimension of each layer is defined by 2a i
j=1,2,3,..., NL,

Three coordinate systems are introduced. The
rectangular coordinate system with positive x pointing to
the right and positive y pointing down. The cylindrical
coordinate system, consisting of the radial distance r and

The Model

Fig. 1.
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the angle 6, measured from the positive x coordinate has a
common origin with the rectangular system. Finally, the
normal-tangential local coordinate system (n;,t;), is
employed which consists of the outward normal #; to the
outer boundary of layerj,j=1,2,..., NL,and the tangent
to this boundary ¢; (Fig. 1).

2. EXCITATION: INCIDENT P-WAVE

The excitation of the half-space is assumed to consist of a
plane longitudinal (P) wave with frequency w. Its
displacement vector and propagation vector are situated
in the x-y plane. It can be represented by the potential

L1 x y
P P=—exp iw(t—+>
h Ce Cpy

(2.1.1)
For an incident angle 9, measured relative to the x-axis,
the phase velocities along the x-axis, C,,, and y-axis, C,,,
are given by (see Fig. 2)

o o

C = C =
P cos PY sin §

(2.1.2)

where o is the longitudinal wave velocity in the half-space
and h=w/u« is the longitudinal wave number.

Far from the inhomogeneity, (Fig. 1), the incident waves
are reflected from the free surface (y =0). The incident P-
waves generate both plane reflected longitudinal (P) and
transverse (SV) waves, with their potentials given by

A
(reflected P-wave): ¢¥'= 71 exp iw <[ — Cx - CL)

px py

(2.1.3)

(reflected SV-wave): W”——exp iw x_7
e, G,

(2.1.4)

where 4, and A, are reflection coefficients defined by
(Achenbach*?)

SX

o 2
sin 26 sin 2y — <~> cos? 2y
4 - B
=

. (2.1.5)
sin 26 sin 2y + <;> cos? 2y

y

Fig. 2. Incident P-wave

and

— 2(;) sin 26 cos 2y
A,= — (2.1.6)
sin 26 sin 2y + (ﬂ) cos? 2y

C;. and C, are the phase velocities of S waves along x
and y axes and y is their incidence angle, f is the
transverse wave velocity in the half space. The
relationship between the incident angles of longitudinal
and transverse incident waves is given by

cosy=xr"'cosd (2.1.7)

in which k =a/f is the material constant

] 2(1=v) 12
= 1—2v
with v being the Poisson ratio of the half-space.

Equations (2.1.1), (2.1.3) and (2.1.4) can be rewritten as
(Pao and Mow*!)

¢<i>—f Z d,(—i)"J ,(hr) cos n(0 + 6) (2.1.9)
n 0
A o0
¢(r)=71 Y d (= iy'J () cos n(B —7) (2.1.10)
n=0
A o0
(r)_7 Z J(Kr)cos n(f—y) (2.1.11)

where h=w/t and K=w/f are the longitudinal and
transverse wave numbers and d, is defined as

1
d:
-4

and the time factor exp(wt) is understood.

In the presence of the layered medium, incident ¢‘” and
waves ¢ and Y reflect from the surface y=0, and are
scattered and diffracted, in the vicinity of the last layer, by
the outer boundary of this layer, Sy, (Fig. 1). These new
longitudinal (P) and transverse (SV) waves are given by
the potentials ¢® and Y. The resultant free-field
potentials are then

¢ff:¢(i)+¢(r)+¢(R)
lpff: lﬁ")+ x//(R)

for n=0
forn=1

(2.1.12)
(2.1.13)

The waves are also refracted into each layer. The motion
in each layer consists of longitudinal (P) and transverse
(SV) waves. These waves are denoted by the potentials
¢’ and /i respectively, j=1,2,..., NL.

2.1 Boundary conditions

The resulting potentials ¢//, ¥//, ¢/i and /5 must
satisfy the differential equation (1.2.2)forj=1,2,..., NL.
The displacements and stresses corresponding to these
potentials namely ull ull olf ol!, olf, ol uli, uls, ol
oli, olj and o} must satlsfy the followmg boundary
conditions:
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(1) Stress free condition on the half-space surface

First layer 0,0=0, g49=0
at 6=0and 0=m and r in the first layer

jth layer 0,0=0, 0go=0
at =0 and 0=n and r in the jth layer for j=1,2,.. .,
NL-1

(2.2.1)
half-space layer 0,0=0, 5gy=0
at 0=0and 6 == and r in the half-space
(2.2.2)
(2) Continuity of displacements
uli=ulin .
wh—ufe NSy =12, NL—I (2.2.3)
uanL — u{f
uthL=utff on SNL (224)
(3) Continuity of stresses
oh=oly
oli=ali S, Jj=L2,...,NL-1 (2.2.5)
o=l
oivt=glf on Sy, (2.2.6)

In which (n,t) are the normal and tangential coordinates
as shown in Fig. 1. 24; is the total width of the jth layer.
Equations (2.2.1) through (2.2.5) represent the
boundary conditions to be applied in the calculation of
the potentials ¢, y®), ¢/iand y/7. Once these potentials
are known, the free-field displacement and the
displacement in each layer can be determined.

2.2 Solution of the problem

The procedure for solving this problem is similar to
what has been done for plane SH-wave problem by
Moeen-Vaziri and Trifunac'!. Unlike SH-waves, the
diffraction of P-waves is coupled with SV-waves, making
the problem mathematically and physically more difficult
to solve. Consider the sets of linearly independent and not
necessarily orthogonal functions:

jQSll)(X) JQLZ)(X) I’l=0, ]’2537 v

jRL“(x) ij,Z’(x) j=1,2,...,NL (2.3.1)
and

T.(x) Vix) n=0,1,2.3,... (2.3.2)

that have the following properties:

(i) Each T, is a solution of the partial differential
equation (1.2.2) in the free-field region and ;Q{" and
/047 are solutions of the same differential equation
in jth layer, with C=p in (1.2.2).

(i) Each V, is a solution of equation (1.2.2) in the free-
field region and ;R{" and ;R are solutions of this
equation in the jth layer, with C =« in (1.2.2).

(iii)) 7, and V, satisfy the Sommerfeld’s outward
radiation condition at infinity.

Next one can assume the following series expansions
for the potential functions:

1 N
¢f'=ﬁ Y (10X, sin nd + b, cos nf]
n=0
+10P(x)[ ¢, sin nb + ,d, cos nd]}

l//flzl

=

N
> LRV, A4, sin nb+ B, cos nf]
n=0
+1RP(x)[,C, sin nf + D, cos nf]}

1 N
¢/ =2 T 10" (X) 24, sin n0 + b, cos nf]
n=0

+,0P(x)[,¢, sin n + ,d, cos nd]}

1 N
7 “h 2. {2RP(X)[24, sin nb +,B, con s6]
n=0
+2RP(x)[,C, sin nf + ,D, cos nf]}
(2.3.3)
1 N
#1=5 3 L0 NI sin 10+ b, cos nd)

+;02(x)[ ¢, sin nb + d, cos n]}

1 N
0= X GROL A, sin n0-+,5, cos n0]

+;RP(x)[ ;C, sin nf + D, cos nd]}

S| o=

N
M=% (N O (X)[y.a, sin nd + b, cos nd]
n=0

+ 8@ (X) [ yi.c, sin n0 + , d,, cos nf]}
1 X .
YINL = Y A RO(X) A, sin 0 + 4, B, cos nf]
n=0
+xRP)[,C, 8in 06 + D, cos nd1;

Pf = T,(x)[e, sin nb + f, cos nd]

0

= -
1=

n

N
Y =—% V,(x)[E,sinnf+F,cos nf] (2.3.4)
n=0

=] o=

Due to the linear character of the properties (i) through
(iii), %, ¢, ¢ and ¥/, j=1,2,..., NL, for n=0, 1, 2,3,
..., N also satisfy them. It can be seen (Moeen-Vaziri and
Trifunac'') that the stresses derived from the potentials in
equations (2.1.9), (2.1.10) and (2.1.11) satisfy the
boundary condition (2.2.2), therefore the boundary
conditions (2.2.1) and (2.2.2) must be satisfied the stresses
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derived from potentials ¢'5, /i, ¢® and y* respectively.
Furthermore, the displacements and the stresses derived
from these potentials must satisfy the boundary
conditions listed in equations (2.2.3), (2.2.4), (2.2.5) and
(2.2.6). Applying these conditions at different points
taken on the plane free surface and on the irregular
boundaries would give rise to the following equations:
ot (gh)+ ol Vgt =0

at §=0and 0 =r and r in the first layer

ol g+l g =0

V(ST + )8 ) — (S — ¥ (S5 =0

I I S f
U@+ (S ) — D (S5) — U D (84 = 0

on §,
ol (S + ol (SE) —alf (St — ol (st =0
o' D(Sk)+ g’ D(Sh)— @D (Sk) — oW (S =0
5 at) + o8 i) =
alt (g + ol (g =0
at §=0and 6 =x and r in the jth layer
i V(S + uff S) — V(S — iV (S3) = 0
' (SY) +u D(S) — ul? s+ () — ¥ 5+ (85) = 0
on §;
W (S5) + o (8%) — 08 (S8) ~ g (Sk) = 0
o N(S)+ oI (SH) — a@ () — ol (Sk) = 0
a4V (gh) + 0% MV (gl =0
at 0=0and 6 == and r in the half-space
oSN (g )+ o N (gl = 0
u(tb NL)(SkNL) + uw NL )(SkNL) — uff(SkNL)
uf? N (SYE) + VO (SEE) =l (Sh)
on Sy,
o8/ NO(SKE) + o VD Sk = ul (S
ot ND(SKNE) + o VO (S = wf (S (2.3.5)

In which j =1,2,..., NL, is the number of layers, [;=
1,2,3, B H the number of points employed on the
free surface of the jth layer and k;=1,2,3, ..., M is the
number of points used to apply the boundary conditions
on the outer boundary of the jth layer. gy and S% represent
the arguments of the functions at points /; and k; of the jth
layer.

The system of equations formed by (2.3.5) is a linear

system in terms of complex constants ;a,, b, ;c o s i Ay,

iBus jCus iDys €4, fus E, and F, and can be written as:

4]iCy={F}

The row dimension of the coefficient matrix [ 4], g, is the
number of equations used. For each layer j, there are 2L;
equations for the flat surface of the half space and 4M
equations for the irregular boundary of the layer. The
total number of equations is then

(2.3.6)

NL
g= ). (total number of layers) x (2L, +4M )
j=1
The column dimension of [A], r, represents the total
number of unknowns, which is

r=8 x (number of terms in each series)

x (total number of layers)

As it can be seen, in this case one is dealing with much
larger matrix dimensions than in the case of the SH-wave
problem discussed in Moeen-Vaziri and Trifunac!!. The
vectors {C} and {F} are (r x 1) and (g x 1) respectively.
The solution of this overdetermined linear system, in a
least-square sense, can be obtained by applying the
method of singular value decomposition (Moeen-Vaziri
and Trifunac''). Once the solution vector {C} is
determined, the potentials ¢/7, /77, ¢* and YR are defined
and so are the displacements everywhere in the medium.

To proceed further, the functions 05", ,0{*, R{", ,R?,
T, and V, must be described in detail. The description for
these functions can be given by

jQitl):Hill)(hjr) jQiuZ)‘—‘Hs;z)(hj")

j=2.3,...,NL

RP=HI(K r) RP=HPK ) (2.3.7)
in the first layer:
103 =10 =J,(hyr)
RV=,RP=J.(K,r) (2.3.8)
and in the half-space
T,=H2(hr)
V,=H®(Kr) (2.3.9)

in which the functions J(-), H{"(-) and H?)(-) are the
Bessel function of the first kind and Hankel’s functions of
the first and second kind respectively.

2.3 Excitation: Incident SV-wave

The analysis for an incident SV wave is similar to the
foregoing analysis. The displacement and propagation
vectors of the plane SV-wave are situated in the x—y plane.
It has angle of incidence y, circular frequency w and can be
represented by the potential (Fig. 3)

o1 X y
(l):—-e 1 {————+— 2.4.1
W x SXP 1w< C. + Csy> ( )
where K =/f is the transverse wave number in the half-

space.
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X

8

SV
sV

y
Fig. 3. Incident SV-wave

Far from the layered medium, the incident waves are
reflected from the free surface (y=0). Two different cases
are to be considered:

(a) incidence at or beyond the critical angle (y>7,,), and
(b) incidence below the critical angle (y<7,,), where the
crticial angle, y,,, is given by

Ter=C0s " (B/1)

Case (a): Incidence at or beyond the critical angle (y >7,,)

Far from the layered inhomogeneity, reflection of
incident waves from the free surface (y = 0) will generally
lead to both longitudinal (P) and transverse (SV) waves,
with potentials given by

(2.4.2)

A
(reflected P-wave): ¢®'= ?1 exp im <t — Cx - CL>

px py

(2.4.3)
A
(reflected SV-wave): ¥ = FZ exp iw<t - Cix - Cysy>
(2.4.4)
where the reflection coefficients are given by
(Achenbach*®)

<%> sin 4y

A, = . (2.4.5)
sin 2y sin 26 + <E> cos® 2y

and

sin 2y sin 26 —<

A, =
cos? 2y

SIS

2
) cos? 2y
5 (2.4.6)
sin 2y sin 26 +< )
with
COS O =K COS y

(2.4.7)

Cpxs Cpy and k are given by equations (2.1.2) and (2.1.8)
respectively. ¢ is the angle of reflected plane P-waves.

Equations (2.4.1), (2.4.3) and (2.4.4) can be represented
by (Pao and Mow*!)

wzé S dy(~ iy, (Kr) cos n(@+7) (2438)
n=0

(b(r):% i dn(_l)n‘]n(hr) cos n(@—y) (249)
n=0

w‘”=% Y d(—ifdKrcosn0—y)  (24.10)
n=0

where d, is defined in section 2.1, and the time factor
explimt) is understood.

Case (b): Incidence below the critical angle (y<y,,)
In this case, the reflected waves take the form:

A o .
g :F‘ Y d(— i)Y' J(hr)[C s cOs nO + S5 sin né]
n=0
A, & .
l/,m:? Y d,(—iy'J,(Kr)cos n(@ —7) (2.4.11)
n=0
where
1 sin 4y
' [k? cos* 2 +4(x? cos? y — 1) sin® 2y cos? y] 12
x exp(— i) (2.4.12)
A, = —exp(—2i&) (2.4.13)
2 2 , 1/2 o; ny "
tan f'=2(K cos®y—1)""*sin 2y cosy (2.4.14)

K cos? 2y
Since in this case, cos 6 =k cos y> 1 and sin J is imaginary

sin 6 = — k¢

E=(cos?y—x %) (2.4.15)
The C,; and S,; in (2.411), corresponding to the cosine
and sine of a complex angle, can be easily evaluated.

The reflected P-wave is a wave propagating in the x
direction with wave number x cosy and phase velocity
a/k cosy. The amplitude of the reflected P-wave decays
exponentially with distance from the surface.

In both cases (a) and (b), the longitudinal and
transverse waves scattered and diffracted near the
inhomogeneous medium are defined by potentials ¢*
and ™ respectively. The motion in each layer is defined
by ¢/ and ¢/’ for plane P and SV waves, respectively, j=
1,2, ..., NL. The resulting potentials in the half-space are
then given by

d’f‘[: ¢(r) + d,(R)
wffz l//(i) + w(r) + w(R)

The boundary conditions of the problem for incident
plane SV-wave are exactly the same as the conditions
given for the case of the plane P-wave in section 2.2,
nemely, equations (2.2.1) through (2.2.6). The solution in

(2.4.16)

(2.4.17)
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this case can be obtained in a similar manner as for the
longitudinal case. Following the analysis of section 2.3
the potentials in each layer can be represented by

.1 Z
¢fj:§ Z OV X[ ja, sin nd + b, cos nf)
+,02(x)[ s, sin nb + d, cos n0]}
Yli= E Z { RV (X[ ;4, sin nf + B, cos nl]
+,;RP(x)[,C, sin nd + D, cos nf]}
j=1,2,....NL (2.4.18)
and in the half-space by
w_1 ¥ T (x)[ e, sin nf + f, cos nf)
K n
1 RN
VAES X Y. Vu(X)[E,sin nf+ F, cos n0] (2.4.19)
n=0

where the functions ;,0'", 0%, R} Y, R, T, and V, are
defined in section 2. 3

By applying the boundary conditions (2.2.1) through
(2.2.6) one can obtain the system of linear equations
similar to equation (2.3.6). This sytem can be solved again
using the method of singular value decomposition.

2.3.1 Displacement amplitudes

The wave numbers K; and &, and the rigidities W j=
1,2,..., NL, have been normahzed with respect to the
corresponding parameters of the half-space K, i, and p.
All the distances have been normalized with respect to the
half-width of the first layer, a,.

For the incident P and SV waves, the moduli of
displacement amplitudes are

o] = (R + [T )]}

|y = {[ R Au)]? +[1(u1,)]*) 12 (2.4.20)
In the absence of the inhomogeneities the amplitudes of
ground displacement in uniform half-space are |u//| and
wl
i The amplitudes given by equations (2.4.20) depend on:
(1) the angle of incidence of the plane waves, (2) their
frequency, (3) the shear wave velocities § and §; » (4) the
longitudinal wave velocities o and «;, (5) the Lame
constants p, 4, u; and 4;, and (6) the geometrical shape
and size of the inhomogeneities.

The dimensionless frequency factor, n = 2a, /I, where |
is the wavelength of incident waves is used to present the
numerical results in this paper.

2.4 Comparison with known solutions

If the accuracy of the proposed approximate method
could be shown to be adequate for a wide range of
frequencies, the method could be applied with confidence
to study the diffraction patterns of Pand SV waves by two
dimensional inhomogeneities. Unlike for the incident SH
waves, there are no exact solutions known to the authors,
suitable for comparison in this case. Simple comparisons
can be performed with the results reviewed by Trifunac*?

for a uniform halfspace and with some of the
approximate solutions.

A single layer model with circular boundary and with
the material properties of the layer the same as in the
surrounding half-space has been used to construct a
solution and test it against the known results in a uniform
half-space. Figs 4 and 5 present the horizontal and
vertical surface displacement amplitudes against the
angles of incidence & and y for incident P and SV waves
respectively. These amplitudes are obtained at point far
from the edge of the layer, x/a, = 3.0, with Poisson’s ratio
v=0.3 and for #=0.05. The results shown in these figures
are in agreement with those presented by Trifunac*2.

Next a deep elliptical alluvial valley with major to
minor axis ratio, R, equal to 0.4 was used to compare the
results, for a different number of terms (5, 7, 9, 11)
employed in the series of equations (2.3.4) and (2.3.5). The
nature of convergence can be studied by increasing the
number of terms as seen in Fig. 6.

There are some approximate solutions in the literature
dealing with this problem, which utilize the finite number
of line sources to represent the diffracted and scattered
fields. However, unfortunately such results are often
influenced by the nonunique placement of the sources, by
the number of the sources, and by the number of
observation points, where the solutions are matched
(often in the least squares sense), so that it is difficult to
assert their accuracy (e.g., see Wong?®).
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Fig. 4. Horizontal and vertical displacement amplitudes
Jor a uniform half-space model for incident P-waves
(v=0.3)

zsr '

Fig. 5. Horizontal and vertical displacement amplitudes
Jor a uniform half-space model for incident SV-waves
(v=0.3)
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Fig. 6. Horizontal (top) and vertical (bottom) surface
displacement amplitudes for a deep elliptical alluvial valley
and for incident P-waves with different number of terms in
the series (0=60°, n=038, K,/K=125 h,/h=1.25,
Uy /u=038, R=04)

2.5 Application to practical geometries

Next the scattering and diffraction of P and SV waves
by ‘realistic’ geometries are studied. The model used for
this purpose represents an idealized cross section 0A
through the Los Angeles Basin as shown in Figs 7 and 8.
The results for this are obtained by assuming the shear
wave velocities 2.0km/sec and 4.6km/sec for the
alluvium layer and the half-space respectively. The
longitudinal wave velocities in these two media are
chosen to be 3.75 km/sec and 8.3 km/sec respectively. The
material density of the alluvium layer is assumed to be
2.25gm/cc and the density of the half-space material is
29gm/cc. The normalized wave numbers and the
normalized rigidity are the given by K, /K =23, h, /h=
2.2 and p, /u,=0.144.

2.5.1 Displacement amplitudes on surface

Consider first the amplification of P-waves by the
idealized sedimentary basin shown by solid line in Fig. 8.
The horizontal and vertical surface displacement
amplitudes, |u,| and |u,|, are plotted versus normalized
distance x/a, for p=0.5and 1.0 in Figs 9 and 10. In each
figure the effects of the angle of incident waves = 85°,
60°, 30° and 5° are shown. Note that for the assumed

material properties the free field amplitudes for P-waves
are

ul/|=0206  |ulf|]=199  for 6=85°
lul!|=1.056 |ul!|=1.705 for 6=60"
ul/|=1.618  |ul/|=1.030  for §=30°
u{/|=0853  |u//|=0368  for 5=5°

so that the deviation of the amplitudes caused by the
inhomogeneous cross section under consideration can be
judged relative to those.

The dependence of the displacement amplitudes on
the dimensionless frequency #, the geometrical shape of
the subsurface inhomogeneities, and the incident angle of
the longitudinal P-waves can be seen from these figures.
For the higher values of », shorter wavelength, the
amplification patterns are more complex and in some cases
the amplitudes almost seven times the free-field amplitude
occur, e.g., Fig. 10.

Figs 11 and 12 illustrate the amplification patterns
induced by SV-waves. Four angles of incidence, y =85°,

117°37'30"

T T
$AN GABRIEL MOUNTAINS
.

nee a5

34%00' - )
/

a5

—8---- - STRUCTURE CONTOURS
(DRZWN ON BASEMENT
ROCK SURFACE)

Fig. 7. Thickness of alluvium in the vicinity of Los
Angeles (after Yerkes et al.*?)

////—Pl';LI'IQP a,

P A ——= < X
5 r
Ly
P Ba 1 - 50000
y
Fig. 8. Typical simplified cross-section (solid line) of

sediments in the Los Angeles basin along profile 0 A, and the
buried horizontal lines 1, 1, and 1,
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—— b= 85°
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Fig. 9. Horizontal (top) and vertical (bottom) surface
displacement amplitudes for cross-section of profile 0A for
incident P-waves (4=0.5, K, /K=23,h; /h=22 pu, u=
0.144)

60°, 30° and 5 are used for each dimensionless frequency.
With critical angle of incidence, y,, = 56°20'32", two of the
considered incident angles are beyond the critical angle
and the other two are below this angle. The plots
represent the surface displacement amplitudes as a
function of x/a, for values of #=0.5 and 1.5. Since the
wavelength of SV waves is shorter than that of P waves at
the same frequency, the presence of the inhomogeneities
can be felt more readily by the SV waves and the
diffraction patterns become more complicated for the
same 7. As a basis for relative comparison of the observed
amplitudes, the free-field amplitudes for SV-wave
incidence in a uniform half-space are as follows

Wl=1977  |ulf|=0206 =85
| =1955  ul|=1.03  y=60°
W]=0498  |u/]=0956  y=30°
ul/|=0.170  [ulf]=0294 y=5°

As it can be seen from these figures, the amplification of
SV waves by the cross section under study is less than four
times that of the free-field.

2.5.2 Displacement amplitudes along buried horizontal
lines

The horizontal lines [, [, and /5, in Fig. 8 at depths d =
a, /8, a; /4 and a, /2 below surface are next considered to

10 T T T

— 6 = 85°

X/a]

Fig. 10. Horizontal (top) and vertical (bottom) surface
displacement amplitudes for cross-section of profile 0A for
incident P-waves (1=1.0, K, /K=23,h,/h=2.2, u, ju=
0.144)

illustrate the displacement amplitudes along the buried
lines for the cross section taken from section 0A in Fig. 7
and for incident P and SV waves. Figs 13 and 14 present
the displacement amplitudes for P-wave excitation and
Figs 15 and 16 show the plots of these amplitudes for
incident S¥-wave versus the normalized distance x/a,.
Two angles of incidence 30° and 60° and two values of
dimensionless frequency n = 0.5, and 1.5 are considered in
the illustration of these results.

Once again, the dependence of the amplification
patterns on the angle of incidence of the incoming wave
and on the dimensionless frequency can be seen from
these results. The influence of the inhomogeneity tends to
decrease as the depth of the buried lines increases. This is
more so for smaller values of #, i.e. longer wavelengths.
However, localized focussing of wave motion can lead to
large amplification of motions for certain geometries of
the alluvial valleys and for certain depths d. The
occurrance of large amplifications is governed by the
direction of wave arrival and by the details of the
geometry of each inhomogeneity and thus cannot be
predicted in general. Numerous plots presented by
Moeen-Vaziri and Trifunac'' can illustrate this point.

CONCLUSIONS

The problem of the scattering and diffraction of plane
waves through two dimensional subsurface irregularities

197 Soil Dynamics and Earthquake Engineering, 1988, Vol. 7, No. 4



Scattering and diffraction of plane P and SV waves: N. Moeen-Vaziri and M. D. Trifunac

T T T T T

— Y = 85°

30°

fu, |

x/a]

Fig. 11.  Horizontal (top) and vertical (bottom) surface
displacement amplitudes for cross-section of profile 0A for
incident SV-waves (n=0.5, K,/K=23, h,/h=22,
py /[u=0.144)

has been investigated. An approximate method which
involves series expansions in terms of cylindrical wave
functions and a least squares technique have been
employed to solve this problem numerically. Throughout
the numerical calculations, it was observed that
difficulties may arise when the boundaries of the
inhomogeneous layers deviate considerably from a circle
and for high values of 4. For these cases, a greater number
of terms in the series of wave functions is needed.
However, increasing the number of these terms leads to
ill-conditioning and instability of the matrix equations
under study. For the incident P and SV waves, the
comparisons have been made through constructing a
solution in a uniform half-space. The results obtained in
this case are in good agreement with those found using an
exact solution.

An idealized cross-section of the Los Angeles basin has
been chosen to illustrate the effects of more realistic
subsurface inhomogeneities on the scattering and
diffraction of P and SV waves. Examples of the
displacement amplitudes on the surface and along three
buried horizontal lines have been presented. For incident
P and SV waves the components of these amplitudes
along the horizontal, x, and vertical, v, directions were
obtained. Different angles of incidence and different
values of dimensionless frequency were considered. The
amplification patterns are significantly influenced by the

12 T T T T T

y = 85°
— —y = 60°
———y=30°

x/a1

Fig. 12. Horizontal (top) and vertical (bottom) surface
displacement amplitudes for cross-section of profile 0A for
incident SV-waves (n=1.5, K, /K=23, hy/h=22,
Uy /u=0.144)

incident angle of the incoming waves, their frequency, and
by the geometrical shape of the irregularities.

For waves with shorter wavelengths the amplification
patterns are more complex compared to those for waves
with long wavelengths. The surface displacement
amplitudes may change rapidly from point to point for
these short wavelengths. For incident P and SV waves,
the amplification factors at ground surface as high as
seven and four respectively have been observed.

The interference of waves may lead to a nearly-standing
wave pattern at some locations on the surface of the
inhomogeneities. The motion at these locations is almost
zero. The influence of the subsurface irregularities tends
to decrease as the depth of the buried horizontal lines
increases.

The application of the foregoing harmonic analysis to
transient earthquake excitations is straightforward.
Using the harmonic solutions in the frequency domain,
the effects of subsurface inhomogeneities can be examined
through Fourier synthesis and analysis (Moeen-Vaziri
and Trifunac!').
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