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A wave expansion technique is presented for the analysis of scattered and diffracted plane SH-
waves by two-dimensional inhomogeneities. Comparison of this approximate method with exact
series solutions suggests that the proposed method may become a useful tool in predicting the local
site amplification patterns in earthquake engineering applications which deal with the estimation
of site specific spectra and in the problems involving earthquake response of long structures with

multiple supports.

INTRODUCTION

The local ground amplification effects caused by surface
and subsurface irregularities represent an important
factor which modifies the recorded surface motions
during strong earthquake shaking. Detailed under-
standing of these effects is of obvious value to earthquake
engineering and strong motion seismology. In reviewing
the methods of analysis in this subject area (Moen-Vaziri
and Trifunac'), one finds discrete and continuous
methods of solution. The discrete methods include finite
elements and finite differences. Due to large dimensions in
geophysical problems, the application of such discrete
methods may be limited. On the other hand, the
applicability of continuous methods is restricted to linear,
isotropic and homogeneous materials and to simple
geometries.

There has been a considerable amount of work done on
elastic SH-wave scattering problems using continuous
methods. Trifunac® analysed scattering of plane SH-
waves by a semi-cylindrical canyon using an exact
solution. Sabina and Willis® used the method of
asymptotoc expansions to investigate the effects of
topographic irregularities in scattering of plane SH-
waves. England et al.* solved the problem of scattering of
SH-waves by a bounded cavity of arbitrary shape in a
half-space by minimizing the mean-square error in the
boundary conditions on the cavity. Sills® considered the
scattering problem of harmonic SH-waves by arbitrary
surface irregularities. An exact series solution was
presented by Wong and Trifunac® to examine surface
amplifications due to scattering of plane SH-waves by a
semi-elliptical canyon. Sanchez-Sesma and Rosenblueth’
studied scattering of SH-waves by canyons of arbitrary
shape. A comparison of experimental and analytical
results for the effects of surface and subsurface
irregularities on ground motion was carried out by Wong
et al.®. According to their study ground motion is more
influenced by the shallow alluvium layer than by the
canyon. Sanchez-Sesma er al.® presented a boundary
method to investigate the scattering and diffraction of
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SH-waves by surface irregularities. They used a least-
squares technique to satisfy the boundary conditions. The
problem of scattering and diffraction of SH-waves by
irregular canyon topography was also studied by Wong
and Jennings'® in terms of an integral equation.

The models with different material properties in elastic
wave scattering and diffraction have been analysed as
well. Trifunac'! investigated the surface motion in and
around a semi-cylindrical alluvial valley excited by plane
SH-waves, using an exact series solution. Wong and
Trifunac'? extended this type of analytical solution in
terms of Mathieu functions to obtain the surface motion
of a semi-elliptical alluvial valley due to SH-wave
excitation. Aki and Larner!® devised a method to
calculate the surface motion of a layer over half-space
medium with small interface irregularities. Bard and
Bouchon'* studied the seismic response of sediment filled
valleys for incident SH-waves by presenting an extension
to time domain calculations of Aki and Larner!3. The
ground motion due to scattering and diffraction of SH-
waves by an arbitrary shaped alluvial valley was studied
by Sanchez-Sesma and Esquivel'®. They used a least-
squares procedure to satisfy the boundary conditions. Lee
and Trifunac'® studied stresses and deformations near
circular underground tunnels subjected to incident SH-
waves. The surface displacement and stress amplitudes of
a semi-circular canal bounded in an elastic half-space,
excited by plane SH-waves, were studied by Moeen-
Vaziri and Trifunac!’. Moeen-Vaziri and Trifunac!® used
a boundary method to solve numerically the problem of
scattering and diffraction of SH-waves by cylindrical
canals of arbitrary shape in an elastic half-space.

The objective of this study is to summarize the work of
Moeen-Vaziri and Trifunac! on the effects of subsurface
inhomogeneities and irregularities of arbitrary shape on
the ground motion amplification. The numerical
applications made in this presentation centre around
SH waves. The method of analysis used in this work
represents an extension of the work done by Sanchez-
Sesma'®, on diffraction of elastic waves by three
dimensional surface irregularities, and by Moeen-Vaziri
and Trifunac'®, on scattering of plane SH-waves by
cylindrical canals of arbitrary shape.
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1.1 Wave equation in polar coordinates
For the model considered in this, work the polar
coordinate system is suitable for use. Let the function f be
of the form f=f(r,0,t). The wave equation
3f
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in polar coordinates is then
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where ¢ is the wave velocity.

Since the arbitrary time variation of the function can be
represented by Fourier analysis in terms of harmonic
functions, there will be no loss of generality in considering
only the harmonic solution of the form

Sf(r,0,0)=F(r,0)e™" (1.2.3)

where i=./ — 1, w is the circular frequency and F satisfies
the Helmholtz equation

VIF+K*F=0 (1.2.4)

in which K =w/c is the wave number.
By using the method of separation of variables with
F=R(r)©(0) equation (1.2.4) separates into

R’ +rR +(K*r* —p*)R=0 (1.2.5)
0" +p’0=0 (1.2.6)
where p is the separation constant. The solutions for ©(0)
are
. in pf
@=ct o <sm” ) (1.2.7)
cos p0

For most problems of interest, ® must be single valued,
ie., OO +2r)=0O(0), which requires p=n, where # in an
integer. Equation (1.2.5) then becomes

rZRN+rR/+(K2r2_n2)R:O (128)

with the solution than can be expressed in terms of either
Bessel functions of the first and second kind, J,,(Kr) and
Y,(Kr)respectively, or in terms of Hankel functions of the
first and second kind, H{"(Kr) and H?(Kr).

Therefore, let the general solution of equation (1.2.8) be
of the form X{™(Kr), m=1,2,3,4, defined as follows:

X=J,(Kr)
X = ¥,(Kr)
XY =H(Kr)

X9 = HA(Kr) (1.2.9)

Then the general solution of the wave equation (1.2.2) is
any linear combination of two of

X(Kr) sin 1o
cos nf

withm=1,2,3,4, and n=0,1,2,.. ..
The two dimensional model studied in this work is
shown in Fig. 1. It represents a layered half space (y>0)
with each layer having arbitrary shape. The soil and

explimt) (1.2.10)
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Fig. 1. The Model

alluvium are assumed to be elastic and linear, and the
contact between the layers is assumed to be welded. The
material property of the jth layer is given by Lamé
constants Z; and y;, and mass density ppi=1,23,..,

NL, for which we have

S . A+ 2u;
longitudinal wave velocity: o;= \/ Lt
Pj

and

transverse wave velocity: ﬁjz\/& (1.2.11)
Pi

NL is the total number of layers. The characteristic
horizontal linear dimension of each layer is defined by 2a b
j=1,2,23, ...,NL.

Three coordinate systems are introduced. The
rectangular coordinate system with positive x pointing to
the right and positive y pointing down. The cylindrical
coordinate system, consisting of the radial distance r and
the angle 0, measured from the positive x coordinate has a
common origin with the rectangular system. Finally, the
normal-tangential local coordinate system (nj,t;), is
employed which consists of the outward normal n; to the
outer boundary of layerj,j=1,2,..., NL,and the tangent
to this boundary ¢, (Fig. 1).

2. EXCITATION: INCIDENT SH-WAVE

The excitation of the half-space, u', is assumed to consist
of an infinite train of plane SH-waves with frequency ‘@’
and particle motion in the z-direction as follows:

. . X y
;= t———+—+ 2.11
H=ep lw( Cox Csy) ( :

For an incident angle y the phase velocities along the x
axis, Cy,, and y axis, C,, are given by (see Fig. 2)

=L Csyz,L (2.1.2)
cos y siny

§X

in which f is the shear wave velocity in the half-space.
Far from any inhomogeneities, the incident waves are
reflected from the free surface (y=0) and in the free-field
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Fig. 2. Incident SH-wave

region incident u. and reflected v’ waves interfere to give
the resulting motion
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It is convenient to represent the excitation, equation
(2.1.1),in terms of the functions of r and 0. It can be shown
that with:

(2.1.3)

x=rcosf and y=rsing

ul=expi[wt — Krcos(0 +7)] (2.1.4)
It follows then that (Pao and Mow?2°)
ultr=ul+u’
=2 i d,(—i)y'J,(Kr)cos O cos ny e
n=0
(2.1.5)

where J,(x) are Bessel functions of the first kind with
argument x and order p, K = w/f is shear wave number in
the free-field region, and d, is defined as follows:

1
d:
-1

From this point on, the time factor exp(iwt) will be
understood and omitted from all expressions.

Close to an inhomogeneity, say a layer, incident 1’ and
the waves u, reflected from the surface y =0, are scattered
and diffracted by the outer boundary of the layer, Sy,
(Fig. 1). The new group of scattered and diffracted waves
is called uf. The resultant free-field displacement u//, is
then

for n=0
for n>1

ulf =ul4ul +ul (2.1.6)
The waves are also refracted into the inhomogeneity, a
layer. These motions are denoted by uls, j=1,2,3,
..., NL, for all layers, inside the inhomogeneity (Fig. 1).

2.1 Boundary conditions

The free-field motion u/’ and the motion in each layer
ul, j=1,2,..., NL must satisfy the differential equation
(1.2.2) and the following boundary conditions:

(1) The stress free condition on the surface of the half-
space

My Ouf at 0=0and 6=n and r in the
o ="" =0 first layer
£, M Ouf at 0=0and 0=nr and r in the
LA second layer (2.2.1)
oy M Qulv at 0=0and 6 =n and r in the
%= a0 last layer
s foul’ at 0=0and 6=nx and r in the
%: = "0 T half-space (2.2.2)
(2) Continuity of displacements
ult=u/l? on S,
ulr =yl on S, (2.2.3)
uszL— = uszL on SNL-1
uNe =y on Sy, (2.2.4)
and (3) Continuity of stress
('}ufl 6uf2
=y onS
Hq o, Ha ah, 1
dul ouls
M2 =7 =HU3 57— on S, (2.2.5)
on, on,
Ou/NL 1 OuJNL
= = — on Sy, -
Hne -1 EEW Mnve iy NL-1
dulne oul’
: : on Sy, (2.2.6)

UnL EIE =H aﬁNL

2a; is the total width of the jth layer and #; is the unit
normal to s;, the outer boundary of each layer for j=
1,2,..., NL (Fig. 1). The derivative in the direction of this
unit normal is denoted by d/0#;. Furthermore, u// must
satisfy the Sommerfeld’s outward radiation conditions at
infinity.

OnceuRandufi,j=1,2,..., NLarefound, the free-field
displacement and the displacement in each layer can be
determined.

2.2 Solution of the problem
Consider the following sets of linearly independent

functions:
n=0,1,2,3,...
j=1,2,...,NL

; “)(x)

O (x) (2.3.1)
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and

P.(x) n=0,1,2,3,... (2.3.2)
which are not necessarily orthogonal, and have the
following properties:

(i) Each P, is a solution of the partial differential
equation (1.2.2) in the free-field region and ;,Q{" and
;057 are solutions of the same differential equatlon
in the jth layer, with C =8 in (1.2.2).

(i) P, ;0 and QP satisfy:

0B, 0N 20

ny, on; aon;

=0

(2.3.3)

(i) P, satisfies the Sommerfeld’s outward radiation
condition at infinity.

Next one can assume that:

Z (181 0 (%) + 15, 0P(%)]
ulr= Z[zaan(l b2 037 (%)] (2.3.4)
and
f=z [2,,08(%) + b, 02 (x)]
= 3 Tt 000 b, O]
= %0 ¢, P,(x) (2.3.5)

Due to the linear character of the properties (i) through
(iii), uf and ufs,j=12,...,NL,forn=0.1,2,3,..., N also
satlsfy these properties. The waves (2.1.3) satisfy the
boundary conditions (2.2.2). Therefore, the waves u/iand
uf must also satisfy the boundary condltlons (2.2 1) and
(2 2.2). Furthermore, the waves u/’ and u// must satisfy
the boundary conditions listed in (2.2.3), (2.2.4), 2.2.5)
and (2.2.6). By applying these conditions and by using
equations (2.3.4) and (2.3.5), one can get the following
equations in terms of the complex constants a,, b, and c,:

N N
Z 0(s) + Z 10,0785 — Y. 54, 0(5%)
= n=0
— Z 20, 02(S%) = on §,

G Z L D0(sh)

;!A

n=0 0”1 ny
N 1y ¢k (2)(Ck
0:1(s%) 0,7(S7)
_#zzzbzﬁ —MZZ“ZM =0
n=0 1
on §,

N N N

2 2@, QN (S5)+ Y 4b, 0085~ Y L0(sh)

n=90 n=0 n=0

N
- 2 b, 0785)=0 ons,
n=0

- 0 Q(“(S") 07(5%)
HzZZnZ +223n21A
n=0 Oy
AN R S Q‘”(S")
—H3 Z 34y, 2 QA Ha Z 3bn =0
fy
on S, (2.3.6)

N

ZaQLlSk—f-Z a0~

n=0

Z i+ 18, fnl)(skk)

N

~ Y je1b, QNS =0 on s,
0

J

N (1)(Qk N o 2k
Q (S) ¢;2.7(S7)
Z Sy Y b
= n; "m0 an;
' i 1Q57(S%)
— g Z jﬂa,,’“ﬁ‘A]
n=0 on;
L 0,096
“Hi+t Z j+1bn1+16RAJ=O on §;
n=0 N

N N
Z NLanNLQL“(SK/L)'f‘ Z NLbnNLQLZ)(Sl;/L)
n=0

n=0

N
- Z CnPn(SK’L):u;-H'(SfVL)

n=0

on Sy,

L~

N N k
5 (S On Qi (S
. Z . On O NL)+ fns Z b NLQ (S%.)

’}n n= anNL

N / 5 itr S
—‘Ll Z Cn*'i NL)='u‘uzQA(ﬁNL) on SNL

Ay Clyy,

In the above equations j=1,2, ..., NL, is the number of
the layers used, and k=1,2,3,..., M, is the number of the
points employed to apply the boundary conditions on
cach boundary. S% represents the argument of the
functions at point k dnd on the outer boundary of the jth
layer.

The system of linear equations formed by equations
(2.3.6) can be written as:

[A){C}={F} (2.3.7)

in which [ 4] is the coefficient matrix, {C} is the vector of
complex constants a,, b, and ¢,, and {F} is the vector
formed by the right hand side of equations (2.3.6). The
row dimension of [ 4], g, is two times the number of the
layers times the number of the points used on each
boundary. The column dimension of [ 4], r, is two times
the number of the layers times the number of the terms
used in each series. Vector {C} has dimension r x 1, while
{F} is a g x 1 vector. For the problem considered in this
work the system (2.3.7) is an overdetermined system, i.e.
q>r. The solution {C} that minimizes the mean square
error on the boundary can be obtained by solving the

Soil Dynamics and Earthquake Engineering, 1988, Vol. 7, No. 4 182



Scattering and diffraction of plane SH-waves: N. Moeen-Vaziri and M. D. Trifunac

system (Moeen-Vaziri and Trifunac?):

[ATIWILANC) =[A*T[WIF)  (238)
where [ 4*]" is the conjugate transpose of [ 4], and [ W] is
a diagonal matrix which contains the normalization
factors. The resulting system of equations is of the order
rxr. Once the values of a,s, b,s and c,s are determined,
the waves u/’and u/” are defined everywhere in the layers
and in the free-field region.

So far the functions ;0§"(x), ;0{(x) and P,(x) have
been kept as general as possible. To proceed further, their
detailed description is required. For the second layer
through the last layer where both incoming and outgoing
waves are present, one can consider the following sets of
functions:

O =H(K r) cos nf

jQi,z’:Hf,z’(Kjr) cosnl  j=2,3,...,NL (2.3.9)
In the first layer the motion must have the finite
amplitude at r=0. For this layer the following can be
assumed:

OV =,0@=J (K,r)cos nl (2.3.10)
For the outgoing motion in the free-field region one can
assume

P,=H2(Kr)cos nf) (2.3.11)

In the above, H\"(x) and H{)(x) are the Hankel’s
functions of the first and second kind respectively, J ,(x) is
the Bessel function of the first kind, with argument x and
of order p, and K;=w/f; is the wave number in the jth
layer, while K =w/f is the wave number in the free-field
region. The above functions satisfy the conditions (i)
through (iii), and so the equations (2.3.4) and (2.3.5)
represent the (N + 1)th order expansions of i and u® in
terms of Bessel and Hankel functions. It is obvious that
other functions could have been selected, but in this work
the cylindrical Bessel and Hankel functions are
introduced for physically intuitive reasons.

2.2.1 Displacement amplitudes

Throughout the numerical analysis, all the variables
have been presented in the dimensionless form. For that
purpose, the wave numbers K; and the rigidities p;, j=
1,2,..., NL, are normalized with respect to the
corresponding parameters of the half-space layer, i.e., K
and p. The distances are normalized with respect to the
half-width of the first layer, a;.

For the incident plane SH-wave with amplitude 1, the
resulting motion can be characterized by the modulus of
the displacement amplitude:

displ. amplitude =|u,| = {[Re(u,)]* + [Im(u,)]*} '/
(2.3.12)

In the absence of the layered medium, the modulus of
ground displacement in uniform half-space is equal to 2.

The displacement in equation (2.3.12) depends on the
angle of incidence of SH-waves, 7, and their frequency o,
on the shear wave velocities f and f,,j=1,2,..., NL, on

the dimensions and geometry of the layers and the
rigidities of the half-space layer and the other layers, u
and u;, j=1,2,..., NL. Three of these can be combined
into one parameter Ka, given by

Ka, =240 (2.3.13)
B
which is also equal to
2
Ka, =" (2.3.14)

where A=fT is the wavelength of incident waves with
period T=2n/w. Defining the dimensionless parameter:

2a

A

(2.3.15)

Ka, becomes ny. As seen from equation (2.3.15), # is the
ratio of the total width of the first layer and the
wavelength of incident waves, but it can also be thought
of as the dimensionless frequency, since = wa, /af, or a
dimensionless wave number, since n=Ka, /.

2.3 Comparison with known solutions

The above approximate method has been applied to
solve two cases with known exact solutions, semi-
cylindrical and semi-elliptical alluvial valleys (Trifunac!?;
Wong and Trifunac®'?), to test the accuracy of the
approximation.

In the case of a semi-cylindrical alluvial valley, a single
layer model with a circular boundary was used. The
agreement of the surface displacements with those given
by Trifunac'!, for a wide range of frequency (y = 0.25 to
n=2.0), was found to be excellent.

For the semi-elliptical alluvial valleys, Wong and
Trifunac®*? give the solution with series involving
Mathieu functions. Using the proposed method in this
work two families of semi-elliptical alluvial valleys have
been analysed: (a) shallow valleys with minor-to-major
axis ratios R=0.7 and 0.3 and (b) deep valleys with R=
0.7 and 0.5. The model used in this case is the single layer
model with boundary of semi-elliptical shape (Fig. 3).

Fig. 4 illustrates an example of surface displacement
amplitudes versus normalized distance x/a, for shallow
elliptical alluvial valley with R=0.7 (Fig. 3a), incident
angle y=0°, and y=1.0. Comparison with exact solution
(represented by circles) given by Wong and Trifunac®!?
indicates excellent agreement. For 5= 1.0, the results were
obtained with 12 terms in the series of equation (2.3.6).
The number of terms used in these series were 16 for
1n=1.5. The number of points employed on the boundary
to apply the boundary conditions was 39. For a deep
elliptical alluvial valley with R=0.7 (Fig. 3c) and for
incident angle y=0°, and #=1.0, the comparison of
surface displacement amplitudes is illustrated in Fig. 5.

Moeen-Vaziri and Trifunac! present detailed
comparison between the exact (Wong and Trifunac®!2)
and approximate methods of solution for all cases in Fig.
3a through 3d. They also show the effects of varying the
number of points along the interfaces S;, where the
boundary conditions are employed to construct
equations (2.3.7), and investigate the required number of
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Fig. 3. Models used for comparison of the results
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Fig. 4. Surface displacement amplitude for a shallow
semi-elliptical alluvial valley for incident plane SH-waves,
exact solution — dotted circles; approximate solution —
solid line (n=10, y=0°, K{/K=20, u,/u=0.167,
R=0.7)

~

terms in the series representation of u,. They further
present a comparison with other proposed methods of
solution using the source method and more layers as
shown for example in Fig. 3e. Detailed review of their
results is beyond the scope of this paper.

24 An application to practical geometries

Attention is next turned to a more ‘realistic’ model to
study the effects of subsurface inhomogeneities on SH
wave amplitudes in strong ground motion. An idealized
cross section motivated by the known depth of sediments
in the Los Angeles basin was selected for the study. Fig. 6
(after Yerkes et al.*') shows the variations of the depth of
sediments in the vicinity of Los Angeles. The depth to the
basement rock, as determined by oil drillings, varies from
zero to over 30000 feet. The cross section assumed for this
illustration (solid line in Fig. 7) has been motivated by the

x/ay

Fig. 5. Surface displacement amplitude for a deep semi-
elliptical alluvial valley for incident plane SH-waves, exact
solution — dotted circles; approximate solution — solid line
(h=10,y=0°, K;/K=2.0, u, /ju=0.167, R=0.7)

118° 30" 15 e as’ 17*37'30"

T T
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X il FauLts

B---- - STRUCTURE CONTOURS
{DRAWN ON BLSENMINT
ROCK SURFACE)

Fig. 6. Thickness of alluvium in the vicinity of Los
Angeles (after Yerkes et al.2!)
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Fig. 7. Typical simplified cross-section (solid line) of

sediments in the Los Angeles basin along profile 0A, and
buried horizontal lines 1,, 1, and 15. Dashed lines indicate
actual depth of sediments

x/ay

Fig. 8. Surface displacement amplitudes for cross-section
of profile 0A for incident plane SH-waves (1=0.5, K, /K =
2.3, 1wy u=0.144)

section OA, (dashed line in Fig. 7) of Fig. 6. For the sample
calculations the shear-wave velocities of the alluvium
layer and the half-space were assumed to be 2.0 km/sec
and 4.6 km/sec respectively. The material densities of
these two media were assumed to be 2.25gm/cc and
2.9 gm/cc respectively. The values of the normalized wave
number and rigidity are then given by K, /K=2.3 and
1y /u=0.144.

24.1 Surface displacement amplitudes

The results computed for the assumed cross section
(solid line in Fig. 7) are given in Figs 8 and 9 and show the
amplitudes of surface displacement due to harmonic
incident SH-wave of unit amplitude plotted against the
dimensionless distance x/a,. These plots are given for two
values of dimensionless frequency 5, namely #=0.5, and
2.0. Four angles of incidence y =90°, 60°, 30° and 0" are
considered. The case y =0° corresponds to a horizontally
incident wave travelling from left to right. These figures
show that the overall trends of amplification pattern are
dependent on the angle of incidence of plane SH-waves,
and on the dimensionless frequency. When the
wavelength of the incident motion is less than, or
comparable to, the dimensions of the inhomogeneity, i.e.,
when # is large, the effects of subsurface inhomogeneity
are much more prominent. This result is analogous to the
intuitive physical expectation that the waves with long
wavelengths do not ‘feel’ small irregularities in the
ground, whereas the waves with short wavelengths do.

The amplitudes vary rapidly from point to point for these
short wavelengths, and at some locations, the amplitudes
five times the input occur (e.g. Fig. 9). At other points the
motion is almost zero. The vibration in these locations
can be characterized by nearly-standing waves. The large
amplifications and the reductions of the surface
displacements result from the focusing of waves reflected
through the inhomogeneity.

Moeen-Vaziri and Trifunac' present other examples
involving different idealized cross-sections of the Los
Angles sedimentary basin, to show how the surface and
subsurface displacement amplitudes vary with the shape
of the sedimentary layer. They also discuss the number of
terms in the solution series, as well as the number of
boundary points on §;, which were required to compute
the ground motion amplitudes.

2.4.2 Displacement amplitudes along buried horizontal
lines

Next the displacement amplitudes along three buried
horizontal lines for the cross section studied above (Fig.
7) are presented. The buried lines [,, [, and [, are located
at the depths d=a,/8, d=a, /4 and d=aq, /2 from the
surface, with a; being the half-width of the
inhomogeneity. The results are illustrated for the
dimensionless frequencies #=0.5 and 2.0 and for the
angle of incidence y =90°.

For the cross-section OA (Fig. 7) the buried line I,
intersects the boundary of the inhomogeneity at x/a, =
—0.95 and x/a, = +1.0. The corresponding intersection
points for line [, are at x/a, = —0.74 and x/a, = +0.33.
The buried line [, does not intersect the boundary of the
inhomogencity (Fig. 7).

Figs 10 and 11 present the displacement amplitudes
along these three buried lines versus dimensionless
distance x/a, for the cross-section in Fig.7. Additional
plots of such displacement amplitudes, for other cross-
sections in the Los Angeles basin have been presented by
Moeen-Vaziri and Trifunac’. The results they discuss are
for four angles of incidence y=90°, 60°, 30° and 0° and
four values of the dimensionless frequency = 0.5, 1.0, 1.5
and 2.0. As the depth of the buried line increases, the
influence of the inhomogeneity decreases. For small
values of 5, long wavelengths, the influence of the
subsurface irregularity almost disappears. For higher
values of y, short wavelengths, the rapid change of the

Fig. 9. Surface displacement amplitudes for cross-section
of profile 0A for incident plane SH-waves (n=2.0,K, /K =
2.3, 1y /u=0.144)
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x/a,

Fig. 10. Displacements amplitudes along three buried
horizontal lines for cross-section of profile 0A for incident
plane SH-waves (y=90°, n=0.5, K,/K=23, u,/u=
0.144)

——d=a,/8
——d = a]/d
----- d=a1/2

x/aT

Fig. 11. Displacement amplitudes along three buried
horizontal lines for cross-section of profile 0A for incident
plane SH-waves (y=90°,n=2.0, K, /K=2.3, u, Ju=0.144)

amplitudes from point to point along the lines closer to
the surface (I, and /,) can still be seen. Fig. 11 illustrates
an interesting case showing that the motions at depth (d =
a; /4) can be larger than the motions on the surface.

24.3 Surface displacement amplitudes for a three layer
model

For a small portion along the section OB, Fig. 6, a three
layer model for the Los Angeles area is assumed for the
following example (Yerkes et al.*! and Gutenberg??).
This model is shown in Fig. 12. The shear wave velocities
in the layers of the inhomogeneous model are chosen to
be B =1.4km/sec, f,=2.6km/sec and f,=3.8km/sec
respectively. The material densities of these layers are
assumed to be p, =2.1 gm/cc, p,=2.4gm/cc and p,=
2.7 gm/cc respectively. The shear wave velocity and the
material density of the half space are f=4.6 km/sec and
p=2.9 gm/cc, as before. With these assumed shear wave
velocities and the material densities, the values of the
normalized wave numbers become K| /K =3.28, K, /K =
1.77 and K;/K=1.21. The values of the normalized
rigidity factors are then: y, /u=0.065, u, /u=0.257 and
U3 /uu=0.625.

Figs 13 through 16 present the surface displacement
amplitudes versus normalized distance x/a, for the model
shown in Fig. 12. Four values of dimensionless frequency
y are considered, #=10.5, 1.0, 1.5 and 2.0. The results are

given for four angles of incidence y = 90°, 60°, 30° and 0".
It can be seen that the patterns of amplification for this
case are more complicated than for a single layer model.
The complexity of these amplitudes increases as the value
of the dimensionless frequency # increases. In this case,
the amplifications almost seven times the input amplitude
occur at some locations along the surface.

2.4.4 Displacement amplitudes for transient excitation
Effects of the subsurface inhomogeneities upon the
transient earthquake motions can be studied by Fourier
analysis and synthesis, by using the above results in the
frequency domain. In this framework, the results

[o] 20000 40000 60000 80000 100000

Pyr Bar| Byr ay
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Fig. 12. A three-layer model along a small portion of
profile OB of Los Angeles basin
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Fig. 13. Surface displacement amplitudes for a three-
layer model along profile 0B for incident plane SH-waves
(n=05,K,/K=3.28.K,/K=177Ky/K=121,p, ju=
0.065, piy /n=0.257, us/u=0.625)
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= 60°
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Fig. 14 Surface displacement amplitudes for a three-
layer model along profile OB for incident plane SH-waves
m=10,K,/K=328,K,/K=177,K,/K=121, Wy /u=
0.065, py [11=0.257, usy/u=0.625)
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Fig. 15. Surface displacement amplitudes for a three-
layer model along profile OB for incident plane SH-waves
m=15,K,/K=328,K,/K=177,K3/K=1.21,p, ju=
0.065, 15 /u=0.257, uy/u=0.625)

presented in this paper represent transfer functions, which
can be used to modify the Fourier transform of incident
SH waves and, through Fourier synthesis, give the
transient earthquake motions at any location in the
model. Detailed discussion of such transient motions is
beyond the scope of this paper, as it depends on numerous
parameters which describe the incident motion, and is
perhaps better suited for a specific case study. The reader
may find some simplified examples of such transient
analyses in the report by Moeen-Vaziri and Trifunac®.

CONCLUSIONS
The results of this study can be summarized as follows:

1. The wave expansion representation of the scattered
and diffracted fields of plane SH-waves near and
inside two-dimensional inhomogeneities is capable of
representing the strong ground motion there for long
incident waves. The method has been tested for <2
(where 5 is the ratio of the size of the inhomogeneity
to the wave length of incident waves). We found that
our results agree favourably with exact series
solutions of semi-elliptical inhomogeneities.

2. The transient earthquake excitation, represented by
its Fourier transform, can be combined with the
results of this study, representing the complex
transient functions of the response in or near
inhomogeneity, to compute transient strong ground
motion at any point in the medium. It is assumed, of
course, that the medium responds linearly, for all
amplitudes of excitation. This, however, does not
seem to result in any significant limitations since, for
the majority of applied earthquake engineering
applications, response of alluvium and soil does
remain in the linear response range.

3. Extension of the results presented here to shorter
wave lengths (y>2) is straightforward from the
formal point of view. The more advanced approach is
required, however, in the inversion of the resulting
least-squares equation, since this inversion becomes
progressively unstable with the size of the resulting
matrices.

18 T T T T T T T

x/a

Fig. 16. Surface displacement amplitudes for a three-
layer model along profile OB for incident plane SH-waves
=20, K, /K=328 K,/K=177, K;K=121, u,/=
0.065, 1, [u=0.257, 113 /u=0.625)
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